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1. Introduction

The Cauchy problem for the Euler equations for compressible fluids in d-space dimensions
is the initial value problem for the system of d+ 2 conservation laws



























∂tρ+ ∇ · m = 0,

∂tm + ∇ ·
(

m ⊗ m

ρ

)

+ ∇p = 0,

∂tE + ∇ ·
(

m

ρ
(E + p)

)

= 0,

(1.1)

for (x, t) ∈ R
d+1
+ ,Rd+1

+ := R
d × (0,∞), with initial data

(ρ,m, E)|t=0 = (ρ0,m0, E0)(x), x ∈ R
d, (1.2)

where (ρ0,m0, E0)(x) is a given vector function of x ∈ R
d.

System (1.1) is closed by the constitutive relations

p = p(ρ, e), E =
1

2

|m|2
ρ

+ ρe. (1.3)

In (1.1) and (1.3), τ = 1/ρ is the deformation gradient (specific volume for fluids, strain
for solids), v = (v1, · · · , vd)⊤ is the fluid velocity, with ρv = m the momentum vector, p is
the scalar pressure, and E is the total energy, with e the internal energy which is a given
function of (τ, p) or (ρ, p) defined through thermodynamical relations. The notation a ⊗ b
denotes the tensor product of the vectors a and b. The other two thermodynamic variables
are the temperature θ and the entropy S. If (ρ, S) are chosen as the independent variables,
then the constitutive relations can be written into:

(e, p, θ) = (e(ρ, S), p(ρ, S), θ(ρ, S)), (1.4)

governed by the First Law of Thermodynamics:

θdS = de+ pdτ = de − p

ρ2
dρ. (1.5)

For a polytropic gas,

p = Rρθ, e = cvθ, γ = 1 +
R

cv
, (1.6)

and

p = p(ρ, S) = κργeS/cv , e =
κ

γ − 1
ργ−1eS/cv , (1.7)

where R > 0 may be taken to be the universal gas constant divided by the effective molecular
weight of the particular gas, cv > 0 is the specific heat at constant volume, γ > 1 is the
adiabatic exponent, and κ > 0 can be any constant under scaling.

As it will be shown in §4, no matter how smooth the Cauchy data (1.2) are, solutions of
(1.1) generally develop singularities in a finite time. Hence, System (1.1) is complemented
by the Clausius inequality

∂t(ρa(S)) + ∇ · (ma(S)) ≥ 0 (1.8)

in the sense of distributions for any a(S) ∈ C1, a′(S) ≥ 0, in order to single out physically
relevant discontinuous solutions, called entropy solutions.

The Euler equations for a compressible fluid that flows isentropically take the following
simpler form:







∂tρ+ ∇ · m = 0,

∂tm + ∇ ·
(

m ⊗ m

ρ

)

+ ∇p = 0,
(1.9)
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where the pressure is regarded as a function of density, p = p(ρ, S0), with constant S0. For
a polytropic gas,

p(ρ) = κ0ρ
γ , γ > 1, (1.10)

where κ0 > 0 is any constant under scaling. This system can be derived as follows. It is
well-known that, for smooth solutions of (1.1), the entropy S(ρ,E) is conserved along fluid
particle trajectories, i.e.,

∂t(ρS) + ∇ · (mS) = 0. (1.11)

If the entropy is initially a uniform constant and the solution remains smooth, then (1.11)
implies that the energy equation can be eliminated, and the entropy S keeps the same
constant in later time, in comparison with non-smooth solutions (entropy solutions) for
which only S(x, t) ≥ minS(x, 0) is generally available (see [297]). Thus, under constant
initial entropy, a smooth solution of (1.1) satisfies the equations in (1.9). Furthermore, it
should be observed that solutions of System (1.9) are also a good approximation to solutions
of System (1.1) even after shocks form, since the entropy increases across a shock to third-
order in wave strength for solutions of (1.1) (cf. [120]), while in (1.9) the entropy is constant.
Moreover, System (1.9) is an excellent model for isothermal fluid flow with γ = 1, and for
shallow water flow with γ = 2.

In the one-dimensional case, System (1.1) in Eulerian coordinates is














∂tρ+ ∂xm = 0,

∂tm+ ∂x

(

m2

ρ + p
)

= 0,

∂tE + ∂x

(

m
ρ (E + p)

)

= 0,

(1.12)

with E = 1
2
m2

ρ + ρe. The system above can be rewritten in Lagrangian coordinates in

one-to-one correspondence so long as the fluid flow stays away from the vacuum ρ = 0:










∂tτ − ∂xv = 0,

∂tv + ∂xp = 0,

∂t(e+ v2

2 ) + ∂x(pv) = 0,

(1.13)

with v = m/ρ, where the coordinates (x, t) are the Lagrangian coordinates, which are differ-
ent from the Euler coordinates for (1.12); for simplicity of notations, we do not distinguish
them. For the isentropic case, Systems (1.12) and (1.13) reduce to:

{

∂tρ+ ∂xm = 0,

∂tm+ ∂x

(

m2

ρ + p
)

= 0,
(1.14)

and
{

∂tτ − ∂xv = 0,

∂tv + ∂xp = 0,
(1.15)

respectively, where the pressure p is determined by (1.10) for the polytropic case, p = p(ρ) =
p̃(τ), τ = 1/ρ.

The Cauchy problem for all the systems above fits into the following general conservation
form:

∂tu + ∇ · f(u) = 0, u ∈ R
n, x ∈ R

d, (1.16)

with initial data:

u|t=0 = u0(x), (1.17)

where f = (f1, · · · , fd) : R
n → (Rn)d is a nonlinear mapping with fi : R

n → R
n, i = 1, · · · , d.

Besides (1.1)–(1.15), many partial differential equations arising in the physical or engineering
sciences can be also formulated into the form (1.16) or its variants. The hyperbolicity of
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System (1.16) requires that, for any ω ∈ Sd−1, the matrix (∇f(u) · ω)n×n have n real
eigenvalues λi(u, ω), i = 1, 2, · · · , n, and be diagonalizable.

One of the main difficulties in dealing with (1.16) and (1.17) is that solutions of the
Cauchy problem (even those starting out from smooth initial data) generally develop sin-
gularities in a finite time, because of the physical phenomena of focusing and breaking of
waves and the development of shock waves and vortices, among others. For this reason,
attention focuses on solutions in the space of discontinuous functions. Therefore, one can
not directly use the classical analytic techniques that predominate in the theory of partial
differential equations of other types.

Another main difficulty is nonstrict hyperbolicity or resonance of (1.16), that is, there
exist some ω0 ∈ Sd−1 and u0 ∈ R

d such that λi(u0, ω0) = λj(u0, ω0) for some i 6= j. In
particular, for the Euler equations, such a degeneracy occurs at the vacuum states or from
the multiplicity of eigenvalues of the system.

The correspondence of (1.8) in the context of hyperbolic conservation laws is the Lax
entropy inequality:

∂tη(u) + ∇ · q(u) ≤ 0 (1.18)

in the sense of distributions for any C2 entropy-entropy flux pair (η,q) : R
n → R×R

d,q =
(q1, · · · , qd), satisfying

∇2η(u) ≥ 0, ∇qi(u) = ∇η(u)∇fi(u), i = 1, · · · , d.
Most sections in this paper focus on the Cauchy problem for one-dimensional hyperbolic

systems of n conservation laws

∂tu + ∂xf(u) = 0, u ∈ R
n, x ∈ R, t > 0, (1.19)

with Cauchy data:
u|t=0 = u0(x). (1.20)

The Euler equations can describe more complicated physical fluid flows by coupling with
other physical equations.

One of the most important examples is the Euler equations for nonequilibrium thermody-
namic fluid flow. In local thermodynamic equilibrium as we discussed above, System (1.1)
is closed by the constitutive relation (1.3). When the temperature varies over a wide range,
the gas may not be in local thermodynamic equilibrium, and the pressure p may then be
regarded as a function of only a part e of the specific internal energy, while another part q
is governed by a rate equation:

∂t(ρq) + ∇x · (mq) =
Q(ρ, e) − q

ǫ s(ρ, e)
, (1.21)

and

p = p(ρ, e), E =
|m|2
2ρ

+ ρ(e+ q), (1.22)

where ǫ > 0 is a parameter measuring the relaxation time, which is small in general, and
Q(ρ, e) and s(ρ, e) are given functions of (ρ, e). The equations in (1.1) and (1.21) with
(1.22) define the Euler equations for nonequilibrium fluids, which model the nonequilibrium
thermodynamical process.

Another important example is the inviscid combustion equations that consist of the Euler
equations in (1.1) adjoined with the continuum chemistry equation:

∂t(ρZ) + ∇ · (mZ) = −φ(θ)ρZ, φ(θ) = Ke−θ0/θ, (1.23)

where θ0 and K are some positive constants, Z denotes the mass fraction of unburnt gas
so that 1 − Z is the mass fraction of burnt gas. Here we assume that there are only two
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species present, the unburnt gas and the burnt gas, and the unburnt gas is converted to the
burnt gas through a one-step irreversible exothermic chemical reaction with an Arrhenius
kinetic mechanism. As regards the equations in (1.1), a modification of the internal energy
e is the only change in these equations. The internal energy of the mixture, e(ρ, S, Z), is
defined within a constant by

e(ρ, S, Z) = Zeu(ρ, S) + (1 − Z)eb(ρ, S),

with eu and eb the internal energies of the unburnt and burnt gas, respectively. For sim-
plicity, we assume that both of the burnt and unburnt gas are ideal with the same γ-law so
that

eu(ρ, S) = cvθ + q0, eb = cvθ,

with q0 > 0 the normalized energy of formation at some reference temperature for the
unburnt gas for an exothermic reaction. Then

e(ρ, S, Z) = cvθ(ρ, S) + q0Z, θ(ρ, S) =
p(ρ, S)

Rρ
. (1.24)

Then the equations in (1.1) and (1.23) with (1.24) define the inviscid combustion equations,
which model detonation waves in combustion.

This paper is organized as follows.
In §2, we present a local well-posedness theory for smooth solutions and then in §3 a global

well-posedness theory for smooth solutions. In §4, we exhibit the formation of singularity
in smooth solutions, the main feature of the Cauchy problem for the Euler equations. In
§5, we present a local well-posedness theory for discontinuous entropy solutions.

From §6 to §10, we discuss global well-posedness theories for discontinuous entropy solu-
tions.

In §6, we present a global theory for discontinuous entropy solutions of the Riemann
problem, the simplest Cauchy problem with discontinuous initial data. First we recall two
Lax’s theorems for the local behavior of wave curves in the phase space and the existence of
global solutions of the Riemann problem, respectively, for general one-dimensional conser-
vation laws with small Riemann data. Then we discuss the construction of global Riemann
solutions and their behavior for the isothermal, isentropic, and non-isentropic Euler equa-
tions in (1.12)–(1.15) with large Riemann data, respectively.

In §7, we focus on the global discontinuous solutions obtained from the Glimm scheme
[130], called Glimm solutions. We first describe the Glimm scheme for hyperbolic con-
servation laws and a global well-posedness theory for the Glimm solutions, including the
existence, decay, and L1-stability of the Glimm solutions. The Glimm scheme is also ap-
plied to the construction of global entropy solutions of the isothermal Euler equations with
large initial data. We also present an alternative method, the wave-front tracking method,
to construct global discontinuous solutions, which can be identified with a trajectory of the
standard Riemann semigroup, and to yield the L1-stability of the solutions.

In §8, our focus is on general global discontinuous solutions in L∞ ∩BVloc satisfying the
Lax entropy inequality and without specific reference on the method for construction of the
solutions. We first describe a theory of generalized characteristics and its direct applications
to the decay problem of the discontinuous solutions under the assumption that the traces of
the solutions along any space-like curves are functions of locally bounded variation. Then we
study the uniqueness of Riemann solutions and the asymptotic stability of entropy solutions
in BV for gas dynamics, without additional a priori information on the solutions besides
the natural Lax entropy inequality.

In §9, our focus is on the one-dimensional system of the isentropic Euler equations and
its global discontinuous solutions in L∞ satisfying only the weak Lax entropy inequality.
We first carefully analyze the system and its entropy-entropy flux pairs. Then we describe
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a general compactness framework, with a proof for the case γ = 5/3, for establishing the
existence, compactness, and decay of entropy solutions in L∞, and the convergence of finite-
difference schemes including the Lax-Friedrichs scheme and the Godunov scheme. We discuss
the stability of rarefaction waves and vacuum states even in a broader class of discontinuous
entropy solutions in L∞. We also record some related results for the system of elasticity
and the non-isentropic Euler equations.

In §10, we discuss global discontinuous solutions for the multidimensional case. We de-
scribe a shock capturing difference scheme and its applications to the multidimensional Euler
equations for compressible fluids with geometric structure. Then we present some classi-
fications and phenomena of solution structures of the two-dimensional Riemann problem,
especially wave interactions and elementary waves, for the Euler equations and some further
results in this direction.

In §11, we consider the Euler equations for compressible fluids with source terms. Our
focus is on two of the most important examples: relaxation effect and combustion effect.
Some new phenomena are reviewed.

We remark that, in this paper, we focus only on some recent developments in the the-
oretical study of the Cauchy problem for the Euler equations for compressible fluids. We
refer the reader to other papers in these volumes, as well as Glimm-Majda [134], Godlewski-
Raviart [138], LeVeque [189], Lions [201], Perthame [255], Tadmor [296], Toro [306], and
the references cited therein for related topics including various kinetic formulations and
approximate methods for the Cauchy problem for the Euler equations.

2. Local Well-Posedness for Smooth Solutions

Consider the three-dimensional Euler equations in (1.1) and (1.7) for polytropic com-
pressible fluids staying away from the vacuum, which are rewritten in terms of the density
ρ ∈ R, the velocity v ∈ R

3, and the entropy S ∈ R (taking κ = cv = 1 without loss of
generality) in the form:











∂tρ+ ∇ · (ρv) = 0,

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇p = 0,

∂tS + v · ∇S = 0,

(2.1)

with the equation of state: p = p(ρ, S) = ργeS , γ > 1. System (2.1) is a 5 × 5 system of
conservation laws. It can be written in terms of the variables (p,v, S) in the equivalent form
in the region where the solution is smooth:











∂tp+ v · ∇p+ γp∇ · v = 0,

ρ(∂tv + v · ∇v) + ∇p = 0,

∂tS + v · ∇S = 0,

(2.2)

with ρ = ρ(p, S) = p1/γe−S/γ.
The norm of the Sobolev space Hs(Rd) is denoted by

‖g‖2
s =

∑

|α|≤s

∫

Rd

|Dαg|2dx.

For g ∈ L∞([0, T ];Hs), define

|‖g‖|s,T = sup
0≤t≤T

‖g(·, t)‖s.

For the Cauchy problem of (2.2) with smooth initial data:

(p,v, S)|t=0 = (p0,v0, S0)(x), (2.3)
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the following local existence theorem of smooth solutions holds.

Theorem 2.1. Assume (p0,v0, S0) ∈ Hs∩L∞(R3) with s > 5/2 and p0(x) > 0. Then there
is a finite time T ∈ (0,∞), depending on the Hs and L∞ norms of the initial data, such
that the Cauchy problem (2.2) and (2.3) has a unique bounded smooth solution (p,v, S) ∈
C1(R3 × [0, T ]), with p(x, t) > 0 for all (x, t) ∈ R

3 × [0, T ], and (p,v, S) ∈ C([0, T ];Hs) ∩
C1([0, T ];Hs−1).

Consider the Cauchy problem (1.16) and (1.17) for a general hyperbolic system of con-
servation laws with the values of u lying in the state space G, an open set in R

n. The state
space G arises because physical quantities such as the density should be positive. Assume
that (1.16) has the following structure of symmetric hyperbolic systems: For all u ∈ G,
there is a positive definite symmetric matrix A0(u) that is smooth in u and satisfies

c−1
0 In ≤ A0(u) ≤ c0In (2.4)

with a constant c0 uniform for u ∈ G1, for anyG1 ⊂ G1 ⋐ G, such thatAi(u) =A0(u)∇fi(u)
is symmetric, where ∇fi(u), i = 1, · · · , d, are the n × n Jacobian matrices and In is the
n × n identity matrix. A consequence of this structure for (1.16) is that the linearized
problem of (1.16) and (1.17) is well-posed (see Majda [223]). The matrix A0(u) is called
the symmetrizing matrix of System (1.16). Multiplying (1.16) by the matrix A0(u) and
denoting A(u) = (A1(u), · · · , Ad(u)) yield the system:

A0(u)∂tu +A(u)∇u = 0. (2.5)

An important observation is that almost all equations of classical physics of the form (1.16)
admit this structure. For example, the equations in (2.2) for polytropic gases are sym-
metrized by the 5 × 5 matrix

A0(p, S) =





(γp)−1 0 0
0 ρ(p, S)I3 0
0 0 1



 .

Therefore, Theorem 2.1 is a consequence of the following theorem on the local existence
of smooth solutions, with the specific state space G = {(p,v, S)⊤ : p > 0} ⊂ R

5, for the
general symmetric hyperbolic system (1.16).

Theorem 2.2. Assume that u0 : R
d → G is in Hs ∩ L∞ with s > d

2 + 1. Then, for the
Cauchy problem (1.16) and (1.17), there exists a finite time T = T (‖u0‖s, ‖u0‖L∞) ∈ (0,∞)
such that there is a unique bounded classical solution u ∈ C1(Rd × [0, T ]) with u(x, t) ∈ G
for (x, t) ∈ R

d × [0, T ] and u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1).

The proof of this theorem proceeds via a classical iteration scheme. An outline of the
proof of Theorem 2.2 (thus Theorem 2.1) is given as follows.

To prove the existence of the smooth solution of (1.16) and (1.17), it is equivalent to
construct the smooth solution of (2.5) and (1.17) by applying the symmetrizing matrix
A0(u). Choose the standard mollifier j(x) ∈ C∞

0 (Rd), supp j(x) ⊆ {x : |x| ≤ 1}, j(x) ≥ 0,
∫

Rd j(x)dx = 1, and set jǫ(x) = ǫ−dj(x/ǫ). For k = 0, 1, 2, · · · , take ǫk = 2−kǫ0, where

ǫ0 > 0 is a constant, and define uk0 ∈ C∞(Rd) by

uk0(x) = Jǫku0(x) =

∫

Rd

jǫk(x − y)u(y)dy.

We construct the solution of (2.5) and (1.17) through the following iteration scheme: Set
u0(x, t) = u0

0(x) and define uk+1(x, t), for k = 0, 1, 2, · · · , inductively as the solution of the
linear equations:

A0(u
k)∂tu

k+1 +A(uk)∇uk+1 = 0, uk+1|t=0 = uk+1
0 (x). (2.6)
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From the well-known properties of the mollification: ‖uk0 − u0‖s → 0, as k → ∞, and
‖uk0 − u0‖0 ≤ C0ǫk‖u0‖1, for some constant C0, it is evident that uk+1 ∈ C∞(Rd × [0, Tk])
is well-defined on the time interval [0, Tk]. Here Tk > 0 denotes the largest time where the
estimate |‖uk − u0

0‖|s,Tk
≤ C1 holds for some constant C1 > 0. Then there is a constant

T∗ > 0 such that Tk ≥ T∗ (T0 = ∞) for k = 0, 1, 2, · · · , which follows from the following
estimates:

|‖uk+1 − u0
0‖|s,T∗ ≤ C1, |‖uk+1

t ‖|s−1,T∗ ≤ C2, (2.7)

for all k = 0, 1, 2, · · · , with some constant C2 > 0.
From (2.6), we obtain

A0(u
k)∂t(u

k+1 − uk) +A(uk)∇(uk+1 − uk) = Ek, (2.8)

where
Ek = −(A0(u

k) −A0(u
k−1))∂tu

k − (A(uk) −A(uk−1))∇uk.

Use the standard energy estimate method for the linearized problem (2.8) to obtain

|‖uk+1 − uk‖|0,T ≤ CeCT
(

‖uk+1
0 − uk0‖0 + T |‖Ek‖|0,T

)

.

The property of mollification, (2.7), and Taylor’s theorem yield

‖uk+1
0 − uk0‖0 ≤ C2−k, |‖Ek‖|0,T ≤ C|‖uk − uk−1‖|0,T .

For small T such that C2T exp(CT ) < 1, one obtains
∞
∑

k=1

|‖uk+1 − uk‖|0,T <∞,

which implies that there exists u ∈ C([0, T ];L2(Rd)) such that

lim
k→∞

|‖uk − u‖|0,T = 0. (2.9)

From (2.7), we have |‖uk‖|s,T + |‖ukt ‖|s−1,T ≤ C, and uk(x, t) belongs to a bounded set of
G for (x, t) ∈ R

d × [0, T ]. Then the interpolation inequalities imply that, for any r with
0 ≤ r < s,

|‖uk − ul‖|r,T ≤ Cs|‖uk − ul‖|1−r/s0,T |‖uk − ul‖|r/ss,T ≤ C|‖uk − ul‖|1−r/s0,T . (2.10)

From (2.9) and (2.10), limk→∞ |‖uk−u‖|r,T = 0 for any 0 ≤ r < s. Thus, choosing r > d
2 +1,

Sobolev’s lemma implies

uk → u in C([0, t];C1(Rd)). (2.11)

From (2.8) and (2.11), one can conclude that uk → u in C([0, T ];C(Rd)), u ∈ C1(Rd×[0, T ]),
and u(x, t) is the smooth solution of (1.16) and (1.17).

To prove u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1), it is sufficient to prove u ∈ C([0, T ];Hs),
since it follows from the equations in (2.5) that u ∈ C1([0, T ];Hs−1). The proof can be
further reduced to verifying that u(x, t) is strongly right-continuous at t = 0, since the
same argument works for the strong right-continuity at any other t ∈ [0, T ), and the strong
right-continuity on [0, T ) implies the strong left-continuity on (0, T ] because the equations
in (2.5) are reversible in time.

Remark 2.1. Theorem 2.2 was established by Majda [223] which relies solely on the ele-
mentary linear existence theory for symmetric hyperbolic systems with smooth coefficients
(Courant-Hilbert [77]), as we illustrated above. Moreover, a sharp continuation principle was
also proved there: For u0 ∈ Hs, with s > d

2 +1, the interval [0, T ) with T <∞ is the maxi-
mal interval of the classical Hs existence for (1.16) if and only if either ‖(ut, Du)‖L∞ → ∞
as t→ T , or, as t→ T , u(x, t) escapes every compact subset K ⋐ G. The first catastrophe
in this principle is associated with the formation of shock waves in the smooth solutions,
and the second is associated with a blow-up phenomenon.
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Kato also gave a proof of Theorem 2.2, in [164], which uses the abstract semigroup
theory of evolution equations to treat appropriate linearized problems. In [165], Kato also
formulated and applied this basic idea in an abstract framework which yields the local
existence of smooth solutions for many interesting equations of mathematical physics. See
Crandall-Souganidis [78] for related discussions.

In [226], Makino-Ukai-Kawashima established the local existence of classical solutions
of the Cauchy problem with compactly supported initial data for the multidimensional
Euler equations, with the aid of the theory of quasilinear symmetric hyperbolic systems; in
particular, they introduced a symmetrization which works for initial data having compact
support or vanishing at infinity. There are also discussions on the local existence of smooth
solutions of the three-dimensional Euler equations (2.1) in Chemin [35].

Remark 2.2. For the one-dimensional Cauchy problem (1.19) and (1.20), it is known from
Friedrichs [121], Lax [175], and Li-Yu [195] that, if u0(x) is in C1 for all x ∈ R with finite
C1 norm, then there is a unique C1 solution u(x, t), for (x, t) ∈ R × [0, T ], with sufficiently
small T . As a consequence, the one-dimensional Euler equations in (1.12)-(1.15) admit a
unique local C1 solution provided that the initial data are in C1 with finite C1 norm and
stay away from the vacuum.

3. Global Well-Posedness for Smooth Solutions

Consider the Cauchy problem for the one-dimensional isentropic Euler equations of gas
dynamics in (1.14), for x ∈ R and t > 0, with initial data:

(ρ,m)|t=0 = (ρ0,m0)(x), (3.1)

and γ-law for pressure:

p(ρ) = ργ/γ, γ > 1. (3.2)

For the case 1 < γ ≤ 3, which is of physical significance, System (1.14) is genuinely nonlinear
in the sense of Lax [181] in the domain {(x, t) : ρ(x, t) ≥ 0}. For ρ > 0, consider the velocity
v = m/ρ and v0(x) = m0(x)/ρ0(x). The eigenvalues of (1.14) are

λ1 = v − c, λ2 = v + c,

where c = ρθ, with θ = γ−1
2 ∈ (0, 1], is the sound speed. The Riemann invariants of (1.14)

are

w1 = w1(ρ, v) := v +
ρθ

θ
, w2 = w2(ρ, v) := v − ρθ

θ
.

Set

w10(x) := w1(ρ0(x), v0(x)), w20(x) := w2(ρ0(x), v0(x))

as the initial values of the Riemann invariants. With the aid of the method of characteristics
(see Lax [178]), the following global existence theorem of smooth solutions of (1.14) and
(3.1) can be proved.

Theorem 3.1. Suppose that the initial data (ρ0, v0)(x), with ρ0(x) > 0, are in C1(R), with
finite C1 norm and

w′
10(x) ≥ 0, w′

20(x) ≥ 0, (3.3)

for all x ∈ R. Then the Cauchy problem (1.14) and (3.1) has a unique global C1 solution
(ρ, v)(x, t), with ρ(x, t) > 0 for all x ∈ R and t > 0.

Proof. First we show that, if ρ0(x) > 0, no vacuum will be developed at any time t > 0 for
the smooth solution. From the first equation of (1.14),

d

dt
ρ = −ρ∂xv, (3.4)
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where
d

dt
= ∂t + v(x, t)∂x

denotes the directional derivative along the direction

dx

dt
= v(x, t). (3.5)

For any point (x̄, t̄) ∈ R
2
+ := {(x, t) : x ∈ R, t ∈ R+},R+ = (0,∞), the integral curve

of (3.5) through (x̄, t̄) is denoted by x = x(t; x̄, t̄). At t = 0, it passes through the point
(x0(x̄, t̄), 0) := (x(0; x̄, t̄), 0). Along the curve x = x(t; x̄, t̄), the solution of the ordinary
differential equation (3.4) with initial data:

ρ|t=0 = ρ0(x0(x̄, t̄))

is

ρ(x̄, t̄) = ρ0(x0(x̄, t̄)) exp

(

−
∫ t̄

0

∂xv(x(t; x̄, t̄), t)dt

)

> 0.

To prove the global existence of the C1 solution (ρ, v)(x, t), given the local existence from
Remark 2.2, it is sufficient to prove the following uniform a priori estimate: For any fixed
T > 0, if the Cauchy problem (1.14) and (3.1) has a unique C1 solution (ρ, v)(x, t) for x ∈ R

and t ∈ [0, T ), then the C1 norm of (ρ, v)(x, t) is bounded on R × [0, T ].
For a smooth solution (ρ, v) of System (1.14), one can verify by straightforward calcula-

tions that the derivatives of the Riemann invariants w1 and w2 along the characteristics are
zero:

w′
1 = 0, w8

2 = 0, (3.6)

where ′ = ∂t + λ2∂x and 8 = ∂t + λ1∂x are the differentiation operators along the charac-
teristics. Differentiate the equation w′

1 = 0 in (3.6) with respect to the spatial variable x to
obtain

∂2
txw1 + λ2 ∂

2
xxw1 + ∂w1λ2 (∂xw1)

2 + ∂w2λ2 ∂xw1 ∂xw2 = 0.

Since 0 = w8

2 = w′
2 − 2c ∂xw2, by setting r = ∂xw1 and noticing

λ2 = λ2(w1, w2) =
1 + θ

2
w1 +

1 − θ

2
w2, ∂xw2 =

w′
2

2c
,

one has

r′ +
1 + θ

2
r2 +

1 − θ

4c
w′

2r = 0.

Set

s =
θ − 1

2
ln ρ =

θ − 1

2θ
ln(w1 − w2).

Then

∂w2s =
1 − θ

4c
and s′ = w′

2 ∂w2s =
1 − θ

4c
w′

2.

Thus

r′ +
1 + θ

2
r2 + s′r = 0.

Set
g = esr = ρ(θ−1)/2∂xw1.

Then

g′ = −1 + θ

2

(

θ

2
|w1 − w2|

)
1−θ
2θ

g2. (3.7)

Similarly, for h = ρ(θ−1)/2∂xw2, one has

h8 = −1 + θ

2

(

θ

2
|w1 − w2|

)
1−θ
2θ

h2. (3.8)
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Let x = x(β, t) be the forward characteristic passing through any fixed point (β, 0) at t = 0,
defined by

dx(β, t)

dt
= λ2(w1(x(β, t), t), w2(x(β, t), t)), x(β, 0) = β.

According to (3.6), w1 is constant along characteristics, and thus w1(x(β, t), t) = w1(β, 0) =
w10(β) and sup |w1(x, t)| = sup |w10(x)|. Similarly, w2 is constant along the backward
characteristics corresponding to the eigenvalue λ1, and sup |w2(x, t)| = sup |w20(x)|. For
any given point (x(β, t), t) on the forward characteristic x = x(β, t), there exists a unique
α = α(β, t) ≥ β such that w2(x(β, t), t) = w20(α). Therefore, along the characteristic
x = x(β, t), one has from (3.7) that















dg(x(β, t), t)

dt
= −1 + θ

2

(

θ

2
|w10(β) − w20(α(β, t))|

)
1−θ
2θ

g(x(β, t), t)2,

g|t=0 = ρ0(β)
θ−1
2 w′

10(β).

(3.9)

Then

g(x(β, t), t) =
ρ0(β)

θ−1
2 w′

10(β)

1 +
∫ t

0
K(β, τ)dτ

, (3.10)

where

K(β, t) =
1 + θ

2

(

θ

2
|w10(β) − w20(α(β, t))|

)
1−θ
2θ

ρ0(β)
θ−1
2 w′

10(β). (3.11)

From (3.3), K(β, t) ≥ 0. Thus, g(x(β, t), t) is bounded, and

∂xw1(x(β, t), t) =

(

θ

2
|w10(β) − w20(α(β, t))|

)
1−θ
2θ

g(x(β, t), t)

is also bounded. Similarly, ∂xw2 is also bounded from (3.8). As a consequence, the C1

norms of ρ = (θ(w1 −w2)/2)1/θ and v = (w1 +w2)/2 are bounded on R× [0, T ]. The proof
is complete. �

Remark 3.1. In the proof of Theorem 3.1, the second-order derivatives of the Riemann
invariants are formally used. However, the final equality (3.10) does not involve these second-
order derivatives. Some appropriate arguments of approximation or weak formulation can
be used to show that the conclusion is still valid for C1 solutions.

Remark 3.2. For the global existence of smooth solutions of general one-dimensional hy-
perbolic systems of conservation laws, we refer the reader to Li [194] which contains some
results and discussions on this subject. Also see Lin [197, 198] and the references cited
therein for the global existence of Lipschitz continuous solutions for the case that discon-
tinuous initial data may not stay away from the vacuum. For the three-dimensional Euler
equations for polytropic gases in (2.1), Serre and Grassin in [141, 142, 273] studied the
existence of global smooth solutions under appropriate assumptions on the initial data for
both isentropic and non-isentropic cases. It was proved in [141] that the three-dimensional
Euler equations for a polytropic gas in (2.1) have global smooth solutions, provided that
the initial entropy S0 and the initial density ρ0 are small enough and the initial velocity v0
forces particles to spread out, which are of similar nature to the condition (3.3).
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4. Formation of Singularities in Smooth Solutions

The formation of shock waves is a fundamental physical phenomenon manifested in so-
lutions of the Euler equations for compressible fluids, which are a prototypical example of
hyperbolic systems of conservation laws. This phenomenon can be explained by mathe-
matical analysis by showing the finite-time formation of singularities in the solutions. For
nonlinear scalar conservation laws, the development of shock waves can be explained through
the intersection of characteristics; see the discussions in Lax [180, 181] and Majda [223]. For
systems in one space dimension, this problem has been extensively studied by using the
method of characteristics developed in Lax [178], John [161], Liu [206], Klainerman-Majda
[170], Dafermos [83], etc. For systems with multidimensional space variables, the method
of characteristics has not been proved tractable. An efficient method, involving the use of
averaged quantities, was developed in Sideris [282] for hyperbolic systems of conservation
laws and was further refined in Sideris [283] for the three-dimensional Euler equations. Also
see Majda [223].

