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Abstract. We show that the Cauchy problem for the quintic NLS on
R is globally well posed in Hs for 4/9 < s ≤ 1/2. Since we work below
the energy space we cannot immediately use the energy. Instead we use
the “I-method” introduced by J. Colliander, M. Keel, G. Staffilani, H.
Takaoka, and T. Tao. This method allows us to define a modification of
the energy functional that is “almost conserved” and thus can be used
to iterate the local result.

1. Introduction

We consider the semilinear Schrödinger initial-value problem (IVP)

iut + uxx − |u|4u = 0, u(x, 0) = u0(x) ∈ Hs(R), t ∈ R. (1.1)

This equation is proposed as a modification of the Gross-Pitaevski (GP)
approximation in low-dimensional Bose Liquids [8]. The GP approximation
is a long-wavelength theory widely used to describe a variety of properties
of dilute Bose condensates. However, in low dimensions (d ≤ 2), an essential
modification of the GP theory is necessary. In this context equation (1.1)
is the modification of the GP equations in the important one-dimensional
case where the deviations from the GP theory are largest. See in particular
equations (4) and (10) in [8]. In addition to the physical motivation, we note
that (1.1) is the one-dimensional, L2-critical nonlinear Schrödinger equation
and there is therefore purely mathematical motivation for its detailed study.
The Cauchy problem for equation (1.1) is known to be locally well posed
for s > 0. This result was proved by T. Cazenave and F. B. Weissler [3].
A local result also exists for s=0 but the time of existence depends on the
profile of the data as well as the norm. The equation satisfies the following
two conservation laws, among others that we will not use in this paper.
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Mass conservation:
‖u(t)‖L2 = ‖u0‖L2 .

And energy conservation:

E(u)(t) =
1
2

∫
|ux(t)|2dx +

1
6

∫
|u(t)|6dx = E(u0).

Since we are in the defocussing case we can iterate to get a global solution for
s ≥ 1 using the energy conservation. Below the energy space the best global
result is due to J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao
[4],[5]. They proved that (1.1) is globally well posed for s > 1/2. To do so,
they introduced the “modified energy” functional and they proved that it is
almost conserved. The precise meaning of the term almost conserved will
be apparent after some definitions. In this article we extend this result and
prove global well posedness, in other words we prove that a global solution
exists for all time for u0 ∈ Hs, 4/9 < s ≤ 1/2.
Remark. Note that in the focussing case (where in the front of the nonlin-
earity we have the plus instead of the minus sigh) we can also prove global
well posedness for 4/9 < s ≤ 1/2 following step by step the proofs below,
but with the crucial assumption that ‖u0‖L2 < ‖Q‖L2 , where Q is the unique
positive solution (up to translations) of

Qxx − Q + |Q|4u = 0.

For a comprehensive review of the most important properties of the semilin-
ear NLS the reader should consult [2].

2. Notation

We use A � B to denote an estimate of the form A ≤ CB for some
constant C. If there exist constants C and D such that DB ≤ A ≤ CB we
say that A ∼ B and A � B if there does not exist a constant C such that
A ≤ CB. If ‖f‖Hs = ‖〈ξ〉sf̂(ξ)‖L2

ξ
is the inhomogeneous Sobolev norm then

we can define the Xs,b spaces as the set of tempered distributions such that

‖u‖Xs,b
= ‖〈ξ〉s〈τ − |ξ|2〉bû(ξ, τ)‖L2

τ L2
ξ

< ∞,

where
û(ξ, τ) =

∫ ∫
e−i(xξ+tτ)u(x, t)dtdx

is the space-time Fourier transform of u and 〈ξ〉 = 1 + |ξ|. We also define
the restricted Xs,b(I × R) spaces by

‖u‖Xs,b(I×R) = inf{‖U‖s,b : U |I×R = u}.
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With D we define the operator with symbol |ξ| and J stands for the Bessel
potential of order 1, or in other terms J = 〈D〉. We now give some useful
notation for multilinear expressions. If n ≥ 2 is an even integer we define
a spatial multiplier of order n to be the function Mn(ξ1, ξ2, . . . , ξn) on the
hyperplane Γn = {(ξ1, ξ2, . . . , ξn) ∈ Rn : ξ1 + ξ2 + . . . + ξn = 0} which we
endow with the standard measure δ(ξ1 + ξ2 + . . . + ξn). If Mn is a multiplier
of order n, 1 ≤ j ≤ n is an index, and k ≥ 1 is an even integer, we define
the elongation Xk

j (Mn) of Mn to be the multiplier of order n + k given by

Xk
j (Mn)(ξ1, ξ2, . . . , ξn+k) = Mn(ξ1, . . . , ξj−1, ξj+. . .+ξj+k, ξj+k+1, . . . , ξn+k).

