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The CD63-Syntenin-1 Complex 
Controls Post-Endocytic  
Trafficking of Oncogenic  
Human Papillomaviruses
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Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving 
tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains 
unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves 
tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, 
viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor 
protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 
complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, 
infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of 
viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present 
the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex 
formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our 
results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic 
HPV trafficking.

Human papillomaviruses (HPV) are DNA tumour viruses that inflict a significant burden of disease on the pop-
ulation. The clinical manifestations caused by HPV range from anogenital warts and laryngeal papillomas to 
cancers at anogenital sites, on the skin and in the oropharynx1. The HPV capsid is composed of the major capsid 
protein L1 and the minor capsid protein L2. L1 and L2 are key players in early events of infection, such as virus 
binding at the plasma membrane, cellular entry, and transport of the viral DNA into the nucleus2,3.

Recent research has led to a more detailed picture of HPV entry. The initial events of HPV infection including 
binding to target cells and transition towards the entry points have been characterized2,4–6. Specifically, it has 
been proposed that infectious particles gain access to mitotically active basal cells of skin and mucosa through 
micro-abrasions in the epithelium by attachment to heparan sulphate proteoglycans7–10 or to distinct compo-
nents of the extracellular matrix11,12 as initial binding sites5. Subsequent conformational changes of the capsid 
and cleavage of both capsid proteins occur on the cell surface13,14 supporting infection and transfer to the entry 
receptor complex4,9,13–16. L2 interacts with the annexin A2 heterotetramer17,18 and the virion associates with addi-
tional proteins such as α 6 integrins (α 6β 1/β 4)19,20, growth factor receptors21, and tetraspanins22–25. However, the 
early post-entry endocytic pathway of HPV remains poorly defined. Following internalisation, viral particles 
are transported to multivesicular endosomes (MVEs)26, where combined with acidification, HPV capsid under-
goes disassembly/uncoating, a prerequisite for successful infection27–31. It has been recently reported that the 
ESCRT-1 subunit, TSG101, directly interacts with the minor capsid protein L2 and is required for papillomavirus 
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Figure 1. CD63 is required for HPV16, -18, and -31 infections. (a) HPV16 is internalised into CD63-positive 
endosomal compartments in primary keratinocytes (NHEK). NHEK cells were infected with HPV16 for 
7 hours and stained with CD63 monoclonal antibody (mAb) and L1-polyclonal antibody (pAb) K75. Shown are 
representative pictures of endogenous CD63 (green) and HPV16 L1 (red). (b) CD63 knockdown correlates with 
reduced infectivity. Upper panels show efficiency of CD63 knockdown in HeLa, HaCaT and NHEK cells by Western 
blotting. Bottom panels show HPV16 pseudovirus (PsV) infection assay of HeLa, HaCaT and NHEK cells after 
CD63 siRNA treatment. Infectivity was measured by luciferase activity and normalized by LDH measurements. 
Infection rate of control siRNA was set to 100%. (c) HPV16 infectivity can be restored after reexpression in CD63 
depleted cells. HeLa cells were treated with CD63 siRNAs, transfected with CD63-expression or control plasmid 
and infected with HPV16 PsV. Infectivity of HPV16 PsV was analysed as above. Upper panels show the efficiency of 
knockdown and reexpression. (d) HPV18 and -31 are internalised into CD63-positive endosomal compartments. 
NHEK cells were infected with HPV18 or HPV31 PsV and analysed as in (a). (e) Quantification of L1 colocalisation 
with CD63 was performed by analysis of at least 12 images (3–5 cells per image) using Colocalisation Software 4.7 
(Zeiss). Shown is the proportion of CD63-colocalising L1 pixels relative to the total amount of L1 pixels. (f) HeLa, 
HaCaT, and NHEK cells were treated as in (b) and HPV18 and HPV31 PsV infectivity after CD63 knockdown was 
analysed as above. *P <  0.05 significant decrease compared to control, $P <  0.05 significant increase compared to 
cells transfected with CD63 3′ UTR siRNA and control plasmid.
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infection32. These findings support the notion that the delivery of viral particles to MVEs is an essential step in 
HPV infection which precedes the retrograde pathway from the endosomal system to the Golgi/ER compart-
ment30,33,34 during its journey into the nucleus35–39. However, cellular proteins that regulate the passage of HPV 
from the plasma membrane through endosomal compartments are unknown.

