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The catenary degree of Krull monoids I

par Alfred GEROLDINGER, David J. GRYNKIEWICZ

et Wolfgang A. SCHMID

Résumé. Soit H un monoïde de Krull de groupe de classes G fini.
On suppose que chaque classe contient un diviseur premier (par
exemple, l’anneau des entiers d’un corps de nombres ou l’anneau
d’holomorphie d’un corps de fonctions). Le degré de chaînage c(H)
de H est le plus petit entier N ayant la propriété suivante : pour
tout a ∈ H et toute paire de factorisations z, z′ de l’élément a, il
existe des factorisations z = z0, . . . , zk = z′ de a telles que, pour
chaque i ∈ [1, k], on puisse obtenir zi à partir de zi−1 en modifiant
au plus N atomes. Dans cet article, nous obtenons une nouvelle
caractérisation du degré de chaînage pour les H dont la constante
de Davenport du groupe de classes vérifie une certaine hypothèse
très peu restrictive. Cette caractérisation offre un nouveau point
de vue, plus structurel, sur la notion de degré de chaînage. En
particulier, elle clarifie la relation entre c(H) et l’ensemble des
distances de H et permet d’envisager l’obtention de résultats plus
précis sur le degré de chaînage. Nous illustrons ce phénomène en
donnant deux applications : une nouvelle borne supérieure pour
c(H) et la caractérisation des H tels que c(H) ≤ 4.

Abstract. Let H be a Krull monoid with finite class group G
such that every class contains a prime divisor (for example, a ring
of integers in an algebraic number field or a holomorphy ring in
an algebraic function field). The catenary degree c(H) of H is the
smallest integer N with the following property: for each a ∈ H
and each two factorizations z, z′ of a, there exist factorizations
z = z0, . . . , zk = z′ of a such that, for each i ∈ [1, k], zi arises from
zi−1 by replacing at most N atoms from zi−1 by at most N new
atoms. Under a very mild condition on the Davenport constant of
G, we establish a new and simple characterization of the catenary
degree. This characterization gives a new structural understanding
of the catenary degree. In particular, it clarifies the relationship
between c(H) and the set of distances of H and opens the way
towards obtaining more detailed results on the catenary degree.

This work was supported by the Austrian Science Fund FWF (Project Numbers P21576-N18
and J2907-N18).
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Classification math.. 11R27, 13F05, 20M13.
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As first applications, we give a new upper bound on c(H) and
characterize when c(H) ≤ 4.

1. Introduction

In this paper we study the arithmetic of Krull monoids, focusing on the
case that the class group is finite, and in addition, we often suppose that
every class contains a prime divisor. This setting includes, in particular,
rings of integers in algebraic number fields and holomorphy rings in al-
gebraic function fields (more examples are given in Section 2). Let H be
a Krull monoid with finite class group. Then sets of lengths of H have
a well-defined structure: they are AAMPs (almost arithmetical multipro-
gressions) with universal bounds on all parameters (see [19, Section 4.7]
for an overview). Moreover, a recent realization theorem reveals that this
description of the sets of lengths is best possible (see [35]).

Here we focus on the catenary degree of H. This invariant considers fac-
torizations in a more direct way considering more than just their lengths,
and thus has found strong attention in the recent development of factor-
ization theory (see [3, 7, 9, 17, 20]). The catenary degree c(H) of H is
defined as the smallest integer N with the following property: for each
a ∈ H and each two factorizations z and z′ of a, there exist factorizations
z = z0, . . . , zk = z′ of a such that, for each i ∈ [1, k], zi arises from zi−1 by
replacing at most N atoms from zi−1 by at most N new atoms. The defini-
tion reveals immediately that H is factorial if and only if its catenary degree
equals zero. Furthermore, it is easy to verify that the finiteness of the class
group implies the finiteness of the catenary degree, and that the catenary
degree depends only on the class group (under the assumption that every
class contains a prime divisor). However, apart from this straightforward
information, there is up to now almost no insight into the structure of the
concatenating chains of factorizations and no information on the relation-
ship between the catenary degree and other invariants such as the set of
distances. Almost needless to say, apart from very simple cases, the precise
value of the catenary degree—in terms of the group invariants of the class
group—is unknown (see [19, Section 6.4]).

The present paper sheds some light into the nature of the catenary de-
gree. To do so, we introduce a new arithmetical invariant, k(H), which is
defined as follows (see the first definition in Section 3): for each two atoms
u, v ∈ H, we look at a factorization having the smallest number of factors
besides two, say uv = w1 · . . . · ws, where s ≥ 3, w1, . . . , ws are atoms of H
and uv has no factorization of length k with 2 < k < s. Then k(H) denotes
the largest possible value of s over all atoms u, v ∈ H. By definition, we
have k(H) ≤ c(H), and Examples 3 offer a list of well-studied monoids
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where k(H) is indeed strictly smaller than c(H). But the behavior is differ-
ent for Krull monoids H with finite class group and every class containing
a prime divisor. Under a very mild condition on the Davenport constant
of the class group, we show that the catenary degree is equal to k(H) (see
Corollary 4.1 and Remark 4), which immediately implies that the catenary
degree equals the maximum of the set of distances plus two.

Since k(H) is a much more accessible invariant than the original condi-
tion given in the definition of the catenary degree, the equality k(H) = c(H)
widely opens the door for further investigations of the catenary degree,
both for explicit computations as well as for more abstract studies based
on methods from Additive and Combinatorial Number Theory (the latter
is done in [18], with a focus on groups with large exponent). Emphasizing
this, in Section 5, we derive an upper bound on k(H), and thus on c(H)
as well, and then characterize Krull monoids with small catenary degree
(Corollary 5.1).

2. Preliminaries

Our notation and terminology are consistent with [19]. We briefly gather
some key notions. We denote by N the set of positive integers, and we put
N0 = N∪{0}. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b},
and we define sup ∅ = max ∅ = min ∅ = 0. By a monoid, we always mean
a commutative semigroup with identity which satisfies the cancellation law
(that is, if a, b, c are elements of the monoid with ab = ac, then b = c
follows). The multiplicative semigroup of non-zero elements of an integral
domain is a monoid.

Let G be an additive abelian group and G0 ⊂ G a subset. Then [G0] ⊂
G denotes the submonoid generated by G0 and 〈G0〉 ⊂ G denotes the
subgroup generated by G0. We set G•0 = G0 \ {0}. A family (ei)i∈I of
nonzero elements of G is said to be independent if

∑

i∈I

miei = 0 implies miei = 0 for all i ∈ I, where mi ∈ Z .

If I = [1, r] and (e1, . . . , er) is independent, then we simply say that
e1, . . . , er are independent elements of G. The tuple (ei)i∈I is called a basis

if (ei)i∈I is independent and 〈{ei | i ∈ I}〉 = G.
Let A, B ⊂ G be subsets. Then A+B = {a+b | a ∈ A, b ∈ B} is their

sumset. If A ⊂ Z, then the set of distances of A, denoted ∆(A), is the set
of all differences between consecutive elements of A, formally, all d ∈ N for
which there exist l ∈ A such that A∩ [l, l+ d] = {l, l+ d}. In particular, we
have ∆(∅) = ∅.



140 Alfred Geroldinger, David J. Grynkiewicz, Wolfgang A. Schmid

For n ∈ N, let Cn denote a cyclic group with n elements. If G is finite
with |G| > 1, then we have

G ∼= Cn1
⊕ . . .⊕ Cnr , and we set d∗(G) =

r∑

i=1

(ni − 1) ,

where r = r(G) ∈ N is the rank of G, n1, . . . , nr ∈ N are integers with
1 < n1 | . . . | nr and nr = exp(G) is the exponent of G. If |G| = 1, then
r(G) = 0, exp(G) = 1, and d∗(G) = 0.

Monoids and factorizations. Let H be a monoid. We denote by H× the
set of invertible elements of H, and we say that H is reduced if H× = {1}.
Let Hred = H/H× = {aH× | a ∈ H} be the associated reduced monoid and
q(H) a quotient group of H. For a subset H0 ⊂ H, we denote by [H0] ⊂ H
the submonoid generated by H0. Let a, b ∈ H. We say that a divides b
(and we write a | b) if there is an element c ∈ H such that b = ac, and we
say that a and b are associated (a ≃ b) if a | b and b | a.

A monoid F is called free (abelian, with basis P ⊂ F ) if every a ∈ F
has a unique representation of the form

a =
∏

p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

We set F = F(P ) and call

|a|F = |a| =
∑

p∈P

vp(a) the length of a .

We denote by A(H) the set of atoms of H, and we call Z(H) = F(A(Hred))
the factorization monoid of H. Further, π : Z(H) → Hred denotes the nat-
ural homomorphism mapping a factorization to the element it factors. For
a ∈ H, the set

Z(a) = ZH(a) = π−1(aH×)⊂Z(H) is called the set of factorizations of a,

L(a) = LH(a) =
{
|z|
∣∣ z ∈ Z(a)

}
⊂ N0 is called the set of lengths of a,

∆(H) =
⋃

a∈H

∆
(
L(a)
)
⊂ N denotes the set of distances of H,

also known as the Delta set of H. The monoid H is called

• atomic if Z(a) 6= ∅ for all a ∈ H (equivalently, every non-unit of H
may be written as a finite product of atoms of H).

• factorial if |Z(a)| = 1 for all a ∈ H (equivalently, every non-unit of
H may be written as a finite product of primes of H, in which case
the factorization must be unique).

Two factorizations z, z′ ∈ Z(H) can be written in the form

z = u1 · . . . · ulv1 · . . . · vm and z′ = u1 · . . . · ulw1 · . . . · wn
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with

{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅,

where l, m, n ∈ N0 and u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Hred). Then
gcd(z, z′) = u1 · . . . · ul, and we call

d(z, z′) = max{m, n} = max{|z gcd(z, z′)−1|, |z′ gcd(z, z′)−1|} ∈ N0

the distance between z and z′.

Krull monoids. The theory of Krull monoids is presented in the mono-
graphs [25, 24, 19]. We briefly summarize what is needed in the sequel. Let
H and D be monoids. A monoid homomorphism ϕ : H → D is called

• a divisor homomorphism if ϕ(a) | ϕ(b) implies a | b, for all a, b ∈ H.

• cofinal if, for every a ∈ D, there exists some u ∈ H such that
a |ϕ(u).

• a divisor theory (for H) if D = F(P ) for some set P , ϕ is a di-
visor homomorphism, and for every p ∈ P (equivalently, for every
a ∈ F(P )), there exists a finite subset ∅ 6= X ⊂ H satisfying
gcd
(
ϕ(X)

)
= p.

Note that, by definition, every divisor theory is cofinal. We call C(ϕ) =
q(D)/q(ϕ(H)) the class group of ϕ and use additive notation for this group.
For a ∈ q(D), we denote by [a] = [a]ϕ = a q(ϕ(H)) ∈ q(D)/q(ϕ(H)) the
class containing a. If ϕ : H → F(P ) is a cofinal divisor homomorphism,
then

GP = {[p] = pq(ϕ(H)) | p ∈ P} ⊂ C(ϕ)

is called the set of classes containing prime divisors, and we have [GP ] =
C(ϕ). If H ⊂ D is a submonoid, then H is called cofinal (saturated, resp.)
in D if the imbedding H →֒ D is cofinal (a divisor homomorphism, resp.).

