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1. Introduction

Much attention has been devoted to the Ricci tensor by mathema-
ticians and physicists, because of its importance in geometry and general
relativity. A fundamental problem in geometry is to determine to what
extent the curvature determines the geometry of a manifold. In the pre-
sent context, one can ask which symmetric tensors are the Ricci tensors
of (Lorentz) metrics. We give examples in section 3 that indicate that
even the local version of this question is difficult to resolve. In physics,
the Einstein equations for the gravitational field in general relativity
involve the Ricci tensor in an essential way.
Both of these problems can be cast as existence problems involving

quasi-linear systems of partial differential equations. If Ricci is the

operator (system of second-order quasi-linear partial differential

operators) that maps metrics to their Ricci curvature tensors (a precise
definition is given in section 2), then the problems can be formulated as
follows. For the geometry problem, we let the tensor R,,,, be given, and
ask when there exists a Lorentz metric 9 (signature -, +, +, +) that
satisfies the equation

In particular, we will study the circumstances under which the Cauchy

* Research supported by NSF Postdoctoral Fellowship SPI-8009161 while the author
was at the Courant Institute.
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problem for this equation (in which values of the unknown metric g and
its first derivatives are given on a hypersurface) can be solved.
The formulation of the physical problem is somewhat more compli-

cated. In this problem, we are given the (stress-energy) tensor T03B103B2 as a
function of physical quantities called the matter fields, which in turn are

required to satisfy certain other partial differential equations. We then
ask whether the Cauchy problem for the system

coupled with the equations of the matter fields, has a solution. The
matter equations are required to satisfy certain conditions which are
enumerated in section 5.

Local existence in time for the simplest case of both problems, namely
R03B103B2 ~ T03B103B2 ~ 0 was first proved by Choquet-Bruhat in [1]. Her proof is
based upon the observation of Lanczos [16] that the formula for the
Ricci tensor simplifies considerably in harmonic coordinates (see also
[6] for a discussion of harmonic coordinates and the Ricci tensor).
Later, Choquet-Bruhat, Lichnerowicz and others proved the local

Cauchy theorem for many cases of the physics equation (1.2) where T03B103B2
is specified in terms of well-known physical fields (see [15], our section 5
also contains an example), and eventually the general theorem that we
prove in section 5 was obtained (see [10] or [8]). All these proofs used
harmonic coordinates in an essential way. Our proof of Theorem 5.5 has
the feature that it is valid in any coordinate system (gauge). This may
prove to be advantageous for physicists, since a preferred gauge is often
determined by a physical problem, and such a gauge need not be
harmonic.

In our discussion we will show that, although the physics and geome-
try problems discussed above appear quite similar, they differ signifi-
cantly in several aspects. It may be surprising to note that the existence
question for equation (1.1) is much more subtle that that for (1.2). The
reason for this is that the physical problem is essentially homogeneous
in nature while (1.1) is truly inhomogeneous. As an example of contrast-
ing results, we note that the solution of the Cauchy problem for (1.1) is
generically unique (Proposition 3.10), while that for (1.2) is only unique
up to diffeomorphism (change of gauge). We also hope to clear up some
misconceptions about equation (1.1) that are often implied and some-
times even stated outright in the literature.
For the geometry problem, the main theorem we prove here,

Theorem 3.6, concerns the local (in "time") existence of Lorentz metrics
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with prescribed smooth, nonsingular Ricci tensors. The proof of this
theorem is somewhat like that of Choquet-Bruhat for the homogeneous
case, in that the basic degeneracy of the Ricci operator is overcome by
controlling the action of the group of diffeomorphisms on it. The analo-
gous result for Riemannian metrics with locally prescribed nonsingular
Ricci tensors was presented in [4] and [5].
A few words about notation. Although all of our results are valid in

Lorentz space of any dimension (~ 3, for the two-dimensional case the
results of [4] can be adapted), we will usually work in four-dimensional
"space-time". Occasionally (as in (1.2)), we will give the general form of
an expression that is dimension-dependent, and n will always denote the
dimension. Otherwise, most of our notation is standard tensor notation,
and the summation convention applies throughout. Greek indices run
from 0 to 3 (or n - 1), and Latin indices from 1 to 3. Often, we will

identify the coordinate x° as t.

It is a pleasure to thank Peter Sarnak and Sergiu Klainerman for
useful discussions.