Our previous studies have shown that the secondary receptor complex is located within tetraspanin-enriched 
microdomains (TEMs or TERMs) which are likely to function as entry platforms for various papillomavi-
ruses22–25 thus enabling virus internalisation via an endocytic mechanism independent of clathrin, caveo-
lin and, dynamin22,24,26,40. Furthermore, we established that association of viral particles with the tetraspanin 
CD151-integrin complexes and integration of these complexes to TERMs are required for virus endocytosis23. 
Given that several tetraspanin proteins include well-defined endocytic targeting sequences41, we proposed that 
they may be responsible for post-endocytic trafficking of HPV6,22–24.

Here, we investigated the role of tetraspanin CD63 and its cytoplasmic partner syntenin-1 in HPV infection. 
Both CD63 and syntenin-1 are abundant in MVEs and known to regulate endocytic trafficking of associated 
cargos41–43. We demonstrate that infectivity of HPV is dependent on the CD63-syntenin-1 complex. Importantly, 
we established that this complex controls post-endocytosis trafficking of the virus to MVEs through a mechanism 
involving ALG-2-interacting protein X (ALIX), a recently described partner of syntenin-144 which regulates MVE 
biogenesis. Together, these results identify the CD63-syntenin-1-ALIX complex as a key component of a novel 
trafficking pathway which regulates post-endocytic sorting of HPV.

Results
Tetraspanin CD63 controls infectivity of HPV. We have previously reported that HPV16 pseudovi-
ruses (PsV) colocalise with tetraspanin CD63 on the plasma membrane and in endosomes of infected HeLa 
cells22. Similarly, HPV16 L1 colocalises with CD63 in primary keratinocytes (NHEK) (Fig. 1a). To investigate 
whether CD63 plays a role in HPV infection, we performed a series of infection assays using various keratinocyte 
cell models depleted of CD63. These experiments demonstrated that CD63 knockdown with different siRNAs 
decreased HPV16 infection of HeLa, HaCaT and primary keratinocytes by > 50% (Fig. 1b). Control experiments 
showed that CD63 depletion does not affect luciferase gene expression (Supplementary Fig. S1). Importantly, 
reexpression of CD63 in siRNA-depleted HeLa cells restored viral infectivity, excluding possible off-target effects 
from siRNA-based knockdowns (Fig. 1c). To extend these observations we analysed the role of CD63 in infec-
tion of two other oncogenic HPV types: HPV18 and HPV31. Immunofluorescence staining demonstrated that 
HPV18 and HPV31 L1 proteins also strongly colocalise with CD63 suggesting that these viruses were internal-
ised into CD63-positive endosomes (Fig. 1d). Detailed quantification revealed that ~60% of HPV 16, 18, and 
31 L1-positive endosomes were labelled with anti-CD63 mAb (Fig. 1e). Moreover, depletion of CD63 inhibited 
HPV18 and HPV31 infection in all cell lines tested (Fig. 1f). These data demonstrate that CD63 plays a general 
role in infection of epithelial cells with various human papillomaviruses.