In addition if Mn is a multiplier of order n and f1, f2, ..., fn are functions on
R we define

Λn(Mn; f1, f2, ..., fn) =
∫

Γn

Mn(ξ1, ξ2, . . . , ξn)
n∏

i=1

f̂j(ξj),

where we adopt the notation Λn(Mn; f) = Λn(Mn; f, f̄ , ..., f, f̄). Observe
that Λn(Mn; f) is invariant under permutations of the even ξj indices, or of
the odd ξj indices.

3. The “I-method” and the basic theorem

The “I-method” for the Schrödinger equation in one dimension was de-
veloped in [4],[5]. Traditionally, to prove global well posedness in H1 we use
the energy given by

E(u) =
1
2

∫
R
|∂xu|2dx +

1
6

∫
R
|u|6dx

which can be written using the multilinear notation as

E(u) = −1
2
Λ2(ξ1ξ2;u) +

1
6
Λ6(1;u).

In our case since we work in Hs with s < 1 we cannot use the energy E(u).
So we are looking for a substitute notion of “energy” that can be defined for a
less regular solution and that has a very slow increment in time, with respect
to a large parameter N . This will be enough to establish our global result.
To do so we consider in the frequency space a C∞ monotone multiplier m(ξ)
taking values in [0,1] such that

m(ξ) =
{

1 if |ξ| < N

( |ξ|N )s−1 if |ξ| > 2N ,
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where N � 1 is a fixed large number which we shall choose later. Next we
define the multiplier operator I : Hs → H1 such that

(Îu)(ξ) = m(ξ)û(ξ).

This operator is smoothing of order 1 − s. Indeed we have:

‖u‖s0,b0 � ‖Iu‖s0+1−s,b0 � N1−s‖u‖s0,b0 (3.1)

for any s0, b0 ∈ R. Our substitute energy will be defined by E1(u) = E(Iu).
Obviously this energy makes sense even if u is only in Hs. Thus

E(Iu) =
1
2

∫
R
|∂xIu|2dx+

1
6

∫
R
|Iu|6dx = −1

2
Λ2(m1ξ1m2ξ2)+

1
6
Λ6(m1...m6),

where mj = m(ξj). We also define the second energy

E2(u) = −1
2
Λ2(m1ξ1m2ξ2) +

1
6
Λ6(M6(ξ1, ξ2, ..., ξ6)),

where M6(ξ1, ξ2, ..., ξ6) is a multiplier to be chosen later. The reason that
we will use the second energy rather than the first is that, as we shall prove
shortly, the second energy has better decay-with-N properties. For an ex-
ample of an equation where the first energy is used, see [4]. Using equation
(1.1) we can write

ut = iuxx − iuūuūu

and
ūt = iūxx − iūuūuū.

Now taking the Fourier transform of these identities we have the following
simple calculation

d

dt
Λ(M2;u(t)) =

d

dt

∫
Γ2

M2(ξ1, ξ2)û1(ξ1)ˆ̄u2(ξ2)

=
∫

Γ2

M2(ξ1, ξ2)(
d

dt
û1(ξ1))ˆ̄u2(ξ2) +

∫
Γ2

M2(ξ1, ξ2)(
d

dt
ˆ̄u2(ξ2))û1(ξ1)

=
∫

Γ2

M2(ξ1, ξ2){−iξ2
1 û1(ξ1) − i( ̂u1ū1u1ū1u1(ξ1))}ˆ̄u2(ξ2)

+
∫

Γ2

M2(ξ1, ξ2){iξ2
2
ˆ̄u2(ξ2) + i( ̂ū2u2ū2u2ū2(ξ2))}û1(ξ1)

= iΛ2

(
M2

2∑
j=1

(−1)jξ2
j ;u(t)

