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Mulase solved the Cauchy problem of the Kadomtsev-Petviashvili (KP) hierarchy in an algebraic category
in “Solvability of the super KP equation and a generalization of the Birkhoff decomposition” (Inventiones
Mathematicae, 1988), making use of a delicate factorization of an infinite-dimensional group of formal pseudo-
differential operators of infinite order. We prove Mulase’s factorization theorem in a smooth category in the
setting of formal pseudo-differential operators with coefficients in a (non-commutative) algebra equipped with
a valuation. As an application, we solve the initial value problem for the KP hierarchy using r-matrix theory.

1. Introduction

Let L = ∂ + a1∂−1 + a2∂−2 + · · · be a (formal) pseudo-differential operator. The Kadomtsev-
Petviashvili (KP) hierarchy is the system

∂

∂ tm
L = [(Lm)+,L] , m≥ 1 , (1.1)

in which (Lm)+ denotes the projection of Lm into the space of differential operators. It encodes an
infinite number of equations for the coefficients of L for each m and, very importantly, it implies
that if L solves the “tm” KP system, so does L+ε

∂

∂ tn
L for any n to first order in ε . Moreover, the KP

hierarchy generates symmetries of any equation of the form

∂

∂ tm
(Ln)+−

∂

∂ tn
(Lm)+ = [(Lm)+,(Ln)+] ,
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a finite system of partial differential equations in three independent variables which becomes (for
n = 3, m = 2, t2 = y, t3 = t, 2a1 = u) the standard Kadomtsev-Petviashvili equation

3uyy = ∂
(
4ut −∂

3(u)−6u∂ (u)
)
. (1.2)

These remarks appear in [8, Chp. 4]. They imply that integrating the KP hierarchy corresponds to
finding the flows of an infinite number of infinitesimal symmetries. In this paper we find these flows:
we solve the Cauchy problem for KP in a (smooth) category by means of a generalized version of
Mulase’s factorization theorem, a factorization of infinite-dimensional Lie groups of formal pseudo-
differential operators of infinite order which generalizes the Birkhoff factorization of loop groups,
see [14, 15] and [17].

We have provided versions of Mulase’s theorem in [12,13], and we have considered the Cauchy
problem for KP in [9, 13]. In [9, 12, 13] we assumed that the coefficients of our formal pseudo-
differential operators belong to a commutative algebra of series in infinitely many variables, but in
fact, neither commutativity (as in [9,12,13]) nor series (as in [14,15]) are needed: as we show here,
it is enough to consider formal pseudo-differential operators with coefficients in an arbitrary algebra
equipped with a valuationa. We remark that we find interesting to insist on the study of KP in general
contexts due to the appearance of Frobenius algebra-valued integrable systems, see [1, 22, 27], the
existence of applications of Mulase’s ideas to mathematical physics, see for instance [19, 23, 24],
and the possibility of using it as a guide for the study of differential equations in infinite dimensional
spaces in the spirit of [5].

With respect to smoothness: in [12, 13] we worked mainly in the category of Frölicher spaces.
Instead, in the present paper we use diffeologies, a choice imposed on us once we fix our alge-
braic setting, as we explain briefly in Sections 3 and 4. This context allows us to show existence,
uniqueness and smoothness with respect to initial condition of solutions to (1.1).

Definition 1.1. Let X be a set.
• A p-plot of dimension p on X is a map from an open subset O of Rp to X .
• A diffeology on X is a set P of plots on X such that, for all p ∈ N,

- All constant maps Rp→ X are in P;
- Let { fi : Oi→ X}i∈I be a family of compatible maps that extend to a map f :

⋃
i∈I Oi→ X . If

{ fi : Oi→ X}i∈I ⊂P , then f ∈P .
- Let f : O⊂Rp→ X be in P . If q ∈N, O′ is an open subset of Rq, and g a smooth map (in the

usual sense) from O′ to O, then f ◦g ∈P .

If P is a diffeology on X , then (X ,P) is called a diffeological space and, if (X ′,P ′) is another
diffeological space, we say that a map f : X → X ′ is smooth if and only if f ◦P ⊂P ′.

This general approach to smoothness was introduced in Mathematical Physics by J.-M. Souriau,
see [21] and the recent treatise [10], and in Algebraic Topology (using convex subsets of Rp instead
of open sets as in Definition 1.1) by K.T. Chen, see [4] and also [25]. If X is a manifold, then X is a
diffeological space with p-plots being the C∞ maps from O⊆Rp to X , but the fact that diffeologies

aThere exists some previous work on Mulase’s theory which uses algebras equipped with valuations, see [6,7], and we do
acknowledge partial inspiration from these papers. However, it appears to us that they must be read quite critically. For
instance, we find that completeness of the valuation is needed at some crucial points (e.g. Lemma 2), and this assumption
is not stated in [6, 7]. Also, the construction of groups of formal pseudo-differential operators appearing therein needs to
be refined, see [15] and Definition 5 below.
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allow us to consider smooth maps without resorting to charts means that this concept is of really
wide applicability. Several applications are considered in [10]; we also refer to [12, 13, 26] and [2].

2. Preliminaries

2.1. The algebra of formal pseudo-differential operators

Let A be an associative K–algebra with unit 1, in which K is a field of characteristic zero. Inspired
by Chen [4], we say that A is a diffeological topological algebra if:

• The field K is equipped with discrete topology and with discrete diffeology (see [10, p. 10]).
Then, addition, multiplication and inversion on K∗ = K \{0} are continuous and smooth.
• The ring A is a topological ring equipped with a diffeology P such that addition, mul-

tiplication, and inversion on A∗ (= set of units of A) are smooth and the plots of P are
continuous.
• The scalar multiplication K×A→ A is continuous and smooth if we equip K×A with the

product diffeology (see [10, p. 32]).

Here and henceforth, by smooth we mean smooth in the sense of Definition 1.1.
We assume that A is equipped with a derivation, that is, with a K–linear map D : A→ A such

that D( f ·g) = (D f ) ·g+ f · (Dg) for all f ,g ∈ A.
Let ξ be a formal variable. The algebra of symbols over A is the vector space

Ψξ (A) =

{
Pξ = ∑

ν∈Z
aν ξ

ν : aν ∈ A , aν = 0 for ν � 0

}
,

equipped with the associative multiplication ◦ given by

Pξ ◦Qξ = ∑
k≥0

1
k!

