
THE CATEGORY OF REPRESENTATIONS OF A COMPLETELY

0-SIMPLE SEMIGROUP

D. B. McALISTER

(Received 21 November 1968)

Communicated by G. B. Preston

A. H. Clifford [1], [2] has shown that all finite dimensional representations
of a completely 0-simple semigroup S over a field <P can be obtained as extensions
of those of its maximal subgroups and has given a method for constructing all
such representations. This representation theory depends strongly on the fact that
the representations under consideration are finite dimensional and is not adequate
to deal with the infinite dimensional case or with representations over arbitrary
rings. In order to determine the structure of the (contracted) algebra <P(S) of S
modulo its radical, one has to consider representations which are not finite
dimensional or over fields; c.f. [6]. Hence Clifford's theory does not suffice for
this purpose.

In this paper we give a representation theory for a class of rings which we
call Munn rings. These rings are infinite dimensional analogs of the Munn algebras
considered in [9], Section 4; thus the algebra of any completely 0-simple semigroup
is a Munn ring. The form of the representations which we obtain is simpler than
that obtained by Clifford yet the theory does not require that the representations
should be finite dimensional or over a field.

Although the theory given here was developed to solve the problem of deter-
mining the structure of the algebra of a completely 0-simple semigroup modulo
its radical, it has proved useful in several ways. Let S be an arbitrary semigroup
and let F : S -> Horn (V, V) be an irreducible representation of S, where V is a
finite dimensional vector space over a field <P. Then it is shown in [5] that F is the
'extension' of an irreducible representation F* : Cr -* Horn (V, V) where Cr is a
completely 0-simple semigroup associated with S and F. To give an explicit
construction for F from F* one has to make use of the fact that F*(<P(Cr))
contains the identity \v of Hom(F, V). Proposition 2.9 of this paper gives a
simple method for finding Ee $(Cr) such that F*(E) = \v and hence for giving
an explicit formula for F. The theory can also be used to give short proofs of
some known results; Theorem 2.7 here gives a short proof of [5], Theorem 3.12
and [4], Theorem 2.1.

As the title indicates, the approach adopted in this paper is that of studying
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194 D. B. McAlister [2]

the category of representations of a completely 0-simple semigroup S. Thus, in
Section 2, we consider the objects of the category, the representations; the main
theorem of the section gives the structure of all such representations. In Section 3,
we consider the morphisms of the category. The main theorem of this section
shows that the category of basic representations' of S is equivalent to the category
of proper representations of any of the maximal subgroups of S. From this theorem
one can deduce, as corollaries, Theorems 5.48, 5.50 and 5.51 of [3]. In Section 4
we show how the theory given in [1], [2], and related results of Lallement and
Petrich [4] and Munn [9], fits in with the theory given here.

1. Preliminaries

In this paper all modules and vector spaces are left modules and vector spaces.
Let s/ be the category of modules over a ring 2t with identity and let A be

an object in si'. If /, A are sets we shall denote by A1 the product 2{-module of 1
copies of A and by AA the coproduct 2I-module of A copies of A. The appropriate
projections and injections are denoted respectively by Tti,qk.

Each morphism P : AA -*• A' of 21-modules determines a set of morphisms
P*i = ikPni '• A-* A and conversely, given any set of morphisms pXi : A -» A,
X e A, i e I, there is a unique morphism P : AA -*• A1 of 21-modules such that
Pu = Qi f%i f ° r each i e I, X e A. Thus there is a one-to-one correspondence
between Horn (AA, A1) and the set of all Ax I matrices over Horn (A, A). It is
easily verified that this one-to-one correspondence is in fact an isomorphism of
additive abelian groups.

On the other hand, given any morphism x : A -> A and (i, X)eIxA, there is
a morphism (x; i, X) : A1 -» AA defined by {x; i, k) = ntxqx. The subgroup of
Horn (A1, AA) generated by all such morphisms will be denoted by Jt{A; I, A).
There is an obvious isomorphism between ^(A; I, A) and the additive group of
finitely non-zero IxA matrices over Horn (A, A).

DEFINITION 1.1. Let 21 be a ring with identity and let I, A be sets, let
P : A<$L -> 2l7 be a morphism of 21-modules such that, for some i e /, A e A, pxi is
invertible, regarded as a morphism of 21-modules. Then the IxA Munn ring
<J? = ^#(2t; /, A;P) over 21 with multiplier P is the ring obtained from the
abelian group ^ ( 2 1 ; /, A) be defining the product of X and Y to be XPY. (Since
multiplication of morphisms in the category of 21-modules is associative and dis-
tributes over addition, J( is a ring.)