)
− iΛ6

( 2∑
j=1

(−1)jX4
j (M2);u(t)

)
.
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Thus, in general we can prove the following differentiation law for the mul-
tilinear forms:

∂tΛn(Mn) = iΛn(Mn

n∑
j=1

(−1)jξ2
j ) − iΛn+4(

n∑
j=1

(−1)jX4
j (Mn)). (3.2)

Our idea is to consider the second energy and use the above differentiation
law. Then we get multilinear forms of type Λ2, Λ6, Λ10. If we chose M6

properly we can simplify the expression for the derivative of the second
energy. Thus by differentiating

E2(u) = −1
2
Λ2(m1ξ1m2ξ2) +

1
6
Λ6(M6(ξ1, ξ2, ..., ξ6))

we have
d

dt
E2(u) = −1

2
dΛ2

dt
(m1ξ1m2ξ2;u) +

1
6

dΛ6

dt
(M6;u)

=
−i

2
Λ2

(
m1ξ1m2ξ2

2∑
j=1

(−1)jξ2
j ;u(t)

)

+
i

2
Λ6

( 2∑
j=1

(−1)jX4
j (m1ξ1m2ξ2);u(t)

)

+
i

6
Λ6

(
M6(ξ1, . . . , ξ6)

6∑
j=1

(−1)jξ2
j ;u(t)

)

− i

6
Λ10

( 6∑
j=1

(−1)jX4
j (M6(ξ1, . . . , ξ6));u(t)

)
.

Since on Γ2 we have ξ1 + ξ2 = 0 the first term is zero. By symmetrizing and
picking

M6(ξ1, ξ2, ..., ξ6) =
m2

1ξ
2
1 − m2

2ξ
2
2 + m2

3ξ
2
3 − m2

4ξ
2
4 + m2

5ξ
2
5 − m2

6ξ
2
6

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6

we can force Λ6 to be zero. We will show shortly, in Proposition 1, that
M6 is well defined and bounded. The only multilinear form is now Λ10

and its multiplier is a sum of elongations of M6. As we show below this
multiplier is bounded, which is the main ingredient in exploiting the decay
of the derivative of the second energy. For calculations of this type, although
in a different context, see [5] where a Schrödinger equation with derivative
nonlinearity is treated. Finally, using the fundamental theorem of calculus
we have the following lemma.
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Lemma 1. Let u be an H1 solution to (1.1). Then for any T ∈ R and δ > 0
we have

E2(u(T + δ)) − E2(u(T )) =
∫ T+δ

T
Λ10(M10;u(t))dt,

where M10 = − i
5!6!

∑{M6(ξabcde, ξf , ξg, ξh, ξi, ξj)−M6(ξa, ξbcdef , ξg, ξh, ξi, ξj)
+M6(ξa, ξb, ξcdefg, ξh, ξi, ξj) − M6(ξa, ξb, ξc, ξdefgh, ξi, ξj) + M6(ξa, ξb, ξc, ξd,
ξefghj , ξj) − M6(ξa, ξb, ξc, ξd, ξe, ξfghij)}, where the summation runs over all
permutations {a, c, e, g, i} = {1, 3, 5, 7, 9} and {b, d, f, h, j} = {2, 4, 6, 8, 10}.
Furthermore if |ξj | � N for all j then the multiplier M10 vanishes.

Proof. Only the last statement needs a comment. Notice that if all |ξj | � N
then mi = 1 and consequently M6 = 1 and M10 = 0.

To iterate the global result by standard limiting arguments we just need
an a priori bound for our solutions in Hs. This bound comes from the next
theorem.

Theorem 1. Let u be a global H1 solution to (1.1). Then for any T > 0
and s > 4/9 we have that

sup
0≤t≤T

‖u(t)‖Hs � C(‖u0‖Hs,T ),

where the right-hand side does not depend on the H1 norm of u.

To prove this theorem we need 4 propositions.

Proposition 1. Assume M6 is the multiplier given by

M6(ξ1, ξ2, ..., ξ6) =
m2

1ξ
2
1 − m2

2ξ
2
2 + m2

3ξ
2
3 − m2

4ξ
2
4 + m2

5ξ
2
5 − m2

6ξ
2
6

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6

.