∂ kPξ

∂ξ k DkQξ , (2.1)

with the prescription that multiplication on the right hand side of (2.1) is standard multiplication
of Laurent series in ξ with coefficients in A, see [11]. Equation (2.1) is equivalent to the following
generalized Leibniz rule(

∑
µ∈Z

aµξ
µ

)
◦

(
∑

κ∈Z
bκξ

κ

)
= ∑

ν∈Z

(
∑

µ∈Z

∞

∑
k=0

(
µ

k

)
aµb(k)

ν−µ+k

)
ξ

ν , (2.2)

in which b(k)µ = Dk(bµ) and the combinatorial symbol is extended to arbitrary values of α ∈ Z via

(
α

k

)
=


0 k > α ≥ 0

(−1)k
(
−α + k−1

k

)
α < 0

. (2.3)

The algebra of formal pseudo-differential operators over A is the vector space

Ψ(A) =

{
P = ∑

ν∈Z
aν Dν : aν ∈ A , aν = 0 for ν � 0

}
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equipped with the unique multiplication which makes the map ∑ν∈Z aν ξ ν 7→ ∑ν∈Z aν Dν an alge-
bra homomorphism. The algebra Ψ(A) is associative but not commutative, and so it possesses a
natural non-trivial Lie algebra structure.

If A is a diffeological topological algebra and D is continuous and smooth, then operations
on the coefficients of formal pseudo-differential operators are continuous and smooth, coefficient
by coefficient, see [12, 13]. Moreover, Ψ(A) is a diffeological K-algebra for the restriction of the
diffeology of AZ (the space of Z-sequences of A) to Ψ(A), see [10, pp. 18, 34], and the function
[ , ] : Ψ(A)×Ψ(A)→Ψ(A) is smooth.

The Lie algebra Ψ(A) admits the decomposition Ψ(A) = IA ⊕DA, in which DA is the Lie
subalgebra of all differential operators of order greater or equal to zero, and IA is the Lie subalgebra
of all formal pseudo-differential operators of order at most −1. This observation is crucial for our
analysis of the initial value problem of the KP hierarchy to be carried out in Section 4.

2.2. Algebras with (diffeological) valuations

We fix an algebra A as in Section 2.1 and we assume that it is equipped with a non-trivial valuation
(Definition 2.1 below). Our main references on valuations are [3, 20].

Definition 2.1. A valuation on an algebra A is a map σ : A→ Z∪{∞} which satisfies the following
properties for all a,b in A and k ∈ K:
• σ(a) = ∞ if and only if a = 0, and σ(1) = 0
• σ(ab) = σ(a)+σ(b), and σ(ka) = σ(a)
• σ(a+b)≥ min(σ(a),σ(b)).

The following conventions are implicit in the definition above: for all n ∈ Z we set n+∞ = ∞;
∞+∞ = ∞; n < ∞. We also note three properties of a valuation σ : σ(−1) = 0; σ(−x) = σ(x) for
all x ∈ A; σ(a+b) = min(σ(a),σ(b)) whenever σ(a) 6= σ(b).

A valuation allows us to equip A with a topology. For α ∈ Z and x0 ∈ A we set

Vα(x0) = {x ∈ A : σ(x− x0)> α} ;

we easily see that for each x0 ∈ A, the collection {Vα(x0)}α∈Z is a basis of neighbourhoods for a
first countable Hausdorff topology on A. This topology is metrizable: we define the absolute value
|x|= cσ(x) for x ∈ A and a fixed real number 0 < c < 1. Then, the following holds:
• |x| ≥ 0, |x|= |kx| for k ∈ K∗, and |x|= 0 if and only if x = 0;
• |xy|= |x| |y| ;
• |x+ y| ≤ max{|x|, |y|}, and |x+ y|= max{|x|, |y|} if |x| 6= |y| .
If we set d(x,y) = |x− y| we obtain a metric d on A and the metric topology coincides with the
topology introduced above. In particular, the sets Vα(x0) coincide with the balls {x ∈ A : |x| < cα}
and they are both open and closed, see [20, Prop. 18.4].

Hereafter we assume that the derivation D is compatible with the valuation σ in the sense that
σ(D(x)) ≥ σ(x) for all x ∈ A or, equivalently, that |D(a)| ≤ |a| for all a ∈ A. In the topology just
defined, A becomes a topological algebra and D a continuous derivation if we equip the field K with
the discrete topology.

Remark 2.1. In [15] Mulase used as A an algebra of formal power series in an infinite number of
variables τ1,τ2, · · · , equipped with the valuation valt determined by the rule valt(τk) = k. This case
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is reviewed in [9], see also [12,13]. Formal power series in infinitely many variables are introduced
in [3, Section 1.5.5].

Lemma 2.1. (see [20, Chp. 2]) Let {an}n≥0 be a sequence in A. Then,

(1) If limn→∞ an = a ∈ A and a 6= 0, then |an|= |a| for large n. Thus, convergent sequences are
bounded.

(2) The sequence {an}n≥0 is a Cauchy sequence if and only if limn→∞ |an+1−an|= 0.
(3) The series ∑

∞
n=0 an converges if and only if limn→∞ an = 0. Moreover, if limn→∞ an = 0, then

|∑∞
n=0 an|< max

n≥0
|an|.

(4) Assume that limn→∞ amn = 0 for each m, and that limm→∞ amn = 0 uniformly in n. Then, the
double series ∑(m,n) amn exists and

∑
(m,n)

amn =
∞

∑
m=0

∞

∑
n=0

amn =
∞

∑
n=0

∞

∑
m=0

amn = lim
N→∞

N

∑
m=0

N

∑
n=0

amn .

Now we let Â be the completion of the metric space (A,d), and we extend D to a continuous
derivation on Â which we also call D. We keep denoting the extension of the absolute value from A
to Â by | · |. We note that the algebra A considered by Mulase in [15] (see Remark 2.1) is complete,
as explained in [3, Section 1.5.5].

We define a valuation σ̂ : Â→R∪{∞} as σ̂(a) = logc(|a|). Clearly, σ̂(x) = σ(x) for x ∈ A⊆ Â.
Moreover, the range of σ̂ is exactly the range of σ , see [20, Exercise 8.D]. This fact implies that σ̂

is continuous in the topology of Â induced by | · |.
There exist two standard structures associated to the valuation σ̂ on Â which we will use in

the following sections. The closed subring OÂ = {a ∈ Â : σ̂(a) ≥ 0}, and the two-sided ideal
PÂ = {a ∈ OÂ : σ̂(a) > 0}. If A is a diffeological topological algebra, OÂ and PÂ carry natu-
ral underlying diffeologies. Since it is easy to check that the derivation D on Â is compatible with
σ̂ , we have D(PÂ) ⊂PÂ ; it follows that D is well-defined on the quotient ring OÂ/PÂ . We let
π : OÂ→OÂ/PÂ be the canonical projection. If A is a diffeological topological algebra, the map π

is continuous and smooth.
Now we need to specify the diffeologies carried by the topological algebras A and Â so that

they become diffeological topological algebras. For all p ∈ Z, the quotient vector space projection
πp : A→ A/Ap , in which Ap = {a ∈ A : σ(a) ≥ p}, extends to Â in the following way: for â ∈ Â,
we set πp(â) = a+Ap if and only if σ(a) = σ̂(â) and σ̂(a− â) ≥ p. It is possible to find such an
a∈ A because there exists (an)∈ AN such that liman = â, and Lemma 2.1 implies that σ(an) = σ̂(â)
for large enough n. That πp is well defined follows from the strong triangle inequality appearing in
Definition 2.1.