2. Geometric preliminaries

Our first task is to specify some of the operators and equations with
which we will be dealing. As is well-known, the operator that maps
metrics to their Ricci tensors is given by

where

are the Christoffel (connection) symbols of the metric g. Even more

explicitly,

where H is a rational function of g and its first derivatives. As a dif-
ferential operator, Ricc is not very well behaved. In [14] it is shown that
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the linearization of the Ricci operator about a particular metric g is:

where Li L is the Lichnerowicz "Laplacian":

. (the covariant derivatives and curvature tensors that appear are those of
g). Note that d L is a hyperbolic operator if 9 is a Lorentz metric. The
divergence operator div : S2T* ~ T* and its L2 adjoint div* are defined
as follows for h E S2T* and v E T*:

Finally, G is the invertible self-adjoint algebraic operator defined by

and the trace ( = g03C303C4h03C303C4) is taken with respect to g. Note that G (Ricc(g))
is the stress-energy tensor of the metric g, and that the expression on the
right-hand side of (1.2) is simply G-1(T).
From (2.4) (or, more easily, from (2.3)) it can be computed that the

principal symbol of Ricc is

and we see that if h03B103B2 = 03BE03B103BE03B2, then (JRicc(h) = 0 with h ~ 0. Thus, the
Ricci operator is quite degenerate, since every direction is characteristic
for it at every point. This degeneracy is related to the invariance of the
Ricci operator under the action of the group of diffeomorphisms, i.e.,
that

for any diffeomorphism ~. As shown in [12], this invariance manifests
itself in the Bianchi identity, which states that if Ricc(g) = R, then

For physicists, (2.8) is good news; it provides the "conservation of mass-
energy" law and renders (1.2) underdetermined in a way that will be
explained more fully in section 5. For geometers, (2.8) places a necessary
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condition on the tensor Rap in equation (1.1): namely, that there must
exist metrics with respect to which - div G(R) = 0 in order that a solu-
tion of (1.1) can be found. We will see in Example 3.4 that this condition
is truly a restriction upon the set of Rap’s that we can consider. Equation
(1.1) becomes in this way an overdetermined system.
Looking at (2.8) as a first-order differential expression in 9 (the first

derivatives of g enter in the Christoffel symbols associated with the
covariant derivatives) provides us with a way of rendering both of the
equations (1.1) and (1.2) into hyperbolic form. So that we are not preju-
diced by the association of the letter R with the Ricci tensor, we let M
be any fixed symmetric tensor, i.e., M E S2T*. Write

We lineairze this operator and get

where

If M is an invertible map from T to T*, so that its inverse N E S2T that
verifies NaP Mpy = 03B403B103B3 is well-defined, then we see that the principal
(highest-order) part of the linearization of the operator

is given by

Comparing (2.3) and (2.11), we see that the operator

is hyperbolic (as long as M is invertible), since the principal part of its
linearization is simply -1 2g03C303C4h03B103B2;03C303C4, i.e., the d’Alembertian operator. We
also note that the system (2.12) is uncoupled in its highest-order terms.
Needless to say, a significant step in our existence proofs for (1.1) and
(1.2) will be to replace their left-hand sides by (2.12), with M chosen
appropriately.
We will have several occasions to use the following lemma.



332

LEMMA 2.13: Let g be a Lorentz metric. Then the operator div G div*
is strictly hyperbolic.

PROOF: A simple computation using (2.5), (2.6) and the Ricci identities
shows that, for any covector v,

where S is the Ricci tensor of the metric g. Thus, the highest-order part
of this operator is half of the usual d’Alembertian. Q.e.d.

We now turn to the setup for the Cauchy problem. Since we are given
data on a spacelike hypersurface (i.e., on a surface such that g03B103B203BE03B103BE03B2 &#x3E; 0

for vectors 03BE tangent to the surface), we assume that, via a change of
coordinates, the surface is (an open subset of) the hyperplane t = 0. To
make the hyperplane t = 0 spacelike, we require that the initial data

g03B103B2(0, x’) satisfy the following two hypotheses:

(i) the 3-by-3 matrix gij(0, xi) is (uniformly) positive definite (214)
(ii) g00(0, xi)  0.

As is well-known to physicists, there are four compatibility conditions
that the initial data g03B103B2(0, Xi), 8gaP/8t (0, Xi) must satisfy. This is because
of the following:

PROPOSITION 2.15: The values of G (Ricc(g»’ (03BB = 0,..., 3) on the sur-
face t = 0 do not depend upon the second t-derivatives of any gap.

PROOF: We just use (2.3) and (2.6):

G(Ricc(g))003BB = g003B1[Ricc(g)03B103BB - 1 2g03B203B3g03B103BBRicc(g)03B203B3]

, terms that do not involve 02/ at2.

= terms that do not involve a2 / at2.
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The upshot of the proposition is that we must require our initial data
to satisfy

or

depending on the problem at hand.
We conclude the section with a technical lemma about the restrictions

of 1-forms to the surface t = 0 that we will use repeatedly.