Since there is an isomorphism between the ring 21 and the ring Horn (21, 21)
of 2l-module endomorphisms we can identify 21 and Horn (21, 21). With this
identification, ^ ( 2 1 ; I, A;P) is isomorphic to the ring of finitely non-zero IxA
matrices over 21 with

X•Y= XPY
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[3] Representations of completely 0-simple semigroups 195

where P is a. Ax I matrix over 91 with at least one invertible entry. This leads to
the following fundamental example.

EXAMPLE 1.2. Let S = ~£°(G : I, A; P) be a completely O-simple semigroup
([3], page 76) and let 21 be a ring with identity. Then the (contracted) semigroup
ring of S over 21 is isomorphic to the Munn ring ~#(2I(G); /, A; P) where P is
regarded as a morphism of 2l(G) modules AK(G) -> 2t(G)7.

If /, A are finite with, say, m and n members respectively then we denote
^ ( 2 1 ; /, A; P) by ^ ( 2 1 ; m, n; P). In the cases when 21 is the group ring of a finite
group and each non-zero entry in P belongs to the group, such Munn rings are
precisely the semigroup rings of finite 0-simple semigroups.

DEFINITION 1.3. Let 21 be a ring and 31 a ring with identity. Then a representa-
tion F of 21 over 31 is a morphism of the ring 21 into the ring Horn (C, C) of
endomorphisms of an 92-module C.

A morphism i// : F -> A between representations F : 21 -> Horn (C, C) and
A : 21 -> Horn (D, D) of 21 over -K is a morphism i// : C -> D of -ft-modules such
that

for each x e 21.
When morphisms between representations are defined in this way, it is clear

that the representations of 21 over 31 and their morphisms constitute a category.
This category R(% 31) is equivalent to the category of all left $ft-right 21 bimodules;
[10], p. 115. Hence R(% 31) is a complete and cocomplete abelian category; cf [8],
p. 69. Further the epics and monies are precisely those epic and monic morphisms
of -ft-modules which belong to R(% 31).

As a point of notation, we shall usually write representations to the left of
their argument: thus F(x). However, in general, we shall follow the diagrammatic
convention with regard to the composition of morphisms; if/: A -> B, g : B -> C
then fg is the composite morphism A ->• C.

DEFINITION 1.4. For each representation F : 21 -> Horn (C, C) of a ring 21
over a ring 31 with identity we define

N = N(F) = {c e C : cF(x) = 0 for each x e 21},

/ = / ( r ) = submodule generated by {cF(x) : c e C, x e 21}.

The representation F is a null representation if iV(r) = C or, equivalently, if
/ ( r ) = 0; F is a basic representation if AT(r) = 0 and I(F) = C

The representation F is irreducible if it has no non-trivial subrepresentations.
Thus F is irreducible if and only if when

is an exact sequence of representations either F and / \ are equivalent or F and
F2 are equivalent. Likewise F is indecomposable if, when
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is a split exact sequence, either F and Ft are equivalent or F and F2 are equivalent.
Thus F is indecomposable if when

r = r1®r2

either Ft = 0 or F2 = 0. As a slightly weaker condition on F we define r to be
proper if

r = rl®r2
with J \ null implies / \ = 0.

Clearly every irreducible representation is basic and every basic representa-
tion is proper. Neither converse holds in general; however, if the ring 21 has an
identity, each proper representation is basic. Thus to find the irreducible represen-
tations of a ring 21 it suffices to consider the basic representations. The following
proposition shows that with any representation of a Munn ring there is associated
a unique basic representation.

PROPOSITION 1.5. Let 21 be a ring which is generated, as a group, by 2I2. For
each representation F : 21 -> Horn (C, C)ofH over a ring 31 with identity, there is
a sequence

A -> F2 - F

of subrepresentations such that F1 and FjF2 are null and F2fFl is basic. The basic
representations determined by any two such sequences of subrepresentations of F
are equivalent.

PROOF. Let N(F) = N and I(F) = / be as in Definition 1.4. Then clearly TV
and I+N are invariant under F; denote by Ft and F2 the restrictions and co-
restrictions of F to TV and / + TV respectively. Then certainly Fx and FjF2 are null
so that we need only show that F2IF1 = F* is basic.

Now T* acts on C* = (I+N)/N by

(N+u)F*(x) = N+uF(x)

for each u e I, x e U. Thus

N(F*) = {N+u : uF(x) e N for each x e 21}.

If «/"(2{) £ N then «r(2t2) = 0 and so, since 21 is generated as a group by 2I2,
wr(2() = 0. It follows that N(F*) = TV the zero of C*. Further

I(F*) = submodule generated by {TV+wr(;c) :uel,xe 21}.