Then |M6| � C on Γ6.

Remark. That the multiplier is bounded on Γ6, can be checked automati-
cally, using for example any mathematics computer program. Nevertheless,
since the analysis is interesting we will prove it below, showing all the cru-
cial steps. Before we start we fix some notation. We define Ni := |ξi|
and we write N∗

1 ≥ N∗
2 ≥ N∗

3 ≥ N∗
4 for the highest, second highest, third

highest, and fourth highest values of the frequencies N1, N2, ..., N6. Since
ξ1 + ξ2 + . . . + ξ6 = 0 we must have that N∗

1 ∼ N∗
2 . Finally, notice that if

N∗
1 < N , then M6 = 1. Thus, N∗

1 � N .
Proof. By symmetry we can assume that N∗

1 = |ξ1|. Obviously, away from
the singular set, the multiplier is bounded. So the only interesting case is
when

|ξ1|2 + |ξ3|2 + |ξ5|2 ∼ |ξ2|2 + |ξ4|2 + |ξ6|2. (3.3)
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Note that if all the frequencies are equal or equivalent, then M6 is bounded,
then

|M6(ξ1, ξ2, ..., ξ6)| ∼ |m
2
1ξ

2
1 − m2

2ξ
2
2

ξ2
1 − ξ2

2

| ∼ |m2
1|

and thus |M6| � 1.
Case 1. N∗

1 ∼ N∗
2 � N∗

3 . a) Let N∗
2 = |ξ3| ∼ N∗

1 . Since N∗
1 = |ξ1| we

have 2N∗
1

2 + |ξ5|2 ∼ |ξ2|2 + |ξ4|2 + |ξ6|2. But |ξ2|, |ξ4|, |ξ5|, |ξ6| � N∗
3 � N∗

1

and this contradicts the previous relation.
b) Let N∗

2 = |ξ2|. Then again N∗
1

2 + |ξ3|2 + |ξ5|2 ∼ |ξ4|2 + |ξ6|2 and we have
again a contradiction unless |ξ1| is very close to |ξ2| in which case equation
(3.3) is reduced to

|ξ3|2 + |ξ5|2 ∼ |ξ4|2 + |ξ6|2

and we can continue as before.
Case 2. N∗

1 ∼ N∗
2 ∼ N∗

3 . a) Let |ξ3| = N∗
2 ∼ N∗

1 . Then 2N∗
1

2 + |ξ5|2 ∼
|ξ2|2 + |ξ4|2 + |ξ6|2.

If |ξ5| = N∗
3 ∼ N∗

1 , we have N∗
1

2 ∼ |ξ2|3 + |ξ4|2 + |ξ6|2 and either |ξ2| ∼
|ξ4| ∼ |ξ6| ∼ N∗

1 , in which case all frequencies are equivalent, or at least one
of |ξ2|, |ξ4|, |ξ6| is equivalent to zero. For example if |ξ2| ∼ 0, then

|M6(ξ1, ξ2, ..., ξ6)| ∼ |m
2
1ξ

2
1 + m2

3ξ
2
3 − m2

4ξ
2
4 + m2

5ξ
2
5 − m2

6ξ
2
6

ξ2
1 + ξ2

3 − ξ2
4 + ξ2

5 − ξ2
6

|

∼ |m
2
1ξ

2
1 − m2

6ξ
2
6

ξ2
1 − ξ2

6

| ∼ C

since |ξ1| ∼ |ξ6|.
If |ξ2| = N∗

3 ∼ N∗
1 , we have N∗

1
2 + |ξ5|2 ∼ |ξ4|2 + |ξ6|2 where at least one

of |ξ2|, |ξ4|, |ξ6| is equivalent to N∗
1 .

If |ξ5| ∼ N∗
1 , then N∗

1
2 ∼ |ξ4|2 + |ξ6|4 and the same analysis as above

shows that M6 is bounded.
If |ξ4| ∼ N∗

1 , then N∗
1

2 ∼ |ξ6|2−|ξ5|2 and if both frequencies are equivalent
to N∗

1 we are done; so assume that |ξ5| � N∗
1 .

