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The cat is on the mat. Or is it a dog?

Dynamic competition in perceptual decision making
Jean Charles Quinton, Nicola Catenacci Volpi, Laura Barca, and Giovanni Pezzulo

Abstract—Recent neurobiological findings suggest that the
brain solves perceptual decision-making tasks by means of a
dynamic competition in which evidence is accumulated in favor
of the alternatives. However, it is unclear if and how the same
process applies in more complex, real-world tasks such as the
categorization of ambiguous visual scenes and what elements
are considered as evidence in this case. Furthermore, dynamic
decision models typically consider evidence accumulation as
a passive process disregarding the role of active perception
strategies. In this article, we adopt the principles of dynamic
competition and active vision for the realization of a biologically-
motivated computational model, which we test in a visual
categorization task. Furthermore, our system uses predictive
power of the features as the main dimension for both evidence
accumulation and the guidance of active vision. Comparison of
human and synthetic data in a common experimental set-up
suggests that the proposed model captures essential aspects of
how the brain solves perceptual ambiguities in time. Our results
point to the importance of the proposed principles of dynamic
competition, parallel specification and selection of multiple alter-
natives, prediction, and active guidance of perceptual strategies
for perceptual decision-making and the solution of perceptual
ambiguities, and suggest that they could apply to both the simple
perceptual decision problems studied in neuroscience and the
more complex ones addressed by vision research.

Index Terms—Perceptual decision-making, dynamic models,
prediction, active vision.

I. INTRODUCTION

A
CCORDING to an authoritative view in neuroscience,

perceptual decision-making is a dynamic process in

which alternatives (e.g., are these dots moving towards left

or right?) compete over time [1], [2]. Perceptual ambiguities

are solved by accumulating sensory evidence in favor of the

hypotheses, up to a threshold. Initial decisions can be revised,

too, when evidence is initially stronger for one hypothesis,

and successively for another. This process is well captured by

dynamic models of choice, such as drift-diffusion [3], neural
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races [4], dynamic accumulators [5], and dynamic stochastic

models [6], all essentially implementing statistical tests [7].

Dynamic models of choice have a good degree of correspon-

dence with neural data. Indeed, numerous experiments have

revealed that the activation of neurons in sensorimotor areas

(e.g., the macaque LIP, lateral intraparietal cortex) “ramps” up

in a way that is consistent with drift-diffusion models, and is

highly predictive of overt response (e.g., overt eye movements

to the left or right). This body of evidence has lead to the

proposal of a so-called intentional framework of perceptual

decision-making [8], in which evidence accumulation is inti-

mately related to action selection. Neuroimaging experiments

in humans show that the same mechanisms might be in play

besides simple perceptual decisions, such as for instance in

the recognition of faces and buildings, and could support

quite arbitrary mappings between stimuli and actions [9].

Recent studies indicate that a similar “ramping” mechanism

could regulate more abstract decisions that are not tied to any

effector-specific response [10]. Besides perceptual decisions,

dynamic competition has been proposed as a key principle for

the parallel specification and selection of multiple responses

[11] and categorization [12], [13]. In brief, this corpus of

evidence suggests the brain solves choice problems (of many

or possibly all kinds) using dynamic competition between two

or more hypotheses (or responses) maintained and updated in

parallel.

Although the proposals reviewed so far tend to emphasize

bottom-up sensory processes, a complementary view that is

gaining prominence is that perceptual processing is inherently

proactive and anticipatory [14], [15]. In a similar vein, it

has been proposed that to solve perceptual uncertainties the

brain adopts a generative approach to perceptual processing.

In this predictive coding view, the brain builds a hierarchical,

statistical model of the sensorium, and uses it to guide percep-

tual processing. Higher (cortical) layers represent increasingly

more abstract object features (or even semantic information),

and bias lower layers in a top-down manner by propagating

expectations, which play the role of (Bayesian) priors. In

turn, lower layers, which encode more fine-grained details of

perceptual stimuli, provide bottom-up feedback in the form

of prediction errors, which guide revisions of the perceptual

hypotheses [16], [17], [18]. In this framework, choice is

operated by minimizing prediction errors (generated by the

competing hypotheses) rather than accumulating evidence in

in favor of the alternatives.

Hierarchical and generative approaches to visual process-

ing are becoming popular in vision research, too (although

discriminative methods are still widespread). In the last few
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years, considerable progresses have been made towards the

realization of robust and scalable, so-called “deep learning”

architectures [19], [20]. Despite so, generative methods are

generally considered hard to implement and to scale up to

realistic situations. Possible solutions to this problem consist

in extracting and using (hierarchies of) features, which permit

recognizing equivalent object parts despite their different ap-

pearance [21], [22], combining generative and discriminative

approaches, or incorporating human knowledge in the decision

process.

A limitation of all these approaches is that they incorporate

a passive model of information collection. On the contrary,

the active perception view emphasizes that living organisms

gather information is an active way by exerting control over

their sensors and effectors [23]. As they are able to (partially)

determine their next stimuli, they can use an active strategy

to select what visual stimuli to attend and how to probe the

visual scene. In this perspective, perceptual decision-making

can be significantly affected by the strategy used to scan

the visual scene. A recent study shows that the sequence

of eye-movements affects recognition and categorization of

ambiguous figures [24]. This result can be explained in terms

of dynamic decision-making theories by noticing that, by

performing different scans of the same visual scene, subjects

accumulate more evidence that is consistent with one or the

other alternative. This also implies that (active) sensing is

part of the decision-making process, and not only a source of

input. In keeping with this view, active vision schemes can be

adopted to select information in a top-down manner, depending

on the demands of the task at hand. There is indeed abundant

evidence of top-down guidance of perception and attention

strategies in naturalistic environments, and the anticipatory

search of relevant information [25]. Recently, these insights

have been incorporated in multiple-model architectures of

reinforcement learning, which are able to select gaze loca-

tions depending on utility (or losses) associated to multiple

goals [26], [27]. However, these architectures do not address

problems of perceptual categorization.