LEMMA 2.17: Suppose that the hypotheses (2.14) are satisfied, and that
v03B1(0, Xi) = 0 and (G(div*(v)))003BB(0, Xi) = 0. Then ~v03B1/~t(0, Xi) = 0.

PROOF: We have

Since v = 0 on the hypersurface t = 0, covariant derivatives of v reduce
to ordinary derivatives there, and ~v03B1/~xi(0, Xi) = 0. Thus

follows immediately for i = 1, 2, 3, and

follows from that. Since g°°  0, the proof is complete. Q.e.d.

3. Lorentz metrics with prescribed Ricci curvature

We now address ourselves to the geometric problem outlined in the
introduction. Let R03BCv(xa) be a given symmetric tensor in a neighborhood
of (an open subdomain Q of) the hypersurface t = 0. Also, let aJLv(xi) and
b03BCv(xi) be symmetric n-by-n tensors in the n - 1 variables xi, where, if
g03BCv(0, xi) = a03BCv(xi), then conditions (2.14) are satisfied. We would like to
find a Lorentz metric gafJ defined on 03A9 x [-03C4,03C4] for some i so that
Ricc(g) = R on 03A9 x [ - i, i], g03BCv(0,xi) = a03BCv(xi) and ~g03BCv/~t(0,xi)
= bJLv(xi).
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As we discussed in section 2, the Cauchy data a03B103B2, b03B103B2 must satisfy
certain compatibility conditions imposed by the Ricci equation and the
Bianchi identity. First, there are the n conditions

of Proposition 2.15, where g03BCv(x03B1) = aJlv(xi) + tb03BCv(xi). Also, the Bianchi
identity (2.8) places n more conditions on the data, because (2.8) depends
only upon the first derivatives of g, which are determined completely by
the Cauchy data on the initial surface. Thus, a,.v and b03BCv must also
satisfy

where the divergence and G operators are those of the metric g03BCv(x03B1).
Now we must face the real restrictions imposed by the Bianchi iden-

tity. In section 2, we mentioned that this identity is a real obstruction to
solving the equation Ricc(g) = R. That this is so is indicated by the
following examples:

Example 3.3. Let

There is no Cauchy data for R on the surface t = 0 that satisfies con-
ditions (3.1) and (3.2), since Bianchi identity (2.8) could not be satisfied
there. In fact, on the surface t = 0, the t-component of (3.2) becomes
g00 = 0, in which case the surface t = 0 could not be spacelike.

Example 3.4. Let

There is no Cauchy data for R on any surface containing the origin,
because (2.8) implies

which is impossible for any metric.

The preceding examples were "borrowed" from [4], and more detail
can be found there.



335

Example 3.5. Let

If we set a(xi) = -dt ~ dt + dxl Q dxl + dx2 0 dx2 + dx3 Q dx3 and
b(x’) ~ 0, then the compatibility conditions (3.1) and (3.2) are all satisfied
for t = 0. However, there is no solution of Ricc(g) = R with this Cauchy

data since a (div G(R)) = 0 for t = 0 implies °° = 0 there, a

contradiction.

The tensors R in the above examples shared one important feature in
common: Each was singular on the surface t = 0. We now turn to the

basic existence result of this section, it being for nonsingular "Ricci
candidates" R.

THEOREM 3.6: Let Q be a bounded subdomain of the hyperplane t = 0,
and suppose that the Ck tensor (k ~ 4) R03B103B2 is given on ( - e, e) x Q, that
R-1 exists there, and that the initial data g03B103B2(0, Xi) = aaP(xi) E Ck(03A9) and
ogap/ot (0, Xi) = bap(xi) E Ck - l(Q) satisfy the hyperbolicity conditions (2.14)
and the compatibility conditions (3.1) and (3.2). Then for some 0  e’ ~ e,
and Q’ ~ Q, there exists a Ck metric g that satisfies Ricc(g) = R on
( - e’, E’) x Q and agrees with the initial data on {0} x Q’.

PROOF: As intimated in section 2, we are going to take advantage of
equation (2.12), and use M = R. That is, we deal with the equation

Because (3.7) is strictly hyperbolic, we know from standard quasilinear
hyperbolic equation theory [13] that a solution of the Cauchy problem
for it will exist locally in time. Let g be that solution, with the Cauchy
data given in the statement of the theorem. Then g will satisfy all the
claims of the theorem if we can show that the 1-form R - ldiv G(R) is
identically zero on ( - E’, 03B5’) x (1’. Let u = R-1 div G(R). Then, taking
div G(.) of both sides of (3.7) and using the Bianchi identity (2.8), we see
that

Thus, u is the (unique!) solution of the homogeneous linear, strict-

ly hyperbolic system (3.8). Furthermore, u = 0 on the initial surface

Q, since the Cauchy data satisfies condition (3.2). If we can show that
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~u ~t = 0 on Q, then the uniqueness theorem for hyperbolic equations will
guarantee that u ~ 0 and complete the proof. To do this, we use (3.1),
which implies that

Thus, u satisfies the hypotheses of Lemma 2.17 on 03A9, and therefore

au = 0 there. Q.e.d.