4.1. One-Dimensional Euler Equations. Consider the Cauchy problem (1.14) and
(3.1) for the one-dimensional Euler equations of isentropic gas dynamics. With the notations
in §3, the following result on the formation of singularity in smooth solutions of (1.14) and
(3.1) follows.

Theorem 4.1. The lifespan of any smooth solution of (1.14) and (3.1), staying away from
the vacuum, is finite, for C1 initial data (ρ0, v0)(x), with ρ0(x) > 0 and finite C1 norm
satisfying

w′
10(β) < 0, or w′

20(β) < 0, (4.1)

for some point β ∈ R, Furthermore, if there exist two positive constants δ and ǫ such that

min
x
w10(x) − max

x
w20(x) := δ > 0, (4.2)

and, for some point β ∈ R,

w′
10(β) ≤ −ǫ, or w′

20(β) ≤ −ǫ, (4.3)

then the lifespan of any smooth solution of (1.14) and (3.1) does not exceed

T∗ =
2

(1 + θ)ǫ

(

θ

2
δ

)
θ−1
2θ

‖ρ0‖
θ−1
2

C(R). (4.4)

Proof. For a smooth solution (ρ, v)(x, t) of System (1.14), one can verify, as in the proof of
Theorem 3.1, that ρ(x, t) > 0, and

g′ =
1 + θ

2

(

θ

2
(w1 − w2)

)
1−θ
2θ

g2,

with g = −ρ(θ−1)/2∂xw1. By defining the characteristic x = x(β, t) passing through the
point (β, 0), β ∈ R, as in the proof of Theorem 3.1, we have, as in (3.10) and (3.11),

g(x(β, t), t) =
ρ0(β)

θ−1
2 w′

10(β)

1 +
∫ t

0 K(β, τ)dτ
,

with

K(β, t) =
1 + θ

2

(

θ

2
|w10(β) − w20(α(β, t))|

)
1−θ
2θ

ρ0(β)
θ−1
2 w′

10(β)

=
1 + θ

2
ρ(x(β, t), t)

1−θ
2 ρ0(β)

θ−1
2 w′

10(β).
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If the smooth solution stays away from the vacuum, i.e., the density ρ has a positive lower
bound, then one concludes that g(x(β, t), t) will blow up at a certain finite time if w′

10(β) < 0.
Under the condition (4.2) and if w′

10(β) ≤ −ǫ in (4.3), g(x(β, t), t) will blow up at some
finite time which is less than or equal to T∗ defined in (4.4). If w′

20(β) ≤ 0 or further
w′

20(β) ≤ −ǫ, similar consequence can be obtained from (3.8). This completes the proof of
Theorem 4.1. �

Remark 4.1. The argument was developed in Lax [178] for 2 × 2 hyperbolic systems of
conservation laws with genuine nonlinearity. The implication of the result is that the first
derivatives of solutions blow up in a finite time, while the solutions stay themselves bounded
and away from the vacuum. This is in agreement with the phenomenon of shock waves. See
also Majda [223] and Lin [197, 198] for further discussions.

The formation of singularities for n × n genuinely nonlinear hyperbolic systems of one-
dimensional conservation laws (1.19) was discussed in John [161]. It was shown in [161] that,
if the initial data are sufficiently small (but not identically zero), then the first derivatives
of the solution will become infinite in some finite time.

Theorem 4.2. Consider the Cauchy problem (1.19) and (1.20) of n×n genuinely nonlinear
hyperbolic systems. Assume the initial data u0(x) are a C2 function with compact support.
Then there exists a positive constant δ such that, if 0 < supx |u′′

0(x)| ≤ δ, the solution u(x, t)
cannot exist in the class C2 for all positive t.

This result was generalized in Liu [206] to include systems with linearly degenerate char-
acteristic fields such as the Euler equations.

4.2. Three-Dimensional Euler Equations. Consider the Cauchy problem of the
three-dimensional Euler equations for polytropic gases in (2.1) with smooth initial data:

(ρ,v, S)|t=0 = (ρ0,v0, S0)(x), ρ0(x) > 0, x ∈ R
3, (4.5)

satisfying
(ρ0,v0, S0)(x) = (ρ̄, 0, S̄), for |x| ≥ R,

where ρ̄ > 0, S̄, and R are given constants. The equations in (2.1) possess a unique local
C1 solution (ρ,v, S)(x, t) with ρ(x, t) > 0 provided the initial data (4.5) are sufficiently
regular (Theorem 2.1). The support of the smooth disturbance (ρ0(x)− ρ̄, v0(x), S0(x)− S̄)

propagates with speed at most σ =
√

pρ(ρ̄, S̄) (the sound speed), that is,

(ρ,v, S)(x, t) = (ρ̄, 0, S̄), if |x| ≥ R+ σt. (4.6)

The proof of this essential fact of finite speed of propagation for the three-dimensional case
can be found in John [162], as well as in Sideris [282], established through local energy
estimates. Take p̄ = p(ρ̄, S̄). Define

P (t) =

∫

R3

(

p(x, t)1/γ − p̄1/γ
)

dx =

∫

R3

(

ρ(x, t) exp(S(x, t)/γ) − ρ̄ exp(S̄/γ)
)

dx,

F (t) =

∫

R3

x · ρv(x, t)dx,

which, roughly speaking, measure the entropy and the radial component of momentum. The
following theorem on the formation of singularities in solutions of (2.1) and (4.5) is due to
Sideris [283].

Theorem 4.3. Suppose that (ρ,v, S)(x, t) is a C1 solution of (2.1) and (4.5) for 0 < t < T ,
and

P (0) ≥ 0, (4.7)

F (0) > ασR4 max
x

ρ0(x), (4.8)
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where α = 16π/3. Then the lifespan T of the C1 solution is finite.

Proof. Set

M(t) =

∫

R3

(ρ(x, t) − ρ̄)dx.

From the equations in (2.1), combined with (4.6), and integration by parts, one has

M ′(t) = −
∫

R3

∇ · (ρv)dx = 0, P ′(t) = −
∫

R3

∇ · (ρv exp(S/γ))dx = 0,

which implies

M(t) = M(0), P (t) = P (0); (4.9)

and

F ′(t) =

∫

R3

x · (ρv)tdx =

∫

R3

(

ρ|v|2 + 3(p− p̄)
)

dx =

∫

B(t)

(

ρ|v|2 + 3(p− p̄)
)

dx, (4.10)

where B(t) = {x ∈ R
3 : |x| ≤ R+ σt}. From Hölder’s inequality, (4.7), and (4.9), one has

∫

B(t)

p dx ≥ 1

|B(t)|γ−1

(

∫

B(t)

p1/γdx

)γ

=
1

|B(t)|γ−1

(

P (0) +

∫

B(t)

p̄1/γdx

)γ

≥
∫

B(t)

p̄ dx,

where |B(t)| denotes the volume of the set B(t). Therefore, by (4.10),

F ′(t) ≥
∫

R3

ρ|v|2dx. (4.11)

By the Cauchy-Schwarz inequality and (4.9),

F (t)2 =

(

∫

B(t)

x · ρvdx
)2

≤
∫

B(t)

ρ|v|2dx
∫

B(t)

ρ|x|2dx

≤ (R+ σt)2
∫

B(t)

ρ|v|2dx
(

M(t) +

∫

B(t)

ρ̄dx

)

≤ (R+ σt)2
∫

B(t)

ρ|v|2dx
(

∫

B(t)

(ρ0(x) − ρ̄)dx +

∫

B(t)

ρ̄dx

)

≤ 4π

3
(R + σt)5 max

x
ρ0(x)

∫

B(t)

ρ|v|2dx.

Then (4.11) implies that

F ′(t) ≤
(

4π

3
(R+ σt)5 max

x
ρ0(x)

)−1

F (t)2. (4.12)

Since F (0) > 0 by (4.8), F (t) remains positive for 0 < t < T , as a consequence of (4.12).
Dividing by F (t)2 and integrating from 0 to T in (4.12) yields

F (0)−1 > F (0)−1 − F (T )−1 ≥ (ασmax ρ0)
−1
(

R−4 − (R+ σT )−4
)

.

Thus,

(R+ σT )4 < R4F (0)/(F (0) − ασR4 max ρ0).

This completes the proof of Theorem 4.3. �
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Remark 4.2. The method of the proof above, which is a refinement of Sideris [282], applies
equally well in one and two space dimensions. In the isentropic case (S is a constant), the
condition P (0) ≥ 0 reduces to M(0) ≥ 0.

Remark 4.3. To illustrate a way in which the conditions (4.7) and (4.8) may be satisfied,
consider the initial data: ρ0 = ρ̄, S0 = S̄. Then P (0) = 0, and (4.8) holds if

∫

|x|<R
x · v0(x)dx > ασR4.

Comparing both sides, one finds that the initial velocity must be supersonic in some region
relative to the sound speed at infinity. The formation of a singularity (presumably a shock
wave) is detected as the disturbance overtakes the wave front forcing the front to propagate
with supersonic speed.

Remark 4.4. Another result was established in Sideris [283] on the formation of singular-
ities, without condition of largeness such as (4.8). The result says that, if S0(x) ≥ S̄ and,
for some 0 < R0 < R,

∫

|x|>r
|x|−1(|x| − r)2(ρ0(x) − ρ̄)dx > 0,

∫

|x|>r
|x|−3(|x|2 − r2)x · ρ0(x)v0(x)dx ≥ 0,

(4.13)

for R0 < r < R, then the lifespan T of the C1 solution of (2.1) and (4.5) is finite. The
assumption (4.13) means that, in an average sense, the gas must be slightly compressed and
outgoing directly behind the wave front. For the proof, some important technical points
were adopted from Sideris [281] on the nonlinear wave equations in three dimensions.

Remark 4.5. The result in Theorem 4.3 indicates that the C1 regularity of solutions breaks
down in a finite time. It is believed that in fact only ∇ρ and ∇v blow up in most cases; see
a proof in Alinhac [2] for the case of axisymmetric initial data for the Euler equations for
compressible fluids in two space dimensions.

4.3. Other Results. The method of characteristics has been used to establish the finite-
time formation of singularities for one-dimensional hyperbolic systems of conservation laws
and related equations; see Lax [178], John [161], Liu [206], Klainerman-Majda [170], Dafer-
mos [83], Keller-Ting [169], Slemrod [287], Lin [197, 198], etc.

A technique was introduced in Dafermos [83] to monitor the time evolution of the spatial
supremum norms of first derivatives and was further applied in Dafermos-Hsiao [90], Hrusa-
Messaoudi [153], and Chen-Wang [320] for the problems with thermal diffusion.

Contrary to the formation of singularities, global smooth solutions may exist for conser-
vation laws with certain dissipation mechanisms including friction damping, heat diffusion,
and memory effects, provided the initial data are smooth and small. That is, the smoothing
effect from the dissipation may prevent the development of shock waves in solutions with
small smooth initial data. See the survey paper by Dafermos [82].

In the case of damping, this property has been justified for certain one-dimensional equa-
tions; see Nishida [242], Hsiao [154], and the references cited therein for the existence of
global smooth solutions with small smooth initial data to the one-dimensional Euler equa-
tions with damping. For the multidimensional Euler equations, it has been proved by
Sideris-Wang [286] that the damping can also prevent the formation of singularities in
smooth solutions with small initial data. For related discussions, see Wang [319] for a
spherically symmetric smooth Euler-Poisson flow and Guo [149] for a smooth irrotational
Euler-Poisson flow in three space dimensions.
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In the case of heat diffusion, the global existence of smooth solutions was established in
Slemrod [288] for nonlinear thermoelasticity with smooth and small initial data.

Although the smoothing effect from damping or heat diffusion alone can prevent the
breaking of smooth waves of small amplitude, the combined effect of damping and heat
diffusion may still not be strong enough to prevent the formation of singularities in large
smooth solutions, as shown in Chen-Wang [320]. A preliminary study of the so called critical
threshold phenomena associated with the Euler-Poisson equations was made in Engelberg-
Liu-Tadmor [110], where the answer to questions of global smoothness vs. finite-time break-
down depends on whether the initial configuration crosses an intrinsic critical threshold.

The damping induced by memory effects can also preserve the smoothness of small initial
data; see Dafermos-Nohel [91] and MacCamy [220].

For multidimensional scalar conservation laws, the formation of shock waves was proved
in Majda [223] by using characteristics for solutions with smooth initial data. Some general
discussions on the formation of shock waves in plane wave solutions of multidimensional
systems of conservation laws can also be found in Majda [223]. The method of Sideris
[282, 283] has been effective for multidimensional systems of Euler equations. A similar
technique was employed by Glassey [128] in the case of nonlinear Schrödinger equations (see
also Strauss [294]). It has been adopted to prove the formation of singularities in solutions
of many other multidimensional problems; see Makino-Ukai-Kawashima [226] and Rendall
[263] for a compressible fluid body surrounded by the vacuum, Rammaha [261, 262] for
two-dimensional Euler equations and magnetohydrodynamics, Perthame [254] for the Euler-
Poisson equations for spherically symmetric flows, and Guo and Tahvildar-Zadeh [150] for
the Euler-Maxwell equations for spherically symmetric plasma flows, etc.

For the multidimensional Euler equations for compressible fluids with smooth initial data
that are a small perturbation of amplitude ǫ from a constant state, the lifespan of smooth
solutions is at least O(ǫ−1) from the theory of symmetric hyperbolic systems (Friedrichs
[122], Kato [163]). Results on the formation of singularities show that the lifespan of a
smooth solution is no better than O(ǫ−2) in the two-dimensional case (Rammaha [261]) and

O(eǫ
−2

) (Sideris [283]) in the three-dimensional case. See Alinhac [2] and Sideris [284, 285]
for additional discussions in this direction.

There have been many studies on the blow-up of smooth solutions for nonlinear wave
equations; see the results collected in Alinhac [3], John [162], and the references cited therein.
Other related discussions about the formation of singularities for conservation laws can be
found in Brauer [17], Chemin [35, 36], Kosinski [171], Wang [316], as well as the references
cited therein.

5. Local Well-Posedness for Discontinuous Solutions

The formation of singularities, especially shock waves, discussed in §4 indicates that one
should seek discontinuous entropy solutions of the Euler equations for general initial data.
Usually, it is difficult to construct the discontinuous solutions especially in the multidi-
mensional case. We focus on the local existence of discontinuous entropy solutions in this
section.

We first consider the local existence of the simplest type of discontinuous solutions, i.e.,
the shock front solutions of the multidimensional Euler equations. Shock front solutions are
the most important discontinuous nonlinear progressing wave solutions in compressible Euler
flows and other systems of conservation laws. For a general multidimensional hyperbolic
system of conservation laws (1.16), shock front solutions are discontinuous piecewise smooth
entropy solutions with the following structure:

(a). There exists a C2 space-time hypersurface S(t) defined in (x, t) for 0 ≤ t ≤ T
with space-time normal (νx, νt) = (ν1, · · · , νd, νt) as well as two C1 vector-valued
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functions: u+(x, t) and u−(x, t), defined on respective domains S+ and S− on either
side of the hypersurface S(t), and satisfying

∂tu
± + ∇ · f(u±) = 0, in S±; (5.1)

(b). The jump across the hypersurface S(t) satisfies the Rankine-Hugoniot condition:
{

νt(u
+ − u−) + νx · (f(u+) − f(u−))

}∣

∣

S
= 0. (5.2)

For the quasilinear system (1.16), the surface S is not known in advance and must be deter-
mined as part of the solution of the problem; thus the equations in (5.1) and (5.2) describe a
multidimensional, highly nonlinear, free-boundary value problem for the quasilinear system
of conservation laws.

The initial data yielding shock front solutions are defined as follows. Let S0 be a smooth
hypersurface parametrized by α, and let ν(α) = (ν1(α), · · · , νn(α)) be a unit normal to S0.
Define the piecewise smooth initial values for respective domains S+

0 and S−
0 on either side

of the hypersurface S0 as

u0(x) =

{

u+
0 (x), x ∈ S+

0 ,

u−
0 (x), x ∈ S−

0 .
(5.3)

It is assumed that the initial jump in (5.3) satisfies the Rankine-Hugoniot condition, i.e.,
there is a smooth scalar function σ(α) so that

−σ(α)(u+
0 (α) − u−

0 (α)) + ν(α) · (f(u+
0 (α)) − f(u−

0 (α))) = 0, (5.4)

and that σ(α) does not define a characteristic direction, i.e.,

σ(α) 6= λi(u
±
0 ), α ∈ S0, 1 ≤ i ≤ n, (5.5)

where λi, i = 1, · · · , n, are the eigenvalues of (1.16). It is natural to require that S(0) = S0.

Consider the two-dimensional isentropic Euler equations in (1.9), away from the vacuum,
which can be rewritten in the form:

{

∂tρ+ ∇ · (ρv) = 0, ρ ≥ 0, v ∈ R
2, x ∈ R

2, t > 0,

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇p = 0, p = p(ρ) = ργ/γ, γ > 1,
(5.6)

with piecewise smooth initial data:

(ρ,v)|t=0 =

{

(ρ+
0 ,v

+
0 )(x), x ∈ S+

0 ,

(ρ−0 ,v
−
0 )(x), x ∈ S−

0 .
(5.7)

The following local existence of discontinuous entropy solutions is taken from Majda
[222].

Theorem 5.1. Assume that S0 is a smooth closed curve and that (ρ+
0 ,v

+
0 )(x) belongs to

the uniform local Sobolev space Hs
ul(S

+
0 ), while (ρ−0 ,v

−
0 )(x) belongs to the Sobolev space

Hs(S−
0 ), for some fixed s ≥ 10. Assume also that there is a function σ(α) ∈ Hs(S0) so that

(5.4) and (5.5) hold, and the compatibility conditions up to order s − 1 are satisfied on S0

by the initial data, together with the entropy condition

v+
0 · ν(α) + (ρ+

0 )θ < σ(α) < v−
0 · ν(α) + (ρ−0 )θ, θ = (γ − 1)/2, (5.8)

and the stability condition

p(ρ+
0 ) − p(ρ−0 )

ρ+
0 − ρ−0

< (ρ−0 )γ−1 + (v−
0 · ν(α) − σ(α))2. (5.9)
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Then there is a C2 hypersurface S(t) together with C1 functions (ρ±,v±)(x, t) defined for
t ∈ [0, T ], with T sufficiently small, so that

(ρ,v)(x, t) =

{

(ρ+,v+)(x, t), (x, t) ∈ S+,

(ρ−,v−)(x, t), (x, t) ∈ S− (5.10)

is the discontinuous shock front solution of the Cauchy problem (5.6) and (5.7) satisfying
(5.1) and (5.2).

In Theorem 5.1, the uniform local Sobolev space Hs
ul(S

+
0 ) is defined as follows: Let

w ∈ C∞
0 (Rd) be a function so that w(x) ≥ 0; and w(x) = 1 when |x| ≤ 1/2, and w(x) = 0

when |x| > 1. Define

wr,y(x) = w

(

x − y

r

)

.

A vector function u is in Hs
ul, provided that there exists some r > 0 so that

max
y∈Rd

‖wr,yu‖Hs <∞.

Remark 5.1. There are extensive studies in Majda [221, 222, 223] on the local existence
and stability of shock front solutions. The compatibility conditions in Theorem 5.1 are
defined in [222] and needed in order to avoid the formation of discontinuities in higher
derivatives along other characteristic surfaces emanating from S0. Once the main condition
in (5.4) is satisfied, the compatibility conditions are automatically guaranteed for a wide
class of initial data. Theorem 5.1 can be extended to the full Euler equations in three space
dimensions (d = 3) in (1.1) (see Majda [222]). See Métivier [229] for the uniform existence
time of shock front solutions in the shock strength. Also see Blokhin-Trokhinin [14] in this
volume for further discussions.

The proof of Theorem 5.1 can be found in [222]. The idea of the proof is similar to that
of the proof of Theorem 2.2, but the technical details are quite different due to the unusual
features of the problem considered in Theorem 5.1. The shock front solutions are defined
as the limit of a convergent classical iteration scheme based on a linearization by using the
theory of linearized stability for shock fronts developed in [221]. The technical condition
s ≥ 10, instead of s > 1 + d/2 = 2 (d = 2), is required because pseudo-differential operators
are needed in the proof of the main estimates. Some improved technical estimates regarding
the dependence of operator norms of pseudo-differential operators on their coefficients would
lower the value of s.

For the one-dimensional Euler equations in (1.12), away from the vacuum, m = ρv and










∂tρ+ ∂x(ρv) = 0, x ∈ R,

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂tE + ∂x(v(E + p)) = 0, E = 1
2ρv

2 + ρe,

(5.11)

some stronger existence results of local discontinuous solutions can be found in [148, 195]
for the Cauchy problem with piecewise smooth initial data

(ρ, v, e)|t=0 =

{

(ρ+
0 , v

+
0 , e

+
0 )(x), x > 0,

(ρ−0 , v
−
0 , e

−
0 )(x), x < 0,

(5.12)

where (ρ±0 , v
±
0 , e

±
0 )(x) are bounded smooth functions for x ≥ 0 and x ≤ 0, respectively, and

(ρ+
0 , v

+
0 , e

+
0 )(0) 6= (ρ−0 , v

−
0 , e

−
0 )(0). Then the following theorem holds.

Theorem 5.2. Suppose that the amplitude |(ρ+
0 − ρ−0 , v

+
0 − v−0 , e

+
0 − e−0 )(0)| is sufficiently

small, then the Cauchy problem (5.11) and (5.12) has a unique piecewise smooth solution
(ρ, v, e)(x, t) for x ∈ R and t ∈ [0, T ], for sufficiently small T .
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Remark 5.2. For the one-dimensional Euler equations for (isentropic or non-isentropic)
polytropic gases (2.1) or (1.14) (d = 1), the assumption of small amplitude is not needed.
See [148, 195] for the proofs of Theorem 5.2 and related results.

Remark 5.3. The piecewise smooth solution (ρ, v, e)(x, t) of the Cauchy problem (5.11)
and (5.12) possesses a structure in a neighborhood of the origin similar to the solution of
the corresponding Riemann problem of (5.11) with initial data

(ρ, v, e)|t=0 =

{

(ρ+
0 , v

+
0 , e

+
0 )(0), x > 0,

(ρ−0 , v
−
0 , e

−
0 )(0), x < 0.

(5.13)

See §6, as well as Chang-Hsiao [33], Courant-Friedrichs [76], Dafermos [88], Serre [277], and
Smoller [291], for the discussion of the solution structure of the Riemann problem.

Remark 5.4. There are some discussions in [76, 195] on the local existence of spherically
symmetric discontinuous solutions with spherically symmetric initial data. See §10.1 for
some recent results on the global existence of spherically symmetric discontinuous entropy
solutions.

6. Global Discontinuous Solutions I: Riemann Solutions

In this section, we present a global theory of discontinuous entropy solutions of the
Riemann problem, the simplest Cauchy problem with discontinuous initial data.

6.1. The Riemann Problem and Lax’s Theorems. We first introduce two Lax’s
Theorems for the local behavior of wave curves in the phase space and the existence of
global entropy solutions of the Riemann problem, respectively, for one-dimensional strictly
hyperbolic systems of conservation laws (1.19) with Riemann data:

u|t=0 = u0(x) :=

{

uL, x < 0,

uR, x > 0,
(6.1)

where uL and uR are two constant states. This theorem applies to the Euler equations with
small Riemann data.

Since both System (1.19) and the Riemann initial data (6.1) are invariant under uniform
stretching of coordinates: (x, t) → (αx, αt), the Cauchy problem (1.19) and (6.1) admits
self-similar solutions, defined on the space-time plane, and constant along straight-line rays
emanating from the origin:

u(x, t) = R(x/t), x ∈ R, t ∈ R+, (6.2)

where R(ξ) is a bounded measurable function in ξ ∈ R, which satisfies the ordinary differ-
ential equation:

d(f(R(ξ)) − ξR(ξ))

dξ
+ R(ξ) = 0 (6.3)

in the sense of distributions.

To solve the Riemann problem, it is more instructive to present first the rarefaction curves
and the shock curves in the phase space.

Rarefaction Curves. Given a state u−, we consider possible states u that can be con-
nected to the state u−, on the right, by a centered rarefaction wave of the ith characteristic
field, which is genuinely nonlinear, that is, ∇λi · ri = 1, where ∇f · ri = λiri, 1 ≤ i ≤ n.
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Consider the self–similar Lipschitz solutions V(ξ), ξ = x/t, of the Riemann problem (1.19)
and (6.1) as above. Then we have

{

ξ = λi(V)(ξ),

(∇f(V(ξ)) − ξI)V′(ξ) = 0,
(6.4)

with boundary condition:

V|ξ=λi(u−) = u−, (6.5)

and, on the i-centered rarefaction waves,

∂V

∂x
=

1

t

dV

dξ
=

1

t
ri(V(x/t)). (6.6)

Then we conclude:

Proposition 6.1. Let the ith characteristic field of System (1.19) be genuinely nonlinear
in N ⊂ R

n. Let u− be any point in N . Then there exists a one-parameter family of
states u = u(ǫ), ǫ ≥ 0,u(0) = u−, which can be connected to u− on the right by an i-
centered rarefaction wave. The parametrization can be chosen so that u̇(0) = ri(u−) and
ü(0) = ṙi(u−).

Shock Curves. Given a state u−, we consider possible states u that can be connected
to the state u−, on the right, by a shock or contact discontinuity. The Rankine-Hugoniot
condition for discontinuities with speed σ is

σ[u] = [f(u)]. (6.7)

Here and in what follows we use the notation [H ] = H+ −H−, where H− and H+ are the
values of any function H on the left-hand side and the right-hand side of the discontinuity,
respectively. A discontinuity satisfying (6.7) is called an i-shock if it satisfies the Lax entropy
conditions:

λi−1(u−) < σ < λi(u−), λi(u) < σ < λi+1(u). (6.8)

First we consider the case which the i-field is genuinely nonlinear. Given u− ∈ N , we
can view (6.7) as n-equations for the (n+ 1)-unknowns u and σ.

Proposition 6.2. Let the ith characteristic field of System (1.19) be genuinely nonlinear
in N . Let u− be any point in N . Then there exists a one-parameter family of states
u = u(ǫ), ǫ ≤ 0,u(0) = u−, which can be connected to u− on the right by an i-shock.
The parametrization can be chosen so that u̇(0) = ri(u−) and ü(0) = ṙi(u−), and σ(0) =
λi(u−), σ̇(0) = 1

2 .

Contact Discontinuities. If the ith characteristic field is linearly degenerate, then λi
is an i-Riemann invariant.

Proposition 6.3. Let the ith characteristic field of System (1.19) be linearly degenerate.
If u− and u+ have the same i-Riemann invariants with respect to the linearly degenerate
field, then they are connected to each other by a contact discontinuity of speed σ = λi(u−) =
λi(u+).

Propositions 6.1, 6.2, and 6.3 can be combined into the following Lax’s theorem [177]
(also see [181]).

Theorem 6.1. Given a state u−, it can be connected to a one-parameter family of states
u+ = u(ǫ),−ǫ0 < ǫ < ǫ0, on the right of u− through a centered i-wave, i.e. an i-shock, or an
i-rarefaction wave, or an i-contact discontinuity; u(ǫ) is twice continuously differentiable
with respect to ǫ.

Then, using Theorem 6.1 and the implicit function theorem leads to the Lax’s existence
theorem [177] (also see [181]) for the Riemann problem (1.19) and (6.1).
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Theorem 6.2. Assume that System (1.19) is strictly hyperbolic and each characteristic field
is either genuinely nonlinear or linearly degenerate. For sufficiently small |uL − uR|, there
exists a unique self-similar solution (6.2) of the Riemann problem (1.19) and (6.1), with
small total variation. This solution comprises n+1 constant states uL = u0, u1, · · · , un−1,
un = uR. When the ith characteristic field is linearly degenerate, ui is joined to ui−1 by an
i-contact discontinuity; when the ith characteristic field is genuinely nonlinear, ui is joined
to ui−1 by either an i-centered rarefaction wave or an i-compressive shock.

6.2. Isothermal Euler Equations. Consider the isothermal Euler equations in (1.15),
that is, γ = 1 and

p = p̃(τ) = 1/τ, (6.9)

with Riemann data:

(τ, v)|t=0 =

{

(τL, vL), x < 0,

(τR, vR), x > 0.
(6.10)

System (1.15) and (6.9) has the eigenvalues ±1/τ and the Riemann invariants v ± ln τ .
The shock curves Si, i = 1, 2, and rarefaction curves Ri, i = 1, 2, with left state (τ−, v−)
have the following forms, respectively:

Si(τ−, v−) : v − v− = (−1)i 2 sinh
q − q−

2
, q > q−,

Ri(τ−, v−) : v − v− = (−1)i(q − q−), q < q−,

where q = − ln τ and q− = − ln τ−. Define a function

W (s) =

{

s, s ≤ 0,

2 sinh s
2 , s ≥ 0.

(6.11)

Then the equations for the i-wave curves, i = 1, 2, can be rewritten into the form:

i-wave curve: v − v− = (−1)iW (q − q−). (6.12)

The function W (s) in (6.11) satisfies W ′(s) > 0, i.e., W (s) is increasing. It is easy to verify
that

{

W (s1 + s2) ≥W (s1) +W (s2), for s1, s2 ≥ 0,

W (s1 + s2) = W (s1) +W (s2), for s1, s2 ≤ 0.
(6.13)

For any s, let s± = (|s| ± s)/2. Then

W (s+) +W (s−) = W (|s|) ≥W (s). (6.14)

If (vm, qm) is the intermediate state in the Riemann problem of (1.15) and (6.9) connect-
ing the two states (vL, qL) = (v1, q1) and (vR, qR) = (v2, q2), then

W (qm − q1) +W (qm − q2) = v1 − v2. (6.15)

Without ambiguity, we denote

D(q1, q2) := |q1 − qm| + |q2 − qm|, (6.16)

although D also depends on v1 and v2. Then we have

Proposition 6.4. For any qi, i = 1, 2, 3,

D(q1, q3) ≤ D(q1, q2) +D(q2, q3). (6.17)
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Proof. Let qij be the intermediate states between qi and qj , i, j = 1, 2, 3, i 6= j. Then, from
(6.15), one has

W (q13 − q1) +W (q13 − q3) = W (q12 − q1) +W (q12 − q2) +W (q23 − q2) +W (q23 − q3).

Set x = q13 − q1, y = q13 − q3, a = q12 − q1, b = q12 − q2, c = q23 − q2, and d = q23 − q3.
Then x− y = a− b + c− d, and

W (x) +W (y) = W (a) +W (b) +W (c) +W (d). (6.18)

If xy ≤ 0, then

D(q1, q3) = |x| + |y| = |x− y| = |a− b+ c− d|
≤ |a| + |b| + |c| + |d| ≤ D(q1, q2) +D(q2, q3).

If x > 0 and y > 0, by (6.14) and (6.18),

W (x) +W (y) ≤
(

W (a+) +W (b−) +W (c+) +W (d−)
)

+
(

W (a−) +W (b+) +W (c−) +W (d+)
)

,

and then either

W (x) ≤W (a+) +W (b−) +W (c+) +W (d−), (6.19)

or

W (y) ≤W (a−) +W (b+) +W (c−) +W (d+). (6.20)

If (6.19) is true, then, by (6.13), W (x) ≤W (a+ +b−+c++d−). The monotonicity property
of W yields x ≤ a+ + b− + c+ + d−, and thus

D(q1, q3) = x+ y = 2x− (x− y) ≤ 2(a+ + b− + c+ + d−) − (a− b+ c− d)

≤ |a| + |b| + |c| + |d| = D(q1, q2) +D(q2, q3).

Similarly, if (6.20) is true, then (6.17) also holds. �

The Riemann solutions of (1.15), (6.9), and (6.10) have three constant states (τj , vj),
j = 1, 2, 3, connected by two of the elementary waves: 1-wave (S1 wave or R1 wave) and
2-wave (S2 wave or R2 wave).

Remark 6.1. The proof of (6.17) given above is due to Poupaud-Rascle-Vila [258].