Overall, despite the advances in neuroscience and artificial

vision research described so far, knowledge remains scattered

among different communities of neuroscientists and vision re-

searchers. On the one hand, although there is consensus among

neuroscientists that perceptual decision-making is a dynamic

and competitive process, it is still unclear how neural mecha-

nisms studied by neuroscientists in simple perceptual choices

can scale up to more complex visual categorization tasks, and

what elements are used as evidence for the alternatives. On the

other hand, the advanced computational methods developed by

vision researchers and the insights coming from the study of

complex visual tasks (such as the importance of feature-based

representation, predictive processes, and the active guidance

of perception) are rarely studied in neuroscience experiments,

and their neural substrate is incompletely known. In this article

we combine these complementary aspects in a unique system,

which we then test in a human categorization study.

Fig. 1. Sketch of the set-up used in both human and simulated experiments.
After pressing a START button, a visual stimulus is presented centrally. The
task consists in classifying it by pressing (with the mouse) one of the two
buttons (CAT or GIRAFFE). Measuring mouse kinematics permits to unfold
the visual decision in time.

A. A dynamical approach to perceptual decision-making

We pursue a novel approach that combines aspects of

dynamical systems, predictive coding, (modularized) feature-

based schemes, and active vision systems described so far

into an integrated computational architecture for perceptual

categorization. Visual stimuli categorization is modeled as a

dynamic process, in which alternative hypotheses (e.g., giraffe

vs. dog) compete over time. Different from most bottom-up

approaches, in the proposed model competition is solved by

considering the prediction success of the alternative hypothe-

ses. In brief (and with some simplifications, see later), the

neural architecture that we present includes sets of feature

predictors, specific for each category, which continuously

“vote” for one of the alternatives; their votes are only counted

if predictions are correct.

Not only prediction success is used for choice, but also for

selecting the next gaze location of the system fovea. In this

way, the currently leading hypothesis is also the one that steers

an active vision process and influences the way the visual stim-

ulus is probed. As it can influence choice, the active guidance

of the fovea can be considered as a part of the decision-making

process. The use of active perception mechanisms (guided

by prediction success) along with a realistic implementation

of action dynamics and stimuli processing distinguishes our

proposal from related models of categorization that emphasize

dynamic processing [12], competition between features of

objects [13] or their predictive power [28].

To demonstrate the efficacy of our computational approach,

we compare human and system performance in a visual cate-

gorization task. The set-up used in both human and simulated

experiments is sketched in Fig. 1. Essentially, for both the

human and the system, the task consists in classifying a

(shortly presented) visual stimulus as belonging to one of two

categories (e.g., dog vs. giraffe), by clicking one of two buttons

with the mouse. In the experiments, we used visual stimuli

(sketches of animal pictures) belonging to four categories (cat,
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dog, giraffe, and horse) and having two different levels of

ambiguity (low or high). For instance, in a Giraffe vs. Dog

classification, stimuli can be of four different kinds: “proto-

typical” Giraffes, “prototypical” Dogs, or figures obtained by

interpolating the two and conserving more elements from the

former or the latter, respectively. In the first two cases, stimuli

had low ambiguity; in the last two cases, stimuli had high

ambiguity.

To visualize and measure the dynamics of choice in the

human experiment, or their “decision trajectory”, we measured

the continuous mouse movements they made during the task.

This methodology is widely adopted to study the dynamics

of decision making and how they change as a function of

uncertainty, see e.g., [29], [30]1. We hypothesized that, in the

presence of ambiguous figures, human subjects would have

made more classification errors. Furthermore, and more sig-

nificantly for our study, we hypothesized that the trajectories

of their mouse movements would have been less straight, as if

they were more “attracted” by the other category (as compared

to trials with non-ambiguous figures). This hypothesis is con-

sistent with the view that perceptual uncertainties are solved

by a dynamic competition process, in which interpretations

are biased by evidence collected and prediction errors, and in

which initial hypotheses can be revised during the processing.

Not only the continuous measurement of subjects’ mouse

trajectories is important per se, but it also allows comparing

human and system performance. To this aim, we tested our

computational system in the same task as the human subjects.

For each trial, we simulated mouse trajectories by counting

(step-by-step) the “votes” in favor of each alternative, and by

generating a movement vector pointing towards the currently

preferred alternative. Choices that were certain from the be-

ginning resulted in straight trajectories towards the winning

alternative, and uncertain choices generated curve trajectories

and “changes of mind” during the task.

Below we introduce in more detail the human (section II)

and simulated experiments (section III) we performed.

II. METHODS: THE HUMAN EXPERIMENT

A. Ethics Statement

The procedure of the experiment has been approved by

the Institute of Cognitive Sciences and Technologies of the

National Research Council, ISTC-CNR of Rome, Italy. All

the participants gave their informed consents.

B. Participants

Eighteen participants took part in the experiment. Age

ranged from 25 to 63 years. All participants were Italian

native speakers, highly educated (university students, people

with master degree or young researchers), and with normal or

corrected to normal vision.

1Note that this methodology is based on the assumption that decision-
making is not completed when the action starts, but is a continuous process
[31]. Traditional models of decision-making do not readily accommodate this
assumption, although they can be extended to do so [32].

Fig. 2. a) Example of a stylized Cat. b) Example of stylized Giraffe. c)
Example of an ambiguous Cat that is also 25% a Giraffe.

C. Materials

A list of ambiguous and unambiguous figures has been used,

for a total of 96 experimental stimuli. The 48 unambiguous

figures represent stylized animals belonging uniformly to

four possible categories: Cat, Dog, Giraffe and Horse. The

stimuli used in this experiment were originally developed by

[33]. The category prototypes were determined by [34]: one

thousand stimuli were initially generated by a software by

considering nine parameters (e.g., head angle, tail length),

and then categorized by eight participants. The average of

responses among these trials produced eight prototype figures

(one for each participants) for each category.