We note that due to the presence of quotients, the use of diffeologies is more natural than the
use of Frölicher spaces as in [12, 13]. In fact, in contradistinction with diffeologies (see [10, p. 27]
for the construction of the quotient diffeology) the latter structure does not pass easily to quotients,
as explained in [10], see also [26].

Definition 2.2. We equip the quotients A/Ap with their quotient diffeology. The completion Â is
equipped with the pull-back diffelogy with respect to the family of maps {πp; p ∈ Z} (see [10, p.
32]). The valuation σ of A is called a diffeological valuation if and only if the diffeology of A is
the pull-back of the diffeology of Â and all plots are continuous in the valuation topologies of A and
Â.
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Assumption (A): Hereafter we assume that the topological algebras A and Â are equipped
with diffeological valuations, and that D is smooth with respect to the diffeology on Â,
which implies that its restriction to A is also smooth.

Theorem 2.1. Let x ∈ O⊂ Rp 7→ {an(x)}n≥0 ∈ AZ be a smooth plot on AZ for the product diffeol-
ogy such that infx∈O,n∈N σ(an(x)) > −∞. We assume that for each x ∈ O the sequence {an(x)}n≥0

converges to â(x) ∈ Â, that limn→∞ infx∈O σ̂(an(x)− â(x)) = +∞, and that (A) holds. Then, the map
x ∈ O 7→ â(x) is smooth, that is, “ lim” is a smooth map.

Proof. (Sketch) Let πp be projection on A/Ap+1. By our “uniform convergence” assumption,

∀p ∈ Z,∃N ∈ N,∀n > N, σ̂(an(x)− â(x))> p .

Thus, the well-defined projection map ∏p∈Z πp : Â→∏p∈Z A/Ap defined before is smooth. It fol-
lows from the definition of the pull-back diffeology that the limit is smooth.

The diffeology on Â is spanned by plots that verify the conditions of Theorem 2.1. Thus, all
smoothness properties have to be checked only for these generating plots. We use this observation
to prove the following:

Proposition 2.1. Multiplication is a smooth operation on the algebra Â.

Proof. We fix two generating plots (â(x), b̂(x)) ∈ (C∞(O, Â))2, and we let (an(x)) and (bn(x)) be
two corresponding sequences of plots in A converging to â(x) and b̂(x) respectively, so that

lim
n→∞

inf
x∈O

σ̂(an(x)− â(x)) = lim
n→∞

inf
x∈O

σ̂(bn(x)− b̂(x)) = +∞ .

Moreover we have that for all p ∈ Z there exist N(p),N′(p) ∈ N such that for all x ∈ O

πp ◦ â(x) = πp ◦an(x) ∀n > N(p) and πp ◦ â(x) = πp ◦bn(x) ∀n > N′(p) .

We can assume with no loss of generality that ∀n,σ(an(x)) = σ̂(â(x)) and σ(bn(x)) = σ̂(b̂(x)). We
observe that

lim
n→∞

inf
x∈O

σ(âb̂−anbn)(x) = lim
n→∞

inf
x∈O

σ
(
â(b̂−bn)+(â−an)bn

)
(x)

≥ max
{

σ̂ (â) lim
n→∞

inf
x∈O

σ̂(b̂−bn), lim
n→∞

inf
x∈O

σ̂(â−an)+σ(bn)

}
(x)

= +∞.

It follows that the projections of â(x)b̂(x) on A/Ap are defined by the projections of an(x)bn(x) for
n large enough, which are constant in n and smooth in x. In other words, for all p ∈ Z there exists
N′′ such that for all n > N′′ we have πp(â(x)b̂(x)) = πp(an(x)bn(x)). We conclude that the map
x 7→ â(x)b̂(x) is a plot of the diffeology of Â, which shows that multiplication is smooth.

Remark 2.2. We stress that the diffeology of the completion of A is deduced from the diffeology
of A via the quotients A/Ap , and that the application lim is automatically smooth. These facts seem
to make essential use of our non-archimedean valuation setting. For example, when Q is completed
to R for the classical absolute value, such a phenomenon does not appear: Q has only discrete
diffeology, whereas the diffeology of R is much richer and it cannot be obtained from the (discrete)
diffeology of QN.
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3. Pseudo-differential operators and Mulase’s theorem

3.1. Formal Lie groups and the Mulase decomposition

Definition 3.1. The spaces of formal pseudo-differential and differential operators of infinite order
are, respectively,

Ψ̂(Â) =

{
P = ∑

α∈Z
aα Dα : aα ∈ Â and ∃AP,BP ∈ R+ and MP,NP,LP ∈ Z+ so that

MP ≥ NP , |aα |<
AP

α−NP
∀ α > MP , and |aα |< BP ∀ α <−LP

} (3.1)

and

D̂Â =

{
P = ∑

α∈Z
aα Dα : P ∈ Ψ̂(Â) and aα = 0 for α < 0

}
.

We note that the use of the completion Â instead of A in Definition 3.1 is crucial in order to equip
Ψ̂(Â) with an algebra structure, see Lemma 3.1 below. We also note that the growth conditions in
(3.1) are needed in the construction of our group of formal pseudo-differential operators of infinite
order and of an exponential map, see Definition 3.2, Proposition 3.1 and Lemma 3.3. Finally, we
remark that if P = ∑α∈Z aα Dα ∈ Ψ̂(Â), then limα→∞ aα = 0, and also that there exists CP > 0 such
that |aα |<CP for all α ∈ Z. Moreover, the definition of | · | implies that Â is contained in Ψ̂(Â) and,
under our assumption (A), Ψ̂(Â) and D̂(Â) are diffeological spaces.

Lemma 3.1. The space Ψ̂(Â) has an algebra structure and D̂Â is a subalgebra of Ψ̂(Â). Moreover,
under assumption (A), Ψ̂(Â) and D̂Â are diffeological topological K-algebras.

Proof. Let P = ∑α∈Z aαDα and Q = ∑µ∈Z bµDµ be elements of Ψ̂(Â). We set

PQ = ∑
ν∈Z

[
∑

α∈Z

∞

∑
k=0

(
α

k

)
aα b(k)

ν−α+k

]
Dν . (3.2)

We denote the coefficient of Dν in PQ by cν . The operations that define the map (a,b) 7→ c are
smooth, coefficient by coefficient. We now check that cν exists and that it belongs to Â for all
ν ∈ Z.

cν = ∑
α∈Z

∞

∑
k=0

(
α

k

)
aα b(k)

ν−α+k =
∞

∑
α=0

α

∑
k=0

(
α

k

)
aα b(k)

ν−α+k +
∞

∑
β=1

∞

∑
k=0

(
−β

k

)
a−β b(k)

ν+β+k . (3.3)

We call s1(ν) and s2(ν) the first and second summation respectively; we use the notations intro-
duced in Definition 3.1 and in the remarks made thereafter. We show that s1 exists. We set

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

109



A. Eslami Rad et al. / The Cauchy problem of the Kadomtsev-Petviashvili hierarchy

Sn =
n

∑
α=0

α

∑
k=0

(
α

k

)
aα b(k)

ν−α+k . Then,

|Sn+1−Sn| =

∣∣∣∣∣n+1

∑
k=0

(
n+1

k

)
an+1 b(k)

ν+k−(n+1)

∣∣∣∣∣
≤ max

0≤k≤n+1

{ ∣∣∣∣(α

k

)
an+1 b(k)

ν+k−(n+1)

∣∣∣∣ }
≤ |an+1| max

0≤k≤n+1

{ ∣∣bν+k−(n+1)
∣∣ }

≤ |an+1|CQ .