Since 2( is generated by 2(2 it follows that

/ = submodule generated by {uF(x) : u e I, x e 21}.

Hence I(F*) = (TV+/)/TV = C*. Therefore F* is basic.
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[5] Representations of completely O-simple semigroups 197

Conversely, suppose that At -> A2 -* F is a sequence of subrepresentations
of F such that At and F/A2 are null while A2/A1 is basic. Let Nx denote the sub-
module on which At acts and let It denote that on which A2 acts.

Since Ax is null, we clearly have Nt £ N so that Nt ^ N n I1. On the other
hand, if u e N n 7j then

for each x e 21. Hence, since J 2 /^ i is basic, w e A^. Thus we have

= JV n /.

Since T/zd2 is null, we also have / = / t So that / + A^ c / x . On the other hand,
since A2/Al is basic,

so that ^ £ / + # ! . Hence

Define î  : A/A7! = ( 7 + ^ ) / ^ -> (I+N)/N by (Nt + u)^ = N+u. Then
since J\f, s i\f, ^ is a well defined morphism of 7 ^ ^ onto (I+N)/N. If
(Nl+u)tj/ = N then ueIt n N = Nt so i/' is also one-to-one; thus i/> is an
isomorphism. Finally, for each w e 7 t , * € 21,

= (N+u)F*(x) = (

Hence I/J is an equivalence A^A^ -> F*.

COROLLARY 1.6. For each representation F of a Munn ring ~# = .^(21; 7, /I;
a ring 9i wi/A identity there is a sequence

of subrepresentations such that Ft and FjF2 are null while F2IFl is basic.

PROOF. Pick (i, X) e 7x A such that pu is invertible. Then

for each (x;j, /J) e Jl'. Hence, since J( is generated as a group by the (x;j, JX),
it is generated by J(2 and the proposition applies.

REMARK 1.7. If \jj : F -> A is a morphism between representations of a ring
then i/f maps N(F) into Ar(d) and 7(r) into I{A). Hence, under the conditions of
Proposition 1.5, ij/ gives rise to a morphism \ji* : F* -> <d* of basic representations.
This correspondence is a functor from 7?(2l, -ft) to the full subcategory Z?(2I, 92)
of basic representations of 21 over 31.
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2. Representations of Munn rings

Let y : 21 -» Hom (A, A) be a representation of a ring 21, with identity, over
a ring 9J with identity and let /, A be sets. Corresponding to each morphism
P : A<H -> W obtained from a set of commutative diagrams

21 »-8l
PAi

there is a unique morphism y(P) : AA -* A1 of 5ft-modules obtained from the
commutative diagrams

(g^ 7T; are used here to denote the appropriate injections and projections).
Similarly, corresponding to each Xe^(^i;I, A) there is a unique

y{X) : A1 -> AA.
Suppose that F : ~$ -* Hom (C, C) is a representation of a Munn ring

J( = ^#(21;/, / t ;P) over a ring 9J with identity. Then, for each (X, i)eAxI
such that pXi is invertible, we obtain a proper representation ya of 21 over 9J as
follows.

Let Ca = CF(p^l
i; i, X); then C,A is an -Jl-submodule of C. Further, since,

for each x e 21,
; U X) = (xpu1; i, X){p~u

x; i, X)

also for each x e 91. Define y u : 21 -> Hom (ClA, C(/l) by setting

ya{x) = restriction and corestriction of F(xpJi
i; i, X) to CiX.

Then y(/i is a representation of 2t over 9? and, since yiA(e) is t n e identity on C u ,
ya is proper.

DEFINITION 2.1. yik : 2t -> Hom ( C u , C a ) is the representation of 21 induced

by F, i, X.

If F :J( -> Hom (C, C), zl : J( -» Hom (D, Z>) are representations of ^
over 9? then, for each ifr : F -> A,

cuip = crip;,1; i, x)if, = C ^ C P J . 1 ;», X) £ DW-
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[7] Representations of completely O-simple semigroups 199

Hence, if ij/a is the restriction and corestriction of ip to a morphism Cu -> Da,
i/>a is a morphism yiX -* diX; it is the morphism induced by i/', 2, A.

THEOREM 2.2. Let Jt = Jt^H; /, A;P) be a Munn ring and let (A, i)eAxI
be such that pXi is invertible. Then the mapping which associates with each represen-
tation F of Jt', over a ring 91 with identity, the representation ya of 91 induced by
F, i, A and with each morphism \j> : F -» A of representations the morphism \j/o :
7ix ~* $ix is a limit and colimit preserving functor from R(Jt', -K) to the category

1) of proper representations o/9l over W.