The 48 ambiguous figures used in our study were generated

by randomly choosing two prototypes belonging to different

categories (e.g., Cat and Giraffe), and then applying a mor-

phing procedure, which varied their nine parameters along a

continuum between the two categories (e.g., between the head

angle mean of Cat and Giraffe). This procedure permitted

to produce figures that are “intermediate” between two cat-

egories, using a morphing coefficient µ in [0, 1]. Specifically,

we selected figures belonging for the 75% to one of the

two categories, and 25% to the other (e.g., an ambiguous

Cat that is also 25% Giraffe). Examples of unambiguous and

ambiguous figures of stylized animal are shown in Fig. 2(a,b)

and Fig. 2(c), respectively.

D. Procedure

At the beginning of each trial, participants clicked on the

/START/ button located bottom-centre of the PC screen (see

Fig. 1). Then stimuli appeared and participants had 800ms

to make their response (i.e., to move the mouse cursor and

click on one of the two response buttons), otherwise a /TIME

OUT/ message appeared. Response buttons were labelled with

words standing for categories (e.g., /CAT/). One button was

always associated with the correct response category, while the

other was either a random category (for unambiguous stimuli)

or the other category considered in the morphing procedure

described so far (in the case of ambiguous stimuli). In other
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words, ambiguous stimuli were always used in decisions

concerning the two morphed categories. Words were presented

in ARIAL font, upper case, black on a white background,

located respectively top-left or top-right of the PC screen, on

the basis of a random choice. Also correspondence between

stimulus type and button were varied randomly across trials

and participants. In case of errors, a feedback message (red

cross) appeared after the response.

During subject responses, categorization errors and the

x and y coordinates of mouse trajectories were recorded

automatically (sampling rate of approximately 70Hz) using

MouseTracker. Such software package was used to record,

process, and analyze mouse movements [35]. Before starting

with experimental data acquisition, participants performed a

practice session with 10 items to familiarize with the pro-

cedure. The 96 experimental stimuli were presented in two

blocks of 48 items each. The order of stimuli within blocks

and the order of blocks presentation were randomized.

E. Results

1) Data Processing: Error rate and mouse trajectories were

analyzed under two conditions: in the presence of ambigu-

ous and unambiguous stimuli. In the trajectory analysis we

discarded wrong responses (i.e., when the subject selected

the inappropriate stimulus category) which were the 19% of

total data. This high error rate is explained by the task speed

constraint and the ambiguity of half the stimuli.

We used the Linear Mixed-Effects Model (LMM) to study

the effect of ambiguity on the response variables. Stimulus am-

biguity was considered as a Fixed-effect factor and Items and

Subjects were considered as Random-effects factors. Among

the two conditions the unambiguous one was taken as default

level of comparison.

For each dependent variable (i.e., trajectory’s parameters

and accuracy) an independent analysis was conducted. Anal-

yses were run with the lm4 package for R [36], were p
values were estimated by using Markov chain Monte Carlo

simulations [37].

2) Accuracy Rate Analysis: For each condition, mean ac-

curacy rate was computed across all participants and trials.

As expected, participant were less accurate in categorizing

ambiguous stimuli (M = 0.25, SD = 0.43) than unambiguous

stimuli (M = 0.14, SD = 0.35). Such difference was

statistically significant as shown by mixed-effects models on

accuracy rate (β = 0.102, pMCMC < 0.008).

3) Trajectories Analysis: In Fig. 3, the mean trajectories

of the two conditions across all trials are shown. The mean

trajectory for the ambiguous condition has a pronounced

curvature, whereas the mean trajectory for the unambiguous

condition is closer to the ideal straight line of response,

meaning that trajectories for the ambiguous condition were

more attracted to the opposite alternatives. Curvature of the

trajectory signals that uncertainty of choice is present during

the time course of the decision.

To analyze formally the structure of trajectories, we consid-

ered their Area Under the Curve (AUC), which is a measure

of spatial attraction toward the unselected alternative. It is

Fig. 3. Mean trajectories in the two conditions. Note that they were
“remapped”, as if all responses were made to the right.

calculated as the geometric area between the actual trajectory

and the idealized straight line trajectory from the /START/

button toward the selected response. Again, the mean value

and standard deviation for the ambiguous stimuli (M =
0.92, SD = 1.59) were higher than those in the unambiguous

condition (M = 0.74, SD = 1.44).

AUC was analyzed using the Linear Mixed-Effects model

with stimulus ambiguity as Fixed-effects factor and Subjects

and Items as two Random-effects factors. The unambiguous

condition was taken as reference condition. Positive contrast

coefficient for ambiguous stimuli (β = 0.17, pMCMC < 0.05)

shows that average AUC was significantly higher for unam-

biguous stimuli.

F. Discussion

Consistent with our hypothesis, uncertainty in visual stimuli

affects participants’ performance, with higher number of errors

and trajectory curvature for ambiguous items. We focus on the

analysis of movement trajectories, which is more informative

than errors of the dynamics of choice. The fact that trajectories

are more attracted by the unselected category in ambiguous

conditions (compared to unambiguous conditions) is consistent

with previous categorization studies [38] and can be explained

within a within a dynamical system framework, in which

multiple options are computed in parallel and compete over

time [31]. In our task, the unselected category is able to

function (quite literally) as an “attractor” of the choice (and the

mouse trajectory). In the presence of uncertainty, the attractor

is stronger and exerts significant influence over the choice. The

competition between alternatives is not solved prior to (overt)

action onset, but continues during the task, as the partial results

of the competition continuously flow into motor movements;

this can explain the curvature of the (mouse) trajectories and

the “changes of mind” as resulting from the dynamics and

uncertainty during the choice. This pattern of results is not

unique of our task, but has been consistently reported in

several studies including lexical decision, numerical decision,

and objects categorization [39], [29], [30]. To explain these

findings, several researchers have developed dynamical models

that incorporate competitive processes. For example, [40]

implemented a dynamic competitive model of choice that suc-

cessfully explains the results of a “phonological competitor”

task [41] (but see [42] for an alternative explanation that

consider perception as a serial rather than parallel process).
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Eye-tracking studies in perceptual tasks (e.g., spoken word

with phonological competitors [43], [44]) also support the idea

of a dynamic competition by showing that a proportion of

eye movements is directed to the unselected choice when it is

phonologically similar to the correct one.