Thus, limn→∞ |Sn+1−Sn|= 0. It follows that {Sn} is a Cauchy sequence in Â, and we conclude that
s1(ν) = limn→∞ Sn.

Now we prove that s2(ν) exists using part (4) of Lemma 2.1: we have that
∣∣∣a−β b(k)

ν+β+k

∣∣∣ ≤
|a−β | |bν+β+k|, and the right hand side converges to zero as k→∞ for each β ; also, |a−β b(k)

ν+β+k| ≤
BP|bν+β+k| for β large enough, and the right hand side tends to zero uniformly in k as β →∞. Thus,
we conclude that s2(ν) exists, and so cν is a well defined element of Â for all ν ∈ Z.

Now we show that cν satisfies the growth conditions appearing in Definition 3.1. Since P,Q are
in Ψ̂(Â), there exist numbers AP,AQ,BP,BQ ∈R+, NP,NQ ∈ Z+ and MP,LP,MQ,LQ ∈ Z+ such that

|aα |<
AP

α−NP
for α > MP , |bβ |<

AQ

β −NQ
for β > MQ ,

|aα |< BP for α <−LP , |bβ |< BQ for β <−LQ .

We estimate cν using (3.3) :

|cν | =

∣∣∣∣∣ ∞

∑
α=0

α

∑
k=0

(
α

k

)
aαb(k)

ν−α+k +
∞

∑
k=0

∞

∑
β=1

(−1)k
(

k+β −1
k

)
a−β b(k)

ν+β+k

∣∣∣∣∣
= |s1(ν)+ s2(ν)|
≤ max{|s1(ν)|, |s2(ν)|} , (3.4)

in which s1(ν) and s2(ν) are defined as before. We set s1(ν)α = ∑
α
k=0

(
α

k

)
aαb(k)

ν−α+k , so that

s1(ν) = ∑
∞
α=0 s1(ν)α . Since we already know that s1(ν) exists, we obtain that limα→∞ s1(ν)α = 0.

Then, Lemma 1 implies that

|s1(ν)| ≤max
0≤α

{∣∣∣∣∣ α

∑
k=0

(
α

k

)
aαb(k)

ν−α+k

∣∣∣∣∣
}
≤max

0≤α
max

0≤k≤α

|aαbν−α+k| . (3.5)

Now we consider s2(ν). Using Lemma 1 again we can write s2(ν) = limN→∞ dN in which

dN =
N

∑
k=0

N

∑
β=1

(−1)k
(

k+β −1
k

)
a−β b(k)

ν+β+k .
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Let us assume that s2(ν) 6= 0. Then, there exists N0 such that for all N ≥ N0 we have

|s2(ν)| = |dN | ≤ max
0≤k≤N

max
1≤β≤N

{
|aβ | |bν+β+k|

}
≤ max

1≤β≤N
|aβ |

{
max

0≤k≤N
max

1≤β≤N
|bν+β+k|

}
. (3.6)

We are ready to estimate |s1(ν)| and |s2(ν)| near ±∞. Set M = max{MP,MQ}, L = max{LP,LQ},
A = max{AP,AQ}, B = max{BP,BQ}, N = max{NP,NQ}.

(1) We use (3.5). We fix ν > 2M and we consider two cases, (a) α ≤M and (b) α > M.
If (a) holds, then ν−α + k > M+ k > M, and so

|aαbν−α+k| ≤ |aα |
A

ν−α + k−N
≤ |aα |

A
ν−M+ k−N

≤ |aα |
A

ν− (M+N)
.

If (b) holds, then |aα |< A
α−N and therefore

|aα | |bν−α+k|<
A

α−N
|bν−α+k| . (3.7)

We have two sub-cases depending on ν−α:
If ν−α > M, then ν−α + k > M+ k and therefore

|aα | |bν−α+k|<
A

α−N
A

ν−α + k−N
<

A
α−N

A
ν−M+ k−N

≤ A
α−N

A
ν− (M+N)

.

If ν − α ≤ M, then (3.7) implies |aα | |bν−α+k| < A
α−N CQ. But ν −M ≤ α , so that

|aα | |bν−α+k|< A
ν−M−N CQ. We conclude that there exists B ∈ R such that

s1(ν)<
B

ν− (M+N)
.

On the other hand, (3.5) implies that we can assure that ν−α + k <−L for ν < 0 and
|ν | large enough, and so there exists B̃ > 0 such that for ν near −∞ we have

|s1(ν)| ≤ B̃ .

(2) We use (3.6). We choose ν > M so that ν +β + k > M. Then, there exists E > 0 such that

|s2(ν)| ≤ E
A

ν +β + k−N
≤ EA

ν−N
.

On the other hand, (3.6) also implies that we can choose ν > 0 large enough so that −(ν +

β + k)<−L. Thus, for ν >> 0 we have |s2(−ν)| ≤ B̃.

We have proven that PQ = ∑ν∈Z cνDν belongs to Ψ̂(Â). It remains to show that D̂Â is a subalgebra
of Ψ̂(Â). Indeed, it follows from (2.3) and (3.3) that if ν < 0 then cν = 0, and so P,Q ∈ D̂Â imply
PQ ∈ D̂Â . Finally, if the coefficients a of P and b of Q are smooth functions depending on x ∈ O⊂
Rp such that the constants AP,Bp,MP,NP and Lp do not depend on x, then the bound (3.4), the above
uniform estimates for s1(ν) and s2(ν), and Theorem 2.1, allow us to check that the coefficients of
PQ are continuous functions of a,b which depend smoothly on x.
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We are ready to define the Mulase group of infinite order pseudo-differential operators. We
use obvious adaptations of notations introduced in Subsection 2.1. A crucial remark is that if B is
an arbitrary (diffeological) algebra equipped with a (smooth) derivation, then the set 1+IB is a
mutiplicative group, see [8], and also a diffeological group, see [13]. In particular, Int(OÂ/PÂ) =

1+IOÂ/PÂ
is a group. For P = ∑ν∈Z aνDν ∈ Ψ̂(OÂ) we set π(P) := ∑ν∈Z π(aν)Dν .