6.3. Isentropic Euler Equations. Consider the Riemann problem for the isentropic
Euler equations in (1.14) with Riemann data:

(ρ,m)|t=0 =

{

(ρL,mL), x < 0,

(ρR,mR), x > 0,
(6.21)

which may contain the vacuum states, where ρJ ≥ 0 and mJ are the constants, and
∣

∣

∣

mJ

ρJ

∣

∣

∣ ≤
C0 < ∞, J = L,R. As usual, assume that the pressure function p(ρ) satisfies that, when
ρ > 0,

p(ρ) > 0, p′(ρ) > 0 (hyperbolicity), ρp′′(ρ) + 2p′(ρ) > 0 (genuine nonlinearity), (6.22)

and, when ρ tends to zero,

p(ρ), p′(ρ) → 0, (6.23)

which is different from the isothermal case.
The eigenvalues of System (1.14) are

λi = m/ρ+ (−1)i
√

p′(ρ), i = 1, 2, (6.24)
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and the corresponding right-eigenvectors are

ri = αi(ρ)(1, λi)
⊤, αi(ρ) = (−1)i

2ρ
√

p′(ρ)

ρp′′(ρ) + 2p′(ρ)
, (6.25)

so that ∇λi · ri = 1, i = 1, 2. The Riemann invariants are

wi =
m

ρ
+ (−1)i−1

∫ ρ

0

√

p′(s)

s
ds, i = 1, 2. (6.26)

From (6.23) and (6.24),

λ2 − λ1 = 2
√

p′(ρ) → 0, ρ→ 0.

Therefore, System (1.14) is strictly hyperbolic in the nonvacuum states {(ρ, v) : ρ > 0, |v| ≤
C0}. However, strict hyperbolicity fails near the vacuum states {(ρ,m/ρ) : ρ = 0, |m/ρ| ≤
C0}.
Shock Wave Curves. From the Rankine–Hugoniot condition (6.7) and the Lax entropy
condition (6.8), we obtain that the i–shock wave curves Si(ρ−,m−), i = 1, 2, are

Si(ρ−,m−) : m−m− =
m−
ρ−

(ρ− ρ−) + (−1)i

√

ρ

ρ−

p(ρ) − p(ρ−)

ρ− ρ−
(ρ− ρ−),

(−1)i(ρ− ρ−) < 0, ρ− > 0.

It is easy to check that the curves Si(ρ−,m−), i = 1, 2, are concave and convex, respectively,
with respect to (ρ−,m−) in the ρ−m plane.

Rarefaction Wave Curves. Given a state (ρ−,m−), the i-centered rarefaction wave
curves Ri(ρ−,m−), i = 1, 2, are

Ri(ρ−,m−) : m−m− =
m−
ρ−

(ρ− ρ−) + (−1)iρ

∫ ρ

ρ−

√

p′(s)

s
ds,

(−1)i(ρ− ρ−) > 0.

Then the curves Ri, i = 1, 2, are concave and convex, respectively, in the ρ−m plane.

For the Riemann problem (1.14) and (6.21) satisfying (6.22) and (6.23), there exists a
unique, globally defined, piecewise smooth entropy solution R(x/t), which may contain the
vacuum states on the upper half-plane t > 0, satisfying

w1(R(x/t)) ≤ w1(uR), w2(R(x/t)) ≥ w2(uL), w1(R(x/t)) − w2(R(x/t)) ≥ 0.

These Riemann solutions can be constructed for the case: wi(uR) ≥ wi(uL), i = 1, 2, as
follows.

If ρL > 0 and ρR = 0, then there exists a unique vc such that

R(x/t) =











uL, x/t < λ1(uL),

V1(x/t), λ1(uL) ≤ x/t ≤ vc,

vacuum, x/t > vc,

where V1(ξ) is the solution of the boundary value problem

V′
1(ξ) = r1(V1(ξ)), ξ > λ1(uL); V1|ξ=λ1(uL) = uL. (6.27)

If ρL = 0 and ρR > 0, then there exists a unique ṽc such that

R(x/t) =











vacuum, x/t < ṽc,

V2(x/t), ṽc ≤ x/t ≤ λ2(uR),

uR, x/t > λ2(uR),
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where V2(ξ) is the solution of the boundary value problem

V′
2(ξ) = r2(V2(ξ)), ξ < λ2(uR); V2|ξ=λ2(uR) = uR. (6.28)

If ρL, ρR > 0, there are two subcases:
(a). There exist unique vc1 , vc2 , vc1 < vc2 , such that the Riemann solution has the form:

R(x/t) :=































uL, x/t < λ1(uL),

V1(x/t), λ1(uL) ≤ x/t ≤ vc1 ,

vacuum, vc1 < x/t < vc2 ,

V2(x/t), vc2 ≤ x/t ≤ λ2(uR),

uR, x/t > λ2(uR),

(6.29)

where V1(ξ) and V2(ξ) are the solutions of the boundary value problems (6.27) and (6.28),
respectively.

(b). There exists a unique uc = (ρc,mc), ρc > 0, such that the Riemann solution has the
form:

R(x/t) :=































uL, x/t < λ1(uL),

V1(x/t), λ1(uL) ≤ x/t ≤ λ1(uc),

uc, λ1(uc) < x/t < λ2(uc),

V2(x/t), λ2(uc) ≤ x/t ≤ λ2(uR),

uR, x/t > λ2(uR),

where V1(ξ) and V2(ξ) are the solutions of the boundary value problems (6.27) and (6.28),
respectively.

For the subcase (a), although the Riemann data are nonvacuum states at t = 0, the vac-
uum states occur in the Riemann solutions instantaneously as t becomes positive. Therefore,
the vacuum states are generic in inviscid compressible fluid flow (except the isothermal case).

Riemann solutions for the other cases can be constructed similarly. See Chang-Hsiao [33],
Dafermos [88], Serre [277], and Smoller [291] for the details.

Proposition 6.5. The regions
∑

(w0
1 , w

0
2) = {(ρ,m) : w1 ≤ w0

1, w2 ≥ w0
2 , w1 − w2 ≥ 0}

are invariant regions of the Riemann problem (1.14) and (6.21). That is, if the Riemann
data lie in

∑

(w0
1 , w

0
2), the solution of the Riemann problem also lies in

∑

(w0
1 , w

0
2).

This can be checked directly from the explicit formulas known for the Riemann solutions.

6.4. Non-Isentropic Euler Equations. For convenience, in this section we focus on
the non-isentropic Euler equations in (1.13), (1.6), and (1.7) in Lagrangian coordinates. We
first analyze the global behavior of shock curves in the phase space and the singularity of
centered rarefaction waves in the physical plane, and then construct global solutions of the
Riemann problem (6.1) for (1.13), (1.6), and (1.7). These are essential for determining the
uniqueness of Riemann solutions with arbitrarily large oscillation in §8.2.

Shock Curves. The Rankine-Hugoniot condition (6.7) for a discontinuity with speed σ
for (1.13) is

σ[v] = [p], σ[τ ] = −[v], σ[e+
1

2
v2] = [pv]. (6.30)

If σ = 0, then the discontinuity is a contact discontinuity which corresponds to the second
characteristic field.

If σ 6= 0, then the discontinuity is a shock, which corresponds to either the first or third
characteristic field.
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The Lax entropy inequality (6.8) and the Rankine-Hugoniot condition (6.30) imply that,
on a 1-shock,

[p] > 0, [τ ] < 0, [v] < 0,

and, on a 3-shock,

[p] < 0, [τ ] > 0, [v] < 0.

From (6.30), we have

e− e− +
1

2
(p+ p−)(τ − τ−) = 0. (6.31)

Set s = p
p−

. Then (6.31) becomes

pτ = p−τ−

(

1 − γ − 1

2
(s+ 1)(

τ

τ−
− 1)

)

,

which implies
τ

τ−
=

s+ β

βs+ 1
, with β =

γ + 1

γ − 1
. (6.32)

Note that

[v] = −σ[τ ] = −
√

−[p][τ ].

Then, denoting the sound speed by c, i.e., c =
√
γpτ , one has

v − v− = (−1)
i−1
2 c−

√

2

γ(γ − 1)

1 − s√
βs+ 1

. (6.33)

Let s = e−x. From (6.32) and (6.33), we obtain that the i-shock is determined by

p

p−
= e−x, (−1)

i−1
2 x ≤ 0, (6.34)

τ

τ−
=

1 + βex

β + ex
, (6.35)

v − v−
c−

= (−1)
i−1
2

√

2

γ(γ − 1)

1 − e−x
√

1 + βe−x
, (6.36)

with speed

σ = (−1)
i+1
2
c−
τ−

√

1 + βe−x

β + 1
. (6.37)

Now we choose the speed σ as a parameter for the shock curve, that is, x is a function of
σ: x = x(σ), and compute the derivatives of x(σ) in σ < 0 (1-shock) and in σ > 0 (3-shock).

We use the notations ′ = d
dx and ˙= d

dσ . Since

σ2 =
c2−
τ2
−

1 + βe−x(σ)

β + 1
, (6.38)

we take the derivative on both sides of (6.38) in σ and use (6.38) to deduce

ẋ(σ) = (−1)
i−1
2 2

β + 1

β

τ−
c−
ex(σ)

√

1 + βe−x(σ)

β + 1
.

We take the second-order derivative on both sides of (6.38) in σ to have

ẋ(σ)2 − ẍ(σ) =
β

2(β + ex(σ))
ẋ(σ)2 > 0.
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Then

ẍ(σ) =
ex(σ) + β/2

ex(σ) + β
ẋ(σ)2 > 0.

We take the third-order derivative on both sides of (6.38) in σ to have
...
x (σ) − 3ẋ(σ)ẍ(σ) + ẋ(σ)3 = 0.

On the other hand, we have from (6.34) that

p′ = −p, p′′ = p, p′′′ = −p,
and then

ṗ = −pẋ, p̈ = p((ẋ)2 − ẍ) > 0,
...
p = p(−(ẋ)3 + 3ẋẍ− ...

x ) = 0.

From (6.35), we similarly have

τ̇ = τ ′ẋ, τ̈ = 3τ ′((ẋ)2 − ẍ),
...
τ =

6βτ ′ẋ

β + ex
((ẋ)2 − ẍ).

Furthermore, we note that S
cv

= ln( 1
κpτ

γ). Then

Ṡ

cv
=
ṗ

p
+ γ

τ̇

τ
= − β(ex − 1)2ẋ

(β + ex)(1 + βex)
,

S̈

cv
=
p̈

p
− ṗ2

p2
+ γ

τ̈

τ
− γ

τ̇2

τ2
=

(ẋ)2

(β + ex)2(1 + βex)2
P (ex),

where

P (y) = β(y − 1)

(

−βy3 − (
3

2
β2 + β + 2)y2 − 1

2
(β2 + 5β)y +

β

2

)

, y > 0.

The following proposition is taken from Chen-Frid-Li [52].

Proposition 6.6. Along any shock curve, S = S(σ) satisfies

2Ṡ(σ) + σS̈(σ) ≤ 0.

Proof. This can be seen from a direct calculation, which yields

2Ṡ(σ) + σS̈(σ) =
cvẋ(σ)(1 − ex(σ))

(β + ex(σ))(1 + βex(σ))2
Q(ex(σ)),

while

Q(y) = −2βy3 − (β2 + 2β + 4)y2 − 3β(β + 1)y − β < 0.

Since ẋ(σ)(1 − ex(σ)) is always nonnegative, the result follows. �

Rarefaction Waves. Consider the self–similar solutions V(ξ) = (τ, v, e+ v
2 )(ξ), ξ = x/t,

of (1.13) with left state u− = (τ−, v−, e− +
v2−
2 ). Then we have











ξ = λi(V)(ξ), i = 1, 3,
dv
dξ + ξ dτdξ = 0,
de
dξ + pdτdξ = 0,

with boundary condition V|ξ=λi(u−) = u− and, on the i-centered rarefaction waves,

∂V

∂x
=

1

t

dV

dξ
=

1

t
ri(V(

x

t
)), i = 1, 3. (6.46)

In particular, we have
∂W

∂x
=

1

t
r̃i(W(

x

t
)), i = 1, 3, (6.47)
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where W = (τ, v, S) and r̃i =
2
√

−pv(v,S)

pvv(v,S) (
√

−pv(v, S), (−1)
i−1
2 , 0)⊤.

Similar to the argument for shocks, we can also obtain centered rarefaction wave curves
in the phase space for the first and third characteristic fields.

For a rarefaction wave V(x/t) with right state u+, denoting

wi = v + (−1)
i−1
2

∫ ∞

τ

√

−pτ (s, S±)ds, i = 1, 3,

with w1(u−) − w3(u+) > 0, one has
{

w1(u−) ≤ w1(V(x/t)) ≤ w1(u+), w3(u−) ≤ w3(V(x/t)) ≤ w3(u+),

w1(V(x/t)) − w3(V(x/t)) > 0, S(x/t) = S+ = S−.

These rarefaction waves are identical to those of the isentropic case with the 2-field in the
isentropic case corresponding to the 3-field in the non-isentropic case.

Solvability. For the Riemann problem (1.13) and (6.1), we have

Proposition 6.7. Given states WL = (vL, τL, SL) and WR = (vR, τR, SR), there exists a
unique global Riemann solution R(x/t) in the class of self-similar piecewise smooth solu-
tions consisting of shocks, rarefaction waves, and contact discontinuities, provided that the
Riemann data satisfy

vR − vL <
2

γ − 1
(c(τL, SL) + c(τR, SR)), (6.49)

where c(τ, S) = τ
√

−pτ (τ, S).

The proof of Proposition 6.7 can be found in [290, 291, 33]. The condition (6.49) is
necessary and sufficient for Riemann solutions staying away from the vacuum; without
this condition, Riemann solutions may contain δ-masses at the vacuum states and become
measure solutions (see Wagner [314] and Chen-Frid [51]).

7. Global Discontinuous Solutions II: Glimm Solutions

We now discuss the Glimm solutions that are the entropy solutions, obtained via the
Glimm random choice method, of the Cauchy problem for hyperbolic systems of conservation
laws, which apply to the Euler equations for compressible fluids. A related method, the
wave-front tracking algorithm, is also discussed.

7.1. The Glimm Scheme and Existence. We first discuss the Glimm scheme in [130]
which uses the solutions of the Riemann problem to construct a global entropy solution in
BV of the Cauchy problem (1.19) and (1.20) for hyperbolic systems of n conservation laws,
provided that u0(x) has small total variation on R. For the isothermal Euler equations, the
Glimm scheme yields a global entropy solution with initial data of arbitrarily large total
variation.

Glimm Scheme. Assume that System (1.19) is strictly hyperbolic and each characteris-
tic field is either genuinely nonlinear or linearly degenerate in a neighborhood of a constant
state ū. Denote by λ1(u) < · · · < λn(u) the eigenvalues of the Jacobian matrix ∇f(u). The
solution u(x, t) of the Cauchy problem is obtained as the limit of the approximate solutions
uh(x, t), when h→ 0, constructed by the Glimm scheme, as described below.

Fix h > 0, a space-step size, and determine the corresponding time-step size ∆t =
h/Λ satisfying the Courant-Friedrichs-Lewy condition, where Λ is an upper bound of the
characteristic speeds |λi|, i = 1, 2, · · · , n. Then we partition the upper half-plane R

2
+ :=

{(x, t) : x ∈ R, t ≥ 0} into the strips Sk = {(x, t) : x ∈ R, k∆t ≤ t < (k+ 1)∆t}, k ∈ Z+,
and identify the mesh points (jh, k∆t) with k ∈ Z+, j ∈ Z, and j + k even.
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Choose any random sequence of numbers a = {a0, a1, a2, · · · } ⊂ (−1, 1) which is equidis-
tributed in (−1, 1) in the following sense: for any subinterval I ⊂ (−1, 1) of length |I|,

lim
l→∞

2

l
Nl = |I|

uniformly with respect to I, where Nl is the number of indices k ≤ l with ak ∈ I. Set the
sampling points as P kj = ((j + ak)h, k∆t) with j + k odd.

Denote the approximate solution by uh(x, t). It is defined by induction on k = 0, 1, 2, · · ·
in each strip Sk. Define u0

j = u0((j + a0)h) and

ukj = uh((j + ak)h− 0, k∆t− 0)

for j + k odd and k ≥ 1. Set uh(x, k∆t) = ukj for x ∈ ((j − 1)h, (j + 1)h) with j + k odd.

Define the solution uh(x, t) for x ∈ [(j − 1)h, (j + 1)h], t ∈ [k∆t, (k + 1)∆t), j + k even, as
the solution of the Riemann problem of the system with initial data

u|t=k∆t =

{

ukj−1, x < jh,

ukj+1, x > jh.

Then uh(x, t) is well defined: it is the exact entropy solution in each strip Sk, it is continuous
at the interfaces x = jh, k∆t ≤ t < (k + 1)∆t with j + k odd, and it experiences jump
discontinuities across the lines t = k∆t, k = 0, 1, 2, · · · . The waves emanating from the
neighboring discontinuing mesh points (jh, k∆t) and ((j + 2)h, k∆t), j + k even, do not
intersect.

If it is proved that uh(x, t) is uniformly bounded in h in R
2
+, Λ can be chosen, and

the Glimm approximate solutions are constructed for all t ≥ 0. Then the limit of the
approximate solutions is the entropy solution of the Cauchy problem (1.19) and (1.20) as in
the following theorem.

Theorem 7.1. Assume that System (1.19) is strictly hyperbolic and each characteristic field
is either genuinely nonlinear or linearly degenerate in a neighborhood of a constant state ū.
Then there exist two positive constants δ1 and δ2 such that, for initial data u0 satisfying

‖u0 − ū‖L∞(R) ≤ δ1, TVR(u0) ≤ δ2, (7.1)

the Cauchy problem (1.19) and (1.20) has a global entropy solution u(x, t) for (x, t) ∈ R
2
+,

satisfying the entropy inequality (1.18) (d = 1) in the sense of distributions for any convex
entropy-entropy flux pair and

‖u(·, t) − ū‖L∞(R) ≤ C0‖u0 − ū‖L∞(R), for any t ∈ [0,∞), (7.2)

TVR(u(·, t)) ≤ C0TVR(u0), for any t ∈ [0,∞), (7.3)

‖u(·, t1) − u(·, t2)‖L1(R) ≤ C0|t1 − t2|TVR(u0), for any t1, t2 ∈ [0,∞), (7.4)

for some constant C0 > 0.

In order to show that the approximate solutions uh(x, t) converge to a solution of the
Cauchy problem (1.19) and (1.20), it is required to establish

(i) The compactness of the approximate solutions in order to ensure that a convergent
subsequence (still denoted by) uh(x, t) may be selected such that uh(x, t) → u(x, t), a.e. for
(x, t) ∈ R

2
+;

(ii) The consistency of the scheme in order to guarantee that the limit u(x, t) is indeed a
solution of the Cauchy problem (1.19) and (1.20).
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For the compactness of the Glimm approximate solutions under the assumption (7.1),
the following estimates can be established:

‖uh(·, t) − ū‖L∞(R) ≤ C0‖u0 − ū‖L∞(R), for any t ∈ [0,∞), (7.5)

TVR(uh(·, t)) ≤ C0 TVR(u0), for any t ∈ [0,∞), (7.6)

‖uh(·, t1) − uh(·, t2)‖L1(R) ≤ C0(|t1 − t2| + h)TVR(u0), for any t1, t2 ∈ [0,∞), (7.7)

for some constant C0 > 0. Estimate (7.5) guarantees that the approximate solutions uh(x, t)
can be constructed globally for all t over [0,∞) if δ1 in (7.1) is sufficiently small. These
compactness estimates imply that the family of approximate solutions uh(x, t) has uniformly
bounded variation and thus converges almost everywhere, by the Helly theorem, to a function
u(x, t) in BV. It can be shown that, for any equidistributed random sequence of numbers
a = {a0, a1, a2, · · · } ⊂ (−1, 1), the limit function u(x, t) is an entropy solution of the Cauchy
problem (1.19) and (1.20), which also satisfies the entropy condition.

For the compactness estimates, (7.7) is an immediate consequence of (7.6) since the
waves emanating from each mesh point propagate with speed not exceeding Λ. To establish
(7.6), one first notes that, for any t ∈ (k∆t, (k+ 1)∆t), TVR(u(·, t)) is constant and can be
measured by the sum of the strengths of waves that emanate from the mesh points (jh, k∆t)
with j + k even. To estimate how the sum of wave strengths changes from the strip Sk to
the strip Sk+1, consider the family of diamond shaped regions ♦jk, j + k odd, with vertices

P kj , P k+1
j+1 , P k+2

j , and P k+1
j−1 . A wave fan of n waves (ε1, · · · , εn) emanates from the mesh

point P k+1
j inside ♦jk. Through the side of ♦jk connecting the two vertices P kj and P k+1

j−1 ,

there crosses a fan of waves (α1, · · · , αn) which is part (possibly none or all, as some of the
components αi could be zero) of the wave fan emanating from the mesh point P kj−1, and

through the side of ♦jk connecting the two vertices P kj and P k+1
j+1 there crosses a fan of waves

(β1, · · · , βn) which is part (possibly none or all, as some of the components βi could be zero)
of the wave fan emanating from the mesh point P kj+1. Indeed, the wave fan (ε1, · · · , εn)
approximates the wave pattern that would have resulted if the wave fans (α1, · · · , αn) and
(β1, · · · , βn) had been allowed to propagate beyond t = (k+ 1)∆t and thus interact. It can
be shown that the strengths of incoming and outgoing waves are related by

n
∑

i=1

|εi| =
n
∑

i=1

(|αi| + |βi|) +O(Qjk) (7.8)

with Qjk =
∑

i,j{|αi||βj | : αi andβj interacting}. If the quadratic term Qjk were not

present, the total variation of uh(·, t), as measured by the strengths of waves, would not
increase from Sk to Sk+1.

The effect of the quadratic term can be controlled as follows. Consider the polygonal
curve Jk whose arcs connect nodes P kj , P k+1

j−1 , and P k+1
j+1 , j + k odd. Define the Glimm

functional associated with the curve Jk as

F(Jk) = L(Jk) +MQ(Jk), (7.9)

where

L(Jk) :=
∑

{|α| : any wave α crossingJk}
is the linear part measuring the total variation,

Q(Jk) :=
∑

{|α||β| : α, β interacting waves crossingJk}
is the quadratic part measuring the potential wave interaction, and M is a large positive
constant. The functional F(Jk) is well defined and essentially equivalent to TVR(uh(·, t))
for k∆t ≤ t < (k + 1)∆t. It can be shown from (7.8) that F(Jk) is nonincreasing in k as
long as the total variation remains small, which implies the estimate (7.6).
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For the details of the proof of Theorem 7.1, see Glimm [130] and Liu [211, 214]; also
see Dafermos [88], Serre [277], and Smoller [291]. For extensions of the Glimm scheme to
nonhomogeneous balance laws, see Dafermos-Hsiao [89], Liu [207], and Chen-Wagner [64].

The proof of Theorem 7.1 is based on the estimate showing that the effect of interactions
is of second-order for the general system of n conservation laws, that is, the change in
magnitude of waves due to interaction is of second-order in the magnitude of waves before
interaction. For a system of two conservation laws, there exists a coordinate system of
Riemann invariants, and the effect of interaction is of third-order, that is, the system is
uncoupled modulo the third-order of the total variation of the solution. Therefore, Theorem
7.1 holds for the initial data of small oscillation but of larger total variation in the case of
two conservation laws. This, in particular, applies to the isentropic Euler equations in (1.14)
and (1.15). For the isothermal Euler equations, γ = 1, the condition of small oscillation can
also be removed.

Isothermal Gas Dynamics. For the Euler equations for isothermal gas dynamics,
global entropy solutions can be constructed by the Glimm scheme with any large initial
data of bounded variation due to the special structure of the wave curves (6.12).

For (1.15) in Lagrangian coordinates, the one-dimensional isothermal motion of gases has
the equation of state (6.9). Consider the Cauchy problem of (1.15) and (6.9) for x ∈ R and
t ≥ 0 with initial data:

(τ, v)|t=0 = (τ0, v0)(x), x ∈ R. (7.10)

Then we have the following theorem due to Nishida [242].

Theorem 7.2. Suppose that τ0(x) and v0(x) are bounded functions with bounded variation
over R and infx∈R τ0(x) > 0. Then the Cauchy problem (1.15), (6.9), and (7.10) has a
global entropy solution (τ, v)(x, t) with bounded total variation in x ∈ R for any t ≥ 0.

Proof. The solution (τ, v)(x, t) in Theorem 7.2 is obtained as the limit of the approximate
solutions (τh, vh)(x, t) constructed by the Glimm scheme as in Theorem 7.1. In order to
prove Theorem 7.2, it suffices to show that there exists a constant C0 > 0 such that

TVR(τh, vh)(·, t) ≤ C0TVR(τ0, v0). (7.11)

To establish the compactness estimate (7.11), one needs to use the special structure of
the wave curves of (1.15) and (6.9), established in §6.2, and show that the linear part L of
the Glimm functional is decreasing. To see this, we first notice that the Riemann solution of
(1.15), (6.9), and (6.10) has three constant states (τi, vi), i = 1, 2, 3, connected by two of the
elementary waves: 1-wave (S1 wave or R1 wave) and 2-wave (S2 wave or R2 wave). Denote
these two waves by a vector α = (α1, α2), and denote the strength of i-wave, i = 1, 2, by
|α1| = |q2 − q1|, |α2| = |q3 − q2|, and |α| = |α1| + |α2|.

The approximate solutions (τh, vh) will be estimated along the piecewise linear curves J
defined as follows. Let the curve J0 be composed of the all segments joining P 0

j to P 1
j+1 and

P 1
j+1 to P 0

j+2 for all odd j. An immediate successor curve J2 of curve J1 is composed of the

same line segments except two segments joining P kj to P k−1
j+1 and P k−1

j+1 to P kj+2, which are

replaced by those joining P kj to P k+1
j+1 and P k+1

j+1 to P kj+2. Then all curves J are obtained
by taking successively immediate successors, starting out from the curve J0. Define the
functional L(J) on the approximate solutions restricted to each curve J by

L(J) =
∑

|α|,

where the summation is taken over all vectors of two elementary waves α = (α1, α2) in the
approximate solutions crossing the curve J . If J2 is an immediate successor of the curve J1,
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Proposition 6.4 (i.e. (6.17)) implies L(J2) ≤ L(J1). By induction, L(J) ≤ L(J0) for any
curve J , which implies

TVR(qh(·, t)) ≤ TVR(q0)

for any t ≥ 0, with q0(x) = ln τ0(x), and thus |qh(x, t)| ≤ K for some positive constant K,
since τ0(x) ∈ L∞(R). Then

TVR(τh(·, t)) ≤ C1TVR(qh(·, t)) ≤ C1TVR(q0),

and one has

TVR(vh(·, t)) ≤ C2TVR(qh(·, t)) ≤ C2TVR(q0),

from the equations of elementary wave curves (6.12) and |W ′(s)| ≤ C2 for |s| ≤ K. There-
fore,

TVR(τh, vh)(·, t) ≤ C3TVR(q0) ≤ C0TVR(τ0, v0).

This completes the proof of Theorem 7.2. �

Theorem 7.2 was originally established by Nishida [242]. For extensions to other isother-
mal flows, see [258] for the Euler-Poisson flow and [224] for the spherically symmetric Euler
flow.

For non-isentropic gas dynamics (1.13), consider the following Cauchy problem:

(τ, v, S)|t=0 = (τ0, v0, S0)(x). (7.12)

The following existence theorem is due to Liu [212] (also see Temple [302]).

Theorem 7.3. Let K ⊂ {(τ, v, S) : τ > 0} be a compact set in R+ × R
2, and let N ≥ 1

be any positive constant. Then there exists a constant C0 = C0(K,N), independent of
γ ∈ (1, 5/3], such that, for every initial data (τ0, v0, S0)(x) ∈ K with TVR(τ0, v0, S0) ≤ N ,
when

(γ − 1)TVR(τ0, v0, S0) ≤ C0, (7.13)

for any γ ∈ (1, 5/3], the Cauchy problem (1.13) and (7.12) has a global entropy solution
(τ, v, S)(x, t) which is bounded and satisfies

TVR(τ, v, S)(·, t) ≤ C TVR(τ0, v0, S0),

for some constant C > 0 independent of γ.

For the isentropic case: S = constant, the existence result of Theorem 7.3 was proved
in Nishida-Smoller [245] (also see DiPerna [99]). For extensions to the initial-boundary
value problems, see [246, 213]. A similar theorem to Theorem 7.3, for general pressure
law, was established in Temple [302]. In the direction of relaxing the requirement of small
total variation, see Peng [253], Temple-Young [303, 304], and Schochet [269]. For additional
further discussions and references to the Glimm scheme, see Dafermos [88] and Serre [277].

7.2. Decay of Solutions. In this section we discuss the decay properties of Glimm
solutions in BV of hyperbolic systems of conservation laws (1.19).

Any system of two conservation laws (1.19) (n = 2) is endowed with a coordinate system
(w1, w2) of Riemann invariants corresponding to the two eigenvalues λ1 and λ2. The system
is genuinely nonlinear if ∂wiλi 6= 0, i = 1, 2. The isentropic Euler equations staying away
from the vacuum are an important example of a 2 × 2 genuinely nonlinear and strictly
hyperbolic system. We focus our attention on the decay properties of Glimm solutions
with large total variation for genuinely nonlinear and strictly hyperbolic systems of two
conservation laws, which are valid, in particular, for the isentropic Euler equations away
from the vacuum.

First, for the Glimm solution u(x, t) of (1.19), one has the following decay law:

TVR(u(·, t)) ≤ Ct−1/2, (7.14)
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for some constant C > 0, which holds for any genuinely nonlinear system of two conservation
laws with initial data of small oscillation (see Glimm-Lax [133]) and of n conservation laws
with initial data of small total variation (see Liu [204]). DiPerna also proved in [103] that
the total variation decays to zero, with no rate of convergence, for a more general system
of n conservation laws which admits linearly degenerate characteristic fields such as the
non-isentropic Euler equations staying away from the vacuum (n = 3).

For any genuinely nonlinear and strictly hyperbolic system of two conservation laws, the
Glimm solution with periodic initial data decays to the mean-value of the initial data over
the period, and with initial data of compact support decays to an N-wave.

Periodic Solutions. First we consider Glimm solutions of the system of two conservation
laws (1.19) with periodic initial data. The following fundamental decay behavior is due to
Glimm and Lax [133].

Theorem 7.4. For the genuinely nonlinear and strictly hyperbolic system of two conserva-
tion laws (1.19) with n = 2, if the initial data u0 ∈ L∞(R) have small oscillation and are
periodic with period L, then there exists a solution u(x, t) which is periodic with respect to
x with period L for all t > 0 and satisfies

TV[x,x+L](u(·, t)) ≤ CL

t
, for any x ∈ R, (7.15)

|u(x, t) − ū| ≤ CL

t
, (7.16)

where ū is the mean-value of u0(x) over the space period and C > 0 is some constant.

To illustrate the ideas involved in the proof of this theorem, we first consider the scalar
conservation law ([133, 180]):

∂tu+ ∂xf(u) = 0, (7.17)

where f(u) is strictly convex, f ′′(u) ≥ c0 > 0, and thus f ′(u) is strictly monotone increasing.
Any differentiable solution u(x, t) is constant along the characteristic x = x(t) defined by

dx

dt
= f ′(u(x, t)). (7.18)

The characteristics are straight lines and generally intersect. At a point of intersection, the
solution becomes discontinuous. Along the curve of discontinuity with propagation speed
σ, the Lax entropy condition

f ′(u−) > σ > f ′(u+) (7.19)

is satisfied, which implies that
u− > u+, (7.20)

since f ′(u) is increasing, where u− and u+ are the values of the solution u(x, t) on the
left-side and right-side of curve of discontinuity, respectively.