But m2(ξ)ξ2 is an increasing function and thus

|M6(ξ1, ξ2, ..., ξ6)| � |2m2
1ξ

2
1 − m2

2ξ
2
2 + m2

3ξ
2
3 − m2

4ξ
2
4 − m2

6ξ
2
6

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 − ξ2
6

|

∼ |m
2
1ξ

2
1 − m2

6ξ
2
6

ξ2
1 − ξ2

6

| ∼ C
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b) Let |ξ2| = N∗
2 ∼ N∗

1 . Then N∗
1

2 + |ξ3|2 + |ξ5|2 ∼ |ξ4|2 + |ξ6|2. If
|ξ5| = N∗

3 ∼ N∗
1 , then N∗

1
2 + |ξ5|2 ∼ |ξ4|2 + |ξ6|2 and the same analysis as

before gives that |M6| � 1.
If |ξ4| = N∗

3 ∼ N∗
1 , then N∗

1
2 + |ξ3|2 + |ξ5|2 ∼ |ξ6|2. But this implies

that |ξ6| ∼ N∗
1 , and either |ξ3|, |ξ5| ∼ N∗

1 , in which case all frequencies are
equivalent, or at least one of ξ3, ξ5 are close to zero. But this case is treated
above. Thus in all cases |M6| � 1.

Before we state the second proposition let us give the basic estimates
that we use throughout this paper. In our arguments we will often use the
trivial embedding ‖u‖s1,b1 ≤ ‖u‖s2,b2 , whenever s1 ≤ s2 and b1 ≤ b2, and the
following Strichartz estimates

‖u‖L6
t L6

x
≤ C‖u‖0,1/2+ (3.4)

and
‖u‖L∞

t L2
x
≤ C‖u‖0,1/2+. (3.5)

From (3.5) and Sobolev embedding we have that

‖u‖L∞
t L∞

x
≤ C‖u‖1/2+,1/2+. (3.6)

Finally, interpolation between (3.6) and the trivial estimate

‖u‖L2
t L2

x
≤ C‖u‖0,1/2+

gives us
‖u‖Lp

t Lp
x
≤ C‖u‖α(p),1/2+, (3.7)

where α(p) = (1/2+)(p−6
p ).

The next step is to prove that the second energy is just a small error
plus the first energy E1(u)(t) = E(Iu(t)). This is the result of the following
proposition.

Proposition 2. Assume that ‖Iu‖H1 = O(1). Then we have that

E2(u) ∼ E1(u) + O(1/N)‖Iu‖6
H1

for N � 1. In particular for N � 1 we conclude that ‖∂xIu‖2
L2 � E2(u).

Proof. Recall that

E(Iu) = −1
2
Λ2(m1ξ1m2ξ2) +

1
6
Λ6(m1...m6)

and that for u ∈ H1,

E(u) =
1
2

∫
R

|∂xu|2dx +
1
6

∫
R

|u|6dx ≥ 1
2

∫
R

|∂xu|2dx ⇒ ‖∂xu‖L2 � E1/2(u).
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But then ‖∂xIu‖L2 � E1(u)1/2 which in turn implies

‖∂xIu‖2
L2 � −1

2
Λ2(m1ξ1m2ξ2) +

1
6
Λ6(m1...m6).

In addition

E2(u) = −1
2
Λ2(m1ξ1m2ξ2) + Λ6(M6) = E1(u) +

1
6
Λ6(M6 −

6∏
i=1

mi).

Claim:

|Λ6(M6 −
6∏

i=1

mi)| � O(1/N)‖Iu‖6
H1 .

Then since ‖∂xIu‖2
L2 � E1(u), we are done.

Remarks. 1) We break all the functions into a sum of dyadic constituents
ψj , each with frequency support 〈ξ〉 ∼ 2j , j = 0, ... Then we pull the absolute
value of the symbols out of the integrals, estimating them pointwise. After
bounding the multiplier, the remaining integrals involving the pieces ψj are
estimated by reversing the Plancherel formula and using duality, Hölder’s
inequality, and Strichartz’s estimates. We can sum over all the frequency
pieces ψj as long as we keep always a factor N−ε

max inside the summation.
2.) Since in all of the estimates that we establish from now on, the right-

hand side is in terms of the Xs,b norms and the Xs,b spaces depend only on
the absolute value of the Fourier transform, we can assume without loss of
generality that the Fourier transform of all the functions in the estimates
are positive and real.
Proof of claim. By Proposition 1 we have

|Λ6(M6)| � |
∫ 6∏

i=1

ûj | =
∫

m∗
1N

∗
1

m∗
1N

∗
1

|
6∏

i=1

ûj |.