Definition 3.2. We define the spaces

G(OÂ) =
{

P ∈ Ψ̂(OÂ) : π(P) ∈ Int(OÂ/PÂ)
}

(3.8)

and

G+(OÂ) =
{

P ∈ D̂OÂ
: π(P) = 1

}
. (3.9)

Proposition 3.1. The space G(OÂ) is a group: each element P ∈ G(OÂ) has an inverse of the form

P−1 = ∑
n≥0

(1−P)n . (3.10)

In addition, the space G+(OÂ) is a subgroup of G(OÂ).

We remark that if P,Q ∈ G(OÂ), then Equation (3.3) for the coefficients of PQ and continuity
of π imply that PQ ∈ G(OÂ). Thus, the main difficulty in proving Proposition 3.1 is checking that
(3.10) makes sense. We need the following two lemmas.

Lemma 3.2. Consider the sequence Qn = ∑ν∈Z bn,νDν , n ≥ 0, in Ψ̂(Â). We assume that it is uni-
formly bounded at −∞, that is, there exists C > 0 and L ∈ Z+ such that |bn,ν |<C for all n≥ 1 and
all ν <−L, and that there exists a positive real number J such that

σ̂(bn,ν)≥ J (ν +n) for all ν ≥−n . (3.11)

Then, for each fixed ν ∈ Z the series ∑n≥0 bn,ν is a well-defined element of Â and ∑
∞
n=0 Qn ∈ Ψ̂(Â).

Proof. Condition (3.11) implies that

|bn,ν | ≤ eJ(ν+n) ln(c) =
1

eJ(ν+n)r
≤ J′

ν +n+1
for all ν ≥−n , (3.12)

in which ln(c) =−r and J′ = 1/Jr. We use Lemma 1. Let us assume first that ν ≥ 0. Hence, (3.12)
implies that |bn,ν | ≤ J′

ν+n+1 for all n > 0, and so limn→∞ bn,ν = 0. This means that ∑n≥0 bn,ν ∈ Â.
Now assume that ν =−µ < 0. Then, only a finite number of integers n∈Z+ will not satisfy ν ≥−n.
It follows that limn→∞ bn,ν = 0, and again we conclude that ∑n≥0 bn,ν ∈ Â.

Now we consider the formal sum
∞

∑
n=1

Qn =
∞

∑
n=1

∑
ν∈Z

bn,ν Dν = ∑
ν∈Z

(
∞

∑
n=1

bn,ν

)
Dν .

Since ∑n≥0 bn,ν ∈ Â, Lemma 1 and (3.12) imply that∣∣∣∣∣∑n≥0
bn,ν

∣∣∣∣∣< max
n≥0
|bn,ν | ≤max

n≥0

J′

ν +n+1
for ν ≥ 1.

Thus, |∑n≥0 bn,ν | ≤ J′
ν

for all ν > 0, and |∑n≥0 bn,ν | < maxn≥0 |bn,ν | < C for ν < −L. Thus,
∑

∞
n=1 Qn ∈ Ψ̂(Â).
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Lemma 3.3. Let R = ∑ν∈Z b̃ν Dν ∈ Ψ̂(OÂ) and let {cn}n≥0 be a sequence of scalars in K such that
c0 = 1 and cn 6= 0 for n≥ 1. If σ̂(b̃ν)≥ 1 for all ν ≥ 0, then ∑n≥0 cnRn ∈ G(OÂ).

Proof. We show that the sequence Qn = cn Rn, n≥ 0, satisfies the conditions of the previous lemma.
Since R ∈ Ψ̂(OÂ), there exist AR,BR ∈ R+ and MR,NR,LR ∈ Z+ so that |b̃ν | < AR

ν−NR
for all ν >

MR > NR and |b̃ν | < BR for all ν < −LR. Therefore, there exist C ∈ R+ and N ∈ Z+ such that
σ̂(b̃ν)>C ν−N for all ν � 0.

We claim that there exists a number J > 0 such that σ̂(b̃ν)≥ J(ν +1) for all ν ≥−1. The claim
is trivial if ν = −1 since R ∈ Ψ̂(OÂ) by hypothesis; if ν ≥ 0, we fix 0 < ε <C. Then, there exists
M̃ > 0 such that

C− ε ≤ Cν−N
ν +1

≤C+ ε (3.13)

for all ν > M̃, and we choose M ≥max{M̃,MR} so that we also have the estimate σ̂(b̃ν)>C ν−N
for all ν ≥M. Then, on the one hand, if 0≤ ν ≤M we have the inequality 0 < C

C+CM+N (ν +1)< 1,
and therefore (since we are assuming σ̂(b̃ν) ≥ 1) we conclude that σ̂(b̃ν) ≥ C

C+CM+N (ν + 1) for
−1≤ ν ≤M. On the other hand, if ν > M, then (3.13) implies that σ̂(b̃ν)≥C ν−N > (C−ε)(ν +

1). Our claim is proved if we choose J = min{C/(C+CM+N) ,C− ε}.
Now we consider the sequence Qn = cn Rn and we write Qn = ∑ν∈Z bn,νDν . We show by induc-

tion that

σ̂(bn,ν)≥ J(ν +n) for all ν ≥−n . (3.14)

If n = 1, then σ̂(b1,ν) = σ̂(c1b̃ν) = σ̂(b̃ν)≥ J(ν +1) for all ν ≥−1, as we just showed.
We assume that (3.14) holds for n and we show that σ̂(bn+1,ν)≥ J(ν +n+1) for ν ≥−n−1.

We have Qn+1 = cn+1Rn+1 = cn+1
cn

RQn, that is,

Qn+1 =
cn+1

cn

(
∑

α∈Z
b̃αDα

)(
∑

µ∈Z
bn,µDµ

)
=

cn+1

cn
∑

ν∈Z

[
∑

α∈Z

∞

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i

]
Dν . (3.15)

The coefficient of Dν in (3.15) can be written as follows:

cn

cn+1
bn+1,ν =

ν+n

∑
α=0

α

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i +

∞

∑
α=ν+n+1

α

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i +

∞

∑
l=1

l−1

∑
i=0

(
i− l

i

)
b̃i−lb

(i)
n,ν+l ,

where l = β + i. We bound each one of these three summations: Set

A =
ν+n

∑
α=0

α

∑
i=0

(
α

i

)
bαb(i)n,ν−α+i .

Then, 0 ≤ α ≤ ν + n and i ≥ 0, so that ν − α + i ≥ −n. The induction hypothesis implies
that σ̂(bn,ν−α+i) ≥ J(ν −α + i+ n) ≥ J(ν −α + n). Since D and σ̂ are compatible, we obtain
σ̂(b(i)n,ν−α+i)≥ J(ν−α +n). Moreover, since α ≥ 0, the n = 1 induction step implies that σ̂(b̃α)≥
J(α + 1). Therefore, σ̂(b̃αb(i)n,ν−α+i) ≥ σ̂(b̃α) + σ̂(b(i)n,ν−α+i) ≥ J(α + 1) + J(ν −α + n), and so
σ̂(A)≥ J(ν +n+1).
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Next, we set

B =
∞

∑
α=ν+n+1

α

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i .