Let x1(t) and x2(t) be a pair of characteristics for 0 ≤ t ≤ T . Then there is a whole
one-parameter family of characteristics connecting the points of the interval [x1(0), x2(0)]
at t = 0 with points of the interval [x1(T ), x2(T )] at t = T . Since u(x, t) is constant
along these characteristics, u(x, 0) on the interval [x1(0), x2(0)] and u(x, T ) on the interval
[x1(T ), x2(T )] are equivariant, i.e., they take on the same values in the same order, and thus
the total increasing and decreasing variations of u(x, t) on these two intervals are the same.
Denote by D(t) = x2(t) − x1(t) > 0 the width of the strip bounded by x1 and x2. Then,
from (7.18), D′(t) = f ′(u2)− f ′(u1), where u1 and u2 are constant along the characteristics
x1(t) and x2(t), respectively, and

D(T ) = D(0) + (f ′(u2) − f ′(u1))T. (7.21)

Suppose that there is a shock y present in u(x, t) between the characteristics x1 and x2.
Since the characteristics on either side of a shock run into the shock according to (7.19),
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for any given time T , there exist two characteristics y1 and y2 intersecting the shock y
at exactly time T . Assume that there are no other shocks present. Then the increasing
variations of u(x, t) on the intervals (x1(t), y1(t)) and (x2(t), y2(t)) are independent of t.
From (7.20), u(x, t) decreases across shocks, and then the increasing variation of u(x, t) over
[x1(T ), x2(T )] equals the sum of the increasing variations of u(x, t) over [x1(0), y1(0)] and
over [y2(0), x2(0)]. This sum is in general less than the increasing variation of u(x, t) over
[x1(0), x2(0)]. Thus, if shocks are present, the total increasing variation of u(x, t) between
two characteristics decreases with time.

To give a quantitative estimate of this decrease, we assume for simplicity that u0(x) is
piecewise monotone. Let I0 be any interval of the x-axis. Subdivide it into subintervals
[yj−1, yj], j = 1, · · · , N , in such a way that u(x, 0) is alternatively increasing and decreasing
on the subintervals. Denote by yj(t) the characteristic issuing from the jth point yj with
the understanding that, if yj(t) runs into a shock, yj(t) is continued as that shock. Then,
for all t > 0, u(x, t) is alternately increasing and decreasing on the intervals (yj−1(t), yj(t)),
i.e., increasing for j odd and decreasing for j even. Since f ′(u) is an increasing function and
u(x, t) decreases across shocks, the total increasing variation TV+(T ) of f ′(u(x, t)) across
the interval I(T ) = [y0(T ), yN (T )] is

TV+(T ) =
∑

j odd

(f ′(uj(T )) − f ′(uj−1(T ))) , (7.22)

where uj−1(T ) = u(yj−1(T )+, T ) and uj(T ) = u(yj(T )−, T ). Denote, as before, by xj−1(t),
xj(t) the characteristics starting out inside yj−1, yj, which intersect yj−1(t), yj(t), re-
spectively, at t = T . Then uj(t) is the constant value of u(x, t) on xj(t). Set Dj(t) =
xj(t) − xj−1(t). Then, by (7.21),

Dj(T ) = Dj(0) + (f ′(uj(T )) − f ′(uj−1(T )))T.

Take the sum over odd j to get, from (7.22),
∑

j odd

Dj(T ) =
∑

j odd

Dj(0) + TV+(T )T. (7.23)

Since the intervals [xj−1(T ), xj(T )] are disjoint and lie in I(T ), their total length cannot
exceed the length |I(T )| of I(T ), and then

TV+(T ) ≤ |I(T )|
T

. (7.24)

Suppose that the solution u(x, t) is periodic in x with period L. Take I0 to be an interval
of length L, then I(t) has length L for all t > 0. From the strict convexity f ′′(u) > c0 >
0, (7.24) implies that the increasing variation per period of u(x, t) itself does not exceed
L(c0T )−1. Since u(x, t) is periodic, its decreasing and increasing variations are equal and
serve as a bound for the oscillation of u(x, t), especially for the deviation of u(x, t) from

its mean-value over period ū = 1
L

∫ L

0 u(x, t)dx. Therefore, the total variation of u(x, t) per

period at time t does not exceed 2L(c0T )−1 and |u(x, t) − ū| ≤ (c0T )−1.
To generalize this idea to a system of two conservation laws, we first note that there

exist Riemann invariants w1 and w2 which are functions of u(x, t) and satisfy the following
equations:

∂twi + λj∂xwi = 0, i 6= j,

where λi, i = 1, 2, are the eigenvalues of System (1.19) with n = 2 which can be considered as
functions of the Riemann invariants w = (w1, w2). Along 1-characteristics: dx/dt = λ1 and
along 2-characteristics: dx/dt = λ2, w2 and w1 are constant, respectively. If xj(t), j = 1, 2,
are two 1-characteristics, dxj/dt = λ1,j , then u(x, 0) along the interval [x1(0), x2(0)] and
u(x, T ) along the interval [x1(T ), x2(T )] are equivariant. The 1-characteristics are no longer
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straight lines, but in general they intersect if the system is genuinely nonlinear. The 1-shocks
satisfy the following Lax entropy condition:

λ1(u−) > σ > λ1(u+),

which is the analogue of the condition (7.19) and implies that 1-characteristics drawn in the
direction of increasing time t run into 1-shocks. Thus, as before, the presence of the 1-shocks
decreases the total variation of w2. Similarly, the presence of the 2-shocks decreases the total
variation of w1. To estimate the decrease of the total variation of w1, the effect of 1-shocks
on the total variation of w1 has to be considered. It is known that, across weak 1-shocks,
∆w1 is proportional to (∆w2)

3, where ∆wj , j = 1, 2, denote the change in wj , j = 1, 2,
respectively. Then the change in total variation of w1 due to 1-shocks does not exceed
O(ǫ)TV(u0)

2, where ǫ is the oscillation of the solution. The width D(t) = x2(t) − x1(t) of
a strip bounded by 1-characteristics xj(t), j = 1, 2, satisfies

D′(t) = λ1,2 − λ1,1 = ∂w1λ1(w1,2 − w1,1) + ∂w2λ1(w2,2 − w2,1),

according to the mean-value theorem, where λi,j := λi(w(xj(t), t)) and wi,j := wi(xj(t), t).

If the oscillation ǫ of the solution is small, then ∂wjλ1 = O(ǫ), j = 1, 2. The quantities
w2,j , j = 1, 2, are independent of t, but w1,j , j = 1, 2, are not. This difficulty can be
overcome by measuring the width of the strip, bounded by the 1-characteristics not between
points with the same t coordinates but between points which lie approximately on the same
2-characteristics. Since w1 is constant along 2-characteristics, w1,2 − w1,1 is small in the
above equation on D(t). After constructing approximate characteristics, one can derive the
approximate conservation laws of the increasing and decreasing variations of wj , j = 1, 2,
which are formulated as a balance between the amount of shock wave and rarefaction wave
of either family entering and leaving a region, the amount of rarefaction and shock wave of
the same family cancelling each other in the region, and a correction term accounting for
the interaction between waves belonging to different families. Finally, the inequalities for
the variations of wj , j = 1, 2, can be obtained by passage to the limit. See Glimm-Lax [133]
for the details of proof.

N-waves. Now we consider the Glimm solutions of System (1.19) with initial data sup-
ported on a compact set, i.e.,

u0(x) = 0, if |x| > R, (7.25)

for some constant R > 0. The solution may decay to an N-wave. In the case of scalar
conservation laws, the solution with initial data of compact support approaches an N-wave
in L1 as t → ∞; see Lax [177], DiPerna [101], and Dafermos [88], as well as a different
proof of this result by Keyfitz [259] for piecewise smooth solutions. An N-wave consists of a
rarefaction wave bracketed by two shock waves. It propagates at a constant speed while its
support expands at the rate t1/2. The L∞-norm of an N-wave decays at the rate t−1/2, but
its L1-norm remains constant with time. For systems of n conservation laws, it has been
conjectured by Lax [177] that, if the initial data have compact support, then the asymptotic
form of the solution consists of n distinct N-waves, each propagating at one of the n distinct
characteristic speeds λi(0) of zero state. This conjecture has been proved for the case of
two conservation laws (n = 2) with initial data of large total variation (DiPerna [101]) and
for the the case of n conservation laws with initial data of small total variation (Liu [204]).
The primary mechanisms of decay of solutions are the spreading of rarefaction waves and
the cancellation of shock and rarefaction waves of the same kind.

For a genuinely nonlinear and strictly hyperbolic system of two conservation laws with
the eigenvalues λi and the Riemann invariants wi, satisfying ∂wiλi 6= 0, i = 1, 2, define the
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N-waves:

Ni(x, t; pi, qi) =

{

1
ki

(

x
t − λi(0, 0)

)

, −(pikit)
1/2 < x− λi(0, 0)t < (qikit)

1/2,

0, otherwise,

for ki = ∂wiλi(0, 0) and some constants pi, qi > 0, i = 1, 2. One has the following decay
behavior in L1 due to DiPerna [101].

Theorem 7.5. For the genuinely nonlinear and strictly hyperbolic system of two conserva-
tion laws (1.19) with n = 2, if the initial data u0(x) ∈ L∞(R) have small oscillations and
compact support, then there exist positive constants pi and qi such that

‖wi(·, t) −Ni(·, t; pi, qi)‖L1(R) ≤ Ct−1/6, i = 1, 2,

for some constant C > 0.

For the BV solutions constructed by the Glimm scheme to any genuinely nonlinear and
strictly hyperbolic system of n conservation laws with initial data of small total variation,
Liu proved in [204] that the solution also decays to the N-waves at the rate t−1/6 if the
initial data have compact support; the generalization of this result to systems with linearly
degenerate characteristic fields was given in Liu [205].

Decay properties for general BV solutions to systems of two conservation laws were ob-
tained by Dafermos [88] by using the theory of generalized characteristics under the as-
sumption that the traces of the solutions along any space-like curve are functions of locally
bounded variation (see §8.1). See also Greenberg [143] on the decay of special solutions for
a class of two conservation laws generated by a second-order wave equation, and Greenberg-
Rascle [144] for an interesting example of periodic solutions in both space and time when
the flux-function is C1 but not C2. For periodic entropy solutions only in L∞, an analytical
framework has been established in Chen-Frid [46] (also see §9.6).

7.3. L1-Stability of Glimm Solutions. We now discuss the stability of solutions to the
Cauchy problem (1.19) and (1.20). The existence proof in Theorem 7.1 based on compact-
ness arguments does not provide information on this issue. By monitoring the time evolution
of a certain functional, it can be shown that the Glimm solutions depend continuously on
their initial data.

Let u(x, t) and v(x, t) be two approximate solutions of (1.19) constructed by the Glimm
scheme, with small total variation. As in Theorem 7.1, it is assumed that System (1.19)
is strictly hyperbolic and each characteristic field is either genuinely nonlinear or linearly
degenerate. We discuss how the distance ‖u(·, t)− v(·, t)‖L1(R) changes in time. Denote by

s 7→ Ri(s)(u−), s 7→ Si(s)(u−), i = 1, · · · , n, (7.26)

the i-rarefaction and i-shock curve of (1.19) through the state u−, parametrized by arc-
length, and set

Υi(s)(u−) =

{

Ri(s)(u−), s ≥ 0,

Si(s)(u−), s < 0.
(7.27)

For any fixed point (x, t), consider the scalar function qi(x, t), which can be regarded intu-
itively as the strength of the i-shock wave in the jump (u(x, t),v(x, t)), defined implicitly
by

v(x, t) = Sn(qn(x, t)) ◦ · · · ◦ S1(q1(x, t))(u(x, t)). (7.28)

It is clear that

C−1
1 |u(x, t) − v(x, t)| ≤

n
∑

i=1

|qi(x, t)| ≤ C1|u(x, t) − v(x, t)| (7.29)
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for some constant C1 > 0. For each i = 1, · · · , n, define

Wi(x, t) =
(

∑

−
+
∑

+
+
∑

0

)

(|α(u(x, t))| + |α(v(x, t))|). (7.30)

In (7.30),
∑

− sums the strengths |α(u(x, t))| (and |α(v(x, t))|) of all kα-waves xα(t) < x of
u(x, t) (and v(x, t)) with i < kα ≤ n, respectively;

∑

+ sums the strengths |α(u(x, t))| (and
|α(v(x, t))|) of all kα-waves xα > x of u(x, t) (and v(x, t)) with 1 ≤ kα < i, respectively;
and

∑

0 sums the strengths |α(u(x, t))| (and |α(v(x, t))|) of all i-waves, here kα = i, with
xα < x (and xα > x) of u(x, t) (and v(x, t) if qi(x, t) < 0, or with xα > x (and xα < x)
of u(x, t) (and v(x, t)) if qi(x, t) > 0, respectively. Define a functional, equivalent to the L1

distance of u(x, t) and v(x, t), as

Φ(u,v)(t) =
n
∑

i=1

∫

R

|qi(x, t)|(1 +K1(Fu(nN∆t) + Fv(nN∆t)) +K2Wi(x, t))dx,

for each t ∈ (nN∆t, (n+1)N∆t), where K1 and K2 are sufficiently large positive constants,
N is a constant in the wave tracing method, Fu and Fv are the Glimm functionals defined in
(7.9) for u(x, t) and v(x, t), respectively, valued at the end time t = nN∆t. The definition
of this functional is given by Liu-Yang [215], and is similar to those used in Bressan-Liu-
Yang [25] and Hu-LeFloch [155] for the solutions constructed by the wave-front tracking
algorithm. The key estimate is that the functional Φ(u,v)(t) can be controlled by its initial
value Φ(u,v)(0), up to a certain error term which approaches zero as the mesh size tends
to zero. From Theorem 7.1, there exist subsequences of the approximate solutions which
converge to the exact Glimm solutions, locally in the L1 norm. Therefore, one has the
following theorem on the L1-stability of Glimm solutions to the Cauchy problem of the
genuinely nonlinear and strictly hyperbolic system (1.19) with initial data (1.20):

Theorem 7.6. If the initial data u0(x) and v0(x) have sufficiently small total variation
and u0 − v0 ∈ L1(R), then, for the corresponding exact Glimm solutions u(x, t) and v(x, t)
of the Cauchy problem (1.19) and (1.20), there exists a constant C > 0 such that

‖u(·, t) − v(·, t)‖L1(R) ≤ C‖u0 − v0‖L1(R), (7.31)

for all t > 0.

An immediate consequence of this theorem is that the whole sequence of the approximate
solutions constructed by the Glimm scheme converges to a unique entropy solution of (1.19)
and (1.20) as the mesh size tends to zero. See also Bressan [19] for the uniqueness of limits
of Glimm’s random choice method.

The details of the proof of Theorem 7.6 can be found in Liu-Yang [215, 216, 217].

7.4. Wave-Front Tracking Algorithm and L1-Stability. Assume that System (1.19)
is strictly hyperbolic, with eigenvalues λ1(u) < · · · < λn(u), and each characteristic field
is either genuinely nonlinear or linearly degenerate. The Glimm scheme has been the basic
tool for the construction and analysis of entropy solutions to systems of conservation laws.
An alternative method for constructing approximate solutions is the wave-front tracking
algorithm, which generates entropy solutions of the Cauchy problem (1.19) and (1.20) with
initial data of small total variation and provides an alternative proof of Theorem 7.1.

The entropy solutions of (1.19) and (1.20) obtained by the wave-front tracking algorithm,
the same as those obtained by the Glimm scheme, are L1-stable, i.e., the solutions depend
Lipschitz continuously on the initial data in the L1 norm, based on a priori estimates on
the distance between two approximate solutions.

Wave-Front Tracking Algorithm. The wave-front tracking algorithm generates piece-
wise constant approximate solutions of the Cauchy problem (1.19) and (1.20). A wave-
front tracking ǫ-approximate solution is, roughly speaking, a piecewise constant function
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u = u(x, t) whose jumps occur along finitely many segments x = xα(t) in the x-t plane and
can be classified as shocks, rarefactions, and non-physical waves. At each time t > 0, these
jumps should approximately satisfy the Rankine-Hugoniot condition:

∑

α

|x′α(t)(u(xα+, t) − u(xα−, t)) − (f(u(xα+, t)) − f(u(xα−, t)))| = O(ǫ),

as well as the following condition:
∑

α

{(q(u(xα+, t)) − q(u(xα−, t))) − x′α(t)(η(u(xα+, t)) − η(u(xα−, t)))} ≤ O(ǫ),

for any entropy-entropy flux pair (η, q) with convex η. The small parameter ǫ controls three
types of errors: errors in the speeds of shock and rarefaction fronts, the maximum strength
of rarefaction fronts, and the total strength of all non-physical waves. The notations in
(7.26) and (7.27) will be adopted in this section.

Definition 7.1. Given ǫ > 0, a function u : [0,∞) → L1(R; Rn) is called an ǫ-approximate
solution of the Cauchy problem (1.19) and (1.20) if the following conditions are satisfied:

(1). The function u(x, t) is piecewise constant with discontinuities along finitely many
lines in the x-t plane. The step function u(x, 0) of the approximate solution u(x, t)
at t = 0 approximates the initial data u0(x) in L1 within distance ǫ:

‖u(·, 0) − u0(·)‖L1 < ǫ. (7.32)

Only finitely many wave-front interactions occur, each involving exactly two in-
coming fronts. Jumps can be of three types: shocks (or contact discontinuities),
rarefaction waves, and non-physical waves.

(2). Along each shock (or contact discontinuity) x = xα(t), the values u± = u(xα±, t)
are related by u+ = Skα(sα)(u−) for some kα ∈ {1, · · · , n} and some wave size sα
satisfying sα < 0 if the kα-th characteristic field is genuinely nonlinear. Moreover,
the speed of the shock front σ(u+,u−) with left and right states u± satisfies

|x′α(t) − σ(u+,u−)| ≤ ǫ.

(3). Along each rarefaction front x = xα(t), one has u+ = Rkα(sα)(u−) with sα ∈ (0, ǫ]
and |x′α(t) − λkα(u+)| ≤ ǫ, for some genuinely nonlinear field kα.

(4). All non-physical fronts x = xα(t) have the same speed x′α(t) = λ̄, where λ̄ is a
fixed constant strictly greater than all characteristic speeds. The total strength of all
non-physical fronts in u(x, t) remains uniformly small in the sense:

∑

|u(xα+, t) − u(xα−, t)| ≤ ǫ

for all t ≥ 0, where the sum is taken over all non-physical fronts.

The algorithm for constructing these wave-front tracking approximations is described
below. The basic ideas were introduced in Dafermos [80] for scalar conservation laws and
DiPerna [102] for 2× 2 systems, then extended in Bressan [18] to general n×n systems (see
also Risebro [266]).

The construction starts at time t = 0 by taking a piecewise constant function u(x, 0)
approximating u0(x) satisfying (7.32) and TV(u(·, 0)) ≤ TV(u0). Let x1 < · · · < xN be
the points where u(·, 0) is discontinuous. For each α = 1, · · · , N , the Riemann problem
generated by the jump u(xα±, 0) is approximately solved on a forward neighborhood of
(xα, 0) in the x-t plane by a function of the form u(x, t) = φ((x − xα)/t) with φ : R → R

n

piecewise constant. More precisely, if the exact solution of the Riemann problem contains
only shocks and contact discontinuities, then we let u(x, t) be the exact solution which is
piecewise constant. If centered rarefaction waves are present, they are approximated by
a centered rarefaction fan containing several small jumps traveling with a speed close to
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the characteristic speed. Suppose that the first set of interactions between two or more
wave-fronts occurs at a time t1. Since u(·, t1) is still a piecewise constant function, the
corresponding Riemann problems can again be approximately solved within the class of
piecewise constant functions. The solution u(x, t) is then continued up to a time t2, where
the second set of wave interactions takes place, etc.

However, it is observed that, at a generic interaction point, there will be two incoming
fronts, while the number of outgoing fronts is n if all waves generated by the Riemann
problem are shocks or contact discontinuities, or even larger if rarefaction waves are present.
In turn, these outgoing wave-fronts may quickly interact with several other fronts, generating
more and more lines of discontinuity. Therefore, for general n × n systems, the number
of wave-fronts may approach infinity in a finite time, which causes the breakdown of the
construction.

To avoid this breakdown, the algorithm must be modified, which can be achieved by
using two different procedures for solving a Riemann problem within the class of piecewise
constant functions: (1) an accurate Riemann solver which introduces several new wave-
fronts; and (2) a simplified Riemann solver which involves a minimum number of outgoing
fronts. Although the number of wave-fronts could approach infinity within a finite time if all
Riemann problems were solved accurately, the new fronts generated by further interactions
are very small since the total variation remains small. When their size becomes smaller
than a threshold parameter ν > 0, a simplified Riemann solver is used, which generates one
single new non-physical front with very small amplitude and traveling with a fixed speed λ̄
strictly larger than all characteristic speeds, that is, all new waves are lumped together in
a single non-physical front. The total number of fronts thus remains bounded for all times.
We now describe these two procedures which will be used to solve the Riemann problem of
(1.19) and (1.20) at a given point (x̄, t̄) with

u(x, t̄) =

{

u−, x < x̄,

u+, x > x̄.
(7.33)

The accurate Riemann solver is as follows. Given u− and u+ in (7.33), one first de-
termines the states u0,u1, · · · ,un and parameter values s1, · · · , sn such that, using the
notations in (7.26) and (7.27),

u0 = u−, un = u+, ui = Υi(si)(ui−1), i = 1, · · · , n.
These states u0,u1, · · · ,un are the constant states present in the exact solution of the
Riemann problem. If all jumps (ui−1,ui) were shocks or contact discontinuities, then the
Riemann problem would have a piecewise constant solution with at most n lines of discon-
tinuity. In the general case, the exact solution of (7.33) is not piecewise constant because
of the presence of rarefaction waves. These will be approximated by piecewise constant rar-
efaction fans, inserting additional states ui,j as follows. Let δ > 0 be a fixed small constant.
If the i-th characteristic field is genuinely nonlinear and si > 0, consider the integer

Ni = 1 + [si/δ], (7.34)

where [si/δ] denotes the largest integer less than or equal to si/δ. For j = 1, · · · , Ni, define

ui,j = Υi(jsi/Ni)(ui−1), xi,j(t) = x̄+ (t− t̄)λi(ui,j).

If the i-th characteristic field is genuinely nonlinear and si ≤ 0, or if the i-th characteristic
field is linearly degenerate (with si arbitrary), define Ni = 1 and

ui,1 = ui, xi,1(t) = x̄+ (t− t̄)σi(ui−1,ui),

with σi(ui−1,ui) the Rankine-Hugoniot speed of a jump connecting ui−1 with ui so that
σi(ui−1,ui)(ui − ui−1) = f(ui) − f(ui−1). Then, define an approximate solution to the
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Riemann problem (7.33) as

u(x, t) =



















u−, x < x1,1(t),

ui,j , xi,j(t) < x < xi,j+1(t), j = 1, · · · , Ni − 1,

ui, xi,Ni(t) < x < xi+1,1(t),

u+, x > xn,Nn(t).

(7.35)

Thus each centered i-rarefaction wave is here divided into Ni − 1 equal parts and replaced
by a rarefaction fan containing Ni wave-fronts. The strength of each one of these fronts is
less than δ because of (7.34).

The simplified Riemann solver is as follows. The first case is that i1 and i2 are the families
of two incoming wave-fronts with i1 ≥ i2, i1, i2 ∈ {1, · · · , n}. In this case, let uL,uM , and
uR be the left, middle, and right states before the interaction, related by

uM = Υi1(s1)(uL), uR = Υi2(s2)(uM ).

Define the auxiliary right state:

ũR =

{

Υi1(s1) ◦ Υi2(s2)(uL), i1 > i2,

Υi1(s1 + s2)(uR), i1 = i2.
(7.36)

Let ũ(x, t) be the piecewise constant solution of the Riemann problem with data uL, uR,
constructed as in (7.35). Because of (7.36), the piecewise constant function ũ(x, t) contains
exactly two wave-fronts of size s1, s2, if i1 > i2, or a single wave-front of size s1 + s2 if
i1 = i2. In general, ũR 6= uR. Let the jump (ũR,uR) travel with a fixed speed λ̄ strictly
bigger than all characteristic speeds. In a forward neighborhood of the point (x̄, t̄), we thus
define an approximate solution u(x, t) as

u(x, t) =

{

ũ(x, t), x− x̄ < λ̄(t− t̄),

uR, x− x̄ > λ̄(t− t̄).
(7.37)

This simplified Riemann solver introduces a new non-physical wave-front, traveling with
constant speed λ̄. In turn, this front may interact with other (physical) fronts. One more
case of interaction thus needs to be considered, that is, a non-physical front hits a wave-front
of the i-characteristic field for some i ∈ {1, · · · , n} from the left. Let uL,uM , and uR be
the left, middle, and right states before the interaction. If uR = Υi(s)(uM ), define

ũR = Υi(s)(uL). (7.38)

Let ũ(x, t) be the solution to the Riemann problem with data uL and ũR, constructed as
in (7.35). Because of (7.38), ũ(x, t) will contain a single wave-front belonging to the i-th
field with size s. Since in general ũR 6= uR, we let the jump (ũR,uR) travel with the fixed
speed λ̄. In a forward neighborhood of the point (x̄, t̄), the approximate solution u(x, t) is
thus defined again according to (7.37). By construction, all non-physical fronts travel with
the same speed λ̄. The above cases therefore cover all possible interactions between two
wave-fronts.

A threshold parameter ν > 0 is used to determine which Riemann solver is used at any
given interaction. The accurate method is used at time t = 0 and at every interaction where
the product of the strengths of the incoming waves is |s1s2| ≥ ν; while the simplified method
is used at every interaction involving a non-physical wave-front and also at interactions with
|s1s2| < ν. In the above, it is assumed that only two wave-fronts interact at any given
point, which can always be achieved by an arbitrarily small change in the speed of one
of the interacting fronts. It should also be adopted that, in the accurate Riemann solver,
rarefaction fronts of the same field of one of the incoming fronts are never partitioned (even
if their strength is bigger than δ). This guarantees that every wave-front can be uniquely



THE CAUCHY PROBLEM FOR THE EULER EQUATIONS FOR COMPRESSIBLE FLUIDS 41

continued forward in time, unless it gets completely cancelled by interacting with another
front of the same field and opposite sign.

The above construction of an approximate solution involves three parameters: a fixed
speed λ̄ strictly larger than all characteristic speeds, a small constant δ > 0 controlling
the maximum strength of rarefaction fronts, and a threshold parameter ν > 0 determining
whether the accurate or the simplified Riemann solver is used. This wave-front tracking
algorithm generates alternatively an entropy solution of the Cauchy problem (1.19) and
(1.20) in Theorem 7.1.

Theorem 7.7. Let u0(x) have small total variation over R. For any fixed small ǫ > 0,
approximate u0(x) by some step function uǫ0(x) such that

‖uǫ0 − u0‖L1(R) ≤ ǫ, TVR(uǫ0) ≤ TVR(u0).

Then, for the fixed speed λ̄ independent of ǫ and strictly larger than all characteristic speeds,
small δǫ = ǫ > 0 controlling the maximum strength of rarefaction fronts, and a threshold
parameter νǫ > 0 determining whether the accurate or the simplified Riemann solver is
used and depending on ǫ and on the number of jumps of uǫ0(x), the wave-front tracking
algorithm with initial data uǫ0(x) generates the global ǫ-approximate solutions uǫ(x, t) which
have a subsequence converging, a.e. on R

2
+, to an entropy BV solution u(x, t) of the Cauchy

problem (1.19) and (1.20) with the estimates (7.3) and (7.4).

To prove Theorem 7.7, the argument used in the proof of Theorem 7.1 can be applied
with some modification. The proof consists of two steps.

The first step is to show that the ǫ-approximate solution uǫ(x, t) is defined for all t ≥ 0,
which can be achieved by showing two facts: the total variation of uǫ(·, t) remains uniformly
bounded and the number of wave-fronts in uǫ(·, t) remains finite. To derive the bound of the
total variation of uǫ(·, t), as in (7.9), introduce the total strength of waves L(t) in uǫ(x, t)
cross the t-time line:

Luǫ(t) =
∑

α

|sα|, (7.39)

where the summation is taken over all wave fronts of uǫ(x, t); and the wave interaction
potential Q(t) cross the t-time line:

Quǫ(t) =
∑

α,β∈A

|sαsβ |, (7.40)

where the summation runs over all pairs of approaching waves. For a non-physical front
x = xα(t), we simply call sα = |u(xα(t)+, t)−u(xα(t)−, t)| the strength of the non-physical
front at xα(t). For convenience, non-physical fronts are regarded as belonging to a fictitious
linearly degenerate (n + 1)-th characteristic field. Two fronts of the families kα, kβ ∈
{1, · · · , n+1}, located respectively at xα, xβ with xα < xβ (kα = n+1 if xα is non-physical),
are approaching if either kα > kβ , or kα = kβ , and at least one of them is a genuinely
nonlinear shock. The total strength L of waves stays constant along time intervals between
consecutive collisions of fronts and only changes across points of wave interaction. The
wave interaction potential Q also stays constant along time intervals between consecutive
collisions. It can be proved that, for a suitably large constant M , the quantity

Fuǫ(t) = Luǫ(t) +MQuǫ(t) (7.41)

analogous to the Glimm functional, bounding the total variation of uǫ(x, t), is non-increasing
in time. The key observation is that Q(t) is positive and decreasing after each interaction.
The number of physical fronts can grow only at times t where the accurate Riemann solver
is used. The set of times where the accurate solver is used can be proved finite. Thus the
number of physical fronts is finite. In turn, a new non-physical front can be generated only
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when two physical fronts interact. Since any two physical fronts interact at most once, it
follows that the number of non-physical fronts also remains finite.

The second step is to show that the limit of the approximate solutions is an entropy
solution. By Helly’s compactness theorem, the estimate on the total variation of uǫ(x, t)
implies that there exists a subsequence (still denoted) uǫ(x, t) converging to some function
u(x, t) in L1

loc, as ǫ→ 0. To prove that u(x, t) is an entropy solution of (1.19) and (1.20), one
needs to verify that both the maximum size of rarefaction fronts and the total strength of
non-physical fronts in uǫ(x, t) tend to zero as ǫ→ 0, which follows from the construction and
the interaction estimates. The approximate solutions uǫ(x, t) satisfy the entropy inequality
with an error tending to zero as ǫ → 0, which shows that the solution satisfies also the
entropy condition. See Bressan [18] for the details of the proof.

L1-Stability. As in Theorem 7.1, the existence proof of Theorem 7.7 provides no clue
on the stability of solutions of the Cauchy problem (1.19) and (1.20). By monitoring the
time evolution of a certain functional, it can be shown that the ǫ-approximate solutions
constructed by the wave-front tracking algorithm depend continuously on their initial data
up to a certain error of order ǫ. This shows, by passing to the limit ǫ → 0, that the front-
tracking approximations converge to a unique limit, and the solution depends Lipschitz
continuously on the initial data.

Suppose that System (1.19) is strictly hyperbolic and genuinely nonlinear. Let u(x, t) and
v(x, t) be two ǫ-approximate solutions of (1.19) and (1.20) with small total variation. For
any fixed point (x, t), define the scalar function qi(x, t) as in (7.28). Define the functional

Ψ(u,v)(t) =

n
∑

i=1

∫

R

|qi(x, t)| (1 +K1(Qu(t) + Qv(t)) +K2Wi(x, t)) dx,

where K1 and K2 are sufficiently large positive constants, Qu(t) and Qv(t) are the wave
interaction potentials for u(x, t) and v(x, t) respectively defined in (7.40), and Wi(x, t) is
defined as in (7.30). Notice that the strengths of non-physical fronts do enter in the definition
of Q, but play no role in the definition of Wi. If the total variations of u(x, t) and v(x, t)
are sufficiently small such that 0 ≤ K1 (Qu(t) + Qv(t)) +K2Wi(x, t) ≤ 1 for all i, then

C−1
1 ‖u(·, t) − v(·, t)‖L1(R) ≤ Ψ(u,v)(t) ≤ 2C1‖u(·, t) − v(·, t)‖L1(R). (7.42)

Bressan-Liu-Yang [25] indicates that, if Fu and Fv defined in (7.41) are sufficiently small,
then the functional Ψ(u,v)(t) is almost decreasing in t, that is,

Ψ(u,v)(t1) − Ψ(u,v)(t2) ≤ C2ǫ(t1 − t2), 0 ≤ t2 < t1. (7.43)

For small constant δ > 0, with the notation in (7.41), define the domain

D = CL{u ∈ L1(R; Rn) : u(x, t) is piecewise constant, Fu(t) < δ},
where CL denotes the closure in L1(R). Estimate (7.43) implies the L1-stability of entropy
solutions obtained by the wave-front tracking method.