We consider this dynamical view of choice, which is largely

consistent with neurophysiological evidence (collected using

simpler set-ups, though), to be the key of our theoretical

and computational proposal, and we argue that it applies to

perceptual decisions at large. Below we introduce a com-

putational model that uses dynamic competition at its core

for dealing with perceptual ambiguities in the same task as

described before. Not only our model incorporates the afore-

mentioned aspects of dynamic competition and continuous

flow of information, but it also has several distinguishing

features. First, it considers prediction success as a source

of evidence, thus highlighting the importance of predictive

processes in the regulation of the competition between the

competing choices. Prediction is used in combination with a

feature-based representation of the stimuli, which permits to

address perceptual categorization tasks that are significantly

more complex that those adopted in the neuroscience literature.

Second, it explicitly models the eye movements used for

collecting evidence, using an active perception process that

samples informative features from the stimulus. Third, it

explicitly models the response dynamics (mouse movements).

III. METHODS: THE COMPUTATIONAL MODEL

The computational model presented here implements cate-

gorization as a competition between two (or more) different

sets of feature predictors, each associated with a prototype or

figure, assumed to be known by the agent (see Fig. 4). To allow

a fair comparison, the artificial system interacts with the exact

same MouseTracker setup used for the human experiment (but

we replaced words with stick figures). The purpose of this

computational experiment is to show how dynamic decision-

making can emerge from pure sensorimotor interaction, where

distributed predictors continuously compete for action, thus

not directly relying on more abstract concepts.

Two Java applets are provided in the supplementary mate-

rial: the former demonstrates how stick figures were generated

(StickFigureGenerator.jar), and the latter permits the user (or

the artificial controller) to perform the task and see its results

(StickFigureDecision.jar).

A. Input features

The input provided to the system is an equivalent of the

view of the display for the human. It includes the current

position of the mouse pointer, general information about the

trial (targets categories, current feedback or signal provided to

the user) and a small foveated area that can be freely moved

around the stimulus. The system has only partial knowledge

of the figure at any time, and has to actively explore it by

generating saccades.

As our experiment focuses on the fast online recognition

and disambiguation of figures, and the artificial controller

does not benefit from the highly robust human visual system,
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Fig. 4. Global design of the architecture. Plain arrows correspond to
excitatory connections while the dashed arrow corresponds to the reciprocal
inhibition between the categories. Whereas the saccade to be performed on the
stick figure is chosen by the best predictor (or by a reactive saccade system
if the predictors activity is too low), the mouse movement is a weighted sum
of the vectors proposed for reaching the targets.

preprocessing the visual input is necessary to rival human

performance (without a complex learning phase). To this

aim, we adopted a feature-based representation of the stimuli.

To select the right features (i.e. leading to feasible but not

trivial discrimination between the stimuli) we computed neuro-

inspired saliency maps of the stick figures [45]. Coherent

with results on the use of coarse scales to rapidly categorize

complex stimuli [46], a strong response could always be

observed for contrast and orientation detectors near joints and

would be sufficient for the task.

To lower the dimensionality of the input and make the

model easier to interpret, only a set of feature points (fi)
corresponding to the visible joints of the stick figure are

retained for each fixation. In addition to its coordinates within

the retinal image (u, v), each feature is described by a vector

synthesizing the oriented Gabor filters responses away from

the joint (oj)j∈[1,M ]. In practice, overlapping Gaussian tuning

curves are used to directly generate the vector from the

stick figure description (see Eq. 1). This method converts an

arbitrary set of orientations into a fixed number of correlated

activities (see Fig. 5). Notice that there is no way for the

system to easily discriminate between the front and back legs

without exploring the stimulus by generating saccades.

oj = max
l

exp−

(

M(θj − ρl)

2π

)2

(1)

where θj = −π + jπ/M (with M fixed to 16 in the

experiments), and ρl is the set of angles formed by the sticks

starting from the considered joint.

Features are thus fully described by fi = (u, v, o1, . . . , oM )
and two features (f1, f2) can be compared according to a

similarity measure defined as:

σ(f1, f2) = 1 − e−
‖f2−f1‖2

σ2 (2)

where ‖.‖ is a norm in RM+2 with an adequate weighting of

the various dimensions involved.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: PART A 6

 

j 

l 

a) b) 

feature descriptor 

retinal 

view 

2 

0 

1 

c) 

oj 

Gabor filter 

(oj)=(0,0.03,0.26,0.81,0.94,0.81,0.7,

0.99,0.51,0.1,0.03,0.25,0.81,0.94,0.

4,0.06) 

Fig. 5. For 3 arbitrary fixations on the stick figure, a variable number
of feature points are extracted (crosses). a) The feature point descriptor is
computed based on M different orientation detectors (polar diagram). b)

Equivalent Gabor filter for the orientation detector corresponding to an angle
θj . c) Vector representation of the descriptor for the feature extracted from
fixation 1.

B. Output commands

The system controls both saccades and mouse movements.

Cartesian coordinates are used to move the retina over the

image, but there is no need for the sensations and commands

to share the same coordinate system. Efferent signals remain

separated from proprioceptive feedback, and their coupling

is only achieved through the use of predictors at the core

of the system (see below). Saccades are considered instan-

taneous, thus approximating the human system, where the

fixation/saccade temporal ratio is high, and inhibition is often

posited to occur during movement.