Then,

σ̂(B) = σ̂

(
lim

N→∞

N

∑
α=ν+n+1

α

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i

)
= lim

N→∞
σ̂

(
N

∑
α=ν+n+1

α

∑
i=0

(
α

i

)
b̃αb(i)n,ν−α+i

)
.

Now,

σ̂

(
N

∑
α=ν+n+1

α

∑
i=0

(
α

i

)
bαb(i)n,ν−α+i

)
≥ min

ν+n+1≤α≤N
min

0≤i≤α
σ̂(b̃αb(i)n,ν−α+i)

≥ min
ν+n+1≤α≤N

min
0≤i≤α

{σ̂(b̃α)+ σ̂(b(i)n,ν−α+i)}

≥ min
ν+n+1≤α≤N

min
0≤i≤α

σ̂(b̃α) ,

since R (and hence Rn) belongs to G(OÂ) and therefore σ̂(b(i)n,ν−α+i)≥ 0. Using the n = 1 induction
step (which we can, because ν +n+1≥ 0) we obtain

min
ν+n+1≤α≤N

min
0≤i≤α

σ̂(b̃α) = min
ν+n+1≤α≤N

σ̂(b̃α)≥ min
ν+n+1≤α≤N

J(α +1)≥ J(ν +n+2) ,

and therefore σ̂(B)≥ J(ν +n+2)≥ J(ν +n+1).
Finally, we set

C =
∞

∑
l=1

l−1

∑
i=0

(
i− l

i

)
bi−lb

(i)
n,ν+l .

Then, using again the fact that we are considering formal pseudo-differential operators with non-
negative valuations, we have,

σ̂

(
N

∑
l=1

l−1

∑
i=0

(
i− l

i

)
bi−lb

(i)
n,ν+l

)
≥ min

1≤l≤N
min

0≤i≤l−1
{σ̂(b̃i−l)+ σ̂(b(i)n,ν+l)}

≥ min
1≤l≤N

min
0≤i≤l−1

σ̂(b(i)n,ν+l).

Since l ≥ 1 and we are assuming ν ≥−n−1, we have ν+ l ≥ ν+1≥−n. The induction hypothesis
then implies that σ̂(b(i)n,ν+l)≥ J(ν+ l+n)≥ J(ν+n+1), and we conclude that σ̂(C)≥ J(ν+n+1).

Collecting these results we have

σ̂(bn+1,ν) = σ̂((cn/cn+1)bn+1,ν) = σ̂(A+B+C)≥min{σ̂(A), σ̂(B), σ̂(C)} ≥ J(ν +n+1) ,

and we have proven (3.14).
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Since we easily check that |bn,ν | ≤ 1 for all n≥ 1 and ν ∈ Z, Lemma 3 implies that ∑
∞
n=0 Qn ∈

Ψ̂(Â). It remains to show that ∑
∞
n=0 Qn ∈ G(OÂ). We have,

∞

∑
n=0

Qn = 1+
∞

∑
n=1

Qn = 1+ ∑
ν∈Z

(
∞

∑
n=1

bn,ν

)
Dν , (3.16)

and

σ̂

(
∞

∑
n=1

bn,ν

)
= lim

N→∞
σ̂

(
N

∑
n=1

bn,ν

)
≥ lim

N→∞
min

1≤n≤N
σ̂(bn,ν) . (3.17)

This limit is non-negative because we already know that |bn,ν | ≤ 1 for all n,ν . Thus, ∑
∞
n=0 Qn ∈

Ψ̂(OÂ). Now we consider ν ≥ 0. The estimate (3.14) implies that σ̂(bn,ν) ≥ J(n+ ν) > 0 for all
n ≥ 1, and therefore we conclude, using (3.17), that σ̂(∑∞

n=1 bn,ν) ≥ J(ν +1). Now, (3.16) tells us
that π(∑∞

n=0 Qn) = 1+∑ν∈Z π(∑∞
n=1 bn,ν)Dν (as π(1) = 1), and so ∑

∞
n=0 Qn belongs to G(OÂ).

Proof of Proposition 3.1: We consider P = ∑ν∈Z aνDν ∈G(OÂ). The formal inverse of P is given
by the simple calculation

1 =
∞

∑
n=0

(1−P)n−
∞

∑
n=1

(1−P)n =
∞

∑
n=0

(1−P)n− (1−P)
∞

∑
n=0

(1−P)n = P
∞

∑
n=0

(1−P)n .

We show that the series ∑
∞
n=0(1−P)n belongs to G(OÂ): Set Q = 1−P = ∑ν∈Z bνDν ∈ Ψ̂(OÂ).

As π(Q) = 1−π(P) ∈IOÂ/PÂ
, and the range of σ̂ is Z, we have σ̂(bν)≥ 1 for ν ≥ 0, and so the

claim follows from Lemma 3.3.
Now we note that if P ∈ G+(OÂ) then ∑n≥0(1−P)n ∈ G(OÂ), simply because G+(OÂ) is con-

tained in G(OÂ). Also, π(1−P) = 0, so that continuity of π yields π((∑n≥0(1−P)n)) = 1 and we
conclude that P−1 ∈ G+(OÂ). Finally, let P1 = ∑α≥0 aαDα and P2 = ∑β≥0 bβ Dβ in G+(OÂ). Then,
P1P2 = ∑ν≥0 cνDν with

cν =
∞

∑
α=0

α

∑
k=0

(
α

k

)
aαb(k)

ν−α+k , (3.18)

and we conclude from the proof of Lemma 2 that σ̂(cν) ≥ minα≥0 min0≤k≤α{σ̂(aα) +

σ̂(bν−α+k)} . We bound S = σ̂(aα)+ σ̂(b(k)
ν−α+k). If α 6= 0, then the definition of G+(OÂ) implies

that σ(aα) ≥ 1, and so S ≥ 1 for all k ≥ 0. On the other hand, if α = 0, then σ̂(aα) = 0 and
S = σ̂(bν). If ν > 0 we have, again because of the definition of G+(OÂ), that S ≥ σ̂(bν) ≥ 1
and therefore π(P1P2) = π(c0). Formula (3.18) for ν = 0 and the above computations imply that
π(c0) = π(a0b0) = π(a0)π(b0) = 1, and so P1P2 ∈ G+(OÂ). �

Proposition 3.2. The group G−(OÂ) = 1+IOÂ
is a formal Lie group with Lie algebra IOÂ

. The
exponential map

exp : P ∈IOÂ
7→ ∑

n∈N

(sP)n

n!
∈ G−(OÂ) ,

in which s ∈ K, is one-to-one and onto with inverse given by the clasical logarithmic series log, and
both exp and log are smooth. As a consequence, inversion is smooth in G−(OÂ).
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Proof. (Sketch) Once the rest of the proposition is checked, smoothness of exp and log follows
because of the choice of diffeology on Ψ̂(Â); this diffeology is defined coefficientwise from the
diffeology of Â via product and pull-back (or initial) diffeologies, see [10] and also [13] for related
constructions.