PROOF. When yiX and \]/iX are denned as above it is clear that the mapping
under consideration is a functor. It is a straightforward matter to show that this
functor preserves products and intersections, coproducts and cointersections.
Hence ([8], Theorem 2.4) it is limit and colimit preserving.

Theorem 2.2 shows that the representations of Jt determine representations
of 21. We now turn to the converse question. How do representations of 2t deter-
mine representations

THEOREM 2.3. Let J( = Jd^k; I, A; P) be a Munn ring and let F : Jl -»
Hom (C, C) be a representation of\J( over a ring 9? with identity. Let (A, i)e Axl
be such that pu is invertible and let y : 91 -» Hom (A, A) be a representation of 91
over 5JI which is equivalent to that induced by F, i, A. Then there exist morphisms
Q : AA -+ C, R : C -» A1 of ^.-modules such that

(2.1) QR = y(P)

and such that, for each X e JK,

(2.2) F{X) = Ry{X)Q

Conversely, let y : 91 -*• Hom {A, A) be a proper representation of 91 over 31
and let Q : AA -> C, R : C -> A1 be morphisms of %1-modules such that (2.1) is
satisfied. Then F : J( -» Hom (C, C) defined by (2.2) is a representation of Jt
over 91. Further, for each (A, i) e A x / swc/i ?Actf /7Ai is invertible, the representation
7tx '• 91 -• Hom ( C u , ClA) o/9t induced by F, i, A is equivalent to y.

PROOF. For each (x;j, n) e Jt,

(x;j, n) = {pul;j, A)(xpJi
1; i, A)(e; i, n)

where e is the identity of 91. Thus

where Rj = F(pXi
l;j, A) and <2M = F(e; i, n). Since (pjj1; i, A) is a right identity

f° r
 (P!I1'J, ^). the range of R ; is contained in CiX. Let a : Ca -* A be the equiv-

alence between ya and y; denote by Q^ the composite of a"1 and the restriction
of QM to Ca and by Rj the composite of the corestriction of Rj to Ca and a. Then
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200 D. B. McAlister [8]

r(x; j , fi) = RjTixpJi1; i, .*)(>„

Let Q be the unique morphism AA -* C such that qllQ = Q^ for each n e A
and let R be the unique morphism C -»• A1 such that Rrij = Rj for each; E /. Then

F(x;j, n) = Ry{x;j, \i)Q

for each (x;j, n) e Jl'. Extend F by additivity. Then

F(X) = Ry(X)Q

for each XeJ( whence (2.2) holds.
For each pair (j, n)eIxA, Q^Rj = a~1Lf,KJa where £/„ is the restriction

of Q^ to Ca and Vj is the corestriction of Rj to C u . Since Q^Rj = F(pliJpjt
l; i, X)

it follows that {/„ K,- = yaip^j) and thus

(2^ , - = y(iV;)

Hence 27? = y(P) and (2.1) holds.
On the other hand, if y : 21 -> Horn (^, ^ ) is a representation of 21 over 31

and g, R satisfy (2.1), it is easy to see that F defined by (2.2) is a representation
of Jl'. Hence it remains to prove that the representation of induced by F, i, X is
equivalent to y.

For each fie A, let Qll = q^Q where qu is the ^tb injection A -* AA. For each
j , let Rj = Rnj where 7ty is t h e / b projection A1 -»• ̂ 4. Then <2Ai?,- = y(/?Al) which,
since y is proper, is invertible. Hence

(2.3) Qi is monic and Rt is epic.

By definition,

Hence, since Rt is epic, CiX = ^ V ^ ^ S A - Let r\ : A -» CiA be the corestriction of
yQ7!)1)^ t o ^;A; since y(/'7i1) ar"d 2A a r e monic, f/ is an isomorphism. Consider
the diagram

Then y(x)^ is the corestriction of yixpJ^Q^ to Ca while >?yaW is t n e composite
of v and the restriction and corestriction of RiyixpJ^Qx to Ca. But the latter is
just the corestriction of
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[9] Representations of completely O-simple semigroups 201

to Ca. Hence the diagram commutes for each xeJK and thus y is equivalent
to yiX-

Theorem 2.3 reduces the problem of finding the representations of ~# to that
of finding morphisms Q : AA -> C and R : C -> A1 such that QR = y{P). The
problem of constructing all such factorisations is not considered here; it has been
solved by Clifford [1 ], [2] for finite dimensional representations over a field.