If we use Plancherel, assume that the spacetime Fourier transforms are all

real and nonnegative, keeping in mind that m∗
1N

∗−
1 = N∗s−

1

Ns− N− � N− (N− =
N1−), we get

|Λ6(M6)| � 1
N−

∫
|JIu∗

1| · |
5∏
1

uj | � 1
N− ‖JIu∗

1‖L2‖
5∏

i=1

uj‖L2

� 1
N− ‖Iu∗

1‖H1‖u‖5
L10 .

But

‖u‖L10 � ‖u‖H1/2−1/10 = ‖u‖H2/5 � ‖Iu‖H2/5+1−s ≤ ‖Iu‖H1 ,
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where we used the Sobolev embedding and (3.1) with s > 4/9 > 2/5. Thus

|Λ6(M6)| � 1
N− ‖Iu‖6

H1 .

Also

|Λ6(
6∏

i=1

mi)| �
∫

m∗2
1 N∗2

1

N∗2
1

(
4∏

i=1

mi)û1...û6

� 1
N2−

( ∫
|JIu∗

1| · |JIu∗
2|

) 4∏
i=1

‖Iu‖∞ � 1
N2−

‖JIu‖2
2‖Iu‖4

∞ � 1
N2−

‖Iu‖6
H1 .

The next thing is to prove a local result for the “I-operators”. This iteration
process is in [4] and the proof that uses techniques as in C. E. Kenig, G.
Ponce, and L. Vega [6],[7] can be adapted to our case where s > 4/9.

Proposition 3. Let u be an H1 solution to (1.1). Then if T ∈ R is such
that ‖Iu(T )‖H1 ≤ C, for some C > 0, we have that

‖Iu‖X1,1/2+([T,T+δ]×R) � 1

for some δ > 0 that depends on C.

Before we prove the next proposition we state the following Strichartz-
type estimate that is due to Bourgain, [1].

Lemma 2. For any Schwartz functions u, v with Fourier support in |ξ| ∼
R, |ξ| � R, respectively, we have that

‖uv‖L2
t L2

x
= ‖uv̄‖L2

t L2
x

� R− 1
2 ‖u‖X0,1/2+

‖v‖X0,1/2+
.

The next proposition shows that the second energy decays. Because the
second energy is actually a correction term of the first this is the main step
in proving Theorem 1.

Proposition 4. For any Schwartz function u we have∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ � N− 5
2
+‖Iu‖10

X1,1/2+([T,T+δ]×R)
.

Proof. In Proposition 1 we proved that M6 is bounded, so M10 is also
bounded, since it is a finite sum of elongations of M6. Thus |M10| � C.
Again we perform a Littlewood-Paley decomposition of the ten factors u.

Case A. N∗
1 ∼ N∗

2 ∼ N∗
3 .∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ �
∫ ∫

m∗3
1 N∗3

1

m∗3
1 N∗3

1

10∏
i=1

ûj .
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Observe that since N∗
1 � N

m∗3
1 N∗3−

1 = (
N

∗(3s−3)
1

N3s−3
)N∗3−

1 � (
N∗

1

N
)(3s)−N3− � N3−.

Thus, 1
m∗3

1 N∗3−
1

� 1
N3− and

∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ � 1
N3−

∫ ∫
|JIu| · |JIu| · |JIu| · |

10∏
j=4

uj |

� 1
N3− ‖(JIu)(JIu)(JIu)‖L2

t L2
x
‖

10∏
j=4

uj‖L2
t L2

x

� 1
N3− ‖(JIu)‖3

L6
t L6

x
‖u‖7

L14
t L14

x
,

where we applied Hölder’s inequality several times. But, by (3.4) and (3.7),
we have that

‖(JIu)‖L6
t L6

x
� ‖(JIu)‖X0,1/2+

= ‖Iu‖X1,1/2+

and
‖u‖L14

t L14
x

� ‖u‖Xα(14),1/2+
,

where α(14) = (1/2+) · ( 8
14) = 2/7+. Thus

‖u‖L14
t L14

x
� ‖u‖X2/7+,1/2+

� ‖Iu‖X(2/7+)+1−s
� ‖Iu‖X1,1/2+

,

since s > 4/9. So, in this case,∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ � 1
N3− ‖Iu‖10

X1,1/2+([T,T+δ]×R)
.