Theorem 7.8. For any initial data u0 ∈ D with δ sufficiently small, as ǫ → 0, any
subsequence of the approximate solutions uǫ(x, t) constructed by the wave-front tracking
algorithm for the Cauchy problem (1.19) and (1.20) converges to a unique limit u(x, t). The
map (u0, t) 7→ St(u0) = u(·, t) defines a uniformly Lipschitz continuous semigroup whose
trajectories are entropy solutions of (1.19) and (1.20). If u(x, t) and v(x, t) are two such
entropy solutions of (1.19) and (1.20) with initial data u0(x) and v0(x), respectively, then

‖u(·, t) − v(·, t)‖L1(R) ≤ C‖u0 − v0‖L1(R), (7.44)

for some constant C > 0.
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With the assumption (7.43), Theorem 7.8 can be proved as follows. For a given u0 ∈ D,
consider any sequences {ul(x, t)}, l = 1, 2, · · · , and {uk(x, t)}, k = 1, 2, · · · , of the ǫl-
approximate solutions and ǫk-approximate solutions of (1.19) and (1.20), respectively, with

‖ul(·, 0) − u0(·)‖L1 ≤ ǫl, lim
l→∞

ǫl = 0, Ful(t) < δ,

‖uk(·, 0) − u0(·)‖L1 ≤ ǫk, lim
k→∞

ǫk = 0, Fuk(t) < δ,

for any t > 0. From (7.42) and (7.43), for any l, k ≥ 1, and t > 0,

‖ul(·, t) − uk(·, t)‖L1 ≤ C1Ψ(ul,uk)(t) ≤ C1Ψ(ul,uk)(0) + C1C2tmax{ǫl, ǫk}
≤ 2C2

1‖ul(·, 0) − uk(·, 0)‖L1 + C1C2tmax{ǫl, ǫk}.
As l, k → ∞, the right-hand side tends to zero, the two sequences have the same limit, and
thus any sequence of ǫ-approximate solutions converges to a unique limit. The semigroup
property St2(St1u0) = St1+t2u0 follows immediately from the uniqueness. Let u0(x) and
v0(x) be the initial data of the entropy solutions u(x, t) and v(x, t) which are the limits
of the corresponding ǫj-approximate solutions uj(x, t) and vj(x, t) of (1.19) and (1.20),
respectively, with ‖uj(·, 0) − u0(·)‖L1 < ǫj, ‖vj(·, 0) − v0(·)‖L1 < ǫj , and limj→∞ ǫj = 0.
From (7.42) and (7.43), one has

‖uj(·, t) − vj(·, t)‖L1 ≤ C1Ψ(uj ,vj)(t) ≤ C1Ψ(uj ,vj)(0) + C1C2tǫj

≤ 2C2
1‖uj(·, 0) − vj(·, 0)‖L1 + C1C2tǫj.

Taking j → ∞ yields (7.44).
Theorem 7.8 was established in Bressan-Liu-Yang [25], where the proof of (7.43) can be

found, and in Hu-LeFloch [155], where Haar’s method was extended to nonlinear systems
of conservation laws, independently. A sharper version of the L1-continuous dependence
estimate, containing dissipation terms in the left-hand side of (7.44), was later established
by Dafermos [88] (for scalar equations) and Goatin-LeFloch [137] (for systems). For other
related results and discussions, see [20, 21, 88, 216] and the references therein.

The approach for Theorem 7.8 in [25] provides a much simpler proof of the existence
of a Lipschitz semigroup, called the standard Riemann semigroup [21] generated by the
n× n systems of conservation laws (1.19) and (1.20), which is defined as a continuous map
S : D × [0,∞) → D such that, for some Lipschitz constant L, denoting St(·) = S(·, t),

(1). S0u0 = u0, St2St1u0 = St1+t2u0;
(2). For all u0,v0 ∈ D, t1, t2 ≥ 0, ‖St1u0 − St2u0‖L1 ≤ L(‖u0 − v0‖L1 + |t1 − t2|);
(3). If u0 ∈ D is piecewise constant, then, for t > 0 sufficiently small, the function

u(·, t) = Stu0 coincides with the solution of (1.19) and (1.20) obtained by piecing
together the standard self-similar solutions of the corresponding Riemann problems.

For any initial data u0 ∈ D with δ sufficiently small, the solution u(x, t) as the limit of the
ǫ-approximate solutions constructed by the wave-front tracking algorithm can be identified
with a trajectory of the standard Riemann semigroup [21], which also indicates that the
limit of the ǫ-approximate solutions by the wave-front tracking algorithm is unique. As
discussed earlier, the results in Bressan [19] and Liu-Yang [217] also imply the uniqueness
of limits of Glimm’s random choice method.

For initial data u0(x) which are small BV perturbation of a large Riemann data, some
progress has been made in Lewicka [190] and Lewicka and Trivisa [191].

There are some recent developments on uniform BV estimates for artificial viscosity
approximations for hyperbolic systems of conservation laws with initial data of small total
variation, as well as the L1-stability of BV solutions constructed by the vanishing viscosity
method; see Bianchini and Bressan [12, 13].
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This uniqueness property can be extended to any solutions satisfying certain extra regu-
larity condition as stated in the following theorem.

Theorem 7.9. Any solution u(x, t) of the Cauchy problem (1.19) and (1.20), with u(·, t) ∈
D for all t ≥ 0, which satisfies the following tame oscillation condition:

|u(x±, t+ h) − u(x±, t)| ≤ β TV[x−λh,x+λh](u(·, t)) (7.45)

for all x ∈ R, t ≥ 0, and any h > 0, with λ and β some positive constants, coincides
with the trajectory of the standard Riemann semigroup St emanating from the initial data:
u(·, t) = Stu0(·). In particular, u(x, t) is uniquely determined by its initial data.

The solutions constructed by either Glimm’s random choice method or the wave-front
tracking algorithm satisfy the tame oscillation condition (7.45). Such a uniqueness result of
entropy solutions to systems was established first by Bressan-LeFloch [23] under a stronger
assumption, called the tame variation condition. By improving upon these arguments,
Theorem 7.9 was established by Bressan-Goatin [22]. The tame oscillation condition (7.45)
can be also replaced by the assumption that the trace of solutions along space-like curves
has local bounded variation (see Bressan-Lewicka [24]). Also see Hu-LeFloch [155] for a
different approach based on Harr’s method, and Baiti-LeFloch-Piccoli [5] for some further
generalization. For other discussions about the wave-front tracking algorithm, standard
Riemann semigroup, uniqueness, and related topics, we refer to Bressan [20], Dafermos [88],
and LeFloch [187] which provide extensive discussions and references.

8. Global Discontinuous Solutions III: Entropy Solutions in BV

In this section we focus on general global discontinuous solutions in L∞∩BVloc satisfying
the Lax entropy inequality and without specific reference on the method for construction of
the solutions.

8.1. Generalized Characteristics and Decay. Consider the BV entropy solutions of
(1.19) having bounded variation in the sense of Tonelli-Cesari, i.e., functions whose first-
order distributional derivatives are locally Borel measures (Volpert [312]). The notion of
characteristics for classical solutions can be extended to generalized characteristics for BV
entropy solutions. The generalized characteristics provide a powerful tool for studying the
structure and behavior of BV entropy solutions.

Suppose that System (1.19) is strictly hyperbolic with n real distinct eigenvalues λ1 <
λ2 < · · · < λn and u(x, t) is a BV entropy solution of (1.19) for (x, t) ∈ R

2
+. The domain

R
2
+ can be written as C ∪ J ∪ I with C, J , and I pairwise disjoint, where C is the set

of points of approximate continuity of u(x, t), J is the set of points of approximate jump
discontinuity (shock set) of u(x, t), and I denotes the set of irregular points of u(x, t). The
one-dimensional Hausdorff measure of I is zero. The shock set J is essentially the (at
most) countable union of C1 arcs. With any point (x, t) ∈ J are associated distinct one-
sided approximate limits u± and a shock speed σ related by the Rankine-Hugoniot condition
(6.7) and satisfying the Lax entropy condition (6.8). To handle shock waves in solutions,
we employ the concept of generalized characteristics introduced by Dafermos (cf. [104]).

The generalized characteristics are defined in Filippov’s sense of differential inclusion
[118] as follows.

Definition 8.1. A generalized i-characteristic for (1.19) on an interval [t1, t2], 0 ≤ t1 <
t2 <∞, associated with the solution u(x, t), is a Lipschitz function ξ : [t1, t2] → R such that

ξ′(t) ∈ [λi(u(ξ(t)+, t)), λi(u(ξ(t)−, t))],
for almost all t ∈ [t1, t2].
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Generalized characteristics propagate with either classical characteristic speed or shock
speed, as indicated in the following proposition.

Proposition 8.1. Let ξ(t) be a generalized i-characteristic on [t1, t2]. Then, for almost
all t ∈ [t1, t2], ξ(t) propagates with classical i-characteristic speed if (ξ(t), t) ∈ C and with
i-shock speed if (ξ(t), t) ∈ J .

Proposition 8.2. Given any point (x̄, t̄) of the upper half-plane, there exists at least
one generalized i-characteristic, defined on [0,∞), passing through (x̄, t̄). The set of i-
characteristics passing through (x̄, t̄) spans a funnel-shaped region bordered by a minimal
i-characteristic and a maximal i-characteristic (possibly coinciding). Furthermore, if ξ(t)
denotes the minimal or the maximal backward i-characteristic issuing from (x̄, t̄), then

u(ξ(t)+, t) = u(ξ(t)−, t), ξ′(t) = λi(u(ξ(t)±, t)),
for almost all t ∈ [0, t̄].

Definition 8.2. A minimal (or maximal) i-divide, associated with the solution u(x, t), is a
Lipschitz function φ : [0,∞) → R with the property that φ(t) = limk→∞ ξk(t), uniformly on
compact subsets of [0,∞), where ξk(t) is the minimal (or maximal) backward i-characteristic
emanating from some point (xk, tk) with tk → ∞, as k → ∞. Two minimal (or maximal)
i-divides φ1(t) and φ2(t), with φ1(t) ≤ φ2(t), 0 ≤ t < ∞, are disjoint if the set {(x, t) :
0 ≤ t < ∞, φ1(t) < x < φ2(t)} does not intersect the graph of any minimal (or maximal)
i-divide.

The graphs of any two minimal (or maximal) i-characteristics may run into each other
but they cannot cross. Then the graph of a minimal (or maximal) backward i-characteristic
cannot cross the graph of any minimal (or maximal) i-divide and the graphs of any two
minimal (or maximal) i-divides cannot cross. Any minimal (or maximal) i-divide divides
the upper half-plane into two parts in such a way that no forward i-characteristic may cross
from the left to the right (or from the right to the left). The concept of i-divide plays a
central role in the investigation of the large-time behavior of solutions with periodic initial
data through the approach of generalized characteristics. The set of minimal or maximal
i-divides associated with a particular solution may be empty, but it is nonempty if the
solution is periodic.

Proposition 8.3. If φ(t) is any minimal or maximal i-divide, then

u(φ(t)+, t) = u(φ(t)−, t), φ′(t) = λi(u(φ(t)±, t)),
for almost all t ∈ [0,∞). In particular, φ(t) is a generalized i-characteristic on [0,∞).
Furthermore, if {φk(t)} is a sequence of minimal (or maximal) i-divides converging to some
function φ(t) uniformly on compact subsets of [0,∞), then φ(t) is a minimal (or maximal)
i-divide.

Proposition 8.4. The set of minimal (or maximal) i-divides associated with any solution
u(x, t), periodic in x, with period P , is not empty. The union of the graphs of these i-divides
is invariant under the translation by P in the x-direction.

The above theory of generalized characteristics follows Dafermos [84, 86, 88]. The proofs
of these propositions and further discussions can be found in these references. A closely
related alternative definition of generalized characteristics was given in Glimm-Lax [133]
which are Lipschitz curves propagating with either classical characteristic speed or shock
speed, constructed as limits of families of approximate characteristics. The following result
is due to DiPerna [104].

Proposition 8.5. Let (1.19) be an n× n strictly hyperbolic system endowed with a strictly
convex entropy. Suppose u(x, t) is an L∞ ∩ BVloc entropy solution of (1.19) and (6.1) for
(x, t) ∈ R

2
+. Let xn

max
(t) denote the maximal forward n-characteristic through (0, 0). Let
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x1
min

(t) denote the minimal forward 1-characteristic passing through (0, 0). Then u(x, t) =
uL, for a.e. (x, t) with x < x1

min
(t), and u(x, t) = uR, for a.e. (x, t) with x > xn

max
(t).

Using the theory of generalized characteristics, Dafermos in [84, 86, 88] proved a series of
decay properties for general BV solutions to hyperbolic systems of two conservation laws.
For this purpose, the following structural condition on the BV solution u(x, t) is imposed:
The traces of the Riemann invariants w1 and w2 along any space-like curve are functions
of locally bounded variation.
Here, a space-like curve relative to the BV solution u(x, t) is a Lipschitz curve, with graph
embedded in the upper half-plane, such that, for each point (x̄, t̄) on the graph of the curve,
the set {(x, t) : 0 ≤ t < t̄, ζ(t) < x < ξ(t)} of points confined between the maximal
backward 2-characteristic ζ and the minimal backward 1-characteristic ξ, emanating from
the point (x̄, t̄), has empty intersection with the graph of the curve. Under this condition,
one has the following results on the regularity and decay of the BV entropy solutions to
hyperbolic systems of two conservation laws, which are due to Dafermos [81, 84, 86, 88].

Theorem 8.1. Suppose that u(x, t) is a BV entropy solution of the genuinely nonlinear
and strictly hyperbolic system (1.19) with n = 2. Then any point of approximate continuity
is a point of continuity of u(x, t), any point of approximate jump discontinuity is a point of
classical jump discontinuity of u(x, t), the set of irregular points is (at most) countable, and
any irregular point is the focus of a centered compression wave of either, or both, charac-
teristic fields, and/or a point of interaction of shocks of the same or opposite characteristic
fields.

If the initial data (w1, w2)(x, 0) belong to L1(R) with small oscillation, then the solution
(w1, w2)(x, t) to the genuinely nonlinear and strictly hyperbolic system (1.19) with n = 2
decays, as t→ ∞, at the rate O(t−1/2) (Dafermos [84]), which is an analogue for the scalar
conservation laws (Lax [181]).

For solutions with periodic initial data, one has the following decay property (Dafermos
[86]).

Theorem 8.2. Suppose that u(x, t) is a BV entropy solution of the genuinely nonlinear
and strictly hyperbolic system (1.19) with n = 2, and the initial data u0(x) are periodic with
period P and mean zero. Then the upper half-plane is partitioned by minimal (or maximal)
divides of the first (or second) characteristic field, along which the Riemann invariant w1

(or w2) of the first (or second) field decays to zero, O(t−2), as t → ∞. If φ(t) and ψ(t)
are any two adjacent 1- (or 2-) divides, then ψ(t) − φ(t) approaches a constant at the rate
O(t−1), as t → ∞, and there is a 1- (or 2-) characteristic χ(t) between φ(t) and ψ(t) such
that, as t→ ∞, χ(t) = (ψ(t) + φ(t))/2 + o(1), and

∂wiλi(0, 0)wi(x, t) =

{

x−φ(t)
t + o(1

t ), φ(t) < x < χ(t),
x−ψ(t)

t + o(1
t ), χ(t) < x < ψ(t),

i = 1, 2. (8.1)

The proof of Theorem 8.2 is based on the analysis of the large-time behavior of divides.
Assume φ(t) is a minimal 1-divide, say the limit of a sequence {ξk(t)} of minimal backward
1-characteristics emanating from some points {(xk, tk)} with tk → ∞ as k → ∞. Consider
the traces of w1 and w2 along ξk(t): w1k(t) := w1(ξk(t)−, t) and w2k(t) := w2(ξk(t)+, t).
The total variation of w2k and the supremum of |w2k| over any interval [t, t+1] ⊂ [0, tk] are
O(t−1), uniformly in k. Then w1k is a nonincreasing function whose oscillation over [t, t+1]
is O(t−3) uniformly in k since w1k(t−) − w1k(t+) ≤ C|w2k(t) − w2k(t+)|3 (see [84]). Thus,
for any t ∈ [0, tk], w1k = O(t−2) +O(t−1

k ) uniformly in k, and it can be concluded that, for
almost all t ∈ [0,∞), w1(φ(t)±, t) is a nonincreasing function which decays to zero, O(t−2),
as t→ ∞. Further analysis of divides leads to (8.1). See Dafermos [86, 88] for the details.

Now we consider System (1.19) with initial data of compact support (7.25). The BV
entropy solution decays to an N-wave as follows (Dafermos [84, 88]).
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Theorem 8.3. Suppose that u(x, t) is an entropy BV solution of the genuinely nonlinear
and strictly hyperbolic system (1.19) with n = 2, and the initial data u0(x) have compact
support (7.25) and small oscillation. Then the minimal i-characteristics φ−i (t) issuing from
the point (−R, 0) and the maximal i-characteristics φ+

i (t) issuing from the point (R, 0),
i = 1, 2, satisfy, for t large,

φ−1 (t) = λ1(0, 0)t− (p−t)
1/2 +O(1), φ+

1 (t) = λ1(0, 0)t+ (p+t)
1/2 +O(t1/4),

φ−2 (t) = λ2(0, 0)t− (q−t)
1/2 +O(t1/4), φ+

2 (t) = λ2(0, 0)t+ (q+t)
1/2 +O(1),

for some nonnegative constants p± and q±, and

TV[φ−
1 (t),φ+

2 (t)](w1, w2)(·, t) = O(t−1/2); (8.2)

and, if p+ > 0 and q− > 0, then

‖wi(·, t) −Ni(·, t)‖L1(R) = O(t−1/4), i = 1, 2, (8.3)

as t→ ∞, with the N-waves N1(x, t) and N2(x, t) defined by

N1(x, t) =

{

1
∂w1λ1(0,0)

(

x
t − λ1(0, 0)

)

, −(p−t)1/2 ≤ x− λ1(0, 0)t ≤ (p+t)
1/2,

0, otherwise,

N2(x, t) =

{

1
∂w2λ2(0,0)

(

x
t − λ2(0, 0)

)

, −(q−t)1/2 ≤ x− λ2(0, 0)t ≤ (q+t)
1/2,

0, otherwise.

The main ingredients of the proof of Theorem 8.3 include the following estimates: u(x, t) =
0 for any t > 0 and x /∈ (φ−1 (t), φ+

2 (t)); for large t, λ1(w1(x, t), 0) = x/t + O(t−1) for
x ∈ (φ−1 (t), φ+

1 (t)) and λ2(0, w2(x, t)) = x/t + O(t−1) for x ∈ (φ−2 (t), φ+
2 (t)); and for large

t, 0 ≤ −w1(x, t) ≤ C(x − λ1(0, 0)t)−3/2 for x > φ+
1 (t) and p+ > 0, and 0 ≤ −w2(x, t) ≤

C(λ2(0, 0)t−x)−3/2 for x < φ−2 (t) and q− > 0. These estimates indicate that, as t→ ∞, the

two characteristic fields decouple and each one develops an N-wave profile, of width O(t1/2)
and strength O(t−1/2), which propagates into the rest state at the characteristic speed. See
Dafermos [84, 88] for the details of the proof.

From Theorem 8.3, we see that the total variation of the solution decays to zero as
O(t−1/2) (Glimm-Lax [133]). The solution decays to N-waves at the rate O(t−1/4) slower
than the rate O(t−1/2) for scalar conservation laws, due to the interaction of the character-
istic fields in the systems, a phenomenon which is not present in a single conservation law.
However, an improvement in this uniform rate may be possible, while, in the scalar case,
simple examples show that the decay rate O(t−1/2) cannot be improved. See also Greenberg
[143] on the decay of special solutions for a class of two conservation laws generated by a
second-order wave equation.

8.2. Uniqueness of Riemann Solutions. In this section we prove the uniqueness of
Riemann solutions of the Riemann problem (1.13) and (6.1) in the class of entropy solutions
in BV without extra regularity condition on the solutions. Without loss of generality, we
assume that the classical Riemann solution has the following generic form:

R(x/t) =































uL, x/t < σ1,

uM , σ1 < x/t < 0,

uN , 0 < x/t ≤ λ3(uN ),

V3(x/t), λ3(uN ) < x/t < λ3(uR),

uR, x/t ≥ λ3(uR),

(8.4)
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where σ1 = σ1(uL,uM ) is the shock speed, determined by (6.30), and V3(ξ) is the solution
of the boundary value problem:

{

dV3(ξ)
dξ = r3(V3(ξ)), ξ < λ3(uR),

V3|ξ=λ3(uR) = uR.
(8.5)

The 1-shock connecting uL and uM satisfies the Lax entropy condition: λ1(uM ) < σ1 <
λ1(uL) < 0. The states uM and uN are also completely determined by the shock curve
formula (6.34)–(6.36) and (8.5). The best way to see this fact is first to recall that S
is increasing across 1-shock waves and is constant over rarefaction curves, since S is a
Riemann invariant of the first and third fields (see [290, 291]). Similarly, v and p are both
constant over the wave curves of the second (linearly degenerate) field. Hence, in the space
(v, p, S), we can project the curves S1 and R3 on the plane (v, p), find the intersection point
(vM , pM ) of these projected curves, and immediately obtain the two intersection points
(vM , pM , SM ), (vM , pM , SN ), of the line {(v, p, S) : v = vM , p = pM} with the 1-shock
curve S1 and the 3-rarefaction curve R3 in the phase space.

We now state and prove the uniqueness theorem in Chen-Frid-Li [52].

Theorem 8.4. Let u(x, t) = (τ, v, e + v2

2 )(x, t) be an entropy solution of (1.13) and (6.1)
in ΠT := {(x, t) : 0 ≤ t ≤ T } for some T ∈ (0,∞), which belongs BVloc(ΠT ;D) with

D ⊂ {(τ, v, e+ v2

2 ) : τ > 0} ⊂ R
3 bounded. Then u(x, t) = R(x/t), for a.e. (x, t) ∈ ΠT .

Proof. Step 1. Consider the auxiliary function in ΠT :

ũ(x, t) =











uL, x < x(t),

uM , x(t) < x < max{x(t), σ1t},
R(x/t), x > max{x(t), σ1t},

where x(t) is the minimal 1-characteristic of u(x, t), and x = σt is the line of 1-shock in
R(x/t). One of the main ingredients in the proof is to use the state variables W = (τ, v, S)

as the basic variable, rather than the conserved variables u(x, t), and we let W̃(x, t) denote
R(x/t) in these state variables. Motivated by a procedure introduced by Dafermos (cf.
[87, 104]), we use the quadratic entropy-entropy flux pairs obtained from (η∗, q∗):

α(W,W̃) = η∗(W) − η∗(W̃) −∇η∗(W̃) · (W − W̃), (8.6)

β(W,W̃) = q∗(W) − q∗(W̃) −∇η∗(W̃) · (f(W) − f(W̃)). (8.7)

We then consider the measures

µ = ∂tα(W(x, t),W̃(x, t)) + ∂xβ(W(x, t),W̃(x, t)), (x, t) ∈ ΠT ,

ν = ∂tη∗(W(x, t)) + ∂xq∗(W(x, t)) − ∂Sη∗(W̃(x, t))∂tS(x, t), (x, t) ∈ ΠT − {ℓT ∪ LT },
where ℓt = {(0, s) : 0 ≤ s ≤ t} and Lt = {(x(s), s) : 0 ≤ s ≤ t}.

Then the uniqueness problem essentially reduces to analyzing the measure µ over the
region, where the Riemann solution is a rarefaction wave, and over the curve (x(t), t), which

for simplicity may be taken as the jump set of W̃(x, t).

Step 2. The first important fact is that µ{ℓT } = 0, since µ{ℓT } =
∫

ℓT
[β(W,W̃)] dH1 and

[β(W,W̃)] = 0, H1-a.e. over ℓT . The latter follows from β(W,W̃) = (v − v̄)(p − p̄) and

the fact that v, p, v̄, p̄ cannot change across the jump discontinuities of W and W̃ over ℓT ,
because of the Rankine-Hugoniot relation (6.7).

Let

Ω3 := { (x, t) : λ3(uN ) < x/t < λ3(uR), 0 < t ≤ T }
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denote the rarefaction wave region of the classical Riemann solution. Over the region Ω3,
W̃ = W̄, and µ satisfies

µ = ∂tα(W,W̄) + ∂xβ(W,W̄) = ν −∇2η∗(W̄)(∂xW̄, Qf(W,W̄)), (8.8)

where we used the fact that ∇2η∗∇f is symmetric, and Qf(W,W̄) = f(W) − f(W̄) −
∇f(W̄) · (W − W̄) is the quadratic part of f at W̄. Since l̃3(W̄) = r̃3(W̄)∇2η∗(W̄) is a
left-eigenvector of ∇f(W̄) corresponding to the eigenvalue λ3(W̄), and

∂W̄(x, t)

∂x
=

1

t
r̃3(W̄(x, t)), for (x, t) ∈ Ω3.

Then, for any Borel set E ⊂ Ω3, we have

µ(E) = ν(E) −
∫

E

1

t
l̃3(W̄)Qf(W,W̄) dxdt.

The fact l̃3(W̄)Qf(W,W̄) ≥ 0 yields

µ(Ω3) ≤ 0.

Step 3. Using the Gauss-Green formula for BV functions and the finiteness of propagation
speed of the solutions yields

µ{Πt} =

∫ ∞

−∞
α(W(x, t),W̃(x, t)) dx. (8.10)

On the other hand, since µ reduces to the measure ν on the open sets where W̃ is a constant,
and W̃ = W̄ over Ω3,

µ{Πt} = µ{Lt} + µ{Ω3(t)} + ν
{

Πt −
(

Lt ∪ ℓt ∪ Ω3(t)
)}

, (8.11)

where we have used the fact that µ{ℓt} = 0. Hence, it suffices to show

µ{Lt} ≤ 0. (8.12)

Thus, we consider the functional

D(σ,W−,W+,W̃−,W̃+) = σ[α(W,W̃)] − [β(W,W̃)].

Step 4. We now prove

D(σ,W−,W+,W̃−,W̃+) ≤ 0, (8.13)

if W− and W+ are connected by a 1-shock of speed σ = x′(t), W̃− and W̃+ are connected

by a 1-shock of speed σ̄, and also W− = W̃−. Using Proposition 8.5, it is then clear that

(8.13) immediately implies (8.12). Thus, when W− = W̃−, a careful calculation shows that

D(σ,W−,W+,W̃−,W̃+) =d(σ,W−,W+) − d(σ̄,W−,W̃+) − (σ − σ̄)α(W−,W̃+)

− ∂Sη(W̃+)
(

σ(S− − S+) − σ̄(S− − S̃+)
)

, (8.14)

where d(σ,W−,W+) = σ[η(W)] − [q(W)], and (η, q) = (η∗, q∗) is the energy-energy
flux pair in (1.13). From the Rankine-Hugoniot relation (6.30), we may view the state
W+ = (τ+, v+, S+) connected on the right by a 1-shock to a state W− = (τ−, v−, S−) as
parametrized by the shock speed σ, with σ ≤ λ1(W−) < 0.

According to the parametrization, we set W+ = W+(σ) and W̃+ = W+(σ̄) in (8.14),
and define

h(σ) := d(σ,W−,W+(σ)) = σ[η(W)] − [q(W)].

Then, using Proposition 6.6 and making a careful calculation yield

D(σ,W−,W+,W̃−,W̃+) ≤ h(σ) − h(σ̄) − ḣ(σ̄)(σ − σ̄).

On the other hand, (6.30) implies h(σ) = 0 for all σ; thereby, (8.13) holds.
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Step 5. Now, by (8.10), we conclude that W(x, t) = W̃(x, t), a.e. in ΠT . In particular,

W̃(x, t) is an entropy solution of (1.13) and (6.1), and then the Rankine-Hugoniot relation

(6.30) implies that W̃(x, t) must coincide with the classical Riemann solution W̄(x, t). This
concludes the proof. �

8.3. Large-Time Stability of Entropy Solutions. In this section we follow the frame-
work established in Chen-Frid [46] to show that the uniqueness of the classical Riemann
solution R(ξ), corresponding to the Riemann data (6.1), implies the large-time stability of
entropy solutions u(x, t) ∈ L∞ ∩BVloc(R2

+) of the Cauchy problem (1.13) and

u|t=0 = R0(x) + P0(x), P(x) ∈ L1 ∩ L∞(R), (8.15)

whose local total variation satisfies a certain natural growth condition.

Theorem 8.5. Let S(R2
+) denote a class of functions defined on R

2
+. Assume that the

Cauchy problem (1.19), (8.15), and (6.1) satisfies the following.
(i) System (1.19) has a strictly convex entropy;
(ii) The Riemann solution is unique in the class S(R2

+);

(iii) Given any entropy solution u ∈ S(R2
+) of (1.19) and (8.15), the sequence uT (x, t) =

u(Tx, T t) is compact in L1
loc(R

2
+), and any limit function of its subsequences is still in

S(R2
+).

Then the Riemann solution R(x/t) is asymptotically stable in S(R2
+) with respect to the

corresponding initial perturbation P0(x):

ess lim
t→∞

∫ L

−L
|u(ξt, t) − R(ξ)|dξ = 0, for any L > 0. (8.16)

System (1.13) has a strictly convex entropy S(τ, v, e+ v2

2 ) in D, and hence the condition
(i) follows.

We choose S(R2
+) as the class of entropy solutions in L∞∩BVloc(R2

+) satisfying a natural
growth condition of local total variation:

{

There exists c0 > 0 such that, for all c ≥ c0, there is C > 0 depending

only upon c such that TV(u | Kc,T ) ≤ CT, for any T > 0,
(8.17)

where Kc,T = {(x, t) ∈ R
2
+ : |x| ≤ ct, t ∈ (0, T )}. Such a condition is natural, since any

solution obtained by the Glimm method or related methods satisfies (8.17).
For such solutions and for any T > 0, uT (x, t) also satisfies (8.17) with the same constant

C depending only upon c. Furthermore, the sequence uT (x, t) is compact in L1
loc(R

2
+). Then

the condition (iii) follows.
Therefore, the uniqueness result established in §8.2 yields the large-time stability of en-

tropy solutions satisfying (8.17).

Theorem 8.6. Any Riemann solution of System (1.13), staying away from the vacuum,
with large Riemann initial data (6.1) is large-time asymptotically stable in the sense of (8.16)
in the class of entropy solutions in L∞ ∩BVloc(R2

+) of (1.13) with large initial perturbation
(8.15) satisfying (8.17).

Remark 8.1. A uniqueness theorem of Riemann solutions was first established by DiPerna
[104] for 2 × 2 strictly hyperbolic and genuinely nonlinear systems in the class of entropy
solutions in L∞ ∩ BVloc with small oscillation. In [48], Chen and Frid established the
uniqueness and stability of Riemann solutions, with shocks of small strength, for the 3 × 3
system of Euler equations with general equation of state in the class of entropy solutions in
L∞ ∩ BVloc with small oscillation. However, the uniqueness result presented here neither
imposes smallness on the oscillation nor the extra regularity of the solutions, as well as
does not require specific reference to any particular method for constructing the entropy
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solutions. In this connection, we recall that, for System (1.13) for polytropic gases, there
are many existence results of solutions in L∞∩BVloc via the Glimm scheme [130], especially
when the adiabatic exponent γ > 1 is close to one (see, e.g., [212, 302, 253]). We also refer
the reader to Dafermos [87] for the stability of Lipschitz solutions for hyperbolic systems of
conservation laws.

9. Global Discontinuous Solutions IV: Entropy Solutions in L∞

In this section we extensively discuss the Cauchy problem for the one-dimensional isen-
tropic Euler equations in (1.14) and show the existence, compactness, decay, and stability
of global entropy solutions in L∞. In the study of entropy solutions to the Euler equations,
several numerical approximate schemes or methods have played an important role. As an
example, we show here the convergence of the Lax-Friedrichs scheme and the Godunov
scheme for the Cauchy problem.