The mouse pointer controller also uses Cartesian coordi-

nates in the screen frame of reference. A speed vector v is

provided at all times by the predictive part of the architecture,

and is integrated through an Euler scheme. Combined with a

fixed speed limit, the system generates smooth trajectories on

the screen with semi-realistic dynamics.

C. Predictive representations

The core of the architecture is composed of a set of predic-

tors (pk), each anticipating a feature f tgt
k to be observed after

performing a saccade sk = (δxk, δyk) from an initial context

were the feature fsrc
k was present. Predictors are also specific

to a stick figure and are thus also associated to the mouse

reaching movement towards the corresponding target category

c{1,2}. Such predictors introduce normativity at the core of

the representations by simply suggesting the potentiality of

observing some feature after performing an action, potentiality

that can only be confirmed through interaction. This kind

of models has proponents from theoretical [47], [48], [15],

[49], experimental [50], and computational approaches [51],

especially in the domain of neo-Piagetian and sensorimotor

perspectives of cognition.

Each predictor continuously tries to assimilate the interac-

tions the agent engages in, by updating a set of associated

activities defined by:

aprop
k = areac

k ∗ σ(sk, s)

apred
k = aprop

k × (maxi{σ(fi, f
tgt
k )} − β)

areac
k = maxi{σ(fi, f

src
k )}

ainhib
k = max((1 − α)ainhib

k , aprop
k )

ak = areac
k − γ2 ∗ ainhib

k + γ1 ∗ c{1,2}

(3)

where all overlined variables integrate the actual system dy-

namics, by compensating for induced shifts in commands and

sensations when another predictor has been selected to control

the retina.

aprop
k corresponds to the proprioceptive feedback determin-

ing if the predictor action is similar to the one previously

selected. apred
k then evaluates the satisfaction of the expected

consequences for this predictor, only if this predictor was

compatible with the previous action taken. It is indeed possible

to get a perfect match for features when non matching actions

are performed if the stick figure belongs to another category.

areac
k evaluates how much the predictor context matches the

current situation, thus limiting the action selection mechanism

to at least potentially adequate predictors.

ainhib
k is an inhibition of return term, preventing the system

to keep checking the same successful predictions again and

again. This contributes to implement a basic mechanism of

informativeness, as there is little information to be obtained

from the same fixation points on static stimuli.

Finally ak combines these activities to determine if this

predictor should be selected for controlling the saccade system.

The c{1,2} term biases the selection of predictors for categories

that have already received support from the predictors, leading

to an increased stability in the decision making process.

We assume that a set of adequate predictors has already been

learned for each prototype, at least sufficient to discriminate

between the proposed figures. This is coherent with the ability

of humans to consistently associate a figure with an abstract

concept such as an animal species or category. In accordance

with the prototype theory of categorization [52] and the notion

of conceptual spaces [53], the prototype has been chosen as the

average figure in the multidimensional space of joint angles

and stick lengths. However, we do not address here the debate

between the different views on classification, and we could as

well consider an arbitrary set of examples within one category

while using the same similarity measure [54]. By simply

sharing the category bias, basins of attraction corresponding

to individual examples at the vision level can be merged into a

single non convex representation of a category at the reaching

level, whereas a prototype-based version implies convexity.
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D. Action selection

The simplified algorithm below presents the global loop

in which the perception and decision-making processes

are performed. All predictors are updated based on the

dynamics of the MouseTracker system, under the various task

constraints and in response to the artificial agent’s commands,

as follows:

1. for all predictors (pk)

2. Update aprop
k , apred

k , areac
k , ainhib

k , ak

3. end

4. Select the top ak predictor to control the saccade

5. Move the retina to a new fixation point (x, y)
6. for all categories (ci)

7. Update ci with the best associated apred
k

8. end

9. Make the categories (ci) compete for action

10. Move the mouse using the resulting speed vector

In addition to the predictors, a reactive saccade system is

implemented to avoid the controller to saccade away from

the stimulus. This might happen in the initial build-up phase

of the predictors activity or if the stimuli is too dissimilar

from any known category. In both cases, the system might

select an inadequate predictor, that will lead to an area without

any visible feature, thus preventing further recognition. In the

same vein as the subsumption architecture [55], the reactive

system can take control over the predictive system, inhibiting

its output to lead the retina back to the closest salient point.

A more dynamistic way of presenting this mechanism is to

consider competition between a relatively general yet static

reactive process and several object-specific acquired predictive

processes. The two mechanisms are complementary, reactivity

being needed to bootstrap predictions and to cope with errors,

while prediction is necessary for selective attention in active

vision. In the end, the saccade to be performed is thus

determined by:

s =

{

sargmaxk{ak} if maxk{ak} > aRSS

sRSS otherwise
(4)

where sRSS and aRSS respectively are the saccade and fixed

activity of the reactive saccade system.

The control of the mouse movements is then adjusted in

order to reflect the new information accumulated by the agent.

For this purpose, the activities associated with each category

are updated by accumulating evidence from the predictors,

following equation 5.

ci = λci + maxk∈Pi
{apred

k }

ci = ci
∑

i
ci

(5)

where Pi is the subset of predictors associated with target

category ci and λ an inertia coefficient, so as to limit the effect

of isolated match or mismatch of expected consequences. As

a side effect, λ also avoids abrupt changes in the motor

commands, thus compensating for the absence of a more
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Fig. 6. Description of the predictive dynamics. Given that previous saccades
before time t led to almost no discrimination between the prototypes, a fixation
on the head of the figure will mainly activate the predictors associated with
testing the neck length for both prototypes (i.e. saccading to the next salient
feature at the shoulder). Once a saccade in this direction is performed, the
system can measure the similarity of the observed features with expected
consequences of the movement, here giving an advantage to the left prototype.
If confirmed by further predictions, the resulting bias will allow the trajectory
to bifurcate towards one of the target and the decision to be made.

realistic motor apparatus in the simulations. The normalization

process used to obtain ci from ci guarantees a bounded activity

in [0, 1] and puts into competition the two categories. As our

set-up only considers two categories for each trial, it does

not require using more complex mechanisms of competition

using reciprocal inhibition; however, the proposed model can

be easily extended to incorporate such mechanisms. Indeed,

attentional capabilities and increased robustness are required

when the set of potentialities offered to the system increases.