It follows from our remarks above Definition 3.2 that the space 1+IOÂ
is a multiplicative

(diffeological) group. We consider a curve g(s) in 1+IOÂ
with g(0) = 1. Then, it is obvious that

g′(0) ∈IOÂ
. On the other hand, if P = a1D−1 +a2D−2 + · · · ∈IOÂ

, then Lemma 3.3 implies that
exp(sP) = ∑n≥0(sn/n!)Pn, s ∈ K, is in G(OÂ). Since only non-positive powers of D appear in P,
we conclude that exp(sP) ∈ 1+IOÂ

, and moreover the algebraic derivative (i.e., the operator d/ds
acting on formal power series in the variable s) of the curve s 7→ exp(sP) at s = 0 is P.

The following result is our version of Mulase’s factorization theorem in the context of diffeo-
logical topological algebras.

Theorem 3.1. For any U ∈ G(OÂ) there exist unique W ∈ G−(OÂ) and Y ∈ G+(OÂ) such that

U =W−1Y . (3.19)

In other words, there exists a unique global factorization of the formal Lie group G(OÂ) as a product
group, G(OÂ) = G−(OÂ)G+(OÂ). Moreover, the map U 7→ (W,Y ) are smooth with respect to the
diffeologies inherited from the diffeology of Ψ̂(Â).

Proof. Let us assume first that W−1
1 Y1 =W−1

2 Y2; then, W1W−1
2 = Y1Y−1

2 . Since W1W−1
2 ∈ G−(OÂ)

and W1W−1
2 ∈ G+(OÂ), we must have W1W−1

2 = Y1Y−1
2 = 1, and therefore W1 = W2 and Y1 = Y2.

This shows uniqueness.
In order to prove the existence of the decomposition (3.19), we solve the equation WU = Y for

an unknown W ∈ G−(OÂ). Let U = ∑β∈Z uβ Dβ ∈ G(OÂ) and W = 1+∑
∞
α=1 wαD−α . We write

WU = ∑
β∈Z

uβ Dβ + ∑
γ∈Z

(
∞

∑
α=1

∞

∑
i=0

(
−α

i

)
wαu(i)

γ+α+i

)
Dγ .

We know that W U ∈ Ψ̂(Â); we need to show that WU ∈ G+(OÂ) so that, in particular, WU should
not have negative powers of D. Hence, the formal pseudo-differential operator W should solve the
linear system of equations

u−β +
∞

∑
α=1

∞

∑
i=0

(
−α

i

)
wαu(i)

α−β+i = 0 (3.20)

for β = 1,2,3, · · · , in which the unknowns are the wα ’s belonging to OÂ. Following Mulase, see [15],
we define −→u = (u−1,u−2,u−3, . . .), −→w = (w1,w2,w3, . . .), and

M =

[
∞

∑
i=0

(
−α

i

)
u(i)

α−β+i

]
α,β=1,2,3,···

.

The coefficients of −→u and M are smooth with respect to the coefficients of U, and hence −→u and
M can be understood as objects in the spaces of sequences Â−N

∗
and ÂZ2

which are coefficientwise
smooth for the infinite product (uniform) diffeologies. Equation (3.20) becomes−→w M =−−→u , and its
solution should be −→w =−−→u M−1, as long as M is invertible. We now prove that M−1 = ∑

∞
n=0(Id−
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M)n , where Id is the infinite identity matrix. We define N = Id−M = [aµν ]µ,ν=1,2,3,... and Nn =

[an,µν ]µ,ν=1,2,3,... . Thus,

aµν = δµν −
∞

∑
i=0

(
−µ

i

)
u(i)

µ−ν+i . (3.21)

We note that σ̂(aµν)≥ 0, and also σ̂(an,µν)≥ 0 for all n≥ 1. We can be more precise if we examine
projections. First, note that

π(aµµ) = π

(
1−

∞

∑
i=0

(
−µ

i

)
u(i)i

)
= π

(
−

∞

∑
i=1

(
−µ

i

)
u(i)i

)
= 0 ,

since U = ∑β∈Z uβ Dβ ∈G(OÂ) implies π(U) = 1+π(u−1)D−1+π(u−2)D−2+ · · · , so that π(ui) =

0 for i > 0 and —using σ̂(u(i)i )≥ σ(ui)— we have π(u(i)i ) = 0 as well. Also, if µ > ν , then

π(aµν) = π

(
−

∞

∑
i=0

(
−µ

i

)
u(i)

µ−ν+i

)
= 0 ,

since in this case µ −ν + i ≥ 1 and so π(u(i)
µ−ν+i) = 0 for all i by the same argument as above. In

other words, we have proven that σ̂(aµν)≥ 1 for µ ≥ ν .

Now we make two claims. First, there exists J ∈ R+ such that σ̂(aµν) ≥ J(µ − ν + 1) for all
µ−ν ≥−1 :

Indeed, if ν − µ = −1, then any J satisfies our claim. If ν = µ we already saw that σ̂(aµµ) ≥
1 = 1(µ−µ +1). If µ > ν , we have, using the proof of Lemma 3.3 and the fact that σ̂(ui)≥ 1 for
all i≥ 0

σ̂(u(i)
µ−ν+i)≥ σ̂(uµ−ν+i)≥ J̃(µ−ν + i+1)≥ J̃(µ−ν +1)

for some J̃ > 0, since µ−ν + i≥−1. Therefore σ̂(u(i)
µ−ν+i)≥ J̃(µ−ν +1) for all i, and it follows

that σ̂(aµν)≥ J̃(µ−ν +1). We choose J = min{J̃,1}.
Second, we claim that for every n≥ 1, we have σ̂(an,µν)≥ J(µ−ν +n) if µ−ν ≥−n :
We use induction. If n = 1, then a1,µν = aµν and the claim reduces to what we just proved. We

assume that σ̂(an,µν)≥ J(µ−ν +n) whenever µ−ν ≥−n, n≥ 1. Since Nn+1 = NnN we have

an+1,µν =
∞

∑
l=1

an,µlalν =
ν−1

∑
l=1

an,µlalν +
µ+n

∑
l=ν

an,µlalν +
∞

∑
l=µ+n+1

an,µlalν .

We can assume that µ−ν ≥−n−1, since the case µ−ν =−n is trivial by hypothesis. We need to
estimate each of the three sums above. These estimations are carried out in Mulase’s paper [15, p.
27] for a specific valuation, but his arguments are valid in general.