9.1. Isentropic Euler Equations. Consider the Cauchy problem for the isentropic Eu-
ler equations in (1.14) with initial data:

(ρ,m)|t=0 = (ρ0,m0)(x), (9.1)

where ρ and m are in the physical region {(ρ,m) : ρ ≥ 0, |m| ≤ C0ρ} for some C0 > 0. For
ρ > 0, v = m/ρ is the velocity. The pressure function p(ρ) is a smooth function in ρ > 0
(nonvacuum states) satisfying (6.22) when ρ > 0, and

p(0) = p′(0) = 0, lim
ρ→0

ρp(j+1)(ρ)

p(j)(ρ)
= cj > 0, j = 0, 1. (9.2)

More precisely, we consider a general situation of pressure law that there exist a sequence
of exponents

1 < γ := γ1 < γ2 < · · · < γJ ≤ 3γ − 1

2
< γJ+1

and a function P (ρ) such that

p(ρ) =
J
∑

j=1

κjρ
γj + ργJ+1P (ρ); P (ρ), ρ3P ′′′(ρ) are bounded as ρ→ 0, (9.3)

for some κj , j = 1, · · · , J, with κ1 = (γ−1)2

4γ after renormalization.

For a polytropic gas obeying the γ-law (1.10), or a mixed ideal polytropic fluid,

p(ρ) = κ1ρ
γ1 + κ2ρ

γ2 , κ2 > 0,

the pressure function clearly satisfies (6.22) and (9.3).
System (1.14) is strictly hyperbolic at the nonvacuum states {(ρ, v) : ρ > 0, |v| ≤ C0},

and strict hyperbolicity fails at the vacuum states {(ρ,m/ρ) : ρ = 0, |m/ρ| ≤ C0}.

9.2. Entropy-Entropy Flux Pairs. A pair of mappings (η, q) : R+ × R → R × R is
called an entropy-entropy flux pair (or entropy pair for short) of System (1.14) if it satisfies
the hyperbolic system:

∇q(ρ,m) = ∇η(ρ,m)∇f(ρ,m). (9.4)

Furthermore, η(ρ,m) is called a weak entropy if

η

∣

∣

∣

∣ρ=0,
v=m/ρ fixed

= 0. (9.5)
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For example, the mechanical energy (a sum of the kinetic and internal energy) and the
mechanical energy flux

η∗(ρ,m) =
m2

2ρ
+ ρ

∫ ρ

0

p(s)

s2
ds, q∗(ρ,m) =

m3

2ρ2
+m

∫ ρ

0

p′(s)

s
ds (9.6)

form a special entropy pair; η∗(ρ,m) is convex for any γ > 1 and strictly convex (even at
the vacuum states) if γ ≤ 2, in any bounded region in ρ ≥ 0.

Definition 9.1. A bounded measurable function u(x, t) = (ρ,m)(x, t) is an entropy solution
of (1.14), (6.22), (9.1), and (9.2) in R

2
+ if u(x, t) satisfies the following:

(i) There exists C > 0 such that

0 ≤ ρ(x, t) ≤ C, |m(x, t)/ρ(x, t)| ≤ C;

(ii) The entropy inequality holds in the sense of distributions in R
2
+, i.e., for any weak

entropy pair (η, q)(u) with convex η(u) and any nonnegative function φ ∈ C1
0 (R ×

[0,∞)),
∫ ∞

0

∫ ∞

−∞
(η(u)∂tφ+ q(u)∂xφ) dx dt +

∫ ∞

−∞
η(u0)(x)φ(x, 0)dx ≥ 0. (9.7)

Notice that η(u) = ±u are both trivial convex entropy functions so that (9.7) implies
that u(x, t) is a weak solution in the sense of distributions.

In the coordinates (ρ, v), any weak entropy function η(ρ, v) is governed by the second-
order linear wave equation

{

ηρρ − k′(ρ)2ηvv = 0, ρ > 0,

η|ρ=0 = 0,
(9.8)

with k(ρ) =
∫ ρ

0
p′(s)
s ds.

In the Riemann invariant coordinates w = (w1, w2) defined in (6.26), any entropy function
η(w) is governed by

ηw1w2 +
Λ(w1 − w2)

w1 − w2
(ηw1 − ηw2) = 0, (9.9)

where

Λ(w1 − w2) = −k(ρ)k′(ρ)−2k′′(ρ), with ρ = k−1(
w1 − w2

2
). (9.10)

The corresponding entropy flux function q(w) is

qwj (w) = λi(w)ηwj (w), i 6= j. (9.11)

In general, any weak entropy pair (η, q) can be represented by

η(ρ, v) =

∫

R

χ(ρ, v; s)a(s)ds, q(ρ, v) =

∫

R

σ(ρ, v; s)b(s)ds, (9.12)

for any continuous function a(s) and related function b(s), where the weak entropy kernel
and entropy flux kernel are determined by

{

χρρ − k′(ρ)2χvv = 0,

χ(0, v; s) = 0, χρ(0, v; s) = δv=s,
(9.13)

and
{

σρρ − k′(ρ)2σvv = p′′(ρ)
ρ χv,

σ(0, v; s) = 0, σρ(0, v; s) = vδv=s,
(9.14)

with δv=s the Delta function concentrated at the point v = s.
The equations in (9.8)–(9.9) and (9.13)–(9.14) belong to the class of Euler-Poisson-

Darboux type equations. The main difficulty comes from the singular behavior of Λ(w1−w2)
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near the vacuum. In view of (9.10), the derivative of Λ(w1 −w2) in the coefficients of (9.9)
may blow up like (w1−w2)

−(γ−1)/2 when w1−w2 → 0 in general, and its higher derivatives
may be more singular, for which the classical theory of Euler-Poisson-Darboux equations
does not apply (cf. [11, 324, 325]). However, for a gas obeying the γ-law,

Λ(w1 − w2) = λ :=
3 − γ

2(γ − 1)
,

the simplest case, which excludes such a difficulty. In particular, for this case, the weak
entropy kernel is

χ(ρ, v; s) = [(w1(ρ, v) − s)(s− w2(ρ, v))]
λ
+.

A mathematical theory for dealing with such a difficulty for the singularities can be
found in Chen-LeFloch [57, 58, 59]. Now we list several important entropy pairs and their
properties. First, we have

Proposition 9.1. For the general pressure law (6.22), (9.2), and (9.3), any weak entropy
η(ρ,m) satisfies that, when (ρ,m) ∈ DM := {0 ≤ ρ ≤M, |m| ≤Mρ},

|∇η(ρ,m)| ≤ CM , |∇2η(ρ,m)| ≤ CM∇2η∗(ρ,m).

The equations in (1.14) have several important entropy pairs from (9.9)–(9.12). As an
example, we give their formulae for the case γ = 5/3.

(i) Goursat entropy wave G0 = (η0, q0):

η0(w) = w1w2X(w), q0(w) = λ2η0 + τ0, τ0 :=
1

3
w2

1w2X(w), (9.15)

where X(w) is the characteristic function with X(w) = 1, when w1 > 0 > w2; and
X(w) = 0, otherwise.

(ii) Goursat entropy wave G1 = (η1, q1):

η1(w) = (w1 + w2)X(w), q1(w) = λ2η1 + τ1, τ1 :=
1

3
w1(w1 + 2w2)X(w). (9.16)

(iii) Lax entropy waves G±k = (η±k, q±k) for k ≫ 1:

ηk(w) = ekw1ρ1/3

(

1 +O(
1

k
)

)

, qk = ηk

(

λ2 +O(
1

k
)

)

, (9.17)

and

η−k(w) = e−kw2ρ1/3

(

1 +O(
1

k
)

)

, q−k = η−k

(

λ1 +O(
1

k
)

)

. (9.18)

(iv) Entropy wave sequence Gℓ = (ηℓ, qℓ):










ηℓ(w) := η(w;ψℓ) = (w1 − w2)(ψℓ(w1) + ψℓ(w2)) − 2
∫ w1

w2
ψℓ(x)dx;

qℓ(w) := q(w;ψℓ) = λ2ηℓ + τℓ,

τℓ(w;ψℓ) := 2
3

∫ w1

w2
(x− w2)(ψℓ(x) + ψℓ(w2))dx − 4

3

∫ w1

w2
(w1 − x)ψℓ(x)dx,

(9.19)

where ψℓ(s) = ℓψ(ℓs), ψ(s) ∈ C∞
0 (−1, 1),

∫ 1

−1 ψ(s)ds = 0, and suppψ ⊂ [−1 +

ǫ/2, 1− ǫ/2], ǫ < 1/4.

Then we have

Proposition 9.2. For (ρ,m) ∈ DM , there exists C = CM > 0 such that

|η0qℓ − ηℓq0| ≤
C

ℓ
, |η1qℓ − ηℓq1| ≤ C.
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Proposition 9.3. For ψ(s) ∈ C∞
0 (−1, 1) with

∫ 1

−1
ψ(s)ds = 0, choose ψ̂(t) = tψ(t) +

∫ t

−1 ψ(s)ds, which implies
∫ 1

−1 ψ̂(s)ds = 0. Define

Bℓ(w;ψ) = ηℓq̂ℓ − η̂ℓqℓ,

where
(ηℓ, qℓ) = (η(w;ψℓ), q(w;ψℓ)), (η̂ℓ, q̂ℓ) = (η(w; ψ̂ℓ), q(w; ψ̂ℓ)). (9.20)

Then, for (ρ,m) ∈ DM ,

Bℓ(w;ψ) =

{

ℓ(w1 − w2)
2A(ℓwj) + (w1 − w2)B

j
ℓ (w) +

Cj
ℓ (w)

ℓ , in Sǫ,ℓwj
, j = 1, 2,

O(1
ℓ ), otherwise,

(9.21)
where

A(x) =
2

3

(∫ x

−1

ψ(s)ds

)2

, |Bjℓ (w)| ≤ C

(

|ψ(ℓwj)| + |
∫ ℓwj

−1

ψ(s)ds|
)

,

|Cjℓ (w)| ≤ C <∞, j = 1, 2,

Sǫ,ℓwj
= {w : |wj | ≤

1 − ǫ

ℓ
}.

(9.22)

9.3. Compactness Framework. We now establish the following compactness frame-
work.

Theorem 9.1. Consider the Euler equations (1.14) for compressible fluids under the as-
sumptions (6.22) and (9.3). Let (ρǫ,mǫ)(x, t) be a sequence of functions satisfying

0 ≤ ρǫ(x, t) ≤ C, |mǫ(x, t)| ≤ C ρǫ(x, t), for a.e. (x, t), (9.23)

such that, for any weak entropy pair (η, q),

∂tη(ρ
ǫ,mǫ) + ∂xq(ρ

ǫ,mǫ) is compact in H−1
loc (R

2
+). (9.24)

Then the sequence (ρǫ,mǫ)(x, t) is compact in L1
loc(R

2
+).

Proof. We now give a sketch of the proof for the case γ = 5/3.
Step 1. First, with the aid of the div-curl lemma and the Young measure representation
theorem (see Murat [238, 239] and Tartar [299]; also see Chen [39]), the conditions (9.23)–
(9.24) imply that there exists a family of probability measures {νx,t ∈ Prob.(R+ × R)},
uniquely determined by (ρǫ,mǫ)(x, t), such that

supp νx,t ⊂ DM , (9.25)

and, for any continuous or bounded measurable weak entropy pairs (ηj , qj), j = 1, 2,
〈

ν,

∣

∣

∣

∣

η1 q1
η2 q2

∣

∣

∣

∣

〉

=

∣

∣

∣

∣

< ν, η1 > < ν, q1 >
< ν, η2 > < ν, q2 >

∣

∣

∣

∣

, a.e. (9.26)

For simplicity, we often drop the index (x, t) of νx,t. Then the compactness problem reduces
to the question whether the Young measures are Delta masses concentrated at u(x, t) =
(ρ,m)(x, t) = w∗ − limǫ→0(ρ

ǫ,mǫ)(x, t), that is,

νx,t = δu(x,t). (9.27)

To achieve (9.27), it suffices to show

supp ν ⊂ V ∪ P, (9.28)

where V = {w : ρ = 0}, the vacuum set, and P = (w0
1 , w

0
2) = w(ρ0, v0), ρ0 > 0, is the

vertex of the smallest triangle K containing supp ν − V in the w-coordinates.
This can be seen as follows. If (9.28) holds, then there are only three possibilities:
(i) supp ν = {P};
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(ii) supp ν ⊂ V ;
(iii) ν = ν|V + αδP , α 6= 0, 1.
It is clear that (i) and (ii) imply (9.27). For (iii), we choose (η1, q1) = (ρ,m) and

(η2, q2) = (m, m
2

ρ + p(ρ)) in (9.26) to have

αρ0p(ρ0) = α2ρ0p(ρ0),

which implies that α = α2 since ρ0 > 0. That is, either α = 0 or α = 1, which is a
contradiction.

Step 2. To achieve (9.28), it suffices to prove

lim
ℓ→∞

2
∑

i=1

< ν|Sǫ,ℓ
wi
, ℓ(w1 − w2)

2 >= 0. (9.29)

This can be seen as follows. Set ν̃ = (w1 − w2)
2ν, a weighted measure. Define

Pwi ν̃(a, b) = ν̃{w | a < wi < b},
an orthogonal projection of ν̃ onto the segment parallel to the wi-axis. If we can prove that
the following Lebesgue derivatives of Radon measures are zero for i = 1, 2, that is,

DPwi ν̃(wi) = 0, w0
2 < wi < w0

1 , i = 1, 2, (9.30)

then we conclude
ν̃(K − P ) = 0,

that is,
ν(K − (V ∪ P )) = 0,

which implies (9.28).
By Galilean invariance, it suffices for (9.30) to show that

DPwi ν̃(0) = 0, i = 1, 2, (9.31)

with w0
2 < 0 < w0

1 , which is equivalent to (9.29).

Step 3. Claim: If supp ν ∩ (K − V ) 6= ∅, then P ∈ supp ν.
If P /∈ supp ν, then there exists δ > 0 such that B2δ(P ) ∩ supp ν = ∅. In (9.26), we choose
(η1, q1) = (ηk, qk) and (η2, q2) = (η−k, q−k) to have

< ν, ηkq−k − η−kqk >

< ν, ηk >< ν, η−k >
=
< ν, qk >

< ν, ηk >
− < ν, q−k >

< ν, η−k >
. (9.32)

Observe that, as k is sufficiently large,

| < ν, ηkq−k − η−kqk > | ≤ Cek(w
0
1−w0

2−
√

2δ),

and
| < ν, ηk > | ≥ c0e

k(w0
1− δ

2 ), | < ν, η−k > | ≥ c0e
−k(w0

2+ δ
2 ).

We conclude from (9.32) that

lim
k→∞

(

< ν, qk >

< ν, ηk >
− < ν, q−k >

< ν, η−k >

)

= 0. (9.33)

Define the probability measures µ±
k ∈ Prob.(R2):

< µ±
k , h >=

< ν, hη±k >

< ν, η±k >
, h ∈ C0(R

2),

as k is sufficiently large. Then ‖µ±
k ‖M = 1, and there exists a subsequence {µkj}∞j=1 such

that

w∗ − lim
j→∞

µ±
kj

= µ±,
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and
suppµ+ ⊂ {w1 = w0

1} ∩K, suppµ− ⊂ {w2 = w0
2} ∩K.

Notice that λ1w1 = λ2w2 = 1
3 > 0. We have

lim
j→∞

< ν, qkj >

< ν, ηkj >
=< µ+, λ2 >≥ λ2(P ) > λ1(P ) ≥< µ−, λ1 >= lim

j→∞

< ν, q−kj >

< ν, η−kj >
,

which is a contradiction to (9.33).

Step 4. We now show that there exists C > 0, independent of ℓ, such that

| < ν, ηℓ > | + | < ν, qℓ > | ≤ C.

If not, there exists a subsequence {ℓj}∞j=1 such that

lim
j→∞

| < ν, ηℓj > | = ∞, and/or lim
j→∞

| < ν, qℓj > | = ∞.

For concreteness, we assume

lim
j→∞

< ν, qℓj >

< ν, ηℓj >
= α ∈ (−∞,∞).

Consider the commutativity relations

< ν, q0 > −< ν, qℓj >

< ν, ηℓj >
< ν, η0 >=

< ν, ηℓjq0 − η0qℓj >

< ν, ηℓj >
,

and

< ν, q1 > −< ν, qℓj >

< ν, ηℓj >
< ν, η1 >=

< ν, ηℓjq1 − η1qℓj >

< ν, ηℓj >
.

Let j → ∞ and use Proposition 9.2. Then
{

< ν, q0 > −α < ν, η0 >= 0,

< ν, q1 > −α < ν, η1 >= 0,

which implies

0 =

∣

∣

∣

∣

< ν, η0 > < ν, q0 >
< ν, η1 > < ν, q1 >

∣

∣

∣

∣

=< ν, η0q1 − η1q0 >=
1

3
< ν, (w1w2)

2X(w) > .

This implies that P /∈ supp ν, which is a contradiction to Step 3.

Step 5. Claim: For (ηℓ, qℓ) and (η̂ℓ, q̂ℓ) defined in (9.20),

lim
ℓ→∞

< ν, ηℓq̂ℓ − η̂ℓqℓ >= 0.

If not, there exists a subsequence such that

lim
j→∞

< ν, ηℓj q̂ℓj − η̂ℓjqℓj > 6= 0.

Step 4 indicates that there further exists a subsequence (still denoted) {ℓj} such that

lim
j→∞

(< ν, ηℓj >,< ν, qℓj >,< ν, η̂ℓj >,< ν, q̂ℓj >) exists.

Proposition 9.2 and the identity (9.25) imply
{

− < ν, η0 > limj→∞ < ν, qℓj > + < ν, q0 > limj→∞ < ν, ηℓj >= 0,

− < ν, η0 > limj→∞ < ν, q̂ℓj > + < ν, q0 > limj→∞ < ν, η̂ℓj >= 0.

Since < ν, η0 >> 0 from Step 3, we have

0 =

∣

∣

∣

∣

limj→∞ < ν, ηℓj > limj→∞ < ν, qℓj >
limj→∞ < ν, η̂ℓj > limj→∞ < ν, q̂ℓj >

∣

∣

∣

∣

= lim
j→∞

< ν, ηℓj q̂ℓj − η̂ℓjqℓj >,

which is a contradiction.
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Step 6. Proposition 9.3 and Step 5 imply that

2
∑

i=1

< ν|Sǫ,ℓ
wi
, ℓ(w1 − w2)

2A(ℓwi) + (w1 − w2)B
i
ℓ(w) >→ 0, ℓ→ ∞. (9.34)

Choose ψ(s) = a 2−ǫ
4

(s+ 2−ǫ
4 ) − a 2−ǫ

4
(s− 2−ǫ

4 ), where

aδ(s) = δa(
s

δ
), a(s) =

{

e
1

|s|2−1 , |s| ≤ 1,

0, otherwise.

Then
∫ 1

−1 ψ(s)ds = 0, and

(∫ x

−1

ψ(s)ds

)2

≥ cǫ > 0, x ∈ [−1 + ǫ, 1 − ǫ]. (9.35)

Combining (9.34) with (9.21) and (9.35) yields (9.29). This completes the proof. �

Remark 9.1. The proof of Theorem 9.1 is taken from Chen [37] and Ding-Chen-Luo [96].
For a gas obeying the γ-law, the case γ = N+2

N , N ≥ 5 odd, was first treated by DiPerna
[106], while the case 1 < γ ≤ 5/3 was first solved by Chen [37] and Ding-Chen-Luo [96].
Finally, motivated by a kinetic formulation, the cases γ ≥ 3 and 5/3 < γ < 3 were treated
by Lions-Perthame-Tadmor [203] and Lions-Perthame-Souganidis [202], respectively, where
their analysis applies to the whole interval 1 < γ < 3. For the general pressure law (6.22)
and (9.3), Theorem 9.1 is due to Chen-LeFloch [57, 59].

9.4. Convergence of the Lax-Friedrichs Scheme and the Godunov Scheme. We
now apply the compactness framework established in Theorem 9.1 to show the convergence
of the Lax-Friedrichs scheme [176] for the Cauchy problem (1.14), (6.22), (9.1), and (9.3)
under the assumptions:

0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0 ρ0(x), for a.e. x and some C0 > 0. (9.36)

The convergence proof for the Godunov scheme [139] is similar (see [97, 40]).
As every difference scheme, the Lax-Friedrichs scheme satisfies the property of propa-

gation with finite speed, which is an advantage over the vanishing viscosity method: the
convergence result applies without assumption on the decay of initial data at infinity. We
now construct the family of Lax-Friedrichs approximate solutions (ρh,mh)(x, t), similar to
these in §7.1 for the Glimm scheme. We also set vh = mh/ρh when ρh > 0 and vh = 0
otherwise. The Lax-Friedrichs scheme is based on a regular partition of the half-plane t ≥ 0
defined by tk = k∆t, xj = j h for k ∈ Z+, j ∈ Z, where ∆t and h are the sizes of time-step
and space-step, respectively. It is assumed that the ratio ∆t/h is constant and satisfies the
Courant-Friedrichs-Lewy stability condition:

∆t

h
‖λj(ρh, vh)‖L∞ < 1.

In the first strip {(x, t) : xj−1 < x < xj+1, 0 ≤ t < τ, j odd}, we define (ρh,mh)(x, t)
by solving a sequence of Riemann problems for (1.14) corresponding to the Riemann data:

(ρh,mh)(x, 0) =

{

(ρ0
j−1,m

0
j−1), x < xj ,

(ρ0
j+1,m

0
j+1), x > xj ,

with

(ρ0
j+1,m

0
j+1) =

1

2 h

∫ xj+2

xj

(ρ0,m0)(x) dx.

Recall that the Riemann problem is uniquely solvable (see §6.3).
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If (ρh,mh)(x, t) is known for t < tk, we set

(ρkj ,m
k
j ) =

1

2 h

∫ xj+1

xj−1

(ρh,mh)(x, tk − 0) dx.

In the strip {(x, t) : xj < x < xj+2, tk < t < tk+1, j + k = even}, we define (ρh,mh)(x, t)
by solving the Riemann problems with the data:

(ρh,mh)(x, tk) =

{

(ρkj ,m
k
j ), x < xj+1,

(ρkj+2,m
k
j+2), x > xj+1.

This completes the construction of the Lax-Friedrichs approximate solutions (ρh,mh)(x, t).

Theorem 9.2. Let (ρ0,m0)(x) be the Cauchy data satisfying (9.36). Extracting a subse-
quence, if necessary, the Lax-Friedrichs (or Godunov) approximate solutions (ρh,mh)(x, t)
converge strongly almost everywhere to a limit (ρ,m) ∈ L∞(R2

+) which is an entropy solution
of the Cauchy problem (1.14) and (9.1).

The following two propositions will be used in the proof of Theorem 9.2.

Proposition 9.4. For any w0
1 > w0

2, the region
∑

(w0
1 , w

0
2) =

{

(ρ,m) : w1 ≤ w0
1, w2 ≥ w0

2 , w1 − w2 ≥ 0
}

is also invariant for the Lax-Friedrichs approximate solutions, where wi, i = 1, 2, are the
Riemann invariants.

Proof. Proposition 6.5 indicates that
∑

(w0
1 , w

0
2) is an invariant region for the Riemann

solutions. Since the set
∑

(w0
1 , w

0
2) is convex in the (ρ,m)-plane, it follows from Jensen’s

inequality that, for any function satisfying {(ρ,m)(x) : a ≤ x ≤ b} ⊂∑(w0
1 , w

0
2) for some

(w0
1 , w

0
2),

(ρ̄, m̄) :=
1

b− a

∫ b

a

(ρ,m)(x)dx ∈
∑

(w0
1 , w

0
2).

Therefore,
∑

(w0
1 , w

0
2) is also an invariant region for the Lax-Friedrichs scheme. �

In particular, Proposition 9.4 shows that the approximate density function ρh(x, t) re-
mains nonnegative, and both ρh(x, t) and mh(x, t)/ρh(x, t) are uniformly bounded so it is
indeed possible to construct the approximate solutions globally, as described earlier.

Consider the entropy pair (η∗, q∗) defined from the kinetic and internal energy by (9.6).

Proposition 9.5. For any weak entropy pair (η, q) and any invariant region R(w0, z0), there
exists a constant C > 0 such that, for any solution (ρ,m)(x, t) of the Riemann problem with
initial data in R(w0, z0),

∣

∣x′(t) [η(ρ,m)](t) − [q(ρ,m)](t)
∣

∣ ≤ C (x′(t) [η∗(ρ,m)](t) − [q∗(ρ,m)](t)) ,

where x′(t) is the speed of any shock located at x(t) in the Riemann solution (ρ,m)(x, t).

The proof given in [37, 96] for the γ-law case extends immediately to the general pressure
law.

Proof of Theorem 9.2. Since the scheme satisfies the property of propagation with finite
speed, we can assume without loss of generality that the initial data have compact support.
To establish the strong convergence of the scheme, it suffices to check that the sequence
uh(x, t) = (ρh,mh)(x, t) satisfies the compactness framework in Theorem 9.1. The L∞

bound is a direct corollary of Proposition 9.4. We will prove (9.24).
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Consider the weak entropy dissipation measures ∂tη(u
h)+∂xq(u

h) associated with a weak
entropy pair (η, q). Using the Gauss-Green formula, for any test-function ϕ(x, t) compactly
supported in R × [0, T ] with T ≡ K∆t for some integer K, one has

∫

R

∫ T

0

(η(uh)∂tϕ+ q(uh)∂xϕ) dxdt = Mh(ϕ) + Sh(ϕ) + Lh1(ϕ) + Lh2(ϕ), (9.37)

where

Mh(ϕ) :=

∫

R

η(uh(x, T ))ϕ(x, T ) dx −
∫

R

η(uh(x, 0))ϕ(x, 0) dx,

Sh(ϕ) :=

∫ T

0

∑

shocks x(t)

(

x′(t) [η](t) − [q](t)
)

ϕ(x(t), t) dt,

Lh1(ϕ) :=
∑

j,k

ϕkj

∫ xj+1

xj−1

(

η(uk−) − η(ukj )
)

dx,

Lh2(ϕ) :=
∑

j,k

∫ xj+1

xj−1

(

η(uk−) − η(ukj )
)

(ϕ(x, tk) − ϕkj ) dx.

(9.38)

Here the same notations as in Proposition 9.5 are used, and uk−(x) := uh(x, tk−) and

ϕkj := ϕ(xj , tk).

Since each uh(x, t) has compact support, we may substitute (η, q) = (η∗, q∗) and ϕ ≡ 1
in the formulas (9.37)–(9.38) to obtain

∑

j,k

∫ xj+1

xj−1

(η∗(u
k
−) − η∗(u

k
j )) dx+

∫ T

0

∑

shocks x(t)

(

x′(t) [η∗](t) − [q∗](t)
)

dt

≤
∫

R

η∗(u0(x)) dx,

(9.39)

while
∑

j,k

∫ xj+1

xj−1

(η∗(u
k
−) − η∗(u

k
j )) dx

=
∑

j,k

∫ xj+1

xj−1

∫ 1

0

(uk− − ukj )
⊤∇2η∗

(

ukj + τ(uk− − ukj )
)

(uk− − ukj ) (1 − τ) dτdx,

(9.40)

where the summations are over all k ≤ K. In view of Proposition 9.5, the entropy inequality,
x′(t) [η∗](t) − [q∗](t) ≥ 0, is satisfied for the shocks. On the other hand, η∗ is convex in the
conservative variables (ρ,m). Estimates (9.39)–(9.40) yield

∫ T

0

∑

shocks x(t)

(

x′(t)[η∗](t) − [q∗](t)
)

dt ≤ C, (9.41)

∑

j,k

∫ xj+1

xj−1

∫ 1

0

(uk− − ukj )
⊤∇2η∗

(

ukj + τ(uk− − ukj )
)

(uk− − ukj ) (1 − τ) dτdx ≤ C. (9.42)

Then we observe the following:
(i) For 1 < γ ≤ 2, the entropy η∗ is uniformly convex so that the Hessian matrix ∇2η∗ is

bounded below by a positive constant, which implies

∑

j,k

∫ xj+1

xj−1

|uk− − ukj |2 dx ≤ C. (9.43)
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(ii) For γ > 2, the estimate (9.42) implies

∑

j,k

∫ xj+1

xj−1

(

ρk−
2

(mk
−

ρk−
−
mk
j

ρkj

)2
+

∫ 1

0

p′(ρkj + τ(ρk− − ρkj ))

ρkj + τ(ρk− − ρkj )
(1 − τ) dτ(ρk− − ρkj )

2

)

dx ≤ C.

In view of the assumption (9.3), there exists C1 > 0 depending on γ such that
∫ 1

0

p′(ρkj + τ(ρk− − ρkj ))

ρkj + τ(ρk− − ρkj )
(1 − τ) dτ ≥ C1 min

{

1, (ρk− − ρkj )
γ−2
}

,

which yields
∑

j,k

∫ xj+1

xj−1

(

ρk−
(mk

−
ρk−

−
mk
j

ρkj

)2
+ |ρk− − ρkj |γ

)

dx ≤ C.

The Cauchy-Schwarz inequality implies

∑

j,k

∫ xj+1

xj−1

ρk−
∣

∣

mk
−

ρk−
−
mk
j

ρkj

∣

∣ dx ≤ C h−1/2, (9.44)

and
∑

j,k

∫ xj+1

xj−1

|ρk− − ρkj | dx ≤ C h1/γ−1. (9.45)

For any bounded set Ω ⊂ R× [0, T ] and for any weak entropy pair (η, q), we deduce from
(9.37), (9.38), (9.40)–(9.45), and Propositions 9.4 and 9.5 that, for any ϕ ∈ C0(Ω),

|M(ϕ)| = 0,

|Sh(ϕ)| ≤ C ‖ϕ‖C0

∫ T

0

∑

{x′(t)[η∗] − [q∗]} dt ≤ C ‖ϕ‖C0(Ω),

|Lh1 (ϕ)| ≤ C ‖ϕ‖C0

∑

j,k

∫ xj+1

xj−1

dx

∫ 1

0

(uk− − ukj )
⊤∇2η∗(u

k
j + τ(uk− − ukj ))(u

k
− − ukj ) (1 − τ) dτ

≤ C ‖ϕ‖C0(Ω).

Hence |(Mh + Sh + Lh1)(ϕ)| ≤ C ‖ϕ‖C0 , which yields a uniform bound in the space of
bounded measures M(Ω) for Mh + Sh + Lh1 , considered as a functional on the space of
continuous functions:

‖Mh + Sh + Lh1‖M(Ω) ≤ C.

The embedding theorem M(Ω)
compact→֒ W−1,q0(Ω), 1 < q0 < 2, yields that

Mh + Sh + Lh1 is a compact sequence in W−1,q0(Ω). (9.46)

It remains to treat Lh2 (ϕ). Let ϕ ∈ Cα0 (Ω), 1
2 < α < 1. We distinguish two cases :

(i) For 1 < γ ≤ 2, we deduce from (9.43) that

|Lh2 (ϕ)| ≤ hα ‖ϕ‖Cα
0

∑

k





∑

j

∫ xj+1

xj−1

|η(uk−) − η(ukj )|2 dx





1/2

≤ hα−1/2‖∇η‖L∞‖ϕ‖Cα
0





∑

j,k

∫ xj+1

xj−1

|uk− − ukj |2 dx





1/2

≤ C hα−1/2‖ϕ‖W 1,p
0 (Ω), for all p >

2

1 − α
.

(9.47)
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(ii) For γ > 2, the estimates (9.44) and (9.45) yield

|Lh2 (ϕ)| ≤ hα ‖∇η‖L∞‖ϕ‖Cα
0

∑

j,k

∫ xj+1

xj−1

(

|ρk− − ρkj | + ρk−|
m−
ρk−

−
mk
j

ρkj
|
)

dx

≤ C hα+1/γ−1 ‖ϕ‖Cα
0 (Ω).

