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The chamigrene subclass of sesquiterpenes, characterized by a spiro[5.5]undecane core, is an
ever-growing family of natural products (Figure 1).1 Well over one hundred members have
been isolated thus far, and many of these compounds exhibit a diverse array of biological
activity.1c In particular, elatol (1),2 one of the most widely studied chamigrenes, displays
antibiofouling activity,3a–b antibacterial activity (including human pathogenic bacteria),3c–
e antifungal activity,3f and cytotoxicity against HeLa and Hep-2 human carcinoma cell lines.
3g Despite the interesting bioactivity and compact structure of these molecules, no general
strategy for their preparation has been developed, and, to the best of our knowledge, no total
synthesis of elatol has been reported in the thirty-three years since its original isolation.4,5

Structurally, elatol (1) consists of a densely functionalized A ring bearing three stereocenters,
including an all-carbon quaternary stereocenter, which is vicinal to a second, non-stereogenic
quaternary carbon. Within the B ring is also a fully substituted chlorinated olefin. We
envisioned a strategy toward these challenging motifs based on methodological advances
recently reported by our laboratories. Specifically, enantioselective decarboxylative
allylation6 could generate the all-carbon quaternary stereocenter, while ring-closing metathesis
(RCM)7 could be employed to concomitantly provide the tetrasubstituted olefin and the
spirocyclic core of 1 (Scheme 1). Importantly, this approach serves as a general platform to
access the chamigrene family.

We envisioned 1 to ultimately arise from sequential reductive olefin transposition and
diastereoselective reduction of α-bromoketone 10. In turn, compound 10 would be obtained
from bromination of the enone resulting from 1,2-addition of a methyl anion to spirocycle
11. Intermediate 11 itself could be the product of RCM of α,ω-diene 12. Although generation
of a fully substituted chlorinated olefin via RCM has not been previously reported,8 we
anticipated that the improved reactivity of catalyst 227 (vide infra) might be sufficient for this
transformation. Access to 12 would be possible via enantioselective decarboxylative allylation
of an appropriately substituted vinylogous ester derivative (i.e., 13), employing the Pd(0)
complex of a phosphinooxazoline (PHOX) ligand. This would constitute a previously
unexplored substrate class with this catalyst system.9 Finally, enol carbonate 13 could be
derived from commercially available dimedone (14).

Our synthetic efforts began with the condensation of isobutyl alcohol and dimedone (14) to
provide known vinylogous ester 15 (Scheme 2).10 Direct alkylation of vinylogous ester 15
with 4-iodo-2-methyl-1-butene was sluggish; however, a two-step procedure involving
conjugate addition to methyl vinyl ketone (MVK) followed by Wittig methylenation afforded
olefin (±)-16 in good yield. Selective enolization of vinylogous ester (±)-16 and trapping with
chloroformate 17 allowed access to enol carbonate 13 in 73% yield. In our initial attempt,
application of our standard reaction conditions11 for Pd-catalyzed asymmetric alkylation to
enol carbonate 13 provided desired alkylation adduct (+)-12, but in low yield.12
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We reasoned that the poor reactivity of enol carbonate 13 in the enantioselective allylation
reaction could stem from one of three possibilities: (1) slow oxidative addition to the allyl
carbonate moiety; (2) slow decarboxylation to reveal the active enolate intermediate; or (3)
slow alkylation of the enolate intermediate to provide the desired product 12. In order to discern
between these scenarios, we ran a set of control reactions outlined in Scheme 3. Exposure of
enol carbonate 13 to conditions developed in our laboratories for enantioselective
decarboxylative protonation13 led to rapid formation of olefin 16.14 Furthermore, removal of
the 2-chloro substituent on the allyl fragment resulted in facile decarboxylative allylation of
enol carbonate 19 to yield bis(olefin) 20. Based on these results, we concluded that slow
alkylation, not slow oxidative addition or decarboxylation, was most likely the problematic
step in this transformation.

In order to enhance the reactivity of our π-allyl Pd(II) electrophile, we attempted to increase
its electrophilicity by incorporating electron-withdrawing substituents into the PHOX ligand
framework.15 Ultimately, asymmetric alkylation employing ligand 21 in benzene at 11 °C
afforded the best balance between reactivity and selectivity, providing vinylogous ester 12 in
82% yield and 87% ee (Scheme 4). Gratifyingly, when α, ω-diene 12 was subjected to our
standard RCM reaction conditions with catalyst 22, the desired fully substituted chloroalkene
(+)-11 was produced in 97% yield.16 Addition of methyllithium in the presence of CeCl3 then
provided (+)-laurencenone B ((+)-7)17 after acid-mediated elimination and hydrolysis.18
Enone (+)-7 was subsequently bis-halogenated with Br2 to generate d***** 10 in ≥8:1 dr.19
Finally, the crude α-bromoketone 10 was doubly reduced with DIBAL to afford elatol (1) (3.9:1
syn:anti,20 11:1 SN2′:SN2). Overall, enantioenriched (+)-laurencenone B ((+)-7) was prepared
in seven steps and 34% yield from dimedone (14), while enantioenriched (+)-elatol (1) was
prepared in nine steps and 11% yield.21

We have successfully developed a concise enantioselective route to the chamigrene natural
product family, culminating in the first total syntheses of elatol (1) and (+)-laurencenone B
((+)-7), as well as the first preparation of a fully substituted chlorinated olefin via RCM.
Moreover, we have demonstrated the ability of the key enantioselective alkylation reaction to
access sterically-encumbered enantioenriched vinylogous esters. The application of these
methods to the syntheses of other chamigrene natural products and a full exploration of both
vinylogous esters in enantioselective decarboxylative alkylation and vinyl chlorides in RCM
are the focus of ongoing studies.
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Figure 1.
Examples of chamigrene natural products.
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Scheme 1.
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Scheme 2.
a dmdba = bis(3,5-dimethoxybenzylidene)acetone.
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Scheme 3.
a Conditions: (a) HCO2H, Pd(OAc)2 (10 mol%), 18 (12.5 mol%), MS 4Å, benzene, 40 °C, (b)
Pd(dmdba)2 (10 mol%), 18 (13 mol%), benzene, 40 °C.
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Scheme 4.
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