Next, we show that bµν = ∑
∞
n=0 an,µν belongs to OÂ for µ,ν ≥ 1. If µ − ν ≥ 0, then

σ̂(an,µν) ≥ J(µ − ν + n) for all n ≥ 0. Then, limn→∞ σ̂(an,µν) = ∞ and so ∑
∞
n=0 an,µν exists in

Â. If µ−ν < 0, then σ̂(an,µν)≥ J(µ−ν +n) for all, but a finite number, of n’s. Again, it follows
that limn→∞ σ̂(an,µν) = ∞ and so bµν ∈ Â. Moreover, |bµν |< maxn≥0 |an,µν | ≤ 1, and so bµν ∈OÂ.
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Thus, we conclude that

∞

∑
n=0

(1−M)n =
∞

∑
n=0

Nn =

[
∞

∑
n=0

an,µν

]
µ,ν≥1

is well defined. As in Prop. 3.1, a trivial computation shows that this matrix is the inverse of M.
Now we consider (3.20) or the equivalent equation −→w M =−−→u . Then we have

wν =−
∞

∑
µ=1

u−µbµν =−
ν

∑
µ=1

u−µbµν −
∞

∑
µ=ν+1

u−µbµν .

Therefore wν is well defined if the expression ∑
∞
µ=ν+1 u−µbµν makes sense. This is clear because

σ̂(u−µbµν) = σ̂(u−µ)+ σ̂(bµν)→ ∞ as µ → ∞ since σ̂(∑an,µν)≥min σ̂(an,µν)≥ J (µ−ν +n),
as µ−ν > 0 ≥ −n. We conclude that wν is a well defined element of Â (in fact, it belongs to OÂ)
and so W = 1+∑

∞
ν=1 wν D−ν is in G−(OÂ).

Now we set Y =W U . We note that W ∈G−(OÂ)⊆ Ψ̂(OÂ) and that U ∈G(OÂ)⊆ Ψ̂(OÂ). Then
W U ∈ Ψ̂(OÂ), and this product does not have negative powers of D. So, Y =WU ∈ D̂OÂ

.
We check that Y is in G+(OÂ). The calculations that we used to obtain Equation (3.20) and the

fact that π(U) ∈ Int(OÂ/PÂ) imply that

π((WU)) = 1+π

(
∑
γ≥0

(
∞

∑
α=1

∞

∑
i=0

(
−α

i

)
wαu(i)

γ+α+i

)
Dγ

)
.

We take α ≥ 1 and i,γ ≥ 0. Then, σ̂(wαu(i)
γ+α+i)≥ σ̂(wα)+ σ̂(u(i)

γ+α+i)≥ σ̂(wα)+ σ̂(uγ+α+i)≥ 1
since γ +α + i ≥ 1. Therefore, the valuation of the second summation above is greater or equal to
one and we conclude that π(WU) = 1. This means that Y =WU ∈G+(OÂ), as claimed. Finally, we
observe that analyzing the algebraic calculations all along the proof, we see that they are all smooth,
which proves that the decomposition U 7→ (W,Y ) is smooth.

4. The initial value problem of the KP hierarchy

In this final section we propose the following solution to the Cauchy problem for the KP hierarchy.

Theorem 4.1. Consider the KP system of equations

dL
dtk

=
[
(Lk)+,L

]
(4.1)

with initial condition L(0) := L0 = ∑ν∈Z aνDν ∈Ψ(OÂ) such that σ̂(aν)≥ 1 for all ν ≥ 0, and let
Y ∈ G+(OÂ) and S ∈ G−(OÂ) be the unique solution to the factorization problem

U = exp(tk L k
0 ) = ∑

n≥0

t n
k
n!

(L k
0 )

n = S−1Y .

The unique solution to Equation (4.1) with L(0) = L0 is

L(tk) = Y L0Y−1 .

Moreover, the map L0 ∈Ψ(OÂ) 7→ L ∈ Ψ̂(OÂ) is smooth at each fixed time tk ∈ K.
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Remark 4.1.

• We have fixed time because the field K is assumed discrete. We could have stated that the
solution is smooth in time for the discrete diffeology, but we find this statement of limited
interest. On the other hand, if A as an algebra of series as in [14, 15], see Remark 2.1, we
can work within the framework of Frölicher spaces and then we obtain smoothness with
respect to initial condition and time. Full details appear in [12, 13].
• The derivation d/dtk is introduced formally via d/dtk(t m

k ) = mt m−1
k , and it is assumed

to commute with D. More satisfactorily, we could take advantage of the existence of a
Hamiltonian formulation for the KP hierarchy, see [8], so that Equation (4.1) becomes an
equation for integral curves of an appropriate vector field. We believe that this point of view
can be elaborated along the lines of [9, 13], but full details remain to be worked out.
• Lemma 3.3 implies that exp(tk L k

0 ) exists in G(OÂ). Now, in the classical KP hierarchy,
Equations (4.1) are gathered into an infinite system, and the solution L depends on a count-
able family of variables t1, t2, · · · . Following [13], we can easily modify Theorem 4.1 and
obtain a solution L(t1, t2, · · ·). It is enough to consider the operator

U∞ = exp

(
∑
k∈N

tkLk
0

)
with t0 = 1. This operator is well defined because of Lemma 3.3.

Proof. The proof is modelled after [18], see also [16, Chp. 1]. We set U = exp(tk L k
0 ) and we

consider S and Y as in the hypotheses of the theorem. We define L = Y L0Y−1. Then,

(a) Lk = Y L k
0 Y−1; (b) U L k

0 U−1 = L k
0 .

It follows that Lk = Y L k
0 Y−1 = SS−1Y L k

0 Y−1SS−1 = SL k
0 S−1 . We take tk-derivative of U and we

obtain L k
0 U =−S−1Stk S

−1Y +S−1Ytk . Thus, using U = S−1Y , we find the decomposition

SL k
0 S−1 =−Stk S

−1 +YtkY
−1 .

Since Stk S
−1 ∈ IOÂ

and YtkY
−1 ∈ DOÂ

= {P ∈ Ψ(OÂ) : P is a differential operator} , we conclude
that (Lk)+ = YtkY

−1 and (Lk)− =−Stk S
−1. Now we take tk-derivative of L:

dL
dtk

= Ytk L0Y−1−Y L0Y−1YtkY
−1

= YtkY
−1Y L0Y−1−Y L0Y−1YtkY

−1

= (Lk)+ L−L(Lk)+

= [(Lk)+,L] .

We check the initial condition: We have L(0) = Y (0)L0Y (0)−1, but Y (0) = 1 due to the unique-
ness of the Mulase factorization.

Finally, since the maps L0 7→U and U 7→ S are smooth, we conclude that the map L0 7→ SL0S−1 =

L is smooth.
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[21] J.-M. Souriau, Un algorithme générateur de structures quantiques; Astérisque, Hors Série, 341-399

(1985).
[22] I.A.B. Strachan and D. Zuo, Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hier-

archy, J. Math. Phys. 56 (2015), 113509.
[23] K. Takasaki, A New Approach to the Self-Dual Yang-Mills Equations, Commun. Math. Phys. 94 (1984),

35–59.
[24] K. Takasaki, Nonabelian KP hierarchy with Moyal algebraic coefficients, J. Geom. Phys. 14 (1994),

332–364.
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