The monoid H is called a Krull monoid if it satisfies one of the following
equivalent conditions ([19, Theorem 2.4.8]) :

• H is v-noetherian and completely integrally closed.

• H has a divisor theory.

• Hred is a saturated submonoid of a free monoid.

In particular, H is a Krull monoid if and only if Hred is a Krull monoid.
Let H be a Krull monoid. Then a divisor theory ϕ : H → F(P ) is unique
up to unique isomorphism. In particular, the class group C(ϕ) defined via
a divisor theory of H and the subset of classes containing prime divisors
depend only on H. Thus it is called the class group of H and is denoted by
C(H).

An integral domain R is a Krull domain if and only if its multiplicative
monoid R \ {0} is a Krull monoid, and a noetherian domain is Krull if and
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only if it is integrally closed. Rings of integers, holomorphy rings in alge-
braic function fields, and regular congruence monoids in these domains are
Krull monoids with finite class group such that every class contains a prime
divisor ([19, Section 2.11]). Monoid domains and power series domains that
are Krull are discussed in [23, 28, 29].

Zero-sum sequences. Let G0 ⊂ G be a subset and F(G0) the free
monoid with basis G0. According to the tradition of combinatorial number
theory, the elements of F(G0) are called sequences over G0. For a sequence

S = g1 · . . . · gl =
∏

g∈G0

gvg(S) ∈ F(G0) ,

we call vg(S) the multiplicity of g in S,

|S| = l =
∑

g∈G

vg(S) ∈ N0 the length of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

σ(S) =
l∑

i=1

gi the sum of S , and

Σ(S) =
{∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}

the set of subsums of S .

The sequence S is called

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence

and every proper subsequence is zero-sum free.

The monoid
B(G0) = {S ∈ F(G0) | σ(S) = 0}

is called the monoid of zero-sum sequences over G0, and we have B(G0) =
B(G)∩F(G0). Since B(G0) ⊂ F(G0) is saturated, B(G0) is a Krull monoid
(the atoms are precisely the minimal zero-sum sequences). Its significance
for the investigation of general Krull monoids is demonstrated by Lemma
3.3.

For every arithmetical invariant ∗(H) defined for a monoid H, we write
∗(G0) instead of ∗(B(G0)). In particular, we set A(G0) = A(B(G0)) and
∆(G0) = ∆(B(G0)). We define the Davenport constant of G0 by

D(G0) = sup
{
|U |
∣∣ U ∈ A(G0)

}
∈ N0 ∪ {∞} ,

and the following properties will be used throughout the manuscript with-
out further mention. If G0 is finite, then D(G0) is finite ([19, Theorem
3.4.2]). Suppose that G0 = G is finite. Then

(2.1) 1 + d∗(G) ≤ D(G) ,
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and equality holds if G is a p-group or r(G) ≤ 2 (see [19, Chapter 5] and
[17, Section 4.2]).

3. The catenary degree and its refinements

We recall the definition of the catenary degree c(H) of an atomic monoid
H and introduce, for all k ∈ N, the refinements ck(H).

Definition. Let H be an atomic monoid and a ∈ H.

(1) Let z, z′ ∈ Z(a) be factorizations of a and N ∈ N≥0 ∪{∞}. A finite
sequence z0, z1, . . . , zk in Z(a) is called an N -chain of factoriza-

tions from z to z′ if z = z0, z′ = zk and d(zi−1, zi) ≤ N for every
i ∈ [1, k].

If there exists an N -chain of factorizations from z to z′, we say that
z and z′ can be concatenated by an N -chain.

(2) Let cH(a) = c(a) ∈ N0 ∪ {∞} denote the smallest N ∈ N0 ∪ {∞}
such that any two factorizations z, z′ ∈ Z(a) can be concatenated
by an N -chain.

(3) For k ∈ N, we set

ck(H) = sup{c(a) | a ∈ H with min L(a) ≤ k} ∈ N0 ∪ {∞} ,

and we call

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞}

the catenary degree of H.

(4) We set

k(H) = sup
{

min
(
L(uv) \ {2}

)
| u, v ∈ A(H)

}
,

with the convention that min ∅ = sup ∅ = 0.

Let all notations be as above. Then k(H) = 0 if and only if L(uv) = {2}
for all u, v ∈ A(H). By definition, we have c(a) ≤ sup L(a). Let z, z′ ∈ Z(a).
Then, by definition of the distance, we have z = z′ if and only if d(z, z′) = 0.
Thus, c(a) = 0 if and only if a has unique factorization (that is, |Z(a)| = 1),
and hence H is factorial if and only if c(H) = 0. Suppose that H is not
factorial. Then there is a b ∈ H having two distinct factorizations y, y′ ∈
Z(b). A simple calculation (see [19, Lemma 1.6.2] for details) shows that

(3.1) 2 +
∣∣|y| − |y′|

∣∣ ≤ d(y, y′) , and hence 2 + sup ∆(L(b)) ≤ c(b) .

The following lemma gathers some simple properties of the invariants
introduced in the above definition.
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Lemma 3.1. Let H be an atomic monoid.

(1) We have 0 = c1(H) ≤ c2(H) ≤ . . . and

c(H) = sup{ck(H) | k ∈ N} .

(2) We have c(H) = ck(H) for all k ∈ N with k ≥ c(H).

(3) If ck(H) > ck−1(H) for some k ∈ N≥2, then ck(H) ≥ k.

(4) sup ∆(H) ≤ sup{ck(H)− k | k ∈ N with 2 ≤ k < c(H)}. Moreover,

if c(H) ∈ N, then there is some minimal m ∈ N with c(H) = cm(H),
and then

sup{ck(H)− k | k ∈ N≥2} = max{ck(H)− k | k ∈ [2,m]} .

(5) For every k ∈ N, we have

ck(H) ≥ sup{c(a) | a ∈ H with k ∈ L(a)}

≥ sup{c(a) | a ∈ H with k = min L(a)} ,

and equality holds if H contains a prime element.

(6) If H is not factorial, then

(3.2)
k(H) ≤ min

{
2+sup ∆(H) , c2(H)

}
≤ max

{
2+sup ∆(H) , c2(H)

}
≤ c(H) .

Proof. 1. Obvious.

2. If c(H) is either zero or infinite, then the assertion is clear. Suppose
that c(H) = m ∈ N. Then there is an a ∈ H with factorizations z =
u1 · . . . · ul ∈ Z(a) and z′ = v1 · . . . · vm ∈ Z(a), where l ∈ [1,m] and
u1, . . . , ul, v1, . . . , vm ∈ A(Hred), such that d(z, z′) = max{l,m} = m and z
and z′ cannot be concatenated by a d-chain of factorizations for any d < m.
Since min L(a) ≤ m, we get, for all k ≥ m, that

m ≤ c(a) ≤ cm(H) ≤ ck(H) ≤ c(H) = m,

and the assertion follows.

3. Suppose k ∈ N≥2 and ck(H) > ck−1(H). Let a ∈ H with min L(a) ≤ k
such that c(a) = ck(H). We note that actually min L(a) = k, as otherwise
ck−1(H) ≥ c(a), a contradiction. Let z, z′ ∈ Z(a) such that d(z, z′) =
c(a) = ck(H) and such that z and z′ cannot be concatenated by an N -
chain for N < c(a). Let x = gcd(z, z′). We note that min{|x−1z|, |x−1z′|} ≥
k, as otherwise x−1z and x−1z′ can be concatenated by a ck−1(H)-chain,
implying that z and z′ can be concatenated by such a chain. Thus, d(z, z′) ≥
k, establishing the claim.

4. It suffices to show that, for every d ∈ ∆(H), there is a k ∈ N with
2 ≤ k < c(H) and d ≤ ck(H)− k. Let d ∈ ∆(H). Then there is an element
a ∈ H and factorizations z, z′ ∈ Z(a) such that |z′| − |z| = d and L(a) ∩
[|z|, |z′|] = {|z|, |z′|}. For N = c(H), there is an N -chain z = z0, . . . , zl = z′



The catenary degree of Krull monoids I 145

of factorizations from z to z′. We may suppose that this chain cannot be
refined. This means that, for any i ∈ [1, l], there is no di-chain concatenating
zi−1 and zi with di < d(zi−1, zi). There exists some i ∈ [1, l] such that
|zi−1| ≤ |z| < |z

′| ≤ |zi|, say zi−1 = xv1 · . . . · vs and zi = xw1 · . . . · wt,
where x = gcd(zi−1, zi), s, t ∈ N and v1, . . . , vs, w1, . . . , wt ∈ A(Hred). We
set b = π(v1 · . . . · vs), k = min L(b) and get that

2 ≤ k ≤ s < t = max{s, t} = d(v1 · . . . · vs, w1 · . . . · wt)

= d(zi−1, zi) ≤ N = c(H) .

Since the two factorizations v1·. . .·vs and w1·. . .·wt of b can be concatenated
by a ck(H)-chain and since the original chain z0, . . . , zl cannot be refined,
it follows that t = d(v1 · . . . · vs, w1 · . . . · wt) ≤ ck(H). Therefore, since
|zi−1| ≤ |z| < |z

′| ≤ |zi|, it follows that

d = |z′| − |z| ≤ |zi| − |zi−1| = t− s ≤ ck(H)− k .

Now suppose that c(H) ∈ N. By part 2, there is some minimal m ∈ N with
c(H) = cm(H). Since c(H) > 0, it follows that m ≥ 2. Let k ∈ N≥2. If
k ≥ m, then c(H) = cm(H) = ck(H) and ck(H) − k ≤ cm(H) −m. Thus
the assertion follows.

5. The inequalities are clear. Suppose that p ∈ H is a prime element.
Let N ∈ N and a ∈ H with c(a) ≥ N and min L(a) ≤ k. Then, for t =
k−min L(a), we have L(apt) = t+L(a), min L(apt) = k and c(apt) = c(a) ≥
N . This implies that

sup{c(a) | a ∈ H with k = min L(a)}

≥ sup{c(a) | a ∈ H with min L(a) ≤ k}

and thus equality holds in both inequalities.

6. Suppose that H is not factorial. We start with the left inequality.
If L(uv) = {2} for all u, v ∈ A(H), then k(H) = 0 ≤ min

{
sup ∆(H) +

2, c2(H)
}
. Let u, v ∈ A(H) with L(uv) = {2, d1, . . . , dl} with l ∈ N and

2 < d1 < . . . < dl. Then d1 − 2 ∈ ∆
(
L(uv)

)
⊂ ∆(H), and thus we get

k(H) − 2 ≤ sup ∆(H). Let z′ = w1 · . . . · wd1
∈ Z(uv) be a factorization

of length d1. Then, from the definition of d1, we see z = uv and z′ cannot
be concatenated by a d-chain with d < d1. Thus d1 ≤ c(uv) ≤ c2(H), and
hence k(H) ≤ c2(H).