(9.48)

The estimates (9.47) and (9.48) imply

‖Lh2‖W−1,q0 (Ω) ≤ Chα0 −→ 0, when h→ 0, for 1 < q0 <
2

1 + α
< 2, (9.49)

where α0 = max{α − 1/2, α − 1 + 1/γ}. Finally, we combine (9.46) with (9.49) to obtain
that

Mh + Sh + Lh1 + Lh2 is compact in W−1,q0(Ω). (9.50)

Since 0 ≤ ρ(x, t) ≤ C, |m(x, t)/ρ(x, t)| ≤ C, we have that

Mh + Sh + Lh1 + Lh2 is bounded in W−1,r(Ω), r > 2. (9.51)

The interpolation lemma in [96] (also see [39]), (9.50), and (9.51) imply that

Mh + Sh + Lh1 + Lh2 is compact in W−1,2(Ω),

which implies that

∂tη(u
h) + ∂xq(u

h) is compact in W−1,2(Ω). (9.52)

In view of Theorem 9.1 and (9.52), there exists a subsequence uhℓ(x, t) converging for almost
every (x, t) to a limit function (ρ,m) ∈ L∞.

Now we check here that u(x, t) = (ρ,m)(x, t) is actually an entropy solution of the
Cauchy problem (1.14) and (9.1). For any weak entropy pair (η, q) with convex η and for
any nonnegative function ϕ ∈ C∞

0 (R × [0,∞)), we obtain from (9.37) and (9.38) that

∫ ∞

0

∫

R

(

η(uh)∂tϕ+ q(uh)∂xϕ
)

dxdt+

∫

R

η(uh(x, 0))ϕ(x, 0) dx

=Sh(ϕ) +
∑

j,k

ϕkj

∫ xj+1

xj−1

(η(uk−) − η(ukj )) dx

+
∑

j,k

∫ xj+1

xj−1

(ϕ(x, tk) − ϕkj ) (η(uk−) − η(ukj )) dx.

(9.53)

Since η is a convex function, it satisfies the entropy inequality so that

Sh(ϕ) ≥ 0, (9.54)

and

∑

j,k

ϕkj

∫ xj+1

xj−1

(η(uk−) − η(ukj )) dx

=
∑

j,k

ϕkj

∫ xj+1

xj−1

∫ 1

0

(uk− − ukj )
⊤∇2η(ukj + τ(uk− − ukj ))(u

k
− − ukj ) (1 − τ) dτdx ≥ 0.

(9.55)
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Furthermore, for 1 < γ ≤ 2, one has

∣

∣

∑

j,k

∫ xj+1

xj−1

(ϕ(x, tk) − ϕkj )(η(u
k
−) − η(ukj )) dx

∣

∣

≤ Ch1/2‖ϕ‖C1
0





∑

j,k

∫ xj+1

xj−1

|uk− − ukj |2 dx





1/2

.

Thus, when h→ 0,

∣

∣

∑

j,k

∫ xj+1

xj−1

(ϕ(x, tk) − ϕkj )(η(u
k
−) − η(ukj )) dx

∣

∣ ≤ C h1/2 → 0. (9.56)

For γ > 2, (9.43) and (9.44) imply

∣

∣

∑

j,k

∫ xj+1

xj−1

(ϕ− ϕkj )(η(u
k
−) − η(ukj )) dx

∣

∣

≤ C h‖ϕ‖C1
0

∑

j,k

∫ xj+1

xj−1

(

|ρk− − ρkj | + ρk−|
mk

−
ρk−

−
mk
j

ρkj
|
)

dx ≤ C ‖ϕ‖C1
0
h1/γ → 0.

(9.57)

Since
∣

∣

∣

mhℓ (x,t)

ρhℓ (x,t)

∣

∣

∣ ≤ C and (ρhℓ ,mhℓ)(x, t) −→ (ρ,m)(x, t) for almost every (x, t), we have

0 ≤ ρ(x, t) ≤ C and |m(x,t)|
ρ(x,t) ≤ C almost everywhere. We also conclude from (9.53)–(9.57)

that u(x, t) = (ρ,m)(x, t) satisfies the entropy inequality
∫ ∞

0

∫

R

(η(u)∂tφ+ q(u)∂xφ) dxdt +

∫

R

η(u0(x))φ(x, 0) dx ≥ 0,

for any nonnegative function φ ∈ C∞
0 (R × [0,∞)). This completes the proof of Theorem

9.2. �

Remark 9.2. The convergence for the γ-law case was first proved by Ding-Chen-Luo [96, 97]
and by Chen [37]. The proof presented above for the general pressure law basically follows
[96, 97, 37] with some simplifications and modifications. We refer to Tadmor [296] for
further discussions on various approximate solutions of nonlinear conservation laws and
related equations.

9.5. Existence and Compactness of Entropy Solutions.

Theorem 9.3 (Existence and Compactness). Assume that the initial data (ρ0,m0)(x) sat-
isfy (9.36). Assume that System (1.14) satisfies (6.22) and (9.3). Then

(i) There exists an entropy solution (ρ,m)(x, t) of the Cauchy problem (1.14) and (9.1),
in the sense of Definition 9.1, globally defined in time.

(ii) The solution operator (ρ,m)(·, t) = St(ρ0,m0)(·), defined in Definition 9.1, is com-
pact in L1

loc for t > 0.

Proof. The existence is a direct corollary of Theorem 9.2. Now we prove the compactness.
Consider any (oscillatory) sequence of initial data (ρǫ0,m

ǫ
0)(x), ǫ > 0, satisfying

0 ≤ ρǫ0(x) ≤ C0, |mǫ
0(x)| ≤ C0 ρ

ǫ
0(x), (9.58)

with C0 > 0 independent of ǫ > 0. Then there exists C > 0 independent of ǫ > 0 such that
the corresponding sequence (ρǫ,mǫ)(x, t), determined by Theorem 9.2, satisfies

0 ≤ ρǫ(x, t) ≤ C, |mǫ(x, t)| ≤ C ρǫ(x, t).

Since (ρǫ,mǫ)(x, t) are entropy solutions satisfying

∂tη(ρ
ǫ,mǫ) + ∂xq(ρ

ǫ,mǫ) ≤ 0
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in the sense of distributions, for any C2 convex weak entropy pair (η, q), we deduce from
the Murat Lemma (see Murat [237] or [39] for the details) that

∂tη(ρ
ǫ,mǫ) + ∂xq(ρ

ǫ,mǫ) is compact in H−1
loc (R

2
+),

for any weak entropy pair (η, q), not necessarily convex. Combining with Theorem 9.1 yields
that (ρǫ,mǫ)(x, t) is compact in L1

loc(R
2
+), which implies our conclusion. �

Remark 9.3. The existence and compactness of entropy solutions for the fluids obeying
the γ-law, the case γ = N+2

N , N ≥ 5 odd, was treated by DiPerna [106], the case 1 < γ ≤ 5/3
by Ding-Chen-Luo [96] and Chen [37], the case γ ≥ 3 by Lions-Perthame-Tadmor [203], and
then 1 < γ < 3 by Lions-Perthame-Souganidis [202]. For the more general pressure law
(6.22) and (9.3), Theorem 9.3 is due to Chen-LeFloch [57, 59].

Remark 9.4. Notice that Greenberg and Rascle [144] found an interesting nonlinear sys-
tem with only C1 (but not C2) flux function admitting time-periodic and space-periodic
solutions, which indicates that the compactness and asymptotic decay of entropy solutions
are sensitive with respect to the smoothness of the flux functions. However, Theorem 9.3
shows that, although the flux-function of System (1.14) is only Lipschitz continuous, the
entropy solution operator is still compact in L1

loc for this system.

9.6. Decay of Periodic Entropy Solutions. Now we show the large-time decay of
periodic entropy solutions in L∞ in the sense of Definition 9.1, established in Chen-Frid
[46].

Theorem 9.4 (Decay). Consider the Cauchy problem (1.14) and (9.1) satisfying (6.22)
and (9.3). Let (ρ,m) ∈ L∞(R2

+) be its periodic entropy solution with period [0, a]. Then
(ρ,m)(x, t) asymptotically decays as t→ ∞:

ess lim
t→∞

∫ a

0

(

|ρ(x, t) − ρ̄| + |m(x, t) − m̄|
)

dx = 0,

where (ρ̄, m̄) := 1
a

∫ a

0 (ρ0,m0)(x)dx.

Proof. We divide the proof into four steps:
Step 1. Set

uǫ(x, t) = (ρǫ,mǫ)(x, t) := (ρ,m)(x/ǫ, t/ǫ).

Then uǫ(x, t) is a sequence of entropy solutions with oscillatory initial data. Theorem 9.3
implies the compactness of uǫ(x, t) in L1

loc(R
2
+). Therefore, there exists a subsequence (still

denoted) uǫ(x, t) converging to some function u(x, t) ∈ L∞(R2
+) in L1

loc(R
2
+). We conclude

that u(x, t) = u(t) from the periodicity of uǫ(x, t).
Now, writing the equation of uǫ(x, t) in the weak integral form and setting ǫ→ 0, we can

check that

∂tu(t) = 0

in the sense of distributions. This implies from the periodicity of u0(x) that u(t) = u :=
1
a

∫ a

0 u0(x)dx = w∗ − limǫ→0 u0(x/ǫ).

Since the limit is unique, the whole sequence uǫ(x, t) strongly converges to u in L1
loc(R

2
+)

when ǫ→ 0. Therefore, we have
∫ 1

0

∫

|x|≤rt
|uǫ(x, t) − u|dxdt → 0, when ǫ→ 0. (9.59)

Step 2. Define the following quadratic entropy-entropy flux pairs:
{

α(u, ū) = η∗(u) − η∗(ū) −∇η∗(ū) · (u − ū),

β(u, ū) = q∗(u) − q∗(ū) −∇η∗(ū) · (f(u) − f(ū)),
(9.60)
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where (η∗, q∗) is the special entropy-entropy flux pair with convex η∗, defined in (9.6). Then
the periodic entropy solution u(x, t) satisfies the entropy inequality

∂tα(u, ū) + ∂xβ(u, ū) ≤ 0

in the sense of distributions. It follows that there exists T ⊂ R+ with meas(T ) = 0 such
that, for any q ∈ R,

∫ q+a

q

α(u(x, t2), ū)dx ≤
∫ q+a

q

α(u(x, t1), ū)dx, (9.62)

for all 0 ≤ t1 < t2, t1, t2 /∈ T .
Step 3. Given t > 0, t /∈ T , we take all the rectangles given by x ∈ [q, q + a], for q
integer, and s ∈ [[rt]/(2r), t], in the interior of the cone {|x| ≤ rs : 0 ≤ s ≤ t} ([a] is the
largest integer less than or equal to a). The number of such rectangles is larger than [rt].
Using the periodicity of u(x, ·) in x and the inequality (9.62) with t2 = t, which holds for
a.e. t1 = s ∈ (0, t) over the period [q, q + a], we obtain that there exist c0 > 0, C > 0,
independent of t, such that

c0

∫ a

0

α(u(x, t), ū)dx ≤ [rt]

t2

∫ t

[rt]
2r

∫ a

0

α(u(x, t), ū)dxds

≤ [rt]

t2

∫ t

[rt]
2r

∫ a

0

α(u(x, s), ū)dxds

≤ 1

t2

∫ t

0

∫

|x|≤rs
α(u(x, s), ū)dxds

≤ C

∫ 1

0

∫

|x|≤rs
|uǫ(x, s) − ū|dxds → 0, ǫ =

1

t
→ 0.

That is,

ess lim
t→∞

∫ a

0

∫ 1

0

(1 − τ)(u(x, t) − ū)⊤∇2η∗(ū + τ(u(x, t) − ū))(u(x, t) − ū)dτdx = 0.

(9.63)

Step 4. We observe the following:
(a). For 1 < γ ≤ 2, the entropy η∗ is uniformly convex, and then (9.63) is equivalent to

ess lim
t→∞

∫ a

0

|u(x, t) − ū|2dx = 0. (9.64)

(b). For γ > 2, (9.63) implies that

ess lim
t→∞

∫ a

0

(

ρ(x, t)(
m(x, t)

ρ(x, t)
− m̄

ρ̄
)2 + |ρ(x, t) − ρ̄|γ

)

dx = 0. (9.65)

Note by Hölder’s inequality that

|m− m̄|2 ≤ C

(

ρ(
m

ρ
− m̄

ρ̄
)2 + (ρ− ρ̄)2

)

,

∫ β

α

|ρ− ρ̄|2dx ≤ C

(

∫ β

α

|ρ− ρ̄|γdx
)1/2

.

(9.66)

We conclude from (9.65), (9.66), and the uniform boundedness of the solution (ρ,m)(x, t)
that

ess lim
t→∞

∫ a

0

(|ρ(x, t) − ρ̄| + |m(x, t) − m̄|) dx = 0. (9.67)

Combining (9.64) with (9.67) leads to the completion of the proof. �
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Remark 9.5. Theorem 9.4 indicates that periodic entropy solutions asymptotically decay
to the unique constant state, determined solely by the initial data.

Remark 9.6. Although the proof above for L∞ entropy solutions only in the one-dimensional
case, the argument applies to any space dimension and may extend to entropy solutions in
any Lp for p ≥ 1. See Chen-Frid [46].

9.7. Stability of Rarefaction Waves and Vacuum States. We now consider the
global stability of rarefaction waves in a broad class of entropy solutions in L∞ containing
the vacuum states for (1.14). Rarefaction waves are the only case that may produce a
vacuum state in later time in the Riemann solutions when the Riemann initial data stay
away from the vacuum.

In §6.3, we have discussed the global solvability of the Riemann problem (1.14) and
(6.21). Now we show the global stability of rarefaction waves in the following broader class
of entropy solutions of (1.14) and (9.1) containing the vacuum states.

Definition 9.2. A bounded measurable function u(x, t) = (ρ,m)(x, t) is an entropy solution
of (1.14) and (9.1) in R

2
+ if u(x, t) satisfies the following:

(i) There exists a constant C > 0 such that

0 ≤ ρ(x, t) ≤ C, |m(x, t)/ρ(x, t)| ≤ C;

(ii) u(x, t) satisfies the equations in (1.14) and one physical entropy inequality in the
sense of distributions in R

2
+, i.e., for any nonnegative function φ ∈ C1

0 (R2
+),

∫ ∞

0

∫ ∞

−∞
(η(u)∂tφ+ q(u)∂xφ) dx dt +

∫ ∞

−∞
η(u0)(x)φ(x, 0)dx ≥ 0, (9.68)

for (η, q) = ±(ρ,m),±(m, m
2

2ρ + p(ρ)), (η∗, q∗), where (η∗, q∗) is the mechanical

energy-energy flux pair defined in (9.6).

Remark 9.7. In Definition 9.2, we require that the entropy solutions in L∞ satisfy solely
one physical entropy inequality, besides the equations (1.14), thus admitting a broader class
than the usual class of entropy solutions in L∞ that satisfy all weak Lax entropy inequalities
(compare with Definition 9.1).

Remark 9.8. For the Cauchy problem (1.14), (9.1), (6.22), and (9.3), there exists a global
entropy solution satisfying all weak Lax entropy inequalities (see Theorem 9.3).

The following theorem is taken from Chen [42].

Theorem 9.5. Let R(x/t) be the Riemann solution of (1.14), (6.21), (6.22), and (9.2),
consisting of one or two rarefaction waves, constant states, and possible vacuum states, as
constructed in §6.3. Let u(x, t) be any entropy solution of (1.14), (6.22), (9.1), and (9.2)
in R

2
+ in the sense of Definition 9.2. Then, for any L > 0,

∫

|x|≤L
α(u,R)(x, t) dx ≤

∫

|x|≤L+Nt

α(u0,R0)(x) dx, (9.69)

where N > 0 depends only on C > 0 in Definition 9.2 and is independent of t, and

α(u,R) ≡ (u − R)⊤
(∫ 1

0

∇2η∗(R + τ(u − R))dτ

)

(u − R) > 0,

if u 6= R and both stay away from the vacuum.

In particular, if u0(x) = R0(x) a.e., then u(x, t) = R(x/t) a.e..

Proof. Without loss of generality, we prove the assertion only for the Riemann solution
(6.29) which consists of two rarefaction waves with vacuum states as intermediate states.
The other cases can be proved similarly. The proof is based on normal traces and the
generalized Gauss-Green theorem for divergence-measure vector fields in L∞, established
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in Chen-Frid [50, 51], and the techniques developed in [47, 49, 104] for strictly hyperbolic
systems. One of the new difficulties here is that strict hyperbolicity fails at the vacuum,
yielding singular derivatives of the mechanical energy at the vacuum, which is absent in the
strictly hyperbolic case. Another difficulty is that the entropy solutions are only in L∞.

Step 1. Denote u = (ρ,m) and R = (ρ̄, m̄). First we renormalize the mechanical energy-
energy flux pair in (9.6) as in (9.60) and consider

µ = ∂tα(u(x, t),R(x/t)) + ∂xβ(u(x, t),R(x/t)), d = ∂tη∗(u(x, t)) + ∂xq∗(u(x, t)).

Since u(x, t) is an entropy solution, µ ≤ 0 in any region in which R is constant and µ ≤ 0,
in the sense of distributions. Then µ and d are Radon measures, and (q∗(u), η∗(u))(x, t)
and (β(u(x, t),R(x/t)), α(u(x, t),R(x/t))) are divergence-measure vector fields on R

2
+.

Step 2. Let

Ω1 := { (x, t) : λ1(u−) < x/t < vc1 , t > 0 }, Ω2 := { (x, t) : vc2 < x/t < λ2(u+), t > 0 },
the rarefaction wave regions of the Riemann solution, and

Ω0 := {(x, t) : vc1 < x/t < vc2 , t > 0 }
the vacuum region.

Over the regions Ωj , j = 1, 2,

µ = ∂tα(u,R) + ∂xβ(u,R) = d− (∂xR)⊤∇2η∗(R)Qf(u,R), (9.71)

where Qf(u,R) = f(u) − f(R) − ∇f(R)(u − R), and we used the fact that ∇2η∗∇f is
symmetric. Recall that, for (x, t) ∈ Ωj ,

∂xR(x/t) =
1

t
rj(R(x/t)), j = 1, 2. (9.72)

Then, by (9.71) and (9.72), for any Borel set E ⊂ Ωj , j = 1, 2, we have

µ(E) = d(E) −
∫

E

1

t
rj(R)⊤∇2η∗(R)Qf(u,R)(x, t) dxdt. (9.73)

Over the vacuum region Ω0, ρ̄(x, t) = 0, we may choose the velocity

v̄(x, t) = x/t, vc1 < x/t < vc2 .

Then a careful calculation yields

µ = d− 1

t

(

ρ

(

v̄ − m

ρ

)2

+ p(ρ)

)

,

which implies that, for any Borel set E ⊂ Ω0,

µ(E) = d(E) −
∫

E

1

t

(

ρ

(

v̄ − m

ρ

)2

+ p(ρ)

)

(x, t)dxdt. (9.74)

Step 3. For any δ > 0, denote

ℓδ1(t) = {x/s = λ1(uL), δ < s < t}, ℓδ2(t) = {x/s = vc1 , δ < s < t},
ℓδ3(t) = {x/s = vc2 , δ < s < t}, ℓδ4(t) = {x/s = λ2(uR), δ < s < t}.

Then

µ{ℓδj(t)} = d{ℓδj} ≤ 0, j = 1, 2, 3, 4. (9.75)

Step 4. For any L > 0, let Πδ
L,t denote the region { (x, s) : |x| < L+M(t−s), 0 < δ < s < t}

and Ωδj(t) = Ωj ∩ Πδ
L,t, Ωj(t) = Ωj ∩ {(x, s) : 0 < s < t}, j = 0, 1, 2, where

M ≥M0 := ‖β(u,R)/α(u,R)‖L∞(R2
+).
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First, by the entropy inequality (9.68), the Gauss-Green formula for divergence-measure
vector fields in [50], and the convexity of η∗(u) in u, it is standard (cf. [63]) to deduce that
any entropy solution defined in Definition 9.2 assumes its initial data u0(x) strongly in L1

loc:

lim
t→0

∫

|x|≤K
|u(x, t) − u0(x)|dx = 0, for any K > 0. (9.76)

Furthermore, we apply normal traces and the Gauss-Green formula for divergence-measure
vector fields in [50] to conclude again

µ{Πδ
t,L} =

∫

|x|≤L
α(u(x, t),R(x/t)) dx −

∫

|x|≤L+M(t−δ)
α(u(x, δ),R(x/δ)) dx

+

∫

∂Πδ
t,L

(β, α) · ν dσ,

where ν is the unit outward normal field and σ is the boundary measure. Then we can
choose M ≥M0 such that

∫

∂Πδ
t,L

(β, α) · ν dσ ≥ 0. Therefore, we have

µ{Πδ
t,L} ≥

∫

|x|≤L
α(u(x, t),R(x/t)) dx −

∫

|x|≤L+M(t−δ)
α(u(x, δ),R(x/δ)) dx. (9.77)

On the other hand, since R(x/t) is constant in each component of Πt − ∪2
j=0Ω

δ
j(t) −

∪4
j=1ℓ

δ
j(t) and d ≤ 0, we have

µ{Πδ
t,L} ≤ −

2
∑

j=1

∫

Ωδ
j (t)

1

s
rj(R)⊤∇2η∗(R)Qf(u,R)(x, s) dxds, (9.78)

from (9.73)–(9.75).

Step 5. A careful direct calculation yields

hj(x, s) := rj(R)⊤∇2η∗(R)Qf(u,R)(x, s)

=
2p′(ρ̄)

ρ̄p′′(ρ̄) + 2p′(ρ̄)

(

ρ

(

m

ρ
− m̄

ρ̄

)2

+ p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

)

(x, s) ≥ 0,

for j = 1, 2, since p(ρ) is convex in ρ ≥ 0. Also, from (6.22) and (9.2), we can see that
hj(x, s), j = 1, 2, are uniformly bounded everywhere, even near the vacuum, which means
that hj(x, s), j = 1, 2, are integrable in Ω1(t) ∪ Ω2(t) as s > 0. This fact in combination
with (9.77) and (9.78) yields

∫

|x|≤L
α(u(x, t),R(x/t)) dx ≤

∫

|x|≤L+M(t−δ)
α(u(x, δ),R(x/δ)) dx. (9.79)

Then (9.76) and (9.79) imply (9.69) as δ → 0. This completes the proof.

In the previous proof, the values of the divergence-measure field (β(u,R), α(u,R))(x, t)
on the line segments in the (x, t)-plane should be understood in the sense of normal traces.
If one wishes to forego the normalization of our solution through normal traces, then (9.69)
should be considered to hold for almost all t ∈ [0,∞).

As a corollary, the following theorem in Chen [42] holds.

Theorem 9.6. Let R(x/t) be the Riemann solution of (1.14), (6.21), (6.22), and (9.2),
consisting of one or two rarefaction waves, constant states, and possibly vacuum states, as
constructed above. Let u(x, t) be any entropy solution of (1.14), (6.22), (9.1), and (9.2)
with initial data

u|t=0 = R0(x) + P0(x),
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in the sense of Definition 9.2. Then R(x/t) is asymptotically stable under the initial per-
turbation P0(x) ∈ L1 ∩ L∞ in the sense of

lim
t→∞

∫

|ξ|≤L
α(u(ξt, t),R(ξ))dξ = 0, for any L > 0.

Remark 9.9. The analysis above has also been extended in Chen [42] to the system for
non-isentropic fluids, which is more complicated. This has been achieved by identifying a
good Lyapunov functional and making an appropriate choice of entropy functions. Also see
Chen-Frid [51] for more recent results.

9.8. Other Results. Further results include the following.

Equations of Elasticity: Consider the equations in (1.15) with p(τ) = −σ(τ), σ′(τ) > 0.
In elasticity, genuine nonlinearity is typically precluded by the fact that the medium in
question can sustain discontinuities in both the compressive and expansive phases of the
motion. In the simplest model for common rubber, one postulates that the stress σ, as a
function of the strain τ , switches from concave in the compressive mode τ < 0 to convex in
the expansive mode τ > 0, i.e.

sgn(τσ′′(τ)) > 0, if τ 6= 0. (9.80)

In [105], DiPerna proved the existence of global entropy solutions in L∞ of System (1.15)
and (9.80). Also see Shearer [278], Lin [200], and Gripenberg [146]. As a corollary, the
compactness and decay of global entropy solutions follows with the aid of the approach in
Chen-Frid [46].

Euler Equations for Non-Isentropic Fluids: Consider the Euler equations for non-
isentropic fluids in (1.13). Selecting (τ, v, S) as the state vector, we have the constitutive
relations

(e, p, θ) = (ê(τ, S), p̂(τ, S), θ̂(τ, S)) (9.81)

satisfying the conditions

p = −êτ , θ = êS .

Under the standard assumptions p̂v < 0 and θ̂ > 0, System (1.13) is strictly hyperbolic.

Consider the following class of constitutive relations

p = h(τ − αS), e = βS −
∫ w

h(y)dy, θ = αh(τ − αS) + β > 0, (9.82)

where α, β, w = τ − αS, and h(w) is a smooth function with h′(w) < 0 satisfying

h′′(w) − 4
αh′(w)2

αh(w) + β

{

> 0, if w < ŵ,

< 0, if w > ŵ.
(9.83)

The model (9.82) can be regarded as a “first-order correction” to the general constitutive
relations (see [43]).

The existence and compactness of distributional entropy solutions for the Cauchy problem
of (1.13) and (9.81)–(9.83) was established in Chen-Dafermos [43], and the decay of periodic
solutions was established in Chen-Frid [46]. In particular, although the periodic solutions do
not decay because of linear degeneracy of the system, several important physical quantities,
including the velocity, the pressure, and the temperature, do asymptotically decay.

As for the Euler equation with more general constitutive relations, including those for
polytropic gases with p = (γ − 1)ρe, the problems of existence, compactness, and decay of
entropy solutions with arbitrarily large initial data, beyond the BV theory, are still open.
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10. Global Discontinuous Solutions V: the Multidmensional Case

In this section we discuss global discontinuous solutions for the multidimensional Euler
equations for compressible fluids.

10.1. Multidimensional Euler Equations with Geometric Structure. We first dis-
cuss global solutions with geometric structure for the multidimensional Euler equations for
isentropic gas dynamics in (1.9) and (1.10).

Consider spherically symmetric solutions outside a solid core:

ρ(x, t) = ρ(r, t), m(x, t) = m(r, t)
x

r
, r = |x| ≥ 1. (10.1)

Then (ρ,m)(r, t) is determined by the equations:






∂tρ+ ∂rm = −A′(r)
A(r) m,

∂tm+ ∂r(
m2

ρ + p(ρ)) = −A′(r)
A(r)

m2

ρ ,
(10.2)

subject to the Cauchy data:

(ρ,m)|t=0 = (ρ0,m0)(r), r > 1, (10.3)

with homogeneous boundary condition:

m|r=1 = 0, (10.4)

where A(r) = 2πd/2

Γ(d/2)r
d−1 is the surface area of d-dimensional sphere.

Although System (10.2) is here presented in the context of spherically symmetric flow,
the same system also describes many flows, important in physics, such as the transonic
nozzle flow with variable cross-sectional area A(r) ≥ c0 > 0.

The eigenvalues of (10.2) are λ± = m
ρ ± c = c(M ± 1), where c =

√

p′(ρ) is the sound

speed and M = m
ρc is the Mach number. We notice that λ+ − λ− = 2c(ρ) = 2ρ

γ−1
2 → 0 as

ρ → 0. On the other hand, the geometric source speed is zero, and the eigenvalues λ± are
also zero near M ≈ ±1, which indicates that there is also nonlinear resonance between the
geometric source term and the characteristic modes.

The natural issues associated with this problem are: (a) whether the solution has the same
geometric structure globally; (b) whether the solution blows up to infinity in a finite time,
especially the density. These issues are not easily resolved through physical experiments or
numerical simulations, especially the second one, due to the limited capacity of available
instruments and computers. The central difficulty of this problem in the unbounded domain
lies in the reflection of waves from infinity and their amplification as they move radially
inwards. Another difficulty is that the associated steady-state equations change type from
elliptic to hyperbolic at the sonic point; such steady-state solutions are fundamental building
blocks in our approach.

Consider the steady-state solutions:














mr = −A′(r)
A(r) m,

(m
2

ρ + p(ρ))r = −A′(r)
A(r)

m2

ρ ,

(ρ,m)|r=r0 = (ρ0,m0).

(10.5)

The first equation can be integrated directly to get

A(r)m = A(r0)m0. (10.6)
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The second equation can be rewritten as

(A(r)
m2

ρ
)r +A(r)p(ρ)r = 0.

Hence, using (10.6) and θ = γ−1
2 , we have

ρ2θ(θM2 + 1) = ρ2θ
0 (θM2

0 + 1). (10.7)

Then (10.6) and (10.7) become
(

ρ

ρ0

)θ+1

=
A(r0)M0

A(r)M
,

(

ρ

ρ0

)2θ

=
θM2

0 + 1

θM2 + 1
. (10.8)

Eliminating ρ in (10.8) yields

F (M) =
A(r0)

A(r)
F (M0), (10.9)

where

F (M) = M

(

1 + θ

1 + θM2

)
θ+1
2θ

satisfies














F (0) = 0, F (1) = 1; F (M) → 0, when M → ∞;

F ′(M)(1 −M) > 0, when M ∈ [0,∞);

F ′(M)(1 +M) > 0, when M ∈ (−∞, 0].

Thus we see that, if A(r) < A(r0)|F (M0)|, no smooth solution exists because the right-
hand side of (10.9) exceeds the maximum values of |F |. If A(r) > A(r0)|F (M0)|, there
are two solutions of (10.9), one with |M | > 1 and the other with |M | < 1, since the line

F = A(r0)
A(r) F (M0) intersects the graph of F (M) at two points.

For A′(r) = 0, the system becomes the one-dimensional isentropic Euler equations, which
have been discussed in Section 9.

For A′(r) 6= 0, the existence of global solutions for the transonic nozzle flow problem
was obtained in Liu [207] by first incorporating the steady-state building blocks into the
random choice method [130], provided that the initial data have small total variation and are
bounded away from both sonic and vacuum states. A generalized random choice method
was introduced to compute transient gas flows in a Laval nozzle in [129, 135]. A global
entropy solution with spherical symmetry was constructed in [224] for γ = 1, and the local
existence of such an entropy solution for 1 < γ ≤ 5

3 was also discussed in [225]. Also see Liu
[206, 207, 208], Glaz-Liu [129], Glimm-Marshall-Plohr [135], Embid-Goodman-Majda [109],
and Fok [119].

In Chen-Glimm [53], a numerical shock capturing scheme was developed and applied for
constructing global solutions of (1.9) and (1.10) with geometric structure and large initial
data in L∞ for 1 < γ ≤ 5/3, including both spherically symmetric flows and transonic nozzle
flows. The case γ ≥ 5/3 was treated in [66]. It was proved that the solutions do not blow
up to infinity in a finite time. More precisely, the following theorem due to Chen-Glimm
[53] holds:

Theorem 10.1. There exists a family of approximate solutions (ρǫ,mǫ)(r, t) of (10.2) such
that

(i) 0 ≤ ρǫ(r, t) ≤ C, |m
ǫ(r,t)

ρǫ(r,t) | ≤ C;

(ii) ∂tη(ρ
ǫ,mǫ) + ∂rq(ρ

ǫ,mǫ) is compact in H−1
loc (Ω) for any weak entropy pair (η, q),

where Ω ⊂ R
2
+ or Ω ⊂ (1,∞) × R+.
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Furthermore, there is a convergent subsequence (ρǫℓ ,mǫℓ)(r, t) of approximate solutions
(ρǫ,mǫ)(r, t) such that

(ρǫℓ ,mǫℓ)(r, t) → (ρ,m)(r, t), a.e.,

and the limit function (ρ,m)(r, t) is a global entropy solution of (10.2) with the assigned
initial data in L∞ and satisfies

0 ≤ ρ(r, t) ≤ C, |m(r, t)

ρ(r, t)
| ≤ C.

Moreover, (ρ,m)(x, t), defined in (10.1) through (ρ,m)(r, t) of (10.2)–(10.4), is a global
entropy solution of (1.9) and (1.10) with spherical symmetry outside the solid core for the
initial data in L∞.