Committing to neuro-inspired models, dynamic neural field

models allow such properties to emerge and can be applied

to the sensory signals and categories [56] or directly to the

predictors by using a high dimensional implementation [57].

Finally, the command sent for moving the pointer is a linear

combination of the normalized vectors v{1,2} aiming at the two

visible targets from the current mouse position (see Fig. 6):

v =
∑

i

ci × vi (6)

E. Results

1) Trajectories Analysis: Using the same protocol as in the

human experiment, i.e. 18 artificial participants and 96 trials,

the artificial system generates trajectories qualitatively similar

to humans. Mean values and standard deviations obtained

for the AUC measure are (M = 0.46, SD = 0.27) for the

ambiguous and (M = 0.30, SD = 0.10) for the unambiguous

stimuli. Using a paired T-test between the two conditions, the

average AUC was significantly higher for ambiguous stimuli

(pT−test < 0.0001). We also find significant but weaker results
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Fig. 7. Area Under Curve (AUC) and time to target (RT) as a function
of the speed constraint, averaged over all prototypes, morphing coefficients
and simulated participants. The target reaching time is limited by the amount
of information gathered during each saccade, instead of following an inverse
function of speed (e.g. 0.226 instead of 0.154 seconds for a speed of 9.75
screen units per second). This is also reflected in the AUC, that almost linearly
increases with the speed constraint.

on reaction times (RT), underlying the interest of a finer anal-

ysis on the trajectory (M = 0.93, SD = 0.02 in unambiguous

vs M = 0.96, SD = 0.08 in ambiguous condition). Variability

in the computational model comes from the initial fixation

point, which can make a huge difference in the bifurcation

dynamics involved, due the complex system nature of the

predictor-based controller. It is however much lower compared

to the human data, as the simulated participants have a much

lower intra-group variability.

The computational model we presented permits to run

additional synthetic experiments by manipulating the sys-

tem parameters. By increasing the maximal speed of mouse

movements, and increasing the time constraint to reach a

decision imposed to the system, higher standard deviation

and contrast coefficient are obtained for the AUC distri-

bution. Indeed, within a fixed amount of time, the same

information will be gathered by the system through saccades,

but a larger mouse movement will occur. Additionally, any

error in the best predictor and saccade selection will lead to

greater deviations from the ideal straight trajectory, as shown

on Fig. 7 (all locations, speeds and AUCs are respectively

expressed in MouseTracker units u, units per second, and

squared units). On the contrary, when totally alleviating the

time constraints, the average AUC is drastically decreased

and there is no significant difference between the ambiguous

and unambiguous conditions anymore. The dynamics of the

decision process is then hidden in the first few milliseconds of

the reaching movement. In a similar vein, human experiments

have also shown that time constraints must be severe for other

phenomena such as assimilation effects to be experimentally

observed [58].

Using our computational system it is possible to increase the

difficulty of the task by using highly ambiguous stimuli, up

to a morphing coefficient µ of 0.5 (this manipulation would

be hard to do in human experiments, as in the presence of
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Fig. 8. Area Under Curve (AUC) as a function of the morphing coefficient
µ used for generating the stimuli, averaged over all prototypes and simulated
participants. The AUC roughly follows a power function of the ambiguity,
showing that coming to a definite decision becomes progressively harder
when ambiguity increases, thus reflecting the non-linear system of equations
governing the competition process between the two target prototypes.
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Fig. 9. Mouse trajectories generated by the artificial agent under various
conditions. At low speed (LS), 3 representative trajectories are provided
for a morphing factor in {0.1, 0.25, 0.5}, with increasing deviation from
the straight trajectory. For high speed (HS) and high ambiguity (morphing
coefficient of 0.5), the late change in decision during the reaching movement
is amplified compared to the LS - 0.5 condition.

stimuli that are too ambiguous subjects might adopt higher-

level strategies, such as deliberately responding in a random

manner). As in this system the decision process emerges from

complex dynamic interactions between predictors, response

accuracy does not degrade linearly (see Fig. 8). Nevertheless,

for a morphing coefficient varying in [0.0, 0.5], the AUC

increases from 0.281 to 0.725. The values obtained for 0.0 and

0.25 are consistent with the above results on another set of data

when also respectively considering 1.0 and 0.75 coefficients,

showing that the attraction dynamics towards the prototypes

is almost symmetric.

2) Qualitative Analysis: These quantitative results are ex-

plained by the non linearities and late changes in decisions

that can be observed on individual reaching trajectories (see
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Fig. 9). In turn, these phenomena result from the inertia

of the predictors and the equal average amount of evidence

accumulated for each prototype in the most ambiguous cases.

The non linear dynamics of the predictors activity comes

from the feedback involved in the equations and through

interaction with the MouseTracker environment. This feedback

is modulated by the context, but even its nature (positive or

negative) is determined by the satisfaction of the predictions.

Predictors belonging to the same category are linked, so they

benefit from the bias γ1 ∗ c{1,2} in Eq. 3. At the same time,

they influence each other through the environment, as an action

triggered by one predictor can create a favorable context to

trigger the activity of another predictor. Therefore, the move-

ments of both the mouse and the eye have an influence on the

overall dynamics. Reciprocally, the satisfaction of prediction

term apred
k facilitates rapid bifurcations, as it contributes to

saccade selection through the category bias, and determines

mouse movements over time.