To verify the right inequality, note that c2(H) ≤ c(H) follows from the
definition. If b ∈ H with |Z(b)| > 1, then (3.1) shows that 2+sup ∆

(
L(b)
)
≤

c(b) ≤ c(H), and therefore 2 + sup ∆(H) ≤ c(H). �

Corollary 4.1 will show that, for the Krull monoids under consideration,
equality holds throughout (3.2). Obviously, such a result is far from being
true in general. This becomes clear from the characterization of the catenary
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degree in terms of minimal relations, recently given by S. Chapman et al.
in [9]. But we will demonstrate this by very explicit examples which also
deal with the refinements ck(H).

Examples.

1. Numerical monoids. The arithmetic of numerical monoids has been
studied in detail in recent years (see [1, 5, 6, 7, 8, 10, 31] and the monograph
[34]). The phenomena we are looking at here can already be observed in
the most simple case where the numerical monoid has two generators.

Let H = [{d1, d2}] ⊂ (N0,+) be a numerical monoid generated by in-
tegers d1 and d2, where 1 < d1 < d2 and gcd(d1, d2) = 1. Then A(H) =
{d1, d2}, and d1d2 is the smallest element a ∈ H—with respect to the usual
order in (N0,≤)—with |Z(a)| > 1. Thus ck(H) = 0 for all k < d1 (hence
k(H) = 0 if d1 > 2), ∆(H) = {d2 − d1} and cd1

(H) = d2 = c(H) (details
of all this are worked out in [19, Example 3.1.6]). Thus, when d1 > 2, the
second two inequalities in Lemma 3.1.6 are strict.

2. Finitely primary monoids. A monoid H is called finitely primary

if there exist s, α ∈ N with the following properties:

H is a submonoid of a factorial monoid F = F××[p1, . . . , ps] with
s pairwise non-associated prime elements p1, . . . , ps satisfying

H \H× ⊂ p1 · . . . · psF and (p1 · . . . · ps)
αF ⊂ H .

The multiplicative monoid of every one-dimensional local noetherian do-
main R whose integral closure R is a finitely generated R-module is finitely
primary ([19, Proposition 2.10.7]). Moreover, the monoid of invertible ideals
of an order in a Dedekind domain is a product of a free monoid and a finite
product of finitely primary monoids (see [19, Theorem 3.7.1]).

Let H be as above with s ≥ 2. Then 3 ≤ c(H) ≤ 2α+ 1, min L(a) ≤ 2α
for all a ∈ H, and hence sup{c(a) | a ∈ H with k = min L(a)} = 0 for
all k > 2α (see [19, Theorem 3.1.5]). This shows that the assumption in
Lemma 3.1.5 requiring the existence of a prime element cannot be omitted.
Concerning the inequalities in Lemma 3.1.6, equality throughout can hold
(as in [19, Examples 3.1.8]) but does not hold necessarily, as the following
example shows. Let H ⊂ (Ns0,+), with s ≥ 3, be the submonoid generated
by

A = {(m, 1, . . . , 1), (1,m, 1, . . . , 1), . . . , (1, . . . , 1,m) | m ∈ N} .

Then H is finitely primary with A = A(H) and k(H) = 0 < c(H).

3. Finitely generated Krull monoids. Let G be an abelian group and
r, n ∈ N≥3 with n 6= r+1. Let e1, . . . , er ∈ G be independent elements with
ord(ei) = n for all i ∈ [1, r], e0 = −(e1 + . . . + er) and G0 = {e0, . . . , er}.
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Then B(G0) is a finitely generated Krull monoid, ∆(G0) = {|n − r − 1|},
c(G0) = max{n, r + 1} and

0 = k(H) = c2(H) < 2 + max ∆(H) < c(H) .

(see [19, Proposition 4.1.2]).

4. k-factorial monoids. An atomic monoid H is called k-factorial,
where k ∈ N, if every element a ∈ H with min L(a) ≤ k has unique fac-
torization; k-factorial and, more generally, quasi-k-factorial monoids and
domains have been studied in [2]. Clearly, if H is k-factorial but not k+ 1-
factorial, then 0 = ck(H) < ck+1(H).

5. Half-factorial monoids. An atomic monoid H is called half-factorial
if ∆(H) = ∅ (cf. [19, Section 1.2]). Then, k(H) = 0 and it follows that
ck(H) ≤ k for each k ∈ N. Thus, by Lemma 3.1.3, we get that if ck(H) >
ck−1(H), then ck(H) = k. Without additional restriction on H, the set
K ⊂ N≥2 of all k with ck(H) > ck−1(H) can be essentially arbitrary; an
obvious restriction is that it is finite for c(H) finite.

The arithmetic of Krull monoids is studied via transfer homomorphisms.
We recall the required terminology and collect the results needed for the
sequel.

Definition. A monoid homomorphism θ : H → B is called a transfer

homomorphism if it has the following properties:

(T 1) B = θ(H)B× and θ−1(B×) = H×.

(T 2) If u ∈ H, b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H
such that u = vw, θ(v) ≃ b and θ(w) ≃ c.

Note that the second part of (T1) means precisely that units map to units
and non-units map to non-units, while the first part means θ is surjective up
to units. Every transfer homomorphism θ gives rise to a unique extension
θ : Z(H)→ Z(B) satisfying

θ(uH×) = θ(u)B× for each u ∈ A(H) .

For a ∈ H, we denote by c(a, θ) the smallest N ∈ N0 ∪ {∞} with the
following property:

If z, z′ ∈ ZH(a) and θ(z) = θ(z′), then there exist some k ∈ N0 and
factorizations z = z0, . . . , zk = z′ ∈ ZH(a) such that θ(zi) = θ(z)
and d(zi−1, zi) ≤ N for all i ∈ [1, k] (that is, z and z′ can be

concatenated by an N -chain in the fiber ZH(a) ∩ θ
−1

(θ(z)) ).

Then
c(H, θ) = sup{c(a, θ) | a ∈ H} ∈ N0 ∪ {∞}

denotes the catenary degree in the fibres.
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Lemma 3.2. Let θ : H → B be a transfer homomorphism of atomic mo-

noids and θ : Z(H)→ Z(B) its extension to the factorization monoids.

(1) For every a ∈ H, we have LH(a) = LB
(
θ(a)
)
. In particular, we

have ∆(H) = ∆(B) and k(H) = k(B).

(2) For every a ∈ H, we have c
(
θ(a)
)
≤ c(a) ≤ max{c

(
θ(a)
)
, c(a, θ)}.

(3) For every k ∈ N, we have

ck(B) ≤ ck(H) ≤ max{ck(B), c(H, θ)},

and hence

c(B) ≤ c(H) ≤ max{c(B), c(H, θ)} .

Proof. 1. and 2. See [19, Theorem 3.2.5].

3. Since, for every a ∈ H, we have L(a) = L
(
θ(a)
)
, it follows that

min L(a) = min L
(
θ(a)
)
, and thus parts 1 and 2 imply both inequalities. �

Lemma 3.3. Let H be a Krull monoid, ϕ : H → F = F(P ) a cofinal

divisor homomorphism, G = C(ϕ) its class group, and GP ⊂ G the set of

classes containing prime divisors. Let β̃ : F → F(GP ) denoted the unique

homomorphism defined by β̃(p) = [p] for all p ∈ P .

(1) The homomorphism β = β̃ ◦ ϕ : H → B(GP ) is a transfer homo-

morphism with c(H,β) ≤ 2.

(2) For every k ∈ N, we have

ck(GP ) ≤ ck(H) ≤ max{ck(GP ), 2},

and hence

c(GP ) ≤ c(H) ≤ max{c(GP ), 2} .

(3) k(H) = k(GP ) ≤ D(GP ).

Proof. 1. This follows from [19, Theorem 3.4.10].

2. This follows from part 1 and Lemma 3.2.

3. Since β is a transfer homomorphism, we have k(H) = k(GP ) by
Lemma 3.2. In order to show that k(GP ) ≤ D(GP ), let U1, U2 ∈ A(GP ).
If D(GP ) = 1, then GP = {0}, U = V = 0 and k(GP ) = 0. Suppose
that D(GP ) ≥ 2 and consider a factorization U1U2 = W1 · . . . ·Ws, where
s ∈ N and W1, . . . ,Ws ∈ A(GP ). It suffices to show that s ≤ D(GP ).

For i ∈ [1, s], we set Wi = W
(1)
i W

(2)
i with W

(1)
i ,W

(2)
i ∈ F(GP ) such that

U1 = W
(1)
1 · . . . · W

(1)
s and U2 = W

(2)
1 · . . . · W

(2)
s . If there are i ∈ [1, s]

and j ∈ [1, 2], say i = j = 1, such that W
(j)
i = W

(1)
1 = 1, then W1 =

W
(2)
1 |U2; hence W1 = U2, W2 = U1 and s = 2 ≤ D(GP ). Otherwise, we
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have W
(j)
1 , . . . ,W

(j)
s ∈ F(GP ) \ {1}, and hence s ≤

∑s
i=1 |W

(j)
i | = |Uj | ≤

D(GP ). �

4. A structural result for the catenary degree

In Theorem 4.1 we obtain a structural result for the catenary degree.
Since it is relevant for the discussion of this result, we start with a technical
result.

Proposition 4.1. Let G be an abelian group.

(1) Let G0 = {e0, . . . , er,−e0, . . . ,−er} ⊂ G be a subset with e1, . . . ,
er ∈ G independent and e0 = k1e1 + . . . + krer, where ki ∈ N
and 2ki ≤ ord(ei) for all i ∈ [1, r]. If

∑r
i=1 ki 6= 1, then k(G0) ≥

k1 + . . .+ kr + 1.

(2) Let G0 = {−e, e} ⊂ G be a subset with 3 ≤ ord(e) < ∞. Then

k(G0) = ord(e).

(3) Let G = Cn1
⊕ . . .⊕ Cnr with |G| ≥ 3 and 1 < n1 | . . . |nr, and let

(e1, . . . , er) be a basis of G with ord(ei) = ni for all i ∈ [1, r]. If

{e0, . . . , er,−e0, . . . ,−er} ⊂ G0 ⊂ G, where e0 =
∑r
i=1⌊

ni
2 ⌋ei, then

k(G0) ≥ max{nr, 1 +
∑r
i=1⌊

ni
2 ⌋}.

Proof. 1. If

A = e0(−e0)
r∏

i=1

ekii (−ei)
ki ,

then L(A) = {2, k1+. . .+kr+1} (see [19, Lemma 6.4.1]). Thus, if
∑r
i=1 ki 6=

1, the assertion follows by definition of k(G0).

2. Let n = ord(e). Since A(G0) = {(−e)n, en, (−e)e} and L
(
(−e)nen

)
=

{2, n}, it easily follows that k(G0) = n.

3. Clear, by parts 1 and 2. �

Theorem 4.1. Let H be a Krull monoid, ϕ : H → F = F(P ) a cofinal

divisor homomorphism, G = C(ϕ) its class group, and GP ⊂ G the set of

classes containing prime divisors. Then

(4.1) c(H) ≤ max
{⌊1

2
D(GP ) + 1

⌋
, k(GP )

}
.