NOTATION 2.4. If y : 91 —> Horn {A, A) is a proper representation of % and
Q, R satisfy (2.1) then we denote by [y; Q, R] the representation of J( =

; I,A;P) given by (2.2).

PROPOSITION 2.5. Let F = [y; Q, R] be a representation of the Munn ring
; I, A; P). Then

(i) N(F) = K.erR;
(ii) I(r) = Image Q.

PROOF, (i) Certainly Ker R ^ N(F). On the other hand, if c i Ker R then
cRj = CRUJ ^ 0 for some jeI. For such jel, cR}y{e) # 0 because y(e) is the
identity morphism on A. There exists (A, /) e A x / such that pXi is invertible and,
by (2.3), Qk is then monic. Hence

cr{e;j, 1) = cRjy(e)Qx ¥= 0
so that c $ N(r).

(ii) By the definition of F, I(F) ^ Image Q. To obtain the converse inclusion,
pick ie I such that, for some k e A,pkl is invertible. Then

Cr(e;i^) = CRiy(e)Qll = AQM

for each \i e A since, by (2.3), Rt is epic. Hence I(F) contains the submodule
generated by all the AQ^. The latter is just the image of Q. Therefore Image Q =

COROLLARY 2.6. Let F = [y; Q, R] be a representation ofJK = <J((%; I, A; P),
F : Jt -> Horn (C, C) where C is a finite dimensional vector space over afield <P.
Then F is proper if and only if

dim C = rank Q + rank R — rank y(P).

PROOF. F is proper if and only if N(F) ^ / ( r ) which occurs if and only if
Ker R £ Im Q. Since QR = y(P)

rank y(P) = dim Im y(P) = dim Im g -d im (Im Q n Ker R).

Hence F is proper if and only if

rank y(P) = rank g -d im Ker R

= rank g + rank R — dim C.
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When Corollary 2.6 is applied to the algebra of a completely 0-simple semi-
group it gives the result of [1] Theorem 5.1. Likewise the next theorem shows that
the basic representations as denned here coincide with those denned in [1]. It thus
provides an alternative proof of [5] Theorem 3.12.

THEOREM 2.7. A representation F = [y; Q, R] of JK = J(i^; I, A; P) is basic
if and only if Q is epic and R is monic. If F is basic then

KerT = {XeJt : y(PXP) = 0}.

PROOF, F is basic if and only if I(F) = codomain Q and N(F) = 0. But, by
Proposition 2.5, I(F) = Im Q and N(F) = Ker R. Hence F is basic if and only if
Q is epic and R is monic.

If Xe Ker F then Ry(X)Q = 0 and so

y(PXP) = QRy(X)QR = 0.

On the other hand y(PXP) = 0 implies

QF(X)R = QRy(X)QR = y(PXP) = 0,

and hence, because Q is epic and R is monic, T(X) = 0. Thus

Ker r = {XeJ? : y(PXP) = 0}.

REMARK 2.8. Lallement and Petrich [4] have shown that if J( is the algebra
of a finite 0-simple semigroup and F is an irreducible representation of which
extends y then

Ker F = {XeJK : y(PXP) = 0}.

In [5], Theorem 6.4, it is shown that the finite dimensional irreducible
representations of an arbitrary semigroup S over a field $ are obtained from
irreducible representations of associated completely 0-simple semigroups. To
obtain an irreducible representation F of S from an irreducible representation
F* : T -* Horn (C, C) of an associated completely 0-simple semigroup, T say,
we need to make use of the fact that F*(<P(T)) contains the identity morphism
of T. As an application of Theorem 2.7, we give a characterisation of Xe <P(T)
such that F*(X) = lc .

PROPOSITION 2.9. Let F = [y; Q, R] be a basic representation of J( =
-#(21; /, A;P), F : Jt -> Horn (C, C) over a ring 9? with identity. Then F(E)
is the identity morphism on C if and only ify(P) = y(PEP), where EeJ(.

PROOF. If F(E) = lc then Ry(E)Q = lc and so

y(PEP) = QRy(E)QR = Q1CR = y(P).

Conversely, if y(PEP) = y(P), then

Q(F(X)F(E)-F(X))R = y(PXPEP)~y(PXP) = 0
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and so, since Q is epic and R is monic, F(X)F(E) = F(X) for each l e X
Since I(F) = C, it follows that F(E) = l c .

Proposition 2.9 applies in particular to finite 0-simple semigroups 5 =
<J?°{G; m, n; P). Suppose # is a field whose characteristic does not divide the
order of G, so that <P(G) is semisimple. Then <P(S)/Rad <*>(S) x <P(S)/B(<P(S))
where

B(&(S)) = {Xe 0(S) : PXP = 0};

([4] Theorem 2.1, [6] Theorem 3.6).
Thus E in $(S) is such that f + R a d <P(S) is the identity of 4>(S)/Rad <2>(S)

if and only if
P = PEP.