CD63 regulates post-endocytic steps in HPV infection. To investigate the involvement of CD63 in 
HPV infection in more detail we first examined the interaction of HPV16 PsV with CD63. L1-specific coimmuno-
precipitation assay confirmed that HPV16 is physically linked to the CD63-containing protein complex (Fig. 2a). 
Next, we analysed the functional requirement of CD63 for virus cell binding, endocytosis, and post-entry pro-
cessing of HPV16 PsV in CD63-depleted cells. As shown by Western blotting (Fig. 2b,c) and flow cytometry 
(Figs 1h and 2d), binding of HPV16 PsV to the surface of HeLa/CD63(-) cells was similar to that of control cells. 
Furthermore, flow cytometry experiments demonstrated that depletion of CD63 had no apparent effect on inter-
nalisation of HPV16: staining intensity of polyclonal anti-L1 antibody K75, which detects surface bound PsV, was 
comparable in control and CD63-depleted cells 24 hours after infection (Fig. 2d). To investigate the effect of CD63 
depletion on virus post-uncoating processing, we examined the amount of disassembled capsids in endosomes 
using the disassembly-specific L1 antibody 33L1-7 (short L1-7)22,29,45 which detects L1 capsomeres, unfolded 
L146, and also post-disassembly degraded L114. This antibody binds a linear epitope (residues 303–313) that is 
inaccessible in intact viral particles46,47 and recognizes L1 protein after capsid disassembly22. Notably, the number 
of endosomes positive for the L1-7 epitope was dramatically decreased in CD63-depleted cells (Fig. 2e,f), while 
staining with the polyclonal L1-antibody K75 was unaffected (Fig. 2d,e). These findings indicate that CD63 is not 
involved in HPV cell binding or endocytosis. Instead, CD63 appears to control a step in HPV infection, which 
follows endocytosis but precedes virus uncoating and post-uncoating processes.

To examine CD63-dependent trafficking of HPV16 through the endosomal pathway, we also analysed L1 
cleavage products. It was shown that most of L1 cleavages occur in acidified endosomes generating products of 
degradation14. In these experiments we found that CD63 depletion reduced the generation of lower molecular 
weight L1 cleavage products (15–30 kDa) (Supplementary Fig. S1). In further control experiments, we analysed 
whether depletion of CD63 would affect trafficking of transferrin or epidermal growth factor (EGF). Transferrin 
is a bona fide cargo for the clathrin-dependent endocytic pathway48 and EGF is internalized by endocytosis fol-
lowed by trafficking through the various endocytic compartments including multivesicular endosomes (MVEs) 
for degradation49. CD63 did not colocalise with transferrin under steady state conditions and its depletion did 
not affect the amount or intracellular distribution of endocytosed transferrin (Supplementary Fig. S2). Similarly, 
CD63 knockdown had no effect on EGF cell entry or trafficking of the growth factor to MVEs (marked with 
anti-LBPA mAb, Supplementary Fig. S3). These results emphasise that CD63 specifically acts on virus-containing 
endosomes.

CD63 regulates HPV infection via syntenin-1. We have previously reported that CD63 directly inter-
acts with the PDZ domain-containing adaptor protein syntenin-1, which is known to control various aspects of 
endocytic trafficking including trafficking of CD6350. Therefore, we investigated whether syntenin-1 is involved 
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in CD63-dependent steps of HPV infection. Western blot analysis showed that syntenin-1 together with endoso-
mal marker Rab5 and the HPV L1 was detectable in specific sucrose density fractions of endosomal preparations 
of infected HeLa cells (Fig. 3a). In addition, Western blot (Fig. 3a) and quantitative mass spectrometry (Fig. 3b) of 
endosomal preparations revealed that syntenin-1 levels steadily increased on HPV-containing endosomes when 
assessed at four and seven hours post-infection (Fig. 3b and Supplementary Fig. S4). By contrast, endosomal 
distribution of CD63 was not affected (data not shown), suggesting the interaction of virus with CD63 induces 
recruitment of syntenin-1 to endosomal membranes. Supporting these findings, immunofluorescence experi-
ments demonstrated colocalisation of CD63, syntenin-1 and HPV16 L1 protein in HPV16-infected cells (Fig. 3c). 
Moreover, colocalisation of syntenin-1 and CD63 was significantly increased after 7 hours HPV infection when 
compared to uninfected controls (Fig. 3d,e) and, conversely, was reduced in CD63 depleted cells compared to 
control siRNA treated cells (Fig. 3f,g) further emphasizing that CD63 and syntenin-1 interact at HPV-containing 

Figure 2. CD63 associates with L1 and is involved in HPV16 post-uncoating processing but not in cell 
surface binding or virus endocytosis. (a) CD63 is coprecipitated by L1 pAb K75 immunoprecipitation 
(IP) from lysates of HPV16 PsV infected HeLa cells. Expressed (left) and precipitated proteins (right) were 
detected by Western blotting using L1 mAb 321-F (upper panels) and mAb CD63 (lower panels). (b–d) CD63 
knockdown does not affect HPV16 cell binding. (b) HeLa cells were pretreated with CD63 or control siRNA and 
incubated with HPV16 PsV. Cell-bound PsV were detected in cell lysates by Western blotting (WB) using L1 
mAb 312F. Polyethylenimine (PEI) treated cells were used as control for binding deficiency75. (c) Quantification 
of WB bands shows HPV16 cell surface binding independent of CD63. (d) PsV binding and endocytosis is 
unaffected by CD63 knockdown. HeLa cells were pretreated as in (b). Cells were incubated with HPV16 PsV 
as indicated. The amount of surface associated PsV was assessed by flow cytometry using L1 pAb K75. The 
difference between the amount of surface bound PsV at 1 h and 24 h serves as a measure for endocytosis. Mean 
fluorescence intensity of cells incubated with PsV for 1 h was adjusted to 100%. (e,f) L1-7 reactivity is reduced 
after CD63 knockdown. Representative pictures of immunofluorescence with HPV16 L1 pAb K75 (blue), mAb 
33L1-7 (green) and CD63 mAb (red) are shown in (e). Hela cells were treated with siRNAs as in (b) and infected 
for 7 hours. K75 Ab recognises bound and internalized virus particles. 33L1-7 Ab recognises HPV16 epitope 
only accessible after capsid disassembly. (f) Shows quantification of disassembled viral capsids performed 
by analysis of L1-7 positive pixels of at least 15 images using ImageJ-script. Shown are the results of three 
independent experiments using CD63 siRNAs normalized to control siRNA treated cells. *P <  0.05 compared to 
control.
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Figure 3. Recruitment of syntenin-1 to endosomes after HPV16 infection. (a,b) Endosomal syntenin-1 
increased according to HPV incubation time. Western blot (a) and label-free quantitative mass spectrometry 
(b) of L1, syntenin-1 and Rab5/Rab5a in HeLa cells infected with HPV16 PsV for the indicated time points. 
Rab5 marks early endosomes and serves as loading control. Fraction 4 in the Western blot shows endosomal 
fractions used for mass spectrometry. Fractions 9 to 11 represent post-nuclear supernatant (PNS) rich in soluble 
forms of Rab5. (c–e) Syntenin-GFP expressing HeLa cells show significantly increased colocalisation of CD63 
and L1 at 7 hours post infection (7h p.i.). (c,d) Representative pictures show immunofluorescence of L1 (blue), 
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endosomes. These endosomes also contain the minor capsid protein L2 (Fig. 3h) suggesting syntenin-1 associa-
tion takes place prior to capsid disassembly and dissociation of the capsid proteins.

While knockdown of syntenin-1 decreased infectivity of HPV16 PsV in HeLa, HaCaT and NHEK cells 
(Fig. 4a, control in Supplementary Fig. S1), overexpression of the protein increased viral infectivity (Fig. 4b). The 
inhibitory phenotype of the knockdown could be reversed when syntenin-1 was reexpressed in siRNA-depleted 
cells, excluding possible off-target effects and indicating that syntenin-1 plays a key role in HPV infection. 
Similarly, infectivity of HPV18 and HPV31 PsV was also decreased in syntenin-1-depleted cells (Fig. 4c), empha-
sising that the syntenin-1 dependent pathway is crucial for the infection cycle of various HPV types. As with 
CD63, control experiments showed that trafficking of transferrin and EGF was not affected in cells depleted of 
syntenin-1 (Supplementary Figs S2 and S3).

To examine whether CD63 endosomal localisation or formation of the CD63-syntenin-1 complex is important 
in HPV infection, L1-7 reactivity assays were performed by immunofluorescence after knockdown of endogenous 
CD63 and subsequent DNA transfection with CD63 wild type or CD63-∆ C, CD63-GY→ AA and CD63-T7 
mutants. We previously reported that the deletion of the last two C-terminal cytoplasmic amino acids of CD63 
(CD63-∆ C mutant) abolished syntenin-1 interaction and CD63 internalization50. The CD63 GY→ AA mutant 
in which critical glycine and tyrosine residues in the Tyr-based sorting motif were substituted for alanines also 
predominantly localise at the plasma membrane50. Therefore, we examined the activity of the CD63-T7 mutant, 
in which the positions of the last two amino acids of CD63 (i.e. V-M was changed to M-V) were interchanged. We 
found that while colocalising with the endogenous CD63 (Fig. 5a), this mutant did not interact with syntenin-1 
(Fig. 5b). As illustrated in Fig. 5d,e, neither CD63-∆ C nor CD63-GY→ AA nor CD63-T7 mutants could recover 
L1-7 reactivity in CD63-depleted HeLa cells. By contrast, staining with the polyclonal L1-antibody K75 was unaf-
fected (Supplementary Fig. S5). Syntenin-1 depletion led to comparable reduction of PsV infection (Fig. 4a) and 
L1-7 reactivity (Fig. 5e). Together, these experiments reveal that CD63 endosomal localisation and the association 
with syntenin-1 is critical for CD63-dependent steps needed for HPV16 infectivity.

To further emphasise the significance of CD63-syntenin-1 interaction in HPV infection, we performed 
recovery assays of virus L1-7 reactivity using syntenin-1 mutants (Supplementary Fig. S6). Syntenin-1 contains 
two PDZ domains which both contribute to CD63 interaction and a critical point mutation in either PDZ1 
(Gly126→ Asp) or PDZ2 (Gly210→ Glu) compromises the assembly of the CD63-syntenin-1 complex50. Syntenin-1 
PDZ mutants (Synt-PDZ*1, -PDZ*2, and -PDZ*1*2) were transiently expressed in syntenin-1-depleted cells 
(Supplementary Fig. S6) and post-uncoating processing of the viral capsid was monitored as above (Fig. 6a,b). 
None of these syntenin-1 mutants could recover L1-7 reactivity. In other experiments we found that overexpres-
sion of syntenin-1 PDZ mutants in the control cells had no significant effect on L1-7 reactivity (Supplementary 
Fig. S6). Importantly, robust staining of virions with K75 Ab indicated that the pre-disassembly steps of 
infection were unaffected by syntenin-1 depletion (Supplementary Fig. S7). Again, these results indicate that 
CD63-syntenin-1 complex formation is required for HPV infection.

CD63-syntenin-1-complex controls viral trafficking to multivesicular endosomes. To examine 
the role of the CD63-syntenin-1 complex in intracellular trafficking in more detail, we compared distribution of 
internalised HPV16 PsV in control and CD63- or syntenin-1-depleted cells using electron microscopy. These 
experiments revealed that in control cells 7 hours post-initiation of HPV infection a significant proportion of 
viral particles was found in multivesicular endosomes whose diameter exceeded 400 nm (Fig. 7a). By contrast, in 
CD63- or syntenin-1-depleted cells the viral capsids were located in smaller endocytic vesicles (i.e. < 250 nm in 
diameter) in the cell periphery (Fig. 7b). Consistently, endosomes larger than 400 nm in diameter contained lower 
numbers of viral particles in CD63- or syntenin-1-depleted cells as compared to control cells (Fig. 7c), underscor-
ing the involvement of the CD63-syntenin-1 complex in trafficking of internalised HPV to MVEs. The overall 
number and size of MVEs were not affected in CD63-, or syntenin-1-depleted cells and independent of PsV 
infection (Fig. 7c). In agreement with the role of CD63-syntenin-1 complex in endocytic trafficking of HPV we 
observed that colocalisation between L1 and LBPA, a well-established marker of MVEs51, was markedly decreased 
in both CD63- and syntenin-1-depleted cells when compared to control cells (Fig. 8a–c). Furthermore, in CD63- 
and syntenin-1-depleted cells, PsV were distributed more towards the cell periphery and colocalisation with early 
endosomal marker EEA1 was increased (Fig. 8b,c), providing an additional confirmation that HPV16 trafficking 
to perinuclear MVEs depends on the CD63-syntenin-1-complex. Moreover, transport of viral DNA to the Golgi 
apparatus was significantly decreased in CD63 and synenin-1-depleted cells, indicating that CD63-syntenin-1 
mediated HPV trafficking steps to MVEs precede the retrograde trafficking of viral DNA to Golgi (Fig. 8d,e).

Syntenin-1 regulates HPV infection via ALIX interaction. We investigated whether CD63-syntenin-
1-dependent HPV trafficking requires recruitment of additional proteins to enable successful HPV infection. 

CD63 (red), and syntenin-GFP (green) expressing HeLa cells. (e) Quantification of syntenin-GFP-colocalising 
CD63 pixels was performed by analysis of at least 10 images (3-5 cells per image) using Colocalisation Software 
4.7 (Zeiss). *P <  0.05 compared to control. (f,g) Syntenin-1 recruitment to HPV L1 positive endosomes is 
significantly decreased after CD63 depletion. (f) Shows representative pictures of syntenin-GFP (green) and 
L1 (red) after 7 h infection in control or CD63 siRNA treated HeLa cells. (g) Quantification of syntenin-GFP-
colocalising L1 pixels was performed by analysis of at least 20 images (3-5 cells per image) using Colocalisation 
Software 4.7 (Zeiss). *P <  0.05 compared to control. (h) CD63 positive endosomes contain both L1 and L2. 
Representative pictures show HeLa cells transfected with CD63-GFP expression plasmid and stained with pAb 
K75 and mAb L2-1. CD63-GFP is shown in green, L2 in red, L1 in blue and the nucleus in grey.
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Previous studies demonstrated that ALIX also interacts with components of the ESCRT machinery and that these 
interactions may be critical for the biogenesis of MVEs44,52. As ALIX is also a syntenin-1 interacting protein, we 
hypothesised that ALIX is recruited to the CD63-syntenin-1 complex during the transition of viral particles to 

Figure 4. Syntenin-1 is required for papillomavirus infection. (a) Syntenin-1 knockdown correlates with 
reduced HPV16 infectivity. Upper panels show efficiency of syntenin-1 knockdown in HeLa, HaCaT, and 
NHEK cells (*non-specific band). Bottom panels show correlating HPV16 infection assay in HeLa, HaCaT and 
NHEK cells after syntenin-1 or control siRNA treatment. Infectivity was measured as in Fig. 1b. (b) HPV16 
infectivity can be restored after syntenin-1 reexpression. HeLa cells were treated with syntenin-1 siRNAs, 
transfected with control or syntenin-1-expression plasmid and then infected with HPV16 PsV. Infectivity 
of HPV16 PsV was analysed as above. Upper panels show the efficiency of syntenin-1 knockdown and 
reexpression. *P <  0.05 significant decrease compared to control, $P <  0.05 significant increase compared to 
cells transfected with syntenin