Proof. By Lemma 3.3, we have c(H) ≤ max{c(GP ), 2}. If D(GP ) = 1, then
GP = {0}, G = [GP ] = {0}, H = F and c(H) = 0. Thus we may suppose
that 2 ≤ D(GP ) <∞, and it is sufficient to show that

c(GP ) ≤ d0, where d0 = max
{⌊1

2
D(GP ) + 1

⌋
, k(GP )

}
.

So we have to verify that, for A ∈ B(G•P ) and z, z′ ∈ Z(A), there is a
d0-chain of factorizations between z and z′. Assuming this is false, consider
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a counter example A ∈ B(G•P ) such that |A| is minimal, and for this A,
consider a pair of factorizations z, z′ ∈ Z(A) for which no d0-chain between
z and z′ exists such that |z| + |z′| is maximal (note |A| is a trivial upper
bound for the length of a factorization of A).

Note we may assume

(4.2) max{|z|, |z′|} ≥ d0 + 1 ≥
1

2
D(GP ) +

3

2
,

else the chain z, z′ is a d0-chain between z and z′, as desired. We continue
with the following assertion.

A. Let

y = U1 · . . . ·Ur ∈ Z(A) and y′ = V1 · . . . ·Vs ∈ Z(A) , where Ui, Vj ∈ A(GP ) ,

be two factorizations of A with Vj1 |U1 · . . . · UrU
−1
j2

, for some j1 ∈
[1, s] and j2 ∈ [1, r]. Then there is a d0-chain of factorizations of A
between y and y′.

Proof of A. We may assume j1 = 1, j2 = r, and we obtain a factorization

U1 · . . . · Ur−1 = V1W1 · . . . ·Wt ,

where W1, . . . ,Wt ∈ A(GP ). By the minimality of |A|, there is a d0-chain of
factorizations y0, . . . , yk between y0 = U1 · . . . ·Ur−1 and yk = V1W1 · . . . ·Wt,
and there is a d0-chain of factorizations z0, . . . , zl between z0 = W1·. . .·WtUr
and zl = V2 · . . . · Vs. Then

y = y0Ur, y1Ur, . . . , ykUr = V1z0, V1z1, . . . , V1zl = y′

is a d0-chain between y and y′. �

We set z = U1 · . . . · Ur and z′ = V1 · . . . · Vs, where all Ui, Vj ∈ A(GP ),
and without loss of generality we assume that r ≥ s. Then, in view of (4.2)
and D(GP ) ≥ 2, it follows that

(4.3) r ≥ d0 + 1 ≥
1

2
D(GP ) +

3

2
> 2.

Clearly, s = 1 would imply r = 1, and thus we get s ≥ 2.
Suppose max L(V1V2) ≥ 3. Then, by definition of k(GP ), there exists

y ∈ Z(V1V2) with 3 ≤ |y| ≤ k(GP ) and

(4.4) d(z′, yV3 · . . . · Vs) = d(V1V2, y) = |y| ≤ k(GP ) .

But, since |z| + |yV3 · . . . · Vs| > |z| + |z
′|, it follows, from the maximality

of |z| + |z′|, that there is a d0-chain of factorizations between yV3 · . . . · Vs
and z, and thus, in view of (4.4), a d0-chain concatenating z′ and z, a
contradiction. So we may instead assume max L(V1V2) = 2.

As a result, if s = 2, then V1V2 = A and L(A) = {2}, contradicting
2 < r ∈ L(A) (cf. (4.3)). Therefore we have s ≥ 3.
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We set V1 = V
(1)

1 · . . . · V
(r)

1 and V2 = V
(1)

2 · . . . · V
(r)

2 , where V
(j)

1 V
(j)

2 |Uj

for all j ∈ [1, r]. In view of A, we see that each V
(i)

1 and V
(j)

2 is nontrivial.
Thus (4.3) implies

(4.5) |V1V2| ≥ 2r ≥ D(GP ) + 3.

By the pigeonhole principle and in view of (4.3), there exists some j ∈ [1, r],
say j = r, such that

|V
(r)

1 V
(r)

2 | ≤
1

r
|V1V2| ≤

2D(GP )

r
< 4 .

As a result, it follows in view of (4.5) that

(4.6) |V
(1)

1 · . . . · V
(r−1)

1 V
(1)

2 · . . . · V
(r−1)

2 | ≥ |V1V2| − 3 ≥ D(GP ).

Thus there exists a W1 ∈ A(GP ) such that W1 |V
(1)

1 · . . . · V
(r−1)

1 V
(1)

2 · . . . ·

V
(r−1)

2 .
Let V1V2 = W1 · . . . · Wt, where W2, . . . ,Wt ∈ A(GP ). Since s ≥ 3,

we have |V1V2| < |A|. Thus, by the minimality of |A|, there is a d0-chain
of factorizations between V1V2 and W1 · . . . · Wt, and thus one between
z′ = (V1V2)V3 ·. . .·Vs and (W1 ·. . .·Wt)V3 ·. . .·Vs as well. From the definitions

of the V
(j)
i and W1, we have W1 |U1 · . . . · Ur−1. Thus by A there is a d0-

chain of factorizations between W1 · . . . ·WtV3 · . . . · Vs and z = U1 · . . . ·Ur.
Concatenating these two chains gives a d0-chain of factorizations between
z′ and z, completing the proof. �

Corollary 4.1. Let H be a Krull monoid, ϕ : H → F = F(P ) a cofinal

divisor homomorphism, G = C(ϕ) ∼= Cn1
⊕ . . .⊕Cnr its class group, where

1 < n1| . . . |nr and |G| ≥ 3, and GP ⊂ G the set of all classes containing

prime divisors. Suppose that the following two conditions hold :

(a)
⌊

1
2D(GP ) + 1

⌋
≤ max

{
nr, 1 +

∑r
i=1⌊

ni
2 ⌋
}
.

(b) There is a basis (e1, . . . , er) of G with ord(ei) = ni, for all i ∈ [1, r],
such that

{e0, . . . , er,−e0, . . . ,−er} ⊂ GP , where e0 =
∑r
i=1⌊

ni
2 ⌋ei.

Then

k(H) = 2 + max ∆(H) = c2(H) = c(H) .

Before giving the proof of the above corollary, we analyze the result and
its assumptions.

Remark. Let all notation be as in Corollary 4.1.

1. Note that

1 +
r∑

i=1

⌊ni
2

⌋
= 1 +

r2(G) + d∗(G)

2
,
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where r2(G) denotes the 2-rank of G, i.e., the number of even nis. Thus, if
D(G) = d∗(G) + 1 (see the comments after (2.1) for some groups fulfilling
this), then

⌊1
2

D(G) + 1
⌋
≤ 1 +

r∑

i=1

⌊ni
2

⌋
,

and hence Condition (a) holds. Not much is known about groups G with
D(G) > d∗(G) + 1 (see [22], [15, Theorem 3.3]). Note that groups of odd
order with D(G) > d∗(G)+1 yield examples of groups for which (a) fails, yet
the simplest example of such a group we were able to find in the literature
already has rank 8 (see [22, Theorem 5]).

2. In Examples 3, we pointed out that some assumption on GP is needed
in order to obtain the result k(H) = c(H). Clearly, Condition (b) holds
if every class contains a prime divisor. But since there are relevant Krull
monoids with GP 6= G (for examples arising in the analytic theory of Krull
monoids, we refer to [21, 26, 27]), we formulated our requirements on GP as
weak as possible, and we discuss two natural settings which enforce parts
of Conditions (b) even if GP 6= G.

(i) A Dedekind domain R is a quadratic extension of a principal ideal
domain R′ if R′ ⊂ R is a subring and R is a free R′-module of rank 2. If R is
such a Dedekind domain, G its class group, and GP ⊂ G the set of classes
containing prime divisors, then GP = −GP and [GP ] = G. By a result of
Leedham-Green [30], there exists, for every abelian group G, a Dedekind
domain R which is a quadratic extension of a principal ideal domain and
whose class group is isomorphic to G.

(ii) If GP ⊂ G are as in Corollary 4.1, then GP is a generating set of G,
and if G ∼= Cr

pk
, where p ∈ P and k, r ∈ N, then GP contains a basis by [19,

Lemma A.7].

3. Corollary 4.1 tells us that the catenary degree c(H) occurs as a distance
of two factorizations of the following form

a = u1u2 = v1 · . . . · vc(H) ,

where u1, u2, v1, . . . , vc(H) ∈ A(H) and a has no factorization of length
j ∈ [3, c(H)−1]. Of course, the catenary degree may also occur as a distance
between factorizations which are not of the above form. In general, there
are even elements a and integers k ≥ 3 such that

(4.7) c(a) = c(H) , min L(a) = k and c(b) < c(a)

for all proper divisors b of a. We provide a simple, explicit example.
Let G = C3 ⊕ C3, (e1, e2) be a basis of G and e0 = −e1 − e2. For

i ∈ [0, 2], let Ui = e3
i and let V = e0e1e2. Then A = V 3 ∈ B(G), Z(A) =

{U0U1U2, V
3}, c(A) = 3 = c(G) (see Corollary 5.1) and c(B) = 0 for all

proper zero-sum subsequences B of A.
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4. Let β : H → B(GP ) be as in Lemma 3.3. Clearly, if a ∈ H is such
that c(a) = c(H), then, using the notation of Remark 4.3, a,β(a), u1, u2,
β(u1) and β(u2) must be highly structured. On the other hand, there is
the following result: if supp

(
β(a)
)
∪ {0} is a subgroup of G, then c(a) ≤ 3

(see [19, Theorem 7.6.8]), while (3.1) shows c(a) ≥ 3 whenever |L(a)| > 1.

5. If H is factorial, in particular if |G| = 1, then k(H) = c2(H) = c(H) =
0 and 2 + max ∆(H) = 2. If H is not factorial and |G| = 2, then k(H) = 0
and c2(H) = c(H) = 2 + max ∆(H) = 2.

Proof of Corollary 4.1. Lemma 3.1.6 and Theorem 4.1 imply that

k(H) ≤ min{2 + max ∆(H), c2(H)} ≤ max{2 + max ∆(H), c2(H)}

≤ c(H) ≤ max
{⌊1

2
D(GP ) + 1

⌋
, k(GP )

}
.

By assumption and by Proposition 4.1 and Lemma 3.3.3, it follows that

⌊1
2

D(GP ) + 1
⌋
≤ max

{
nr, 1 +

r∑

i=1

⌊ni
2

⌋}
≤ k(GP ) = k(H) ,

and thus, in the above chain of inequalities, we indeed have equality
throughout. �

Corollary 4.2. Let H be a Krull monoid, ϕ : H → F = F(P ) a cofinal

divisor homomorphism, G = C(ϕ) its class group, GP ⊂ G the set of classes

containing prime divisors, and suppose that 3 ≤ D(GP ) <∞.

(1) We have c(H) = D(GP ) if and only if k(H) = D(GP ).

(2) If c(H) = D(G), then D(GP ) = D(G) and G is either cyclic or an

elementary 2-group. If GP = −GP , then the converse implication

holds as well.