EXAMPLE 2.10. The regular representation of a finite 0-simple semigroup is
not in general faithful. (It is faithful if and only if no two rows of the multiplier
(sandwich matrix) P are proportional; [3], p. 130.) However, if we consider the
representation of S induced by the regular representation of S1, we get a faithful
representation F1.

If S = J?°(G; m, n; P) and $ is a field then <P(Sl) has a basis

eu,em n s + 1 where u = (j-l)ms + (i-l)s + k

I ^ k ^ s, I ^ j ^ n, I S i ^ m and

emns+1 = 1, eu = (xk; i,j) with x, the identity of G.

Relative to this basis F1 = [y; Q, R] where y is the direct sum of m copies of the
regular representation of G

R - [, m, 1 e - [/..,o]
L'l 'm2sJ

a n d
, ( 1 i f u = ( j - l ) ( m + l ) s + l l ^ i ^ m

» = i
10 otherwise

By Corollary 2.6, r 1 is proper if and only if

rank y(P) + mns+1 = rank Q + rank R

= mns + rank i?.

Hence F1 is proper if and only if rank R = rank y(P)+l. This can occur if and
only if the final row is independent of the previous ones; if this is not the case
the proper part of F1 is equivalent to the regular representation of S. ([7],
Theorem 3.1).
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3. Morphisms of representations

Theorem 2.2 gives a construction for the representations of a Munn ring. In
this section we consider the problem of describing the morphisms between repre-
sentations of Munn rings.

LEMMA 3.1. Let a : A -> B be a morphism ofH-modules, where 2t is a ring with
identity, and let I, A be sets. Denote by Aa and a.1 respectively the unique morphisms
AA -> AB and A1 -> B1 determined by a.

(i) if y : A -> A, S : B -» B are such that ya = a<5 then

(y; i, X)Aa = aJ(5; i, X)
for each iel, X e A.

(ii) / / y a : A -> A, 5a : B -*• B are such that yaoc = a5afor each iel, Ae A
then

Fa1 = Aa.A

where F is the unique morphism AA -> A1 determined by the ya and A is the unique
morphism AB -» B1 determined by the 8a.

PROOF. The proof of this lemma is a matter of straightforward computation.

THEOREM 3.2. Let r = [y; Q, R], A = [3, U, V] be representations of a Munn
ring ^£ = ^#(21; /, A; P) over a ring 31 with identity. Then a morphism ip : Codo-
main Q -* Codomain U of ^-modules is a morphism f -» A in R{,J(, 31) if and only
if there is a morphism a : y -* S in P(% 31) such that

(3.1) Qij/ = AaU and ^V = Ra1.

PROOF. Suppose there exists a : y -> S so that (3.1) holds. Then, for XeJt

= Ry(X)Q\l/ = Ry{X)AaU = Rtx'S(X)U = \j/Vd(X)U =

Hence ip is a morphism F -* A.

Conversely, pick {k, i)e Axl such that pu is invertible and let y? : yu ~* y

and <fi : da ->• 5 be the equivalences between y, 5 and the representations induced

by F and A, i, X. Now

M1; i, X)i> = iiA{xp~x>; i, X)

so that \\i maps CiX into Da; denote by an the restriction and corestriction of i
to Ca and Da. Then, if we write a = fS~laiX<t),

y(x)a = y{x)rl*n<i> = T ' ^ W ^ = P~\xSu(x)<l>

for each x e 21. Hence a is a morphism y -*• S.
For eachy e /, Rs = Rj/i where Rj is the corestriction of F(pli

1;j, A) to Cu.
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Therefore
K , a = Rjpcc = Rj<xu<l> = (covest

= (corest

= (/'(corest A(pul:j,

Hence Ra.' = i>V.
Similarly Q\p = AccU so that (3.1) is satisfied.

COROLLARY 3.3. Two representations F = [y; Q, R] and A = [8; U, V] of
a Munn ring <Jt are equivalent if and only if there is an equivalence a : y -> 3 and
an isomorphism ip : Codom Q -> Codom U such that

U =\a. l

PROOF. Suppose that a, \j/ exist with these properties then, by the theorem,
i/f is an equivalence F -> A.

Conversely, if IJJ is an equivalence F -> A, let a be defined as in the proof of
the theorem. Since \\J is an isomorphism, so is aa and hence so is a.