REMARK 3.9: In [7], Fischer and Marsden use their theory of

quasilinear symmetric hyperbolic systems to find asymptotically flat H’
solutions of Ricc(g) = 0. Given some metric go with nonsingular Ricci
tensor Ro, we can use their theory to find an "asymptotically go" metric
for an "asymptotically Ro" Ricci candidate, given appropriate,
asymptotically go Cauchy data.

We turn now to the question of uniqueness of solutions to the

Cauchy problem for equation (1.1). From the Bianchi identity (2.8), we
see that, if R -1 exists, then any solution of Ricc(g) = R is automatically
a solution of equation (3.7). Since (3.7) is strictly hyperbolic, it follows
from the standard uniqueness theory for hyperbolic equations that there
is only one solution of the Cauchy problem for (3.7). This proves the

following:

PROPOSITION 3.10: If R-1 exists, then the solution of the Cauchy prob-
lem for Ricc(g) = R is unique.

Proposition 3.10 is somewhat striking in comparison with the

well-known uniqueness result for the homogeneous case. There, it is

known that, given two solutions gl and g2 of Ricc(g) = 0 with the same
Cauchy data, there exists a diffeomorphism 0 such that g2 = ~*(g1) (We
will prove a slight generalization of this result in section 4 below). We
will call this kind of uniqueness "geometric uniqueness" and that of
Proposition 3.10 "functional uniqueness". It is clear that the latter im-
plies the former.
To see where our stronger uniqueness comes from, we sketch the

standard [1] proof for the homogeneous case. There, since only com-
patibility conditions (3.1) need to be satisfied, four conditions are im-
posed upon the initial data, namely, that on 03A9 we have 039303B1 ~ g03C303C4039303B103C303C4 =
= 0 (i.e., harmonic coordinates are used). Then, instead of solving
Ricc(g) = 0, the hyperbolic equation Ricc’(g) = 0 is solved. The operator
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Ricch is the expression for the Ricci tensor in terms pf harmonic coor-
dinates (see [6] for a proof that RiCCh is indeed a hyperbolic operator). It
is then shown that the harmonic condition ra = 0 is propogated off the
initial surface (much as in our proof that div G(R) - 0) to complete the
proof.
The loss of functional uniqueness in the homogeneous case comes

from the facts that

(i) The zero tensor remains zero under the action of any dif-

feomorphism, and
(ii) Ricc(g) = 0 does not imply Ricch(g) = 0, nor vice versa in general,

since the latter equation is not tensorial.

Fact (i) shows that, if g solve some Cauchy problem for Ricc(g) = 0, then
so does ~*(g) for any diffeomorphism 0 that preserves 03A9 and the

Cauchy data. Fact (ii) shows why our uniqueness proof could not work
in the homogeneous case. An interesting corollary of these observations
is the following:

COROLLARY 3.11: Let Ricc(g) = R with R invertible. If there is a dif-
feomorphism ~ that preserves some spacelike hypersurface S and Cauchy
data on S and such that ~*(R) = R, then ~*(g) = g.

REMARK 3.12: We remark that Theorem 3.6 cannot be proved using
harmonic coordinates, because we cannot guarantee that the condition
0393a = 0 is necessarily propogated off the initial hypersurface. We demon-
strate this via the following example. Let ds2 be the standard

Riemannian Euclidean metric on R3, and set

Then

Furthermore, 03931 = 03932 = 03933 - 0, but 03930 = (3/’)/(2/). Thus, if f(t) =
= 1 + t 2 say, we have that Ricc(g) is nonsingular near t = 0, so (3.13) is
the unique solution of the Cauchy problem for
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with Furthermore, the coor-

dinates are harmonic on the hypersurface t = 0, but nowhere else. Thus,
Example 3.5, Proposition 3.10 and this result show that the geometry
problem for Ricc(g) = R exhibits many features that are different from
those of the corresponding physics problem.

4. Existence of Lorentz-Einstein metrics

This section provides a transition from the geometry material of the
previous section to the physics of the next. An essential modification of
the proof of Theorem 3.6 will be motivated here in a simple situation so
that we can use it later.