Proof. 1. By Theorem 4.1, (3.2) and Lemma 3.3.3, we have

(4.8) k(H) = k(GP ) ≤ c(H) ≤ max
{⌊1

2
D(GP ) + 1

⌋
, k(GP )

}
≤ D(GP ) ,

which we will also use for part 2. In view of 3 ≤ D(GP ) < ∞, we have
⌊1

2D(GP )+1⌋ < D(GP ). Thus the assertion now directly follows from (4.8).

2. We use that [GP ] = G. Furthermore, if D(GP ) = D(G), it follows that
Σ(S) = G• for all zero-sum free sequences S ∈ F(GP ) with |S| = D(GP )−1
(see [19, Proposition 5.1.4]). Obviously, this implies that 〈supp(U)〉 = G
for all U ∈ A(GP ) with |U | = D(GP ).

Suppose that c(H) = D(G). Since c(H) ≤ D(GP ) ≤ D(G) (in view of
(4.8)), it follows that D(GP ) = D(G), and part 1 implies that k(H) =
D(GP ). Thus there exist U, V ∈ A(GP ) such that {2,D(G)} ⊂ L(UV ), and
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[19, Proposition 6.6.1] implies that V = −U and L
(
(−U)U

)
= {2,D(G)}

(since max L((−U)U) ≤ |(−U)U |
2 ≤ D(G)).

Assume to the contrary that G is neither cyclic nor an elementary 2-
group. We show that there exists some W ∈ A(GP ) such that W | (−U)U
and 2 < |W | < D(G). Clearly, W gives rise to a factorization (−U)U =
WW2·. . .·Wk with W2, . . . ,Wk ∈ A(GP ) and 2 < k < D(G), a contradiction
to L
(
(−U)U

)
= {2,D(G)}.

Since 〈supp(U)〉 = G (as noted above) is not an elementary 2-group,
there exists some g0 ∈ supp(U) with ord(g0) > 2, say U = gm0 g1 · . . . · gl
with g0 6∈ {g1, . . . , gl}. Since G = 〈supp(U)〉 is not cyclic, it follows that
l ≥ 2. Let W ′ = (−g0)mg1 · . . . · gl. Then W ′ |U(−U) and |W ′| = D(G).
Hence there exists some W ∈ A(GP ) with W |W ′, and we proceed to show
that 2 < |W | < D(G), which will complete the proof. Since U ∈ A(GP ), we
have W ∤ g1 · . . . ·gl, and thus −g0 |W . Since g0 /∈ {g1, . . . , gl} and g0 6= −g0,
it follows that W 6= g0(−g0), and thus |W | > 2.

Assume to the contrary that |W | = D(G). Then W = W ′, and σ(U) =
σ(W ′) = 0 implies 2mg0 = 0, and thus m > 1. We consider the sequence
S = gm0 g1 · . . . · gl−1. Since 1 < m < ord(g0) and 2mg0 = 0, it follows that

0 6= (m+ 1)g0.

Since S is zero-sum free of length |S| = D(G)− 1, we have Σ(S) = G•, and
thus 0 6= (m+ 1)g0 ∈ Σ(S), say

(m+ 1)g0 = sg0 +
∑

i∈I

gi with s ∈ [0,m] and I ⊂ [1, l − 1] .

If s = 0, then

0 = 2mg0 = (m− 1)g0 +
∑

i∈I

gi ∈ Σ(S),

a contradiction. If s ≥ 1, then it follows that

T = (−g0)m+1−s
∏

i∈I

gi

is a proper zero-sum subsequence of W , a contradiction to W ∈ A(GP ).
Suppose that GP = −GP and D(GP ) = D(G). Recall the comments

after (2.1) concerning the value of D(G). First, we let G be an elementary
2-group. Then there is a U = e0e1 ·. . .·er ∈ A(GP ) with |U | = D(G) = r+1.
Thus, since 〈supp(U)〉 = G, and since a basis of an elementary 2-group is
just a minimal (by inclusion) generating set, it follows that GP contains the
basis (say) (e1, . . . , er) of G, and Proposition 4.1 and Lemma 3.3.3 imply
that k(H) = k(GP ) = D(GP ) = D(G) = r+1, whence c(H) = D(G) follows
from part 1. Second, let G be cyclic. If U ∈ A(GP ) with |U | = D(GP ) =

D(G), then |U | = |G| and [19, Theorem 5.1.10] implies that U = g|G| for
some g ∈ GP with ord(g) = |G|. Hence L

(
(−U)U

)
= {2, |G|}, and now it



The catenary degree of Krull monoids I 155

follows from Lemma 3.3.3 that |G| = D(GP ) = k(GP ) = k(H), whence
part 1 once more shows c(H) = D(G) = D(GP ). �

5. An upper bound for the catenary degree

We apply our structural result on the catenary degree (Theorem 4.1) to
obtain a new upper bound on the catenary degree (see Theorem 5.1) and
a characterization result for Krull monoids with small catenary degree (see
Corollary 5.1). We start with some technical results.

Lemma 5.1. Let G be an abelian group and let U, V ∈ F(G•). Suppose that

either U, V ∈ A(G) or that U and V are zero-sum free with σ(UV ) = 0.

Then max L(UV ) ≤ min{|U |, |V |}. Moreover, if max L(UV ) = |U | ≥ 3,

then − supp(U) ⊂ Σ(V ).

Proof. Let UV = W1 · . . . ·Wm, where m = max L(UV ) and W1, . . . ,Wm ∈
A(G). Let U = U1 ·. . .·Um and V = V1 ·. . .·Vm with Wi = UiVi for i ∈ [1,m].
If Ui 6= 1 and Vi 6= 1 for all i ∈ [1,m], then m ≤ |U1| + . . . + |Um| = |U |
and likewise m ≤ |V |. Moreover, if equality holds in the first bound, then
|Ui| = 1 for i ∈ [1,m], in which case each Vi|V is a subsequence of V with
σ(Vi) = −σ(Ui) ∈ − supp(U); since

⋃m
i=1{σ(Ui)} = supp(U), this means

− supp(U) ⊂ Σ(V ).
On the other hand, if there is some j ∈ [1,m] such that Uj = 1 or

Vj = 1, say U1 = 1, then, since V contains no proper, nontrivial zero-
sum subsequence, it follows that W1 = V1 = V , which, since U contains
no proper, nontrivial zero-sum subsequence, implies W2 = U . Hence, since
U, V ∈ F(G•) with σ(U) = σ(W2) = 0 = σ(W1) = σ(V ) implies |U |, |V | ≥
2, we see that m = 2 ≤ min{|U |, |V |}. �

Lemma 5.2. Let G be an abelian group, K ⊂ G a finite cyclic subgroup,

and let U, V ∈ A(G) with max L(UV ) ≥ 3. If
∑
g∈K vg(UV ) ≥ |K|+ 1 and

there exists a nonzero g0 ∈ K such that vg0(U) > 0 and v−g0(V ) > 0, then

L(UV ) ∩ [3, |K|] 6= ∅.

Proof. Note U, V ∈ A(G) and max L(UV ) ≥ 3 imply 0 /∈ supp(UV ). More-
over, note that if supp(U) ⊂ K, then Lemma 5.1 implies that max L(UV ) ≤
|U | ≤ D(K) = |K| (recall the comments after (2.1)), whence the as-
sumption max L(UV ) ≥ 3 completes the proof. Therefore we may assume
supp(U) 6⊂ K, and likewise that supp(V ) 6⊂ K.

We factor U = U0U
′ and V = V0V

′ where U0 and V0 are subsequences of
terms from K such that there exists some non-zero g0 ∈ K with g0 |U0 and
(−g0) |V0, and |U0| + |V0| = |K| + 1. Note that by the assumption made
above, both U0 and V0 are proper subsequences of U and V , respectively,
and thus they are zero-sum free.
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Let U0 = g0U
′
0 and V0 = (−g0)V ′0 . Since U ′0 and V ′0 are both zero-sum free,

we get (cf., e.g., [19, Proposition 5.1.4.4]) that |{0}∪Σ(U ′0)| ≥ |U ′0|+1 = |U0|
and |{0} ∪Σ(V ′0)| ≥ |V ′0 |+ 1 = |V0|. Since these sets are both subsets of K,
the pigeonhole principle implies that

(5.1)
(
g0 +

(
{0} ∪ Σ(U ′0)

))
∩
(
{0} ∪ Σ(V ′0)

)
6= ∅.

Let U ′′0 and V ′′0 denote (possibly trivial) subsequences of U ′0 and V ′0 , re-
spectively, such that σ(V ′′0 ) = g0 + σ(U ′′0 ) = σ(g0U

′′
0 ), whose existence is

guaranteed by (5.1).
We set W1 = (g0U

′′
0 )−1UV ′′0 and W2 = V ′′−1

0 V (g0U
′′
0 ). Then, UV =

W1W2, and W1 and W2 are nontrivial zero-sum sequence; more precisely,
(−g0)g0 |W2 is a proper zero-sum subsequence (recall that by assump-
tion U0 and V0 are proper subsequences of U and V , respectively). Since
L(W1) + L(W2) ⊂ L(UV ), and since by the above assertion min L(W1) ≥ 1
and min L(W2) ≥ 2, it suffices to assert that max L(W1) + max L(W2) ≤
|K|. Since, by Lemma 5.1, we have max L(W1) ≤ |V ′′0 | ≤ |V0| − 1 and
max L(W2) ≤ |g0U

′′
0 | ≤ |U0|, and since by assumption |U0|+ |V0| = |K|+ 1,

this is the case. �

Lemma 5.3. Let t ∈ N and α, α1, . . . , αt ∈ R with α1 ≥ . . . ≥ αt ≥ 0 and
t∑
i=1
αi ≥ α ≥ 0. Then

t∏

i=1

(1 + xi) is minimal

over all (x1, . . . , xt) ∈ Rt with 0 ≤ xi ≤ αi and
∑t
i=1 xi = α if

xi = αi for each i ∈ [1, s] and xi = 0 for each i ∈ [s+ 2, t]

where s ∈ [0, t] is maximal with
∑s
i=1 αi ≤ α.

Proof. This is a simple calculus problem; for completeness, we include a
short proof. We may assume α 6= 0. By compactness and continuity, the
existence of a minimum is clear. Let x = (x1, . . . , xt) be a point where the
minimum is attained. We note that for x, y ∈ R with x ≥ y ≥ 0 we have

(5.2) (1 + x+ ε)(1 + y − ε) < (1 + x)(1 + y)

for each ε > 0. Thus, it follows that xi /∈ {0, αi} for at most one i ∈ [1, t]; if
such an i exists we denote it by i0, otherwise we denote by i0 the maximal
i ∈ [1, t] with xi 6= 0. Suppose that for x the value of αi0 is maximal among
all points where the minimum is attained. We observe that it suffices to
assert that xj = αj for each j with αj > αi0 and xj = 0 for each j with
αj < αi0 ; in view of xi ∈ {0, αi} for i 6= i0, we can then simply reorder the
xi for the i’s with αi = αi0 to get a point fulfilling the claimed conditions.
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First, assume there exists some j with αj > αi0 and xj 6= αj , i.e., xj = 0.
Then, exchanging xj and xi0 (note xi0 ≤ αj), yields a contradiction to the
maximality of αi0 .