Case B. N∗
1 ∼ N∗

2 � N∗
3 . Since 1

m∗2
1 (N∗

1 )5/2 � 1
N5/2− we have that

∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ �
∫ ∫

m∗2
1 N∗2

1 (N∗
1 )1/2

m∗2
1 (N∗

1 )5/2
|

10∏
i=1

ûj |

� 1
N5/2−

∫ ∫
|(N∗

1 )1/2(JIu∗
1)u

∗
3(JIu∗

2)|
7∏

j=1

uj |

� 1
N5/2− ‖(JIu∗

1)u
∗
3‖L2

t L2
x
(N∗

1 )1/2‖(
7∏

j=1

uj)(JIumax)‖L2
t L2

x
.
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The Fourier transform of JIu∗
1 is supported in |ξ| ∼ N∗

1 and the Fourier
transform of u∗

3 is supported in |ξ| ∼ N∗
3 � N∗

1 . By Lemma 2, we have that

‖(JIu∗
1)u

∗
3‖L2

t L2
x
(N∗

1 )
1
2 �‖JIu∗

1‖X0,1/2+
‖u∗

3‖X0,1/2+
= ‖Iu∗

1‖X1,1/2+
‖u∗

3‖X0,1/2+
.

In addition,

‖
7∏

j=1

uj(JIumax)‖L2
t L2

x
� ‖u1u2u3‖L6

t L6
x
‖(JIumax)‖L6

t L6
x
‖u4u5u6u7‖L6

t L6
x
.

By (3.4) again we have

‖(JIu∗
1)‖L6

t L6
x

� ‖Iu∗
1‖X1,1/2+

and
‖u1u2u3‖L6

t L6
x

� ‖u‖3
L18

t L18
x

� ‖u‖3
Xα(18),1/2+

,

where α(18) = 1/3+ < 4/9 which implies that ‖u‖3
L18

t L18
x

� ‖Iu‖3
X1,1/2+

.
Similarly,

‖u1u2u3u4‖L6
t L6

x
� ‖u‖4

L24
t L24

x
� ‖u‖4

Xα(24),1/2+
,

where α(24) = 3/8+ < 4/9.
Again, we conclude that ‖u‖4

L24
t L24

x
� ‖Iu‖4

X1,1/2+
. So in this case

∣∣∣ ∫ T+δ

T
Λ10(M10;u(t))dt

∣∣∣ � 1
N5/2− ‖Iu‖10

X1,1/2+([T,T+δ]×R)
.

Now we are ready to prove Theorem 1.
Proof. Let λ > 0, to be chosen later. We can easily check that u(x, t) is
a solution to (1.1) if and only if uλ(x, t) = 1

λ1/2 u(x
λ , t

λ2 ) is a solution to the
same equation with initial data uλ

0 = 1
λ1/2 u(x

λ).

Also we have that ûλ
0(ξ) = λ− 1

2 û0(λξ). In particular

‖uλ
0‖2

L2 = ‖u0‖L2 .

Since |m(ξ)| ≤ 1 we have that ‖Iuλ
0‖2 ≤ ‖ûλ

0‖2 = ‖uλ
0‖2 = ‖u0‖2.

By definition, |m(ξ)|
|ξ|s−1 � N1−s, so we have that

‖∂xIuλ
0‖2 =‖m(ξ)|ξ|ûλ

0‖2 =‖|m(ξ)|
|ξ|s−1

|ξ|sûλ
0‖2≤N1−s‖|ξ|sûλ

0‖2 � N1−s

λs
‖u0‖Ḣs .

An application of the Gagliardo-Nirenberg inequality gives

‖Iuλ
0‖6

6 � ‖∂xIuλ
0‖2

2‖Iuλ
0‖4

2 � N2−2s

λ2s
‖u0‖2

Ḣs‖u0‖4
2.
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But recall that

E(Iuλ
0) =

1
2

∫
R

|∂xIuλ
0 |2dx +

1
6

∫
R

|Iuλ
0 |6dx.