If [y; Q, R] and [8; U, V] are representations of JH$\ I, A;P) and a, ip
are as in the statement of Theorem 3.2 then we say that \j/ extends the morphism
a : y -* 5.

THEOREM 3.4. Let F = [y; Q, R] and A = [5; U, V] be basic representations of
a Munn ring J( = ^#(2t; I, A;P) over a ring 31 with identity. For each morphism
a : y -» 5 there is a unique morphism \p : F -* A which extends a.

PROOF. We have
QRo* = A*UV.

Hence, since V is monic,

Ker Q s Ker QRa' = Ker AaUV = Ker A<xU.

Because Q is epic, there is thus a unique ip : Codomain Q -» Codomain U such
that Qi// = AaU. But then

Q\pV = AaUV = QRa1

and so, since Q is epic, we also have XJJV = Ra1. Thus (// is a morphism F -> A
which extends a and is the unique such.

COROLLARY 3.5. Basic extensions of equivalent representations ofH are equiv-
alent.

Theorem 3.4 sets up a functor from the category of proper representations of
21 to the category of basic representations of J( = ^#(3t; /, A; P). On the other
hand Theorem 2.2 describes a functor from the category of representations, and
thus from the category of basic representations, of d( to the category of proper
representations of St.
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THEOREM 3.6. Let J( = J?(%; I, A; P) be a Munn ring and let %l be a ring
with identity. Then the category B(^J(, 9J) of basic representations of <J( over 92
is equivalent to the category P(9I, 91) of proper representations of% over 92.

PROOF. Pick (X, i)eAxJ such that pxi is invertible and let P denote the
functor which associates with F : J( -> Horn (C, C) the representation yn : 2( -*
Horn (Ca, Ca) of 91 induced by F, i, L

For each y e P(% 92) pick and fix an epic Qy and a monic Ry such that QyRy =
y(P). Let B denote the functor which associates [y; Qy, Ry] with y and which
associates with a : y -> 5 the unique morphism \jt = B(a) produced by Theorem
3.4. (The uniqueness of ip ensures that B is a functor.)

For each y e P(% 92) let ny be the composite of y(pXi
1) and the corestriction

of Q{ to its image CJX. Then, by the proof of Theorem 2.3, ny is an equivalence
V ~* lix- Suppose a : y -> 5 and let \j/ = B(a). Then a a = P(tj/) is the restriction
and corestriction of ift to a morphism C/A -» Cd

a.
Consider the diagram

y • 8

7 a ^ &ix

Then r]yaiX is the corestriction of y(pXi
l)Ql*l/ to CfA

= corestriction y(pXi
l)aQs

x to CfA

= corestriction a<)(p7,1)(2i to Cf,

Hence n = {ny : y e P(% 9Z)} is a natural equivalence from the identity functor
on P{% 91) to PB.

Let F be a basic representation of JK and let Qr be such that 2ĵ  = restriction
of F(e; i, n) to Ca and let Rr be such that /?J = corestriction of F{p\~t

l;j, X) to
Cu. Then, as in the proof of Theorem 2.3, F = [yu; 2 r , i?r]. By Theorem 3.4,
there is a unique morphism i/>r : F -> 5(ya) = BP(F) for each T e 5 ( ^ , 9f).
Because of the uniqueness of \j/ in Theorem 3.4,

{xjir: re5(^,91)}

is a natural equivalence from the identity functor on B{Jt', 91) to BP. Hence the
categories B(Jt', 9J) and P(% 9i) are equivalent.

Theorem 3.6 and Proposition 1.5 combine to give the following theorem
which contains the results of [1], Theorems 5.48, 5.50, 5.51.

THEOREM 3.7. Let F = [y; Q, R] be a representation of a Munn ring J( =
, A;P) over a ring 9Z with identity. Then
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(i) there is a sequence

rx -> r2-> r
of subrepresentations of F where Ft and r[r2 are null and

rjr, = B(y).

(ii) if F is proper and y is indecomposable so is F.
(iii) if F is basic then so is each direct summand of F and F = FIB(yi) if and

only ify = Tly^
(iv) F is irreducible if and only if it is basic and y is irreducible.
(v) if 31 is a field and codomain Q is finite dimensional then the non null

irreducible constituents of F (cf [3], page 153) are the basic extensions of the ir-
reducible constituents of y.

PROOF, (i) By Proposition 1.5, there is a sequence of subrepresentations

where / \ and FfF2 are null and F2/F1 is basic. Hence we need only show that
F2IF1 extends y.

Let (A, i)e Axl be such that pXi is invertible and let P be the functor in
Theorem 3.6. Then, since the sequence

0 -> F1 -> F -> r /F i -> 0

is exact, so is the sequence

o -> p(rt) -+ P(F) - p(rirt) - o.