Second, assume there exists some j with αj < αi0 and xj 6= 0, i.e.,
xj = αj > 0. By definition of i0, it follows that 0 < xi0 < αi0 . Thus, we can
apply (5.2), in case xi0 < xj first exchanging the two coordinates, to obtain
a contradiction to the assumption that a minimum is attained in x. �

Note that for G ∼= Crn the bound given by Theorem 5.1 is of the form
k(H) ≤ 5

6D(G) +Or(1). Thus, for n large relative to r this is an improve-
ment on the bound k(H) ≤ D(G).

Theorem 5.1. Let H be a Krull monoid, ϕ : H → F = F(P ) a cofinal

divisor homomorphism, G = C(ϕ) its class group, and GP ⊂ G the set of

classes containing prime divisors. If exp(G) = n and r(G) = r, then

k(H) ≤ max {n, ψ} ≤ max

{
n,

1

3

(
2D(GP ) +

1

2
rn+ 2r

)}
,

where

ψ =
2

3
D(GP )

+
1

3

⌊⌊
log⌊n/2⌋+1 |G|

⌋
· ⌊n/2⌋+ |G| · (⌊n/2⌋+ 1)−⌊log⌊n/2⌋+1 |G|⌋

⌋
.

Proof. Since k(H) = k(GP ) by Lemma 3.3.3, it suffices to show that k(GP )
satisfies the given bounds. Let U, V ∈ A(GP ) with max L(UV ) ≥ 3, and
let

z = A1 · . . . ·Ar1B1 · . . . ·Br2 ∈ Z(UV ) ,

where Ai, Bj ∈ A(GP ) with |Ai| ≥ 3 and |Bj | = 2 for all i ∈ [1, r1] and
all j ∈ [1, r2], be a factorization of UV of length |z| = min

(
L(UV ) \ {2}

)
.

Note r2 ≥ 2, else |z| ≤ |UV |−2
3 + 1 ≤ 2D(GP )+1

3 , implying the statement as
desired (the inequality between the two bounds in Theorem 5.1 will become
apparent later in the proof). Our goal is to show |z| is smaller than or equal
to the asserted upper bound. We set

S = B2 · . . . ·Br2 ∈ B(G) .

Observe that, for every i ∈ [2, r2], Bi contains one term from supp(U)
with the other from supp(V ) (otherwise min{|U |, |V |} = 2, contradicting
max L(UV ) ≥ 3 in view of Lemma 5.1). Hence we can factor S = SUSV so
that SU = −SV with SU |U and SV |V . Let supp(SU ) = {g1, . . . , gs} with
the gi distinct and indexed so that vg1(SU ) ≥ . . . ≥ vgs(SU ). If vg1(SU ) ≥
(n+ 1)/2, then

∑

g∈〈g1〉

vg(UV ) ≥ vg1(SU ) + v−g1(SV ) ≥ n+ 1 ≥ |〈g1〉|+ 1 ,
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and Lemma 5.2 implies that |z| = min
(
L(UV ) \ {2}

)
∈ [3, n]. Therefore we

may assume vg1(SU ) ≤ ⌊n2 ⌋.
Suppose

(5.3) |SU | >
⌊
log⌊n/2⌋+1 |G|

⌋
· ⌊n/2⌋+ |G| · (⌊n/2⌋+ 1)−⌊log⌊n/2⌋+1 |G|⌋ − 1

or

(5.4) |SU | >
1

2
nr + 2r − 1.

Since vgi(SU ) ≤ ⌊n2 ⌋ ≤
n
2 for all gi ∈ supp(SU ), if (5.3) holds, then

applying Lemma 5.3 (using α = |SU |, t = |G|, and αi = ⌊n/2⌋ for all i;
thus we view each αi as a bound on the multiplicity in SU of an element of
G) gives

(5.5)
s∏

i=1

(
vgi(SU ) + 1

)
> |G|.

On the other hand, if (5.4) holds, then applying Lemma 5.3 (using α = |SU |,
t = |G|, αi = n/2 for all i ∈ [1, |G|−1], and α|G| = max{n/2, r−1}) instead
gives

s∏

i=1

(
vgi(SU ) + 1

)
> 2r
(n

2
+ 1
)r
> |G|,

so that (5.5) holds in this case as well. Moreover, since the length
given in (5.3) is precisely the amount needed so that Lemma 5.3 yields
∏|G|
i=1

(
αi + 1

)
> |G| using the more accurate estimates αi ≤ ⌊

n
2 ⌋ while

the length given in (5.4) is sufficient to show the stronger estimate
∏|G|
i=1

(
αi + 1

)
> 2r(n2 + 1)r using more relaxed estimates for the αi, we

easily infer that the right-hand quantity from (5.4) is at least the size of
the the right-hand quantity from (5.3).

Since each g
vgi (SU )
i is zero-sum free, being a subsequence of the proper

subsequence SU |U , it follows that {0, gi, 2gi, . . . , vgi(SU )gi} are vgi(SU ) + 1
distinct elements. Hence, in view of (5.5) and the pigeonhole principle, it
follows that there exists ai, bi ∈ [0, vgi(SU )], for i ∈ [1, s], such that, letting

SA =
s∏

i=1

gaii ∈ F(GP ) and SB =
s∏

i=1

gbii ∈ F(GP ),

we have σ(SA) = σ(SB) with SA 6= SB. Moreover, by replacing each ai and
bi with ai −min{ai, bi} and bi −min{ai, bi}, respectively, we may w.l.o.g.
assume that

(5.6) ai = 0 or bi = 0

for each i ∈ [1, s]. By their definition and in view of (5.6), we have

SASB |SU and (−SB)(−SA) | (−SU ) = SV .
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From SA 6= SB, σ(SA) = σ(SB) and SA|SU with SU a proper subsequence
of U ∈ A(GP ), we conclude that σ(SA) = σ(SB) 6= 0, and thus both SA
and SB are nontrivial. Since σ(SA) = σ(SB), we have σ(SA(−SB)) = 0, and
in view of (5.6), the gi being distinct and SA|U and SB|U being zero-sum
free, it follows that there is no 2-term zero-sum subsequence in SA(−SB).
Thus, letting T = SA(−SB), recalling that

SUSV = SU (−SU ) = S = B2 · . . . ·Br2 ,

and putting all the above conclusions of this paragraph together, we see
that T is a nontrivial, zero-sum subsequence not divisible by a zero-sum
sequence of length 2 such that T (−T ) |B2 · . . . ·Br2 . However, this leads to

factorizations T (−T ) = Ar1+1 · . . . · Ar′
1

and S
(
(−T )T

)−1
= B′2 · . . . · B

′
r′

2

,

where Ai, B
′
j ∈ A(GP ) with |Ai| ≥ 3 and |B′j | = 2 for all i ∈ [r1 + 1, r′1] and

all j ∈ [2, r′2]. But now the factorization

z′ = A1 · . . . ·Ar1Ar1+1 · . . . ·Ar′
1
B1B

′
2 · . . . ·B

′
r′

2
∈ Z(UV )

contradicts the minimality of |z| = min
(
L(UV )\{2}

)
(note |z′| ≥ r′1+1 ≥ 3

since B1|z
′ and T and −T were both nontrivial). So we may instead assume

|SU | ≤
⌊
log⌊n/2⌋+1 |G|

⌋
· ⌊n/2⌋+ |G| · (⌊n/2⌋+ 1)−⌊log⌊n/2⌋+1 |G|⌋ − 1

≤
1

2
nr + 2r − 1.(5.7)

Now

|z| = r1 + r2 ≤
1

3
|A1 · . . . ·Ar1 |+

1

2
|B1 · . . . ·Br2 |

=
1

3
(|UV | − 2|SU | − 2) +

1

2
(2 + 2|SU |) ≤

1

3

(
2D(GP ) + |SU |+ 1

)
,

which, together with (5.7), implies the assertion. �

As an added remark, note that the only reason to exclude the set B1

from the definition of the sequences S and SU was to ensure that |z′| ≥ 3.
However, if r1 ≥ 1, then |z′| ≥ 3 holds even if B1 is so included. Thus the
bound in Theorem 5.1 could be improved by −1

3 in such case.

We state one more proposition—its proof will be postponed—and then
we give the characterization of small catenary degrees.

Proposition 5.1. Let G = C3 ⊕ C3 ⊕ C3. Then k(G) = c(G) = 4.

Corollary 5.1. Let H be a Krull monoid with class group G and suppose

that every class contains a prime divisor. Then k(H) is finite if and only

if the catenary degree c(H) is finite if and only if G is finite. Moreover, we

have
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(1) c(H) ≤ 2 if and only if |G| ≤ 2.

(2) c(H) = 3 if and only if G is isomorphic to one of the following

groups : C3, C2 ⊕ C2, or C3 ⊕ C3.

(3) c(H) = 4 if and only if G is isomorphic to one of the following

groups : C4, C2 ⊕ C4, C2 ⊕ C2 ⊕ C2, or C3 ⊕ C3 ⊕ C3.

Proof. If G is finite, then D(G) is finite (see [19, Theorem 3.4.2]), and so
Lemma 3.3.3 and Theorem 4.1 imply the finiteness of k(H) and of c(H).
If G contains elements of arbitrarily large order, then the infinity of k(G)
follows by Proposition 4.1.2. And, if G contains an infinite independent set,
the infinity of k(G) follows by Proposition 4.1.1. In each case the infinity
of k(H) and c(H) thus follows by (3.2) and Lemma 3.3.3.

1. This part of the theorem is already known and included only for com-
pleteness. That c(H) ≤ 2 implies |G| ≤ 2 can be found in [19, pp. 396],
while c(H) ≤ D(G) ≤ |G| follows from [19, Theorem 3.4.11 and Lemmas
5.7.2 and 5.7.4] and implies the other direction.

2. See [19, Corollary 6.4.9].

3. Recall the comment concerning the value of D(G) after (2.1). We may
assume thatG is finite. Note Proposition 4.1 implies c(G) ≥ 4 for each of the
groups listed in part 3. As noted for part 1, we have c(G) ≤ D(G) ≤ |G| in
general. Thus c(C4) ≤ 4 and, since D(C2⊕C2⊕C2) = 4, c(C2⊕C2⊕C2) ≤ 4
as well. Moreover, Corollary 4.2 shows that c(C2⊕C4) ≤ D(C2⊕C4)−1 = 4.
Finally, c(C3 ⊕ C3 ⊕ C3) ≤ 4 follows by Proposition 5.1. Consequently,
c(G) = 4 for all of the groups listed in part 3.