As is well-known, an Einstein metric g is one for which

for some constant c. We fix c and examine the Cauchy problem for
equation (4.1), where as before we must assume that our Cauchy data

satisfies certain compatibility conditions. In fact, since G(g) = 2 - n 2 g,
we have the following analog of condition (3.1):

on t = 0. The Bianchi identity does not constrain the initial data

because - div G(g) = 0 for any metric g.
To solve (4.1), assuming (4.2) is satisfied, we would like to use the

same approach as in section 3. However, we cannot use cg in place of R
on the left side of equation (3.7), since the "correction terms" would then
vanish a priori, leaving us with the original nonhyperbolic Ricci

operator. Rather, we will introduce a "surrogate" Ricci tensor M, that is,
any invertible tensor M that satisfies

where the operators in (4.3) are those of the "initial" metric g03BCv = a03BCv(xi)
+ tb03BCv(xi), as discussed in section 3. The simplest way to pick such an M
is to set
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for any L03BCv. It is then easily verified that this choice of M,, satisfies (4.3).
We will have more to say about specific choices of M later. Once we
have chosen M, we let g be the solution of the hyperbolic equation

on ( - E’, a’) x Q’ (notation of section 3). Then, just as in the proof of
Theorem 3.6, the covector u = M -1 div G(M) satisfies

with u - 0 and ~u03B1 ~t = 0 for t = 0. This proves

THEOREM 4.6: Let Q be a bounded subdomain of t = 0, and suppose
that the initial data g03B103B2(0,xi) = a03B103B2(xi) ~ Ck(03A9) and ~g03B103B2/~t(0,xi) =
= bap(Xi) E Ck-1(03A9) satisfy the hyperbolicity conditions (2.14) and the com-
patibility conditions (4.2) for some constant c, and k ~ 4. Then for some
e’ &#x3E; 0 and Q’ g Q, there exists a Ck metric g that satisfies Ricc(g) = cg on
(-03B5’,03B5’) x Q’ and agrees with the initial data on {0} x Q’.

As before, we can state an Hs version of this result. However, there is
no functional uniqueness for Einstein metrics as we had in Proposition
3.10. One would expect this since we had a lot of freedom to choose M
in the proof of Theorem 4.6. In fact, if g solves the Cauchy problem for
Ricc(g) = cg, and 0 is any diffeomorphism that leaves t = 0 and the
Cauchy data fixed, then ~*(g) is another solution of the problem. We
can, however, state the following.

PROPOSITION 4.7: The solution of the Cauchy problem for Ricc(g) = cg
is geometricall y unique.

PROOF: This proof is based on the standard proof of geometric uni-
queness in the homogeneous case (see [1] or [7]), and will carry over
essentially without change to the physics problem discussed in section 5.

Let gl and g2 be two solutions of the same Cauchy problem. Then as
is well-known (for a proof see [7]), unique diffeomorphisms ~1 and ~2
can be found that preserve the surface t = 0 and for which the new

coordinates for gl = ~*1(g1) and e2 = ~*2(g2) are harmonic. That is, new
coordinates x03B11 and x2 can be found with
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on t = 0, and

on t = 0, with Xi harmonic with respect to gl and X2 harmonic with

respect to 92. The initial data for the values of g03B103B2 and for ôgy/ôt re-
mains unchanged when passing to barred coordinates, and from the
transformation rule for Christoffel symbols and the fact that fa = 0 (the
harmonic condition), we have

on Q. Consequently, the Cauchy data in the new coordinates is

completely determined by the original Cauchy data and by conditions

(4.8) and (4.9). But then gl and g2 are both solutions of the hyperbolic
problem Ricch(g) = cg with the same Cauchy data, thus 91 = g2. If

03C8 = ~-12 · ~1, then 03C8*(g1) = 92. Q.e.d.

In the sense of this proposition, Theorem 4.6 is a more-or-less direct
generalization of the Choquet-Bruhat homogeneous theory. Also, the
geometric uniqueness of Lorentz-Einstein metrics in the natural analog
of the analytic continuation theorem for Riemannian Einstein metrics
proved in [6].
We remark that all the global results that apply to the homogeneous

Ricci equation also apply to (4.1) (cf. [3]). For example, using a Zorn’s
Lemma argument, it can be shown that every set of Cauchy data satisfy-
ing (4.2) has a maximal development, and that such a maximal develop-
ment is maximal for every spacelike hypersurface within it.