Because Tj is null, P ( r 1 ) = 0 and therefore PiF/F^ = P(F). The sequence

o -> r 2 / r i -»• r / r j -> r / r 2 ^ o

is also exact and so gives rise to an exact sequence in f(2l, 9?). Since F/F2 is null
we then have P^/F^ = P(r2ir1) and so, because F extends y, F2jrx extends y.

The other four parts of the theorem follow similarly.

The results in Theorem 3.7 can be proved directly, that is without using
homological arguments. We indicate how this can be done in the next section.

4. Appendix A

In this section we describe briefly how the results of Theorem 3.7 can be
proved without explicitly using the functors of Proposition 1.5 and Theorem 3.6.
We shall assume that the ring $, over which the representations are being taken,
is a field.
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(i) Suppose that T = [y; Q, R] : Jt -* Horn (C, C) is a representation of Jt
over 0. Then we can write C = Q0C20C3 where Cx = N(r) = Ker J? and
Q©C2 = N(r)+I(r) = Ker^ + Img.

Relative to C1®C2®C3, R has the matrix form

where Rt (and R2) is monic and Q has the form ( 2 0 Qi 0) where <2X >s epic. Hence,
for each X e Jt', F(X) has the form

0 0 0'

0.

where [y; Qt, Rt] is the basic extension of y; (note
(ii) Suppose that y : 91 -» Horn (̂ 4, ̂ 4) is a representation of 2( over $ and

consider the representation r : Jt -> Horn ( ^ , ^ ) defined by r(Z) =
(r=[y;IA,P]). If y = yi©y2 then r = rl®r2 where r , (^) =
i = 1,2. The Z?a«c component of T is the basic extension of y while the basic
component off, is the basic extension of y;, i = 1,2. Hence #(y) = 5(y()©fi(y2).

A similar situation prevails with regard to reduction. The method outlined
in (ii) is an obvious adaptation of the method used by Lallement and Petrich [4]
to find irreducible representations.

Appendix B

Clifford [1 ] shows that every finite dimensional representation f of a com-
pletely 0-simple semigroup <J?°{G; I, A; P), over a field <P, is equivalent to one
of the form

where Qx = 0 = Rv and QxRi = y(Pu—PuPu)'> ll ' s assumed tha tp n = e the
identity of G. ([3]. Theorem 5.37).

Let

where

Rt = p^1 ' ) ] and Qy = [y(pn)Qyl
L R: J
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Then

(4.1) r'(a;i,X) = Ry(A)Q

where A = (a; i, X), the IxA matrix with a in the /, 1th position and zeros else-
where; by linearity, this extends to J(($(G)\ I, A; P).

Since, by Clifford's theorem quoted above, every finite dimensional repre-
sentation of JK{${G); I, A; P) over $ is equivalent to one given by (4.1), it follows
that every finite dimensional representation is of the form

F{X) = R'y{X)Q'

where R' = B~lR,Q' = QB with B invertible over <P. But

Q'R' = QBB~lR = QR= y(P).

Hence F is of the form described by Theorem 2.3.

Appendix C

Lallement and Petrich [4] have shown that the irreducible representations of
a finite 0-simple semigroup S = J(®(G; m, n; P), over a field <P, can be obtained
as follows. Let y be an irreducible representation of G over <P; then y is finite
dimensional, say of dimension r. Let A be an irreducible nr x nr matrix over tf>
such that

where Ax is t x mr with row rank t. Let

' , . • , = [ 7 . 0 ] and J n r , ( = ^ ' J .

Then
r(X) = ItrnrAy(PX)A-1Inrit

is an irreducible representation of S which extends y.
We may prove this as follows. Let Q = A~lInryt, R = IunrAy(P). Then

so that F is of the form given by Theorem 2.3. Further, since A is invertible Q is
epic and, by the choice of A, R is monic. Hence, by Theorem 3.7, F is irreducible.
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Appendix D

Munn [9] has shown that S = ^°(G; m, n;P) has semisimple algebra over
<P if and only if m = n and P is invertible over <P(G). If this is the case then he
shows that the irreducible representations of S over <t> are the representations of
the form X-W-* y{PX) where y is an irreducible representation of G, say of
degree r. This follows easily from the theory given here. Since P is invertible over
$(G), y(P) is invertible over 4>. Hence, in the factorisation, y{P) = Inry{P) = QR,

Q is epic and R is monic. By Theorem 3.7, this means the representation
JT-W-*- y(PX) is irreducible and extends y; hence it is, to within equivalence,
the only irreducible representation which extends y.
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