In view of parts 1 and 2, it remains to show all other groups G not
listed in Corollary 5.1 have c(G) ≥ 5. Set exp(G) = n and r(G) = r. Now
Proposition 4.1 shows that c(G) ≥ 5 whenever n ≥ 5 or r ≥ 4. This leaves
only C4 ⊕ C4, C4 ⊕ C4 ⊕ C4, C2 ⊕ C4 ⊕ C4 and C2 ⊕ C2 ⊕ C4 for possible
additional candidates for c(G) ≤ 4. However, applying Proposition 4.1 to
each one of these four groups shows c(G) ≥ 5 for each of them, completing
the proof. �

The remainder of this section is devoted to the proof of Proposition
5.1, which requires some effort. Before going into details, we would like
to illustrate that geometric and combinatorial questions in Cr3 have found
much attention in the literature, and our investigations should be seen in
the light of this background. The Erdős-Ginzburg-Ziv constant s(G) of
a finite abelian group G is the smallest integer l ∈ N with the following
property:

• Every sequence S ∈ F(G) of length |S| ≥ l has a zero-sum subse-
quence T of length |T | = exp(G).
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If r ∈ N and ϕ is the maximal size of a cap in AG(r, 3), then s(Cr3) = 2ϕ+1
(see [12, Section 5]). The maximal size of caps in Cr3 has been studied in
finite geometry for decades (see [11, 13, 33]; the precise values are only
known for r ≤ 6). This shows the complexity of these combinatorial and
geometric problems. Recently, Bhowmik and Schlage-Puchta determined
the Davenport constant of C3 ⊕ C3 ⊕ C3n. In these investigations, they
needed a detailed analysis of the group C3⊕C3⊕C3. Building on the above
results for the Erdős–Ginzburg–Ziv constant s(G), in particular, using that
s(C3

3 ) = 19, they determined the precise values of generalized Davenport
constants in C3

3 (see [4, Proposition 1], and [14] for more on generalized
Davenport constants).

We need one more definition. For an abelian group G and a sequence
S ∈ F(G) we denote by

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|]

the maximum of the multiplicities of S. We give an explicit characterization
of all minimal zero-sum sequences of maximal length over C3

3 . In particular,
it can be seen that for this group the Olson constant and the Strong Dav-
enport constant do not coincide (we do not want to go into these topics;
the interested reader is referred to Section 10 in the survey article [16], and
for recent progress to [32] where Lemma 5.4 is used).

Lemma 5.4. Let G = C3 ⊕ C3 ⊕ C3 and U ∈ F(G). Then the following

statements are equivalent :

(a) U ∈ A(G) with |U | = D(G).

(b) There exist a basis (e1, e2, e3) of G and ai, bj ∈ [0, 2] for i ∈ [1, 5]

and j ∈ [1, 3] with
∑5
i=1 ai ≡

∑3
j=1 bj ≡ 1 (mod 3) such that

U = e2
1

2∏

i=1

(aie1 + e2)
3∏

j=1

(a2+je1 + bje2 + e3) .

In particular, h(U) = 2 for each U ∈ A(G) with |U | = D(G).

Proof. Since D(G) = 7 (see the comments by (2.1)) it is easily seen that
statement (b) implies statement (a). Let U ∈ A(G) with |U | = D(G).
First, we assert that h(U) = 2 and, then, derive statement (b) as a direct
consequence.

Since h(U) < exp(G) = 3, it suffices to show h(U) > 1. Assume not. We
pick some e1 ∈ supp(U) ⊂ G•. Let G = 〈e1〉 ⊕ K, where K ∼= C3 ⊕ C3

is a subgroup, and let φ : G → K denote the projection (with respect
to this direct sum decomposition). We set V = e−1

1 U . We observe that
σ(φ(V )) = 0.
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We note that for each proper and nontrivial subsequence S |V with
σ(φ(S)) = 0, we have that e1σ(S) is zero-sum free, that is

(5.8) σ(S) = e1.

In particular, we have max L(φ(V )) ≤ 2 and, in combination with h(U) = 1,
we have 0 ∤ φ(V ).

We assert that h(φ(V )) = 2. First, assume h(φ(V )) ≥ 3. This means that
V has a subsequence S′ =

∏3
i=1(aie1 + g) with g ∈ K and, since h(V ) = 1,

we have {a1e1, a2e1, a3e1} = {0, e1, 2e1} and σ(S′) = 0, a contradiction.
Second, assume h(φ(V )) = 1. Then, since | supp(φ(V ))| = 6 and |K•| =
8, there exist g, h ∈ K such that (−g)g(−h)h |φ(V ), a contradiction to
max L(φ(V )) = 2.

So, let g1g2 |V with φ(g1) = φ(g2), and denote this element by e2. Fur-
ther, let e3 ∈ K such that G = 〈e1, e2, e3〉 and let φ′ : G → 〈e3〉 denote
the projection (with respect to this basis). If there exists a subsequence
T | (g1g2)−1V with σ(φ(T )) = −e2, then σ(g1T ) and σ(g2T ) are distinct ele-
ments of 〈e1〉, a contradiction to (5.8). So, −e2 /∈ Σ(φ((g1g2)−1V )), which in
view of h(φ(V )) < 3 and 0 ∤ φ(V ), implies that supp(φ((g1g2)−1V ))∩〈e2〉 =
∅. Since σ(φ′((g1g2)−1V )) = 0, it follows that φ′((g1g2)−1V ) = e2

3(−e3)2.
Let V = g1g2h1h2f1f2 such that φ′(hi) = e3 and φ′(fi) = −e3 for i ∈ [1, 2].
We note that φ(h1 + f1)φ(h2 + f2) = 0e2, the only sequence of length two
over 〈e2〉 that has sum e2 yet does not have −e2 as a subsum. Likewise,
φ(h1 + f2)φ(h2 + f1) = 0e2. Thus φ(h1 + f1) = φ(h1 + f2) or φ(h1 + f1) =
φ(h2 + f1) that is φ(f1) = φ(f2) or φ(h1) = φ(h2). By symmetry, we may
assume φ(h1) = φ(h2). Let j ∈ [1, 2] such that φ(h1 + fj) = e2. Then
σ(hifjg1g2) ∈ 〈e1〉 for i ∈ [1, 2], yet σ(h1fjg1g2) 6= σ(h2fjg1g2), as h1 and
h2 are distinct by the assumption h(U) = 1. This contradicts (5.8) and
completes the argument.

It remains to obtain the more explicit characterization of U . Let U =
e2

1W for some suitable e1 ∈ G
•, and let K and φ as above. Similarly to

(5.8), we see that φ(W ) is a minimal zero-sum sequence over K ∼= C2
3 . Since

φ(W ) has length 5 = D(C2
3 ), it follows that φ(W ) = e2

2

∏3
j=1(bje2 + e3) for

independent (e2, e3) and bj ∈ [0, 2] with
∑3
j=1 bj ≡ 1 (mod 3) (cf., e.g., [19,

Example 5.8.8]). Since σ(W ) = e1, the claim follows. �

Proof of Proposition 5.1. Let G = C3 ⊕ C3 ⊕ C3. Recall that D(G) = 7
(see the comments by (2.1)). Thus it suffices to prove k(G) ≤ 4, since then
combining with Proposition 4.1.3 and Corollary 4.1 yields

4 ≤ k(G) = c(G) ≤ 4 .

Suppose by contradiction that k(G) ≥ 5. Consider a counter example
U, V ∈ A(G) with max L(UV ) > 4 and L(UV )∩[3, 4] = ∅ such that |U |+|V |
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is maximal. Since max L(UV ) ≥ 5 and thus by Lemma 5.1 min{|U |, |V |} ≥
5, and since max{|U |, |V |} ≤ D(G) = 7, we know |U | + |V | ∈ [10, 14]. Let
w = W1 · . . . ·Wt ∈ Z(UV ), where t ≥ 5 and Wi ∈ A(G) for i ∈ [1, t], be a
factorization of UV of length at least 5.

Note that, for some j ∈ [1, t], say j = 1, we must have W1 = (−g)g,
where g ∈ G•, since otherwise

|w| ≤
⌊ |UV |

3

⌋
≤
⌊14

3

⌋
= 4 ,

a contradiction. Since g(−g) divides neither U nor V , we may assume that
U = gU ′ and V = (−g)V ′, where U ′, V ′ ∈ F(G) are both zero-sum free.

CASE 1: We have g /∈ Σ(U ′) or −g /∈ Σ(V ′), say g /∈ Σ(U ′).
Then, since −2g = g and U = gU ′ ∈ A(G), we have (−g)2U ′ ∈ A(G).

Since W1 = (−g)g, then letting W ′1 = g−1W1(−g)2 = (−g)3 and W ′i = Wi
for i ∈ [2, t], we see that w′ = W ′1 · . . . ·W

′
t ∈ Z(G) is a factorization of

((−g)2U ′)V with |w′| = t = |w| ≥ 5. As a consequence, max L((−g)2U ′V ) ≥
5, whence the maximality of |U |+ |V | ensures that ((−g)2U ′)V has a fac-
torization

z = A1 · . . . ·Ar ∈ Z
(
(−g)2U ′V

)

with r ∈ [3, 4], where Ai ∈ A(G) for i ∈ [1, r]. Note, since −g|V , that
v−g((−g)2U ′V ) ≥ 3.

If (−g)2|Aj for some j ∈ [1, r], then, letting A′j = Aj(−g)−2g and A′i = Ai
for i 6= j, gives a factorization z′ = A′1 · . . . ·A

′
r ∈ Z(G) of UV with r ∈ [3, 4]

and A′i ∈ A(G) for i ∈ [1, r], contradicting that L(UV )∩[3, 4] = ∅. Therefore
we may assume

(5.9) v−g(Ai) ≤ 1 for all i ∈ [1, r].

As a result, since v−g((−g)2U ′V ) ≥ 3, we see that at least three Ai contain
−g, say w.l.o.g. A1, A2 and A3 with

(5.10) |A1| ≤ |A2| ≤ |A3|.

For i, j ∈ [1, 3] distinct, we set

Bi,j = (−g)−2AiAjg ∈ B(G) .

Note that there is no 2-term zero-sum subsequence of Bi,j which contains
g as otherwise v−g(AiAj) ≥ 3, contradicting (5.9). Consequently,

(5.11) max L(Bi,j) ≤ 1 +
⌊ |Bi,j | − 3

2

⌋
.

CASE 1.1: r = 3.
Suppose |Ai| + |Aj | = 9 for distinct i, j ∈ [1, 3]. Then |Bi,j | = 8 >

D(G), whence min L(Bi,j) ≥ 2, while (5.11) implies max L(Bi,j) ≤ 3; thus
letting zB ∈ Z(Bi,j) be any factorization of Bi,j , we see that z′ = zBAk ∈
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Z(UV ), where {i, j, k} = {1, 2, 3}, is a factorization of UV with |z| ∈ [3, 4],
contradicting L(UV ) ∩ [3, 4] = ∅. So we may instead assume

(5.12) |Ai|+ |Aj | 6= 9 for all distinct i, j ∈ [1, 3].