5. The Cauchy problem in general relativity

We give a very brief outline of the postulates at the foundation of
general relativity, both in order to motivate our existence theorem, and
also for the sake of briefly collecting all the relevant facts in a few para-
graphs. The relevant physical background that we only sketch, can be
found in [10], [18], [9], etc... To a certain extent, we follow the treat-
ment in [10].
Two ingredients form the basis of the theory. First is the realization

that "the world might not be flat", i.e., that the geometry of space-time
might be different from that endowed by the standard Minkowskian
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metric of special relativity. Thus, the equations that define all matter
and energy fields should be written in general covariant (coordinate in-

variant) form. Second is the fact that the metric of spacetime is not flat
precisely because it is influenced by the fields present in the spacetime,
i.e., the metric satisfies certain equations into which the fields (actually,
the stress-energy tensor determined by the fields) must enter. Thus, the
metric and the fields together are required to satisfy some coupled
system of equations. So, the situation is as follows:
We have the values of a Lorentz metric g03B103B2 and its normal derivative

on an initial hypersurface in our spacetime manifold M (actually, the
geometry of M will be determined by the evolution of the initial data),
along with the various matter (energy) fields (and possibly their normal
derivatives), which we will label 03C81, 03C82, ..., Vlr. The functions 03C8 form a
section in some tensor bundle over M, and are governed by a system of
(partial differential) equations. We also have a rule for associating a
stress-energy tensor T( t/11’ VI 2, ..., 03C8r; g) to the matter fields, usually de-
rived from a variational principle (see e.g. [10, Chapter 3]). The tensors
T, g and the fields 03C8i must satisfy the following postulates:

(i) "Local causality". The hypothesis of local causality is an as-

sumption about the form of the equations satisfied by the fields.
Its content is that signals can propogate through space only at a
finite speed, at most the speed of light. Essentially, we require
that the matter fields satisfy partial differential equations that
(with respect to a fixed metric) are well-determined hyperbolic
differential equations whose characteristics lie on or within the
light cone of the metric.

(ii) "Conservation of mass-energy". The fact that mass-energy is con-
served is summarized in the equation

div(T) = 0, (5.1)

where T is the stress-energy tensor determined by the fields and
the metric. This is again an assumption about the matter

equations, namely that they should imply (5.1). Also, we must
assume (with the physicists) that the stress-energy tensor is zero
in any open set where all the fields are zero, i.e., that

T(O, 0,..., 0 ; g) = 0 for any metric g. Sometimes, the converse of
this last statement is assumed (denying the existence of fields with
"negative energy"), but this hypothesis is not required in our
study of the Cauchy problem.

(iii) "The field equations". The final hypothesis concerns the way the
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metric depends on the matter fields; in many ways this is the

centerpiece of general relativity. Einstein showed that the only
tensorial expression that involves only derivatives of g up to
second-order and is consistent with (5.1) is

where  is the "cosmological constant". In this section we will
assume that  is zero (the discussion of the next section shows
how to deal with nonzero A, and it will be clear that Theorem 5.5
is valid for any choice of A). For the purpose of proving existence
for the Cauchy problem, we rewrite (5.2) as follows:

(compare with (1.2)).

The hypotheses of relativity as given above make it plain how to set the
stage for the Cauchy problem. Let

be the matter equations, and assume that they imply (5.1). We must
solve the Cauchy problem for the coupled system (5.3), (5.4), given
appropriate initial data on some initial hypersurface we will call t = 0.

The hypersurface should be rendered spacelike by the initial values of g.
If (5.4) is second-order, we require values for 03C8i(0,xj) and oVlJot(O,xj),
and we couple (5.4) with (5.3) (and T may depend on the first derivatives
of the 03C8i as well as on the t/1i)’ If (5.4) is first-order (symmetric hyperbo-
lic), we require values only for 03C8i(0, xi), and recast (5.3) as a symmetric
first-order system (it will become hyperbolic later) as in [7]. For the
purpose of proving Theorem 5.5, we assume that (5.4) is second-order.

THEOREM 5.5 : Let 03A9 be a bounded subdomain of t = 0, and suppose
that the initial data g03B103B2(0, Xi) = aaP(xi) E Ck(03A9) and ogap/ot (0, Xi) =
= b03B103B2(xi)~Ck-1(03A9) satisfy the hyperbolicity conditions (2.14), and that the
initial data 03C8j(0,xi)~Ck(03A9) and ~03C8j/~t(0,xi)~Ck-1(03A9) are given with

k ~ 4. The initial data for g and 03C8 must satisfy the compatibility condition
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Also, suppose that the matter equations (5.4) satisfy the postulates (i) and

(ii) above. Then for some e &#x3E; 0 and S2’ g Q, there exists a Ck metric g and

fields 03C8j that satisfy the system (5.3) and (5.4) on (- e, e) x Q’ and agree
with the initial data on {0} x Q’.