Predictors voting for the same category reinforce each

other and steer the mouse movements towards their associated

target. At the same time, they compete for controlling the

saccades. At the category level, they discriminate among

figures; individually, they discriminate among different parts

of a figure. Overall, the competition dynamics emerges from a

set of intertwined factors, which we list below (for simplicity,

we only consider two arbitrary predictors):

• If they apply to different contexts (fsrc
1 6= fsrc

2 ), the

discrimination will occur at the sensory level, either

because they are associated with different parts within

the figures (head vs tail for instance) or because the

stimulus highly differs from the prototype (e.g. different

neck orientations).

• If they propose different actions (s1 6= s2), the one

associated with the performed saccade will have better

chances to see its expected consequences confirmed, as

features must fall within the visual field. If the context and

expected consequences are similar enough (fsrc
1 ≃ fsrc

2

and f tgt
1 ≃ f tgt

2 ), the proprioceptive feedback alone can

lead to discrimination (e.g. short vs long neck).

• If only the expected consequences differ (f tgt
1 6= f tgt

2 ),

selecting the common action will lead to discrimination,

either between prototypes or between parts of the figures

(e.g. front vs back legs that can only be distinguished at

the hip or shoulder level).

• If two predictors are almost identical, selecting them does

not bring additional information for categorization, as

they correspond to common parts of stick figures.

In the end, and due to competition between categories, only

the relative distance to each prototype in the sensorimotor

space matters for the final decision dynamics. This is true

up to the discriminative power of the sensory apparatus, here

limited by the standard deviation and norm characteristics in

the similarity measure σ (see Eq. 2). However, this relative

distance to the prototypes can only be ascertained statistically;

by visually interacting with the stimulus, and under strict

time constraints, this process leads to the complex dynamics

observed.

 no bias c) b) a) no inhib full model 

Fig. 10. Density of fixations at the end of a trial, in three cases: a) without
the inhibition of return, b) full model, c) without the top-down bias. a)

Without the simple embedded informativeness mechanism, the system has
higher probability to converge on limit cycles of saccades where no decision
can be made. c) When saccades are selected based on reactive mechanisms,
the system tends to focus lass on adequate features.

F. Model decomposition

1) Prediction: To highlight the usefulness of prediction

with ambiguous stimuli in the context of this study, we

compared the proposed system with a reactive controller. In the

reactive controller, observed features are passively matched to

all features associated with each prototype figure to calculate

areac
k (instead, the full system uses a mechanism for matching

expected and observed features and calculating apred
k ).

Like the full system, the reactive controller produces sig-

nificant differences for the AUC (M = 1.99, SD = 0.10 for

the unambiguous vs M = 2.13, SD = 0.08 for the ambiguous

condition, pT−test < 0.0001), and the RT (M = 5.19, SD =
2.05 to M = 9.39, SD = 5.03, pT−test < 0.001). The lack

of the predictive component, however, leads to a significant

increase in the mean values of both the AUC and RT, reflecting

the difficulty and longer time required to reach a decision.

Outliers had to be removed for these quantitative results

to be meaningful (RT above 3 SD from the mean), even

though a large standard deviation can still be observed for

the reaction times in the ambiguous condition. These outliers

provide an insight on the type of configurations that lead to

non discriminant fixation patterns. Although the associated

target prototypes may visually seem quite different, the set

of features associated with the figure joints overlap. Fixations

alone may be no more sufficient for the discrimination, and

the organization of the joints should then be exploited through

saccades.

Moreover, and following this qualitative line of reasoning,

the non-predictive system also looses access to most informa-

tion on the stick lengths since they are encoded in the saccades

amplitude. This is experimentally confirmed by considering

two categories where all features are identical, but for the

length of a single stick (for instance a short-necked vs long-

necked giraffe). Although the pattern of visual exploration

still relies on a simple inhibition of return mechanism, thus

saccading back and forth over most of the uninformative

elements of the figure, the model without prediction cannot

differentiate the two figures.

2) Top-down modulation: Reciprocal to the bottom-up in-

fluence of the prediction on decision making is the bias

from the abstract category activity (c{1,2}) on the active

vision process and the emergent saccade pattern. Nullifying γ1

removes the associated modulation of the predictors activity,

and allows us to analyze the dynamics without any top-down
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feedback.

This change in the equations is of course reflected in a

loss of performance for the system, but its effect can be

more easily interpreted on heatmaps representing the density

of fixations on the stimulus (compare Fig.10b and 10c). By

boosting predictors associated with the current most probable

categories, the system limits the number of fixations away

from the figure and thus actively improves the informativeness

of the fixations and speeds up the convergence on a decision.

The fixation heatmaps presented here and the behavioral

measures of the reaching dynamics introduced before do not

aim at precisely mapping human data, but at reproducing

qualitatively their pattern. Although this would have been

possible, we did not tune the parameters of the system (listed

in Table I) to exactly reproduce human data, because parameter

values lying within an acceptable range (e.g. not making the

whole figure visible within the field of view) most yielded

the same qualitative results; manipulating the parameters in a

meaningful way would have required a lot of data not directly

accessible in our behavioral experiments. Furthermore, human

data depend on kinematic parameters that are highly simplified

in our mouse controller.

3) Informativeness: The usefulness and efficiency of the

inhibition of return mechanism can also be ascertained by

deactivating it. This is done in the model by setting γ2 to

0, thus canceling the effect of ainhib
k on areac

k .

The consequence can be observed on the heatmaps (com-

pare Fig. 10a and 10b). Without inhibition of return, the system

converges on limit cycles of saccades from which it can hardly

escape by only using the bias. Indeed, predictors prime each

other through the environment and (if they belong to the same

prototype) activate each other; with no inhibition of return,

this mutual excitation cannot be counterbalanced. Based on

the informativeness of the fixation points within the limit cycle

attractor, the system may be able to reach a decision or not.