Suppose −g ∈ Σ((−g)−1Ai) for some i ∈ [1, 3]. Then, since σ((−g)−1Ai)
= g = −2g, we can write

Ai = (−g)S1S2

with S1, S2 ∈ F(G) and σ(S1) = σ(S2) = −g. Let {i, j, k} = {1, 2, 3} and
{x, y} = {1, 2}. Lemma 5.1 implies gSx ∈ A(G) and

(5.13) (−g)−1AjSy ∈ B(G)

with max L
(
(−g)−1AjSy

)
≤ min{|(−g)−1Aj |, |Sy|}. Noting that

(
(−g)−1AjSy

)(
gSx
)
Ak = UV

and letting zB ∈ Z
(
(−g)−1AjSy)

)
be any factorization of (−g)−1AjSy,

we see that the factorization z′ = zB
(
gSx
)
Ak ∈ Z(UV ) will contradict

L(UV ) ∩ [3, 4] = ∅ unless |zB| ≥ 3. Thus (5.13) implies |Sy| ≥ 3 and
|(−g)−1Aj | ≥ 3. Since y ∈ {1, 2} and j ∈ {1, 2, 3} \ {i} are arbitrary,
this implies first that |S1|, |S2| ≥ 3, whence |Ai| ≥ 7, and second that
|Aj |, |Ak| ≥ 4 for j, k 6= i. Combining these estimates, we find that 15 ≤
|A1| + |A2| + |A3| = |((−g)2U ′)V | ≤ 2D(G) = 14, a contradiction. So we
conclude that

(5.14) − g /∈ Σ((−g)−1Ai) for all i ∈ [1, 3] .

Suppose |A2| ≤ 4. Let zB ∈ Z(B1,3) be a factorization of B1,3 =(
(−g)−1A1

)(
(−g)−1A3g

)
. In view of (5.14), we see that (−g)−1A3g is zero-

sum free, whence Lemma 5.1 and (5.10) imply |zB| ≤ |(−g)−1A1| < |A2| ≤
4. Thus z′ = zBA2 ∈ Z(UV ) is a factorization of UV with |z′| ≤ 4, whence
L(UV ) ∩ [3, 4] = ∅ implies |z′| = 2 and |zB| = 1, that is, B1,3 ∈ A(G) is
an atom. Consequently, g−1B1,3 = (−g)−2A1A3 is zero-sum free. Hence,
noting that

UV ((−g)g)−1 =
(
(−g)−2A1A3

)(
(−g)−1A2

)
.

we see that Lemma 5.1 implies

max L
(
UV ((−g)g)−1)

)
≤ |(−g)−1A2| < |A2| ≤ 4 .

which contradicts that W
(
(−g)g

)−1
= W2 · . . . ·Wt ∈ Z

(
UV ((−g)g)−1)

)
is

a factorization of length t − 1 = |W | − 1 ≥ 4. So we can instead assume
|A2| ≥ 5.

Observe that

(5.15) supp((−g)−1Ai) ∩ 〈g〉 = ∅ for i ∈ [1, 3],
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since otherwise v−g(Ai) ≥ 2 or vg(UV ) ≥ 2—the first contradicts (5.9),
while the the second contradicts the supposition of CASE 1 that g /∈ Σ(U ′)
as g ∤ V . From (5.15), we see that |A1| ≥ 3, which, combined with 5 ≤
|A2| ≤ |A3| and |A1| + |A2| + |A3| = |((−g)2U ′)V | ≤ 2D(G) = 14, implies
that

(|A1|, |A2|, |A3|) ∈ {(3, 5, 5), (3, 5, 6), (4, 5, 5)}.

Thus, in view of (5.12), we conclude that |A1| = 3 and |A2| = |A3| = 5.
Since |B1,j | = 7, for j ∈ {2, 3}, it follows from (5.11) that

(5.16) B1,j ∈ A(G) for j ∈ {2, 3}

is an atom as otherwise z′ = zBAk ∈ Z(UV ), where zB ∈ Z(B1,j) and
{1, j, k} = {1, 2, 3}, will contradict L(UV ) ∩ [3, 4] = ∅. Since |B2,3| = 9 >
D(G), it follows from (5.11) that z′ = zBA1 ∈ Z(UV ), for some zB ∈
Z(B2,3), will contradict L(UV ) ∩ [3, 4] = ∅ unless all zB ∈ Z(B2,3) have
|zB| = 4. Consequently, since there is no 2-term zero-sum containing g
in B2,3 = (−g)−2A2A3g (recall the argument used to prove (5.11)), we
conclude that A2A3 = (−g)Xa(−g)(−X)b for some X = x1x2x3 ∈ F(G)
and a, b ∈ G with

a+ b = −g.

Thus, in view of (5.14), we find that w.l.o.g.

A2 = (−g)Xa and A3 = (−g)(−X)b.

If a = b, then 2a = a + b = −g implies a = g, in contradiction to (5.15).
Therefore a 6= b.

Let

A1 = (−g)Y with Y = y1y2 ∈ F(G).

In view of (5.16), (5.15) and Lemma 5.4, we see that there are terms a′ ∈
supp(Y Xa) = supp(B1,2g

−1) and b′ ∈ supp(Y (−X)b) = supp(B1,3g
−1)

with

va′(Y Xa) ≥ 2 and vb′(Y (−X)b) ≥ 2.

If y1 = y2, then 2y1 = y1 +y2 = g (in view of A1 = (−g)y1y2), in contradic-
tion to (5.15); if xi = xj for i and j distinct, then x2

i (−xi)
2|X(−X), so that

x2
i (−xi)

2|UV is subsequence of 4 terms all from 〈xi〉, whence Lemma 5.2
implies UV has a factorization of length 3, contradicting L(UV )∩ [3, 4] = ∅;
and if yi = xj or yi = −xj for some i ∈ [1, 2] and j ∈ [1, 3], then the 2-term
zero-sum yi(−xj) or yixi divides B1,3 or B1,2, respectively, contradicting
(5.16). Consequently, va′(Y Xa) ≥ 2 and vb′(Y (−X)b) ≥ 2 force a′ = a and
b′ = b. Moreover, since a 6= b, we have ab|XY (−X). Since a + b = −g, we
have a2b2(−g) ∈ B(G). However, noting that there is no 2-term zero-sum
subsequence of the length 5 zero-sum sequence a2b2(−g), we actually have
C = a2b2(−g) ∈ A(G). Note that UV = g(−g)Y X(−X)ab and C|UV (in
view of ab|XY (−X)). Let zB ∈ Z(UV C−1). Since |UV C−1| = |A1|+ |A2|+
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|A3| − 1 − |C| = 7, we have |zB| ≤ 3, while clearly UV C−1 contains some
2-term zero-sum subsequence from X(−X), so that |zB| ≥ 2. As a result,
the factorization z′ = zBC ∈ Z(UV ) contradicts that L(UV ) ∩ [3, 4] = ∅,
completing the subcase.
CASE 1.2: r = 4.

If −g ∈ supp(A4) as well, then we may w.l.o.g. assume |A1| ≤ |A2| ≤
|A3| ≤ |A4|, in which case |(−g)2U ′V | = |A1|+|A2|+|A3|+|A4| ≤ 2D(G) =
14 implies |B1,2| ≤ 5. Thus z′ = zBA3A4 ∈ Z(UV ), where zB ∈ Z(B1,2),
contradicts L(UV ) ∩ [3, 4] = ∅ in view of (5.11). Therefore we may assume
−g /∈ supp(A4). Consequently, in view of (5.9) and the definition of the Ai,
we find that −g /∈ supp(V ′).

Since |A4| ≥ 2, we see that |(−g)2U ′V | = |A1| + |A2| + |A3| + |A4| ≤
2D(G) = 14 implies |B1,2| ≤ 7, with equality only possible if |(−g)2U ′V | =
14. However, if |B1,2| ≤ 6, then z′ = zBA3A4 ∈ Z(UV ), where zB ∈ Z(B1,2),
contradicts L(UV ) ∩ [3, 4] = ∅ in view of (5.11). Therefore we indeed see
that |B1,2| = 7 and |(−g)2U ′V | = 14. As a result, since (−g)2U ′ ∈ A(G)
implies |U |+ 1 = |(−g)2U ′| ≤ D(G) = 7, and since |V | ≤ D(G) = 7 as well,
it follows that |V | = 7 and |U | = 6.

Since |V | = 7 = D(G), it follows that −g ∈ Σ(V ′) = G•. Thus, since
σ(V ′) = g = 2(−g), we see that we can write V ′ = S1S2 with S1, S2 ∈ F(G)
and σ(S1) = σ(S2) = −g, and w.l.o.g. assume |S1| ≤ |S2|. Then, since
|V ′| = 6 and −g /∈ supp(V ′), we infer that 2 ≤ |S1| ≤ 3.

But now consider g−1U(−g)S1 ∈ B(G) and ((−g)S1)−1V g ∈ B(G). By
Lemma 5.1, (

((−g)S1)−1V
)
g ∈ A(G)

is an atom. Let

zB ∈ Z
(
g−1U(−g)S1

)
.

Since |g−1U(−g)S1| = |U |+ |S1| ≥ |U |+ 2 = 8 > D(G), we have |zB| ≥ 2.
Since g /∈ Σ(U ′) = Σ(g−1U) by the supposition of CASE 1, Lemma 5.1
implies |zB| < |(−g)S1| ≤ 4. Thus z′ =

(
((−g)S1)−1V

)
zB ∈ Z(UV ) has

|z′| ∈ [3, 4], contradicting L(UV ) ∩ [3, 4] = ∅ and completing CASE 1.

CASE 2: We have g ∈ Σ(U ′) and −g ∈ Σ(V ′).
Then, since σ(U ′) = −g = 2g and σ(V ′) = g = 2(−g), we can write

U ′ = S1S2 and V ′ = T1T2 with S1, S2, T1, T2 ∈ F(G), σ(S1) = σ(S2) = g
and σ(T1) = σ(T2) = −g. Let i ∈ {1, 2} and j ∈ {1, 2}. Note that

gT3−j ∈ A(G) and (−g)S3−i ∈ A(G)

by Lemma 5.1. Also, SiTj ∈ B(G) and, for zB ∈ Z(SiTj), Lemma 5.1 implies

(5.17) |zB| ≤ min{|Si|, |Tj |} .

Now z′ = (gT3−j)
(
(−g)S3−i

)
zB ∈ Z(UV ) will contradict L(UV )∩ [3, 4] = ∅

unless |zB| ≥ 3, in which case (5.17) implies |Si| ≥ 3 and |Tj | ≥ 3. Since i
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and j were arbitrary, this implies |Si|, |Tj | ≥ 3 for all i, j ∈ {1, 2}. Hence,
since |U | = 1 + |S1| + |S2| ≤ D(G) = 7, we see that |S1| = |S2| = 3,
and likewise |T1| = |T2| = 3. Thus we must have |zB| = 3 for all choices of
i, j ∈ {1, 2}, which is only possible if Si = −Tj for all choices of i, j ∈ {1, 2}.
However, this implies U = −V and, moreover, that v−x(Ti) ≥ 1 for i ∈ [1, 2]
and x ∈ supp(S1S2). Consequently, letting x ∈ supp(S1S2), we see that
v−x(V ) ≥ 2, whence U = −V implies vx(U) ≥ 2. Thus x2(−x)2 |UV is a
subsequence of 4 terms all from 〈x〉, whence Lemma 5.2 implies UV has a
factorization of length 3, contradicting L(UV ) ∩ [3, 4] = ∅ and completing
CASE 2 and the proof. �
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