PROOF: The technique is that of Theorem 4.6. We pick a "surrogate"
Ricci tensor M as in the proof of Theorem 4.6 that satisfies div G(M)
= 0 on t = 0. Once again, the tensor (4.4) will do nicely for the purpose.
We then solve the system (5.4) coupled with

This hyperbolic system has a solution by standard theory (i.e., see [11],
[ 13], or at worst, the Cauchy-Kovalevski theorem for analytic data),
and the conservation postulate (ii) guarantees that we can apply Lemma
2.17 to show that u = M -1 div G(M) is identically zero, since when we
take divG(’) of both sides of (5.6), we will get div G div*(u) = 0. Q.e.d.

REMARKS: (1) Once again, we can use standard IP theories [7] to
produce an H’ result, and the usual maximality theorems [3] hold for
the solution.

(2) By appealing to harmonic coordinates as in the proof of Proposi-
tion 4.7, it is easily shown that the solution of the Cauchy problem for

(5.3), (5.4) is geometrically unique. The fact that the solution is only
geometrically unique, and the freedom to choose M before constructing
the solution are the reasons for referring to the physics problem as
underdetermined.

(3) It is interesting to compare the formulation and proof of the
theorem above to the usual one which uses harmonic coordinates. The

above proof has the advantage of not placing extra constraints upon the
initial data, a feature that might be desirable in perturbation theory or
in a numerical analysis of the problem. In fact, the system (5.4)-(5.6) is
strictly hyperbolic so that more-or-less standard numerical methods

might be applicable. Smarr [17] has noted that harmonic coordinates
are not particularly well-suited to numerical computations.

(4) Finally, we note that, given any initial data, we can "force" it to
evolve so that the background coordinates become harmonic after an
arbitrary time i, provided that the problem has a solution for t &#x3E; i as

follows. First, we note that from equations (2.8) and (2.9), we have
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where the latter f-notation indicates from which "metric" the Christof-

fel symbols come (clearly, M can be considered a pseudo-Riemannian
metric). If we choose M so that div G(M) = 0 for t = 0 with respect to
the initial data, and also so that M is flat (as a metric) for all t &#x3E; i, then

(5.7) will imply that (g)039303B1 = 0 for t &#x3E; i, i.e., that the coordinates are har-
monic. To construct such an M, we let 03B403B103B2 be the Lorentz-Kronecker
delta, and let x(t) be any function such that 03BA(t) ~ 0 if t  1 403C4 and
K(t) -= 1 if t &#x3E; 1 203C4. Following (4.4), we set

Clearly, this M satisfies all the necessary requirements.
We conclude this section with an illustration of the Theorem applied

to the simplest example of an Einstein system system coupled to a
matter equation, namely that of a single scalar field. For other examples,
the reader may refer to [10], [15] or [2].
The matter equation that should be satisfied by our scalar field gi is

and the stress-energy tensor is

(see [10, p. 67]). Clearly, (5.8) and (5.9) satisfy postulates (i) and (ii) of

relativity, since div(T)03BB = -(g03B103B203C8;03B103B2 - m203C8/h2)03C8;03BB = 0. If we substitute

(5.9) into (5.6), and couple the resulting equation with (5.8), we have a
standard, second-order quasilinear hyperbolic system, whose principal
part is uncoupled. Local existence in time of a solution is then

guaranteed by any of the standard quasilinear hyperbolic theories.

6. Other related equations

Using the techniques of the previous sections, we can discuss

existence and uniqueness of solutions to the Cauchy problem for several
equations that are closely related to the geometric equation (1.1) or to
the physical equation (1.2). We begin with an example that is, in a sense,
halfway between. We suppose that the invertible tensor S03B103B2(t, x) and the
scalar function f(t, x) are given in a neighborhood of t = 0 and try to
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solve the Cauchy problem for

Since we will have to take div G(·) of both sides of (some variation of)
equation (6.1) in our existence proof, the following calculation will be
useful:

where d denotes exterior differentiation (This equation has as a con-
sequence the familiar fact that Ricc(g) = fg implies that f is a constant
for n ~ 3, by the Bianchi identity). The important thing about (6.2) is
that the right-hand side does not involve g, since exterior differentiation
does not depend upon the metric structure of the manifold. So, we con-
sider the auxiliary system

This system is hyperbolic, and if our initial data for g satisfies the hyper-
bolicity conditions (2.14) and the compatibility condition:

and

then the solution of the Cauchy problem for (6.3) whose existence is

guaranteed by standard theory is indeed the (functionally unique!) solu-

tion of (6.1). In fact, if u = S-1 [ div G(S) + n - 2 2 d then taking
div G(·) of both sides of (6.3) yields div G div*(u) = - Su. As usual, con-
ditions (6.4) and (6.5) allow us to use Lemma 2.17 to conclude that
u ~ 0. We have proved

THEOREM 6.6: If the initial data for g satisfy the usual conditions (2.14),
(6.4) and (6.5), then the Cauchy problem for Ricc(g) = S + fg has a unique
solution, if S is invertible.