Thus, E(Iuλ
0) � N2−2s

λ2s ‖u0‖2
Ḣs and for λ ∼ N

1−s
s we have that E(Iuλ

o ) ≤ 2/3,
which in turn implies that

‖Iuλ
0‖2

H1 < 1 + ‖u0‖2
2.

So, we succeed in making ‖Iu0‖H1 ∼ 1 and can apply the previous proposi-
tions. The main idea of the proof is that if in each step of the iteration we
have the same bound for ‖Iuλ

0‖H1 then we can iterate again with the same
timestep. Now, by Propositions 2, 3, and 4, we have that

E2(uλ(δ)) � E2(uλ(0))+CN−5/2+ � E1(uλ(0))+
1
N

‖Iuλ
0‖6

H1+CN−5/2+ < 1

for N large enough. By Proposition 2,

‖∂xIu(δ)λ‖2
2 � E2(uλ(δ)) < 1

and thus
‖Iuλ(δ)‖H1 < 1 + ‖u0‖2

2

so we can continue our argument. We can continue the solution in [0, Mδ] =
[0, T ] as long as T � N5/2−. Thus,

‖Iuλ(T )‖H1 � 1 + ‖uλ
0‖2

2 = 1 + ‖u0‖2
2

for all T � N5/2−. From the definition of I this implies that

‖uλ(T )‖Hs � 1

for all T � N5/2−. Undoing the scaling we have that

‖u(T )‖Hs � CN,λ

for all T � N5/2−
λ2 . But N5/2−

λ2 ∼ N
9s−4
2s goes to infinity as N → ∞ since

s > 4/9.
From the above proof, it is evident that, to prove a global well-posedness

result for s > 0, we need an infinite decay for the “modified energy”. So one
naturally can think to define the “third energy”, or in general higher and
higher approximations of the energy, when trying to push down the global
result. In our case the symbol, even for the third energy, becomes very
singular and it is extremely hard to get an improved decay for the “modified
energy”. For example we can define the third energy by

E3(u) = E2(u) + Λ(M
′
10).
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Then by (3.2) we have that

dE3

dt
(u) =

dE2

dt
(u) + iΛ10

(
M

′
10

10∑
j=1

(−1)jξ2
j ;u(t)

)

− iΛ14

( 10∑
j=1

(−1)jX4
j (M

′
10);u(t)

)
= Λ10 (M10;u)

+ iΛ10

(
M

′
10

10∑
j=1

(−1)jξ2
j ;u(t)

)
− iΛ14

( 10∑
j=1

(−1)jX4
j (M

′
10);u(t)

)
,

where M10 is given by Lemma 1. Thus if we pick M
′
10 = i M10∑10

j=1(−1)jξ2
j

, we

cancel the Λ10 term and thus
dE3

dt
(u) = Λ14(M14;u),

where M14 is a finite sum of elongations of M
′
10. But now it is too much to

ask for pointwise bounds for M
′
10. So a modification of this method maybe

turns out to be what we really need to go down to s > 0.
Acknowledgments. I would like to thank Andrea Nahmod for all her help.
Thanks also to Gigliola Stafflani who proposed this problem to me.

References

[1] J. Bourgain, Refinements of Strichartz’s inequality and applications to 2D NLS with
critical nonlinearity, Intern. Mat. Res. Notices, 5, (1998), 253–283.

[2] T. Cazenave, Semilinear Schrödinger Equations, CLN 10, eds: AMS, 2003.
[3] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear

Schrödinger equation in Hs, Nonlinear Analysis Theory and Applications, 14 (1990),
807–836.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global Well-posedness
for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649–669.

[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, A refined Global Well-
posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34
(2002) , 64–86.

[6] C.E. Kenig, G. Ponce, and L. Vega, The Cauchy problem for the kdv equation in
Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21.

[7] C.E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the kdv
equations, J. Amer. Math. Soc., 9 (1996), 573–603.

[8] E.B. Kolomeisky, T.J. Newman, J.P. Straley, and X. Qi, Low-dimensional Bose Liq-
uids:Beyond the Gross-Pitaevski approximation, Phys. Review Letters, 85 (2000),
1146–1149.