Overall, the analysis of the model dynamics leads to several

predictions on human perceptual decision making, including

the following: the ambiguity effect should be amplified or

disappear when time constraints become more or less severe,

respectively; in most cases, the perceptual boundary between

two categories may not correspond to a morphing coefficient of

0.5; constraining eye movements or observed features should

lead to qualitative changes in the decision dynamics and

fixation patterns. Testing these predictions in further human

experiments (possibly using MouseTracker in combination

with a eye tracker) might help validating or refining the

proposed model.

IV. CONCLUSIONS

Perceptual decision-making has been extensively studied in

neuroscience and artificial vision research. Most experiments

in neuroscience focused on simple perceptual choices, such as

for instance the direction of motion of dots having different

degrees of coherence [1], [2]. These studies permitted to

describe the basic neural mechanisms of perceptual choice in

terms of stochastic and dynamic processes [7], [3], [31]. At the

same time, it is unclear if and how these mechanisms scale to

TABLE I
PARAMETERS VALUES IN THE COMPUTATIONAL MODEL

Symbol Value Description

r 0.4 Radius of the retina (defining the visible features)

M 16 Number of preferred input feature orientations

σo1..M
1.0 Standard deviation of the features Gaussian profile

σu/v 0.2 Standard deviation of the location Gaussian profile

α 0.1 Decay coefficient for the inhibition of return

β 0.5 Average proprioceptive activity (normalization)

γ1 0.1 Influence of the top-down bias on the predictors

γ2 0.1 Influence of the inhibition of return

aRSS 0.1 Threshold activity for the reactive/predictive control

λ 5 Inertia coefficient for the accumulation of evidences

vmax 10 Maximal speed for the mouse movement (default)

more complex perceptual tasks such as those typically studied

in vision research, which usually involve complex perceptual

stimuli and are addressed using feature-based representations,

hierarchical and/or generative architectures [20], [22].

In this article, we propose dynamic competition as a general

mechanism for perceptual decision-making of whatever com-

plexity. The proposed model incorporates several insights of

the aforementioned models of decision-making and categoriza-

tion, such as dynamic competition via evidence accumulation.

At the same time, our proposal has several distinguishing

features. Prediction dynamics are proposed as the key principle

that regulates the dynamic competition. In our model, predic-

tion has a double role: it provides information (evidence) to

be accumulated during the dynamic decision-making, and it

guides the perceptual processing actively. This idea is com-

patible with recent theories, such as predictive coding, which

emphasize the importance of top-down predictive processes in

guiding perceptual processing [14], [16], [17], [15]; however,

rather than minimizing prediction error, our system considers

prediction success as a source of evidence within a dynamical

system framework.

Furthermore, our model assigns a key role to active per-

ception processes in the guidance of the perceptual catego-

rizations. In this respect, it is worth noting that our active

perception model is highly simplified compared to the control

of human eye movements. Its main significance lies in the

proposal that also evidence selection is a competitive process

guided by task demands; however, evidence selection includes

overt (e.g., eye movements) and covert (e.g., attention modu-

lation) processes, which are at the moment mixed up in our

model. We leave the improvement and validation of our active

perception model as an open objective for future research.

Overall, our emphasis on predictions and active perception

stands in contrast with the idea that evidence accumulation

is a purely bottom-up process. Taken together, these elements

constitute a theory of how multiple predictors compete over

time for making a (perceptual) decision, and do so by both

“voting” for one of the alternative and actively biasing the

selection of relevant information. Consistent with embodied

and sensorimotor accounts of categorization, the proposed

system incorporates implicit knowledge of the categories in the

form of sets of linked (feature) predictors, and contingencies
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between saccades and stimuli [59], [50], [60]. By re-enacting

its predictors, the system is able to successfully explore and

categorize the stimuli. The model can be extended to include

multi-step or probabilistic predictions that incorporate more

complex relations between saccades and stimuli.

Feature-based representations are also central to our ar-

chitecture, as they permit splitting the problem space and

designing controllers and predictors at a manageable level

of abstraction. A feature-based approach has proven useful

to address perceptual tasks that are far more complex than

those used in neuroscience studies [22]. By incorporating

features into our model, we provide a link between dynamic

competitive processes in simple perceptual tasks (e.g., using

random dots) and more complex ones, suggesting that the

latter consists in a competition between feature-based repre-

sentations. Finally, our model incorporates response dynamics,

which are rarely considered in categorization studies (for one

exception, see [61]).

Although the same computational model has already been

successfully applied to navigation [62] and control [63] in

robotics (see also [64], [60], [65] for related proposals), it is to

our knowledge the first time such distributed prediction- and

competition-based system is used to model dynamic decision-

making in humans. Performance of our system is assessed in

a perceptual categorization of intermediate complexity (i.e.,

more complex that tasks usually adopted in neuroscientific

studies, still less complex than the recognition of natural im-

ages). The use of a continuous measure of performance (mouse

movements) permitted us to better look at the dynamics of

decision during the task.

The comparison with human performance suggests that the

system captures fundamental principles of decision-making,

such as the sensitivity to perceptual ambiguities. Not only

this affects the number of errors, but it also influences the

on-line dynamics of decision, as revealed by the analysis of

trajectories during task performance.

In this respect, our dynamic computational model describes

decision-making as a continuous process in which perceptual

processing, choice and (eye and hand) action performance all

co-occur and influence one another, revealing that the embod-

iment of choice is indeed part and parcel of it [66]. In sum,

this combined computational and human study suggests that

fundamental mechanisms with which the brain implements

perceptual decision-making and solves perceptual ambiguities

can be extended to explain visual categorization tasks that are

significantly more complex than the ones typically addressed

in neuroscientific studies. We argue that these principles

should guide the design of artificial systems that apply in

naturalistic domains, and in turn that the advancements in the

realization of artificial systems could be heuristically useful

to explore the neural substrate of harder perceptual choices in

living organisms.
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