We remark that functional uniqueness for (6.1) is proved in exactly
the same manner as Proposition 3.10.
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As a second example, we consider a truly inhomogeneous version of
the physics problem of section 5. We consider the equations of the
matter fields (5.4), and form the stress-energy tensor T from them as
usual so as to satisfy local causality and conservation of mass-energy.
However, we then assume the existence of some "external" force, that is

independent of the fields in (5.4), and that sets up a nonsingular Ricci
tensor field Rrxp. We consider the coupled system that consists of (5.4)
and

As usual, we replace (6.7) with a hyperbolic system:

The coupled system (5.4), (6.8) is a well-determined hyperbolic system. If
the initial data satisfy

then, as usual, the solution of the auxiliary hyperbolic system (5.4), (6.8)
will satisfy the original system (5.4), (6.7). Thus, we have an existence
theorem for an inhomogeneous Einstein equation. The solution is func-
tionally unique.
Our final example is related to the truly inhomogeneous Einstein

equation, i.e., we consider the system

where T03B103B2 is some given invertible tensor, and f is a scalar function of its
n + 1 variables. In the actual Einstein equation, f(t, x, tr T) = - 1 2 tr T.
We will demonstrate that the auxiliary system

is strictly hyperbolic. To do this is more complicated than for (6.3), since
now g is involved in tr T; so the correction terms contain second-order
derivatives of g other than those needed to cancel the bad terms in the
linearization of Ricc(g). Another complication is that the system (6.10),
although hyperbolic, does not appear to be symmetric hyperbolic (in the
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sense of [11], say), and we have not been able to apply any Ck or HS

theory to it. Thus, our existence theory for (6.9) is limited to the analytic
case (i.e., T, f, and the initial data must be real analytic). Of course, given
that (6.10) is hyperbolic, and that its characteristics are precisely the null
vectors of the metric g, it is straightforward to use our technique to
show that any solution of (6.10) is also a solution of (6.9), provided the
initial data satisfies

Thus, we concentrate on the proof of

PROPOSITION 6.11: The system (6.10) is strictly hyperbolic, with charac-

teristics coinciding with the null vectors of g, provided ~f/~(tr T)  1 n - 2.
PROOF: We already know from the discussion surrounding equation

(2.12) that the principal part of the linearization of Ricc(g) -
- div* T-1(div G(T)) is 2 so we need only compute the

linearization of

The terms with second derivatives of g come only from the dependence
of f upon tr T = g03C303C4T03C303C4. Since the linearization of tr T is - g03C303BCh03BC03BDg03BD03C4T03C303C4,
the principal part of the linearization of (6.12) at to, xo and the metric g
is

where S is T- B i.e., S03B103B2T03B203B3 = c5;, and A is the value of ~f~(tr T) at to, xo,
and 9. Thus, the principal symbol of (6.10) at to, Xo and g is
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From this expression, we see that 03C3(6.10)(03BE) is a linear operator of the

form cI + n - 2 2 p ~ q, where 1 is the identity mapping of S2T*,

c = - 1 2 |03BE|2, p = S03B303B103BE03B203BE03B3 + S03B303B203BE03B103BE03B3~S2T*, and q = TJLVE(S2T*)*. In

other words, 03C3(6.10)(03BE) is just a rank-one perturbation of (the constant c
= -1 2|03BE|2 times) the identity. We will use the following lemma from
linear algebra.

LEMMA 6.14: An operator of the form M = cI + kp Q q is invertible f
and onl y if c ~ 0 and k(tr p S) q) ~ -c.

PROOF: We calculate

Let t = tr p (D q, then

Thus,

provided C2 + ckt ~ 0, i.e., c ~ 0 and kt ~ - c. Q.e.d. lemma.

We relate the lemma to (6.13). There, we have an operator in the form
discussed in the lemma with c = -1 2|03BE|2, which is zero only on the light
cone of the metric (i.e., on the characteristics). The trace of p Q q is just
their inner product:

So kt ~ - c means

that is,  ~ 1 n - 2 Thus, if ll ~ 1 n - 2, the symbol (6.13) is singular

only in the characteristic (light cone) directions. This completes the
proof of the propostion. Q.e.d.
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