The approach in Chen-Glimm [53] for constructing the family of approximate solutions
in Theorem 10.1 is to merge shock capturing ideas with the fractional-step techniques in
order to develop first-order Godunov shock capturing schemes, replacing the usual piecewise
constant building blocks by piecewise smooth ones. The main point is to use the steady-state
solutions, which incorporate the main geometric source terms, in order to modify the wave
strengths in the Riemann solutions. This construction yields better approximate solutions
and permits a uniform L∞ bound. There are two technical difficulties to achieve this, both
due to transonic phenomena. The first one is that no smooth steady-state solution exists
in each cell in general. This problem was solved by introducing a standing shock. The
other is that the constructed steady-state solution in each cell must satisfy the following
requirements:

(a). The oscillation of the steady-state solution around the Godunov value must be of the
same order as the cell length so as to obtain the L∞ estimate for the convergence arguments;

(b). The difference between the average of the steady-state solution over each cell and
the Godunov value must be higher than first-order in the cell length in order to ensure the
consistency of the corresponding approximate solutions with the Euler equations. That is,

1

∆r

∫ (j+ 1
2 )∆r

(j− 1
2 )∆r

u(r, k∆t− 0)dr = ukj (1 +O(|∆r|1+δ)), δ > 0.

These requirements are naturally satisfied by smooth steady-state solutions that stay away
from the sonic state in the cell. The general case must include the transonic steady-state
solutions. The sonic difficulty was overcome, as in experimental physics, by introducing
an additional standing shock with continuous mass and by adjusting its left state and right
state in the density and its location to control the growth of the density. These requirements
can yield the H−1 compactness estimates for entropy dissipation measures

∂tη(ρ
ǫ,mǫ) + ∂rq(ρ

ǫ,mǫ)

and the strong compactness of approximate solutions (ρǫ,mǫ)(r, t) with the aid of the com-
pactness framework discussed in Section 9.3.

Remark 10.1. The above method has been applied to studying the Euler-Poisson equations
for compressible fluids, which describe the dynamic behavior of many flows of physical
importance including the propagation of electrons in submicron semiconductor devices and
the biological transport of ions for channel proteins. See Chen-Wang [65] and the references
cited therein.

Remark 10.2. Some related results for entropy solutions with symmetric structure can be
found in [40, 76, 289, 322, 336, 337].

Remark 10.3. In the spherically symmetric problem, one of the main difficulties is from
infinity because of the reflection of waves from infinity and their amplification as they move
radially inwards; this difficulty has been overcome above. Another difficulty is the singularity
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of entropy solutions at the origin; it would be interesting to study the existence and behavior
of spherically symmetric entropy solutions near the origin.

10.2. The Multidimensional Riemann Problem. The multidimensional Riemann
problem is very important, since it serves as a building block and standard test model
of mathematical theories and numerical methods for solving nonlinear systems of conserva-
tion laws, especially the Euler equations for compressible fluids, in any space dimension; and
its solutions may also determine the large-time behavior of general entropy solutions. See
Glimm-Majda [134], Chern-Glimm-McBryan-Plohr-Yaniv [69], Glimm-Klingenberg-McBryan-
Plohr-Sharp [132], and Chen-Frid [47, 48, 49].

The elementary waves are the building blocks out of which a Riemann solution is con-
structed. The Riemann solution is characterized by invariance under scale transformations:

x → αx, t→ αt, α > 0,

while the elementary wave is invariant under additional symmetry: it moves as a travelling
wave with a fixed velocity. The elementary waves for the Euler equations for a polytropic
fluid were classified in the following theorem by Glimm-Klingenberg-McBryan-Plohr-Sharp
[132].

Theorem 10.2. Generally, the elementary waves for the Euler equations are one of the
following simple types: cross, overtake, Mach triple point, diffraction, and transmission.

Two-dimensional Riemann problems arise when one-dimensional waves cross or overtake
one another or when these waves reflect from or interact with walls or boundaries. Generally,
an interaction will arise when two waves meet or a single wave meets a boundary; it is such
simple and generic problems which are fundamental. The following two problems have been
studied extensively on the level of experiment and computation:

(a) the shock-wedge problem of reflection of a shock wave by a wedge in a shock tube
(e.g. [323, 93, 134]);

(b) the shock diffraction problem of reflection and transmission of a shock wave by a
contact surface (e.g. [1, 134]).

There are a series of topologically distinct patterns for the various reflected, transmitted
and incident waves. Similar issues apply to the interior interaction of waves. Moreover, a
two-dimensional Riemann problem can also be generated by the self-interactions of a single
two-dimensional elementary wave. See Glimm [131] for more detailed discussions.

In Chang-Chen-Yang [31, 32], Kurganov-Tadmor [173], Lax-Liu [184], Schulz-Collins-Glaz
[270], and Zhang-Zheng [335], the two-dimensional Riemann problem with the following form
was analyzed for gas dynamics: The initial Riemann values are constant states in each quad-
rant of the (x, y)-plane, and the four initial constant states satisfy that each jump in the
initial data away from the origin produces exactly one of planar forward shocks, backward
shocks, forward centered rarefaction waves, backward centered rarefaction waves, or slip
surfaces. It was shown that all possible wave combinations can be clarified into nineteen
genuine different cases, and there may be some subcases in each case. For each case, numer-
ical solutions of each subcase were illustrated by using various shock capturing methods,
and the corresponding theoretical analyses were given by the method of characteristics.

In particular, in the case of the interaction of rarefaction waves propagating in the op-
posite direction, the numerical solutions clearly show that two compressive waves, even
shock waves, appear in the solutions. This phenomenon can be explained as the effect of
compression of the flow characteristics. The observation of the essential difference of two
types of contact discontinuities distinguished by the sign of the vorticity yields two gen-
uinely different cases for the interaction of four contact discontinuities. For one case, the
four contact discontinuities roll up and generate a vortex, and the density monotonically
decreases along the stream curves. For the other, two shock waves are formed; and, in the
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subsonic region between two shock waves, a new kind of nonlinear hyperbolic waves ap-
pears, called smoothed Delta-shock waves, in the compressible Euler flow, which were first
observed by Chang-Chen-Yang [31, 32]. The formation of Delta-shocks and the phenomena
of concentration and cavitation in the vanishing pressure limit have been rigorously analyzed
in Chen-Liu [54].

In general, the solution structures of the Riemann problem are extremely complicated.
The following four numerical examples show the complexity of the density contour curves
for different interactions of elementary waves in the Riemann problem. Figs. 10.1 and
10.2 were taken from Lax-Liu [184]; and Figs. 10.3 and 10.4 from Kurganov-Tadmor [173],
respectively.
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Figure 10.1: Interaction of Four Rarefaction Waves
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Figure 10.2: Interaction of Four Shock Waves
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Figure 10.3: Interaction of Two Rarefaction Waves
and Two Contact Discontinuities
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Figure 10.4: Interaction of Two Shock Waves and
Two Contact Discontinuities

More analytical and numerical results about the Riemann problem and shock reflection
problems for the isentropic or non-isentropic Euler equations can be found in

AbdElFattah-Henderson-Lozzi [1], Chang-Chen [30], Chang-Hsiao [33], Deschambault-
Glass [93], Gamba-Rosales-Tabak [127], Glimm-Majda [134], Harabetian [151], Hunter-Brio
[156], Hunter-Keller [157], Keller-Blank [168], Li-Zhang-Yang [192], Lighthill [196], Serre
[274, 275], Tabak-Rosales [295], Tesdall-Hunter [305], Woodward-Colella [323], Zakharian-
Brio-Hunter-Webb [332], Zheng [338], and the references cited therein.
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For potential compressible fluid flows, recent mathematical efforts have been made to
establish the existence and behavior of solutions. See Chen [67, 68], Chen-Feldman [45],
Gamba-Morawetz [126], Gu [147], Li [193], Lien-Liu [199], Morawetz [230, 232], Zheng
[333], and the references cited therein. A related model, called the unsteady transonic
small disturbance (UTSD) equations, has been analyzed in Canic-Keyfitz-Lieberman [27]
and Canic-Keyfitz-Kim [28].

For the Euler equations for pressureless, isentropic fluids, global Riemann solutions are
now well-understood. We refer the reader to Bouchut-James [15], Chen-Liu [54], Ding-Wang
[98], Grenier [145], LeFloch [186], Poupaud-Rascle [260], Sheng-Zhang [280], Tan-Zhang
[298], Yang-Huang [326], and the references cited therein. Also see E-Khanin-Mazel-Sinai
[107] and E-Rykov-Sinai [108] for the effects of random initial data and stochastic forcing.

For the multidimensional Riemann problem for Hamilton-Jacobi equations, we refer the
reader to Glimm-Kranzer-Tan-Tangerman [136], Bardi-Osher [8], and the references cited
therein.

11. Euler Equations for Compressible Fluids with Source Terms

In §2 – §10, we have discussed the Cauchy problem for the Euler equations for equilibrium,
compressible fluids. In this section, we discuss two of the most important examples for the
Euler equations for compressible fluids with source terms: Relaxation and combustion.

11.1. Euler Equations with Relaxation. The Euler equations with relaxation in (1.1),
(1.21), and (1.22) fit into a general setting of hyperbolic systems of conservation laws in the
form:

∂tU + ∇ ·F(U) +
1

ǫ
S(U) = 0, x ∈ R

d, (11.1)

where U = U(x, t) ∈ R
N represents the density vector of basic physical variables, and ǫ is

the relaxation time, which is very short. It is assumed that the system is hyperbolic, and the
relaxation term S(U) is endowed with an n×N constant matrix Q with rank n < N such
that QS(U) = 0. This yields n independent conserved quantities u = QU. In addition, it
is assumed that each u uniquely determines a local equilibrium value U = E(u) satisfying
S(E(u)) = 0 and such that QE(u) = u, for all u.

For the system in (1.1), (1.21), and (1.22), N = d+ 3, n = d+ 2,U = (ρ,m, E, ρq)⊤,u =
(ρ,m, E)⊤, E(u) = (ρ,m, E, ρQ(ρ, e))⊤, and

Q =

(

I(d+2)×(d+2) 0
0 0

)

where I(d+2)×(d+2) is the (d+ 2) × (d+ 2) identity matrix.
The simplest models of (11.1) are 2 × 2 systems:







∂tu+ ∂xf(u, v) = 0,

∂tv + ∂xg(u, v) + 1
ǫh(u, v) = 0,

(11.2)

where h(u, v) = a(u, v)(v−e(u)), a(u, e(u)) 6= 0. For such systems, d = 1, N = 2, n = 1, U =
(u, v)⊤, E(u) = (u, e(u))⊤, and Q = (1, 0). In particular, the p-system is a special case of
(11.2):

{

∂tu+ ∂xv = 0,

∂tv + ∂xp(u) + 1
ǫ (v − f(u)) = 0,

(11.3)

with Λ1 = −
√

p′(u) < Λ2 =
√

p′(u).
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One of the most important issues is the relaxation limit of hyperbolic systems of conser-
vation laws with stiff relaxation terms to the corresponding local systems. This may model
how the dynamic limit from the continuum and kinetic nonequilibrium processes to the equi-
librium processes is attained, as the relaxation time tends to zero. Typical examples for such
a process include gas flow near thermo-equilibrium, viscoelasticity with vanishing memory,
kinetic theory with small Knudsen number, and phase transition with short transition time.

The local equilibrium limit turns out to be highly singular because of shock and initial
layers and to involve many challenging problems in nonlinear analysis and applied sciences.
Roughly speaking, the relaxation time measures how far the nonequilibrium states are away
from the corresponding equilibrium states; understanding its limit behavior is equivalent to
understanding the stability of the equilibrium states. It connects nonlinear integral partial
differential equations with nonlinear partial differential equations. This limit also involves
the singular limit problem from nonlinear strictly hyperbolic systems to mixed hyperbolic-
elliptic ones, or in some cases even purely elliptic (see [61]). The basic issue for such a limit
is stability.

Consider System (11.3). If f(u) = λu, p(u) = Λ2u, then u satisfies

∂tu+ λ∂xu+ ǫ(∂ttu− Λ2∂xxu) = 0. (11.4)

The limit ǫ → 0 is stable if and only if the characteristic speeds satisfy −Λ < λ < Λ (cf.
[322]).

To understand the stability of the zero relaxation limit for the nonlinear case, we first
analyze the p-system in (11.3). Notice that vǫ = f(uǫ)− ǫ(∂tv

ǫ + ∂xp(u
ǫ)). If one can show

(uǫ, vǫ)(x, t) → (u, v)(x, t), a.e.,

then the zero relaxation limit of (uǫ, vǫ)(x, t) is a weak solution of the local equilibrium:
{

v = f(u),

∂tu+ ∂xf(u) = 0.
(11.5)

Consider a formal expansion of vǫ(x, t) in the form:

vǫ ≈ f(uǫ) + ǫv1(u
ǫ) + ǫ2v2(u

ǫ) + · · · . (11.6)

Then, in the ǫ0-level, one has

∂tu
ǫ + ∂xf(uǫ) ≈ 0,

∂tf(uǫ) + ∂xp(u
ǫ) + v1(u

ǫ) ≈ 0,
(11.7)

which implies

v1(u
ǫ) ≈ −

(

p′(uǫ) − f ′(uǫ)2
)

∂xu
ǫ. (11.8)

Dropping all the higher-order terms in the expansion leads to a first-order correction to
the local equilibrium approximation in the form:

∂tu
ǫ + ∂xf(uǫ) ≈ ǫ∂x

(

(p′(uǫ) − f ′(uǫ)2)∂xu
ǫ
)

. (11.9)

This evolution equation will be dissipative provided the following stability criterion holds:

Λ1 < λ < Λ2,

where λ = f ′(uǫ),Λj = (−1)j
√

p′(uǫ).

For the general system (11.1), similar arguments yield that the first correction is
{

U = E(u) − ǫ(∇US(E(u)))−1(I − P(u))∇x ·F(E(u)),

∂tu + ∇x · f(u) = ǫ∇x · {Q∇UF(E(u))(∇US(E(u)))−1(I − P(u))∇x ·F(E(u))},
(11.10)

where P(u) = ∇uE(u)Q is a projection (P2 = P) onto the tangent space of the image of
E(u).
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Definition 11.1. A twice-differential function Φ(U) is called an entropy for System (11.1)
provided that

(i) ∇2Φ(U)∇F(U) · ω is symmetric, for any ω ∈ Sd−1;
(ii) ∇Φ(U)S(U) ≥ 0;
(iii) The following are equivalent:

(a) S(U) = 0,
(b) ∇Φ(U)S(U) = 0,
(c) ∇Φ(U) = ν⊤Q, for some ν ∈ R

n.
An entropy Φ is called convex if

∇2Φ(U) ≥ 0. (11.11)

If the inequality (11.11) is strict, the entropy Φ(U) is called strictly convex.

Such a strictly convex entropy exists for many physical systems. For example, under
certain conditions, Coquel-Perthame [26] showed that the system in (1.1), (1.21), and (1.22)
has a globally defined, strictly convex entropy. In Chen-Levermore-Liu [61], the following
theorem was proved.

Theorem 11.1. Suppose that System (11.1) is endowed with a strictly convex entropy pair
(Φ,Ψ). Then

(i) The local equilibrium approximation

∂tu + ∇x · f(u) = 0 (11.12)

is hyperbolic with strictly convex entropy pair:

(η(u),q(u)) = (Φ,Ψ)|U=E(u). (11.13)

(ii) The characteristic speeds of (11.12) associated with any wave number ω ∈ R
d are

determined as the critical values of the restricted Rayleigh quotient:

w → W⊤∇2
UΦ(E(u))∇UF(E(u)) · ωW

W⊤∇2
UΦ(E(u))W

, (11.14)

where W = ∇uE(u)w for w ∈ R
n. The characteristic speeds of (11.12) are interlaced with

the characteristic speeds of (11.1). That is, given a wave number ω ∈ R
d, for each u ∈ R

n,
if the characteristic speeds Λk = Λk(E(u)) of (11.1) satisfy

Λ1 ≤ · · · ≤ Λk ≤ Λk+1 ≤ · · · ≤ ΛN ,

while the characteristic speeds λj = λj(u) of (11.12) satisfy

λ1 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ≤ λn,

then

λj ∈ [Λj ,Λj+N−n].

(iii) The first correction (11.10) is locally dissipative with respect to the entropy η(u).
For a 2 × 2 system in (11.2), this implies the subcharacteristic stability condition:

Λ1 < λ < Λ2, on v = e(u). (11.15)

(iv) For the 2 × 2 system in (11.2) satisfying the strictly subcharacteristic stability con-
dition (11.15), the existence of a strictly convex entropy pair (η, q) for the local equilibrium
equation implies the existence of a strictly convex entropy pair (Φ,Ψ) for System (11.2)
over an open set Oη containing the local equilibrium curve v = e(u), along which (11.13) is
satisfied.
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Theorem 11.1 indicates that a strictly convex entropy function always exists for 2 × 2
systems endowed with the strictly subcharacteristic condition (11.15) in the regions which
are close to the local equilibrium curves. It would be interesting to explore an approach
to construct such an entropy for hyperbolic systems of conservation laws with relaxation.
Generally, the convexity of entropy could fail at the nonequailibrium states which are far
away from the local equilibrium manifolds. In [310], Tzavaras considered the criteria to have
such an entropy, as dictated from compatibility with the second law of thermodynamics in
the form of the Clausius-Duhem inequality, and found that, roughly speaking, the existence
of the entropy is equivalent to the requirement of the relaxation model to be compatible
with the second law.

The next issue is how the strong convergence of the zero relaxation limit to the local
equilibrium equations can be achieved for systems with a strictly convex entropy. For this
purpose, we consider a 2 × 2 system in (11.2).

Assume that Uǫ(x, t) = (uǫ, vǫ)(x, t) ⊂ K, bounded open convex set, are solutions of
(11.2), which satisfy the following entropy condition: For any convex entropy pair (Φ,Ψ),

∂tΦ(Uǫ) + ∂xΨ(Uǫ) +
1

ǫ
Φv(U

ǫ)h(Uǫ) ≤ 0, for all ∇2
UΦ(U) ≥ 0,

in the sense of distributions. For simplicity, it is assumed that there exist two convex and
dissipative entropy pairs (Φi,Ψi), i = 1, 2, on K such that

φ2(u) − φ1(u) = cf(u), c 6= 0,

where φ(u) = Φi|v=e(u), f(u) = f1(u, e(u)). The existence of such entropy functions is
related to the stability theory (Theorem 11.1) (see [60, 61, 241, 46]).

Theorem 11.2. Assume that there is no interval in which f(u) is linear. Let the Cauchy
data (uǫ0, v

ǫ
0)(x) satisfy

‖(uǫ0 − u, vǫ0 − v)‖L2 ≤ C <∞,

with v = e(u). Then Uǫ(x, t) strongly converges almost everywhere:

Uǫ(x, t) → U(x, t), a.e.

The limit function U(x, t) = (u, v)(x, t) satisfies that
(i) v(x, t) = e(u(x, t)) almost everywhere for t > 0;
(ii) u(x, t) is the unique entropy solution of the Cauchy problem

{

∂tu+ ∂xf(u) = 0,

u|t=0 = w∗ − limuǫ0(x).

Theorem 11.2 proved in [60, 63] was obtained by combining the compactness theorem
in [62] with the uniqueness theorem in [63], with the aid of Theorem 11.1. This limit is of
compressible Euler type. Theorem 11.2 shows that, when the stability condition is satisfied,
the solutions of the relaxation system indeed tend to the solutions of the local relaxation
approximation, which are inviscid conservation laws, The main difficulty here is that the
solutions of the full system are only measurable functions with certain boundedness. The
following remarks are in order:

(a). Notice that the initial data may even be far from equilibrium. The convergence
result indicates that the limit function (u, v)(x, t) indeed goes into the local equilibrium
instantaneously as t becomes positive. This shows that the limit is highly singular. In fact,
this limit consists of two processes simultaneously: one is the initial layer limit, and the
other is the shock layer limit.

(b). The compactness of the zero relaxation limit indicates that the sequence Uǫ(x, t) is
compact no matter how oscillatory the initial data are. Note that the relaxation systems
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are allowed to be linearly degenerate; and the initial oscillations can propagate along the
linearly degenerate fields for the homogeneous systems (cf. [38]). This shows that the
relaxation mechanism coupled with the nonlinearity of the equilibrium equations can kill
the initial oscillations, just as the nonlinearity of the homogeneous system can kill the initial
oscillations.

(c). The above discussions are based on the L∞ a priori estimate. In many physical
systems, such estimates can be derived. Examples include the p-system and the models in
viscoelasticity, chromatography, and combustion (see [46, 60, 61, 241, 264, 309, 322]), which
possess natural invariant regions.

The technique based on the extensions of entropies has been further pursued by Serre
[276] for semilinear and kinetic relaxations of systems of conservation laws.

Another technique based on some strong dissipation estimates on derivatives, which are
available for several semilinear systems, has been used by Tzavaras [310], Gosse-Tzavaras
[140], and the references cited therein.

For some special models, even uniform BV bounds of relaxation solutions (uǫ, vǫ)(x, t)
can be obtained, which ensures convergence to the zero relaxation limit. see Natalini [241],
Tveito-Winther [309], Shen-Tveito-Winther [279], and the references cited therein.

We are now concerned with the weakly nonlinear limit for (11.2). Let

uǫ = u+ ǫwǫ, vǫ = v + ǫzǫ, (11.16)

where (u, v) = (u, e(u)) is an equilibrium state.

Upon rescaling the time variable t and translating the space variable x, as the slow time
variable ǫt and the moving space variable x− λ(u)t, respectively,

(x, t) → (x− λ(u)t, t),

the flux function in System (11.2) with the stability condition satisfies

λ(u) = 0, Λ1(u)Λ2(u) < 0.

The limit process as ǫ → 0 is a weakly nonlinear limit corresponding to the limit from the
Boltzmann equation to the Navier-Stokes equations for incompressible fluids. The main ob-
servation is that the linearization of the local relaxation approximation about an equilibrium
reduces to a simple advection dynamics with the equilibrium characteristic speed. This can
be understood in a formal fashion. If one applies the same asymptotic scaling to the first
correction to the local equilibrium approximation, one again arrives at the weakly nonlinear
approximation. This shows that the weakly nonlinear limit is a distinguished limit of the
local equilibrium limit and makes clear why it inherits the good features of the former. The
advantage of the weakly nonlinear limit is that the solutions of the Burgers equation are
smooth even for the case that the initial data are not smooth. Thus the solutions remain
globally consistent with all the assumptions that were used to derive the weakly nonlinear
approximation.

In [61], the weakly nonlinear approximation was justified by using the stability theory
and the energy estimate techniques. The linearized version of the limit is well understood
and is related to “random walk” in Brownian motion (cf. [116, 174, 256]). From (11.2) and
(11.16), (wǫ, zǫ)(x, t) satisfy















ǫ2∂tw
ǫ + ∂xf(u+ ǫwǫ, v + ǫzǫ) = 0,

ǫ2∂tz
ǫ + ∂xg(u+ ǫwǫ, v + ǫzǫ) + 1

ǫh(u+ ǫwǫ, v + ǫzǫ) = 0,

(wǫ, zǫ)|t=0 = (wǫ0, z
ǫ
0)(x).

(11.17)
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Theorem 11.3. There exist ǫ0 > 0 and C0 > 0 such that, if 0 < ǫ ≤ ǫ0, and

‖(wǫ0, zǫ0)‖H3 ≤ C0, ‖zǫ0 −
e(u+ ǫwǫ0) − e(u)

ǫ
‖L2 ≤ C0ǫ, (11.18)

then there exists a unique global solution (wǫ, zǫ) ∈ H3 of (11.17) such that






















(wǫ, zǫ)(x, t) → (w, z)(x, t) ∈ L2, ǫ→ 0,

z(x, t) = e′(u)w(x, t),

∂tw + λ′(u)∂x(
w2

2 ) +
Λ1(u)Λ2(u)

hv(u, e(u))
hv(u, e(u))∂xxw = 0.

(11.19)

Outline of the Proof. Since the proof of Theorem 11.3 is technical, we list only the main
steps below.
Step 1. We replace (Φ,Ψ) by (Φ∗,Ψ∗), where

Φ∗(U) := Φ(U) − Φ(U) −∇Φ(U)(U − U),

Ψ∗(U) := Ψ(U) − Ψ(U) −∇Ψ(U)(F(U) − F(U)).

Then Φ∗v(u, e(u)) ≥ c0(v − e(u))2 for some c0 > 0. From ∇2Φ∗(U) > 0, one has

ǫ

∫ ∞

−∞
Φ∗(u

ǫ(x, t), vǫ(x, t))dx + c0

∫ t

0

∫ ∞

−∞

(vǫ − e(uǫ))2

ǫ
dxdτ

≤ǫ
∫ ∞

−∞
Φ∗(u

ǫ
0(x), v

ǫ
0(x))dx ≤ Cǫ3

∫ ∞

−∞
(wǫ0(x)

2 + zǫ0(x)
2)dx.

Therefore,

‖zǫ − e(u+ ǫwǫ) − e(u)

ǫ
‖L2 ≤ Cǫ. (11.20)

Step 2. Eliminating zǫ(x, t) leads to

∂tw
ǫ +

λ′(u)

2
∂x(w

ǫ)2 +
Λ1(u)Λ2(u)

hv(u, e(u))
∂xxw

ǫ +
ǫ2

hv(u, v(u))
∂ttw

ǫ

= Eǫ(x, t,D2wǫ, D2zǫ).

(11.21)

Using the energy estimates yields

∑

i,j=1

i+j≤3

ǫ2(i−1)

∫ t

0

∫ ∞

−∞
|∂iτ∂jx(wǫ, ǫizǫ)|2(x, τ)dxdτ ≤ C, (11.22)

where C is a constant independent of ǫ.

Step 3. Then we prove Eǫ(x, t,D2wǫ, D2zǫ) → 0, when ǫ→ 0.

Step 4. Since ‖wǫ‖H1 ≤ C, the Sobolev embedding theorem yields that there exists a
subsequence (still denoted) wǫ(x, t) converging strongly in L2. That is,

wǫ(x, t) → w(x, t).

Estimate (11.20) implies that zǫ(x, t) strongly converges in L2:

zǫ(x, t) → e′(u)w(x, t).

Then Theorem 10.3 follows.

More details of the proof can be found in Chen-Levermore-Liu [61].
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Some further results for hyperbolic systems of conservation laws with relaxation can be
found in [39, 46, 159, 160, 241, 276, 309, 310] and the references cited therein.

Some recent ideas and approaches in attacking hyperbolic conservation laws with mem-
ory can be found in Dafermos [85], Nohel-Rogers-Tzavaras [247], and Chen-Dafermos [44]
with the aid of the compensated compactness methods. For special memory kernels, these
conservation laws reduce to hyperbolic systems of conservation laws with relaxation.

11.2. Euler Equations for Exothermically Reacting Fluids. We now consider the
Euler equations in (1.12) and (1.23) (d = 1), which governs the behavior of plane detonation
waves. In a detonation wave, the effect of pressure gradient, which supports the shock wave,
and the conversion of chemical energy to mechanical energy is far greater than the diffusive
effect of viscosity, heat conduction, and diffusion of chemical species. This justifies the use
of the Euler equations in (1.12) and (1.23), rather than the Navier-Stokes equations, in this
context. The shock wave solutions in this model are jump discontinuities. This is a very
good representation of the shock waves one observes experimentally, which have a width
of several molecular mean free paths. The reaction zone of a detonation wave, by way of
contrast, is generally hundreds of mean free paths wide.

The main interest in this system of equations lies in a new type of behavior exhibited by
solutions. Whereas non-reacting shock waves are known to be stable under reasonable as-
sumptions [221], linearized stability analysis, as well as numerical and physical experiments,
have shown that certain steady detonation waves are unstable [16, 113, 117, 185, 251]. One
particular kind of instability that takes place within the context of one space dimension
produces pulsating detonation waves. In certain parameter regimes, steady planar detona-
tion waves are unstable and evolve into oscillating waves. These oscillating waves generate
a steady stream of waves which propagate behind the wave [64]. This implies that the
exothermic reaction can increase the total variation in a number of ways. For example, in
the formation of a detonation wave, a chemical reaction behind a shock wave can increase
the strength of that shock wave. More subtle phenomena are also possible. In a nearly
constant, unreacted state, a very small variation in temperature can cause the gas in one
region to react prior to the gas in nearby regions, resulting in a large increase in total varia-
tion. Moreover, the hot spot created by such an event would generate waves, some of which
would be shock or rarefaction waves. These waves could propagate away from the hot spot
before the remaining reactant ignites.

The theorem we discuss here from Chen-Wagner [64] is a first-step in dealing with these
difficulties. It is assumed that the initial data are such that the reaction rate function φ(θ)
never vanishes. In a sense, this is a very realistic condition. Typically φ(θ) has the Arrhenius
form (1.23):

φ(θ) = Ke−θ0/θ,

which vanishes only at absolute zero temperature. However, in a typical unburned state,
φ(θ) is very small. This assumption is made in order to obtain uniform decay of the reactant
to zero. Thus, although the total variation of the solution may very well increase while the
reaction is active, the reaction must eventually die out. Consequently, the increase in total
variation can be estimated rigorously.

Consider a one-parameter family of functions e(τ, S, ǫ), τ = 1/ρ, ǫ ≥ 0, which is C5 and
satisfies (1.5). For a polytropic gas, ǫ = γ− 1. It is assumed that, when ǫ = 0, the equation
of state is that of an isothermal gas:

e(τ, S, 0) = − ln τ +
S

R
. (11.24)
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For a polytropic gas,

e(τ, S, ǫ) =
1

ǫ

(

(τ exp(−S/R))−ǫ − 1
)

. (11.25)

One may easily check that this function is C∞ and that, as ǫ → 0+, all partial derivatives
converge uniformly on compact sets in τ > 0 to the corresponding derivatives of e(τ, S, 0).
In particular, one may use L’Hôpital’s rule to calculate

∂ǫe(τ, S, 0) =
1

2

(

− ln τ +
S

R

)2

, (11.26)

and that ∂ǫe(τ, S, ǫ) is continuous at ǫ = 0, τ > 0. The value ǫ = 0 is mathematically
special because, at this value, System (1.12) and (1.23), in Lagrangian coordinates, has a
complete set of Riemann invariants:

(r, s, S, Z) = (v − ln(p), v + ln(p), S, Z). (11.27)

Moreover, all shock, rarefaction, and contact discontinuity curves in the (r, s, S, Z)-space
are invariant under translation of the base point. We also use (r, s, S, Z) as the coordinates
for the analysis in ǫ ≥ 0. Note that, since p = −∂τe(τ, S, ǫ), and e(τ, S, ǫ) is C5, the
transformation between (τ, v, S) and (r, s, S) is C4 and is a diffeomorphism (e.g. [302]).

Theorem 11.4. Let K ⊂ {(τ, v, S, Z) : τ > 0} ⊂ R+ × R
2 × [0, 1] be a compact set,

and let N ≥ 1 be any positive constant. Then there exists a constant C0 = C0(K,N) >
0, independent of ǫ > 0, such that, for every initial data (τ0, v0, S0, Z0)(x) ∈ K with
TVR(τ0, v0, S0, Z0) ≤ N , when

ǫTVR(τ0, v0, S0, Z0) ≤ C0, (11.28)

the Cauchy problem (1.12) and (1.23) in Lagrangian coordinates, with the initial data deter-

mined by (r0, s0, S0, Z0)(x), has a global BV entropy solution U(x, t) = (τ, v, e+ v2

2 , Z)(x, t).

There is a trade-off between the size of ǫ (or γ−1) and the size of the initial data allowed.
When ǫ is close to 0, the initial data are allowed to be of large total variation. There is
also a trade–off between the minimum reaction rate and the size of the initial data allowed.
If the minimum reaction rate is slow, the increase in total variation due to the reaction is
potentially large so that the initial data are only allowed to be of small total variation. If,
however, the minimum reaction rate is large, then larger initial data are somewhat allowed.

There is an interesting common thread connecting the results with previous ones concern-
ing balance laws (cf. [89, 97, 219, 329, 330]). While earlier results had in view lower-order
terms that exerted a damping effect, or otherwise reduced total variation, the result in
Theorem 11.4 requires the decay of the lower-order term, even though total variation may
increase in the process. Thus, in either case, decay of some kind seems essential.
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[271] L. Schwartz, Théorie des Distributions, Actualites Scientifiques et Industrielles 1091, 1122, Herman:
Paris, 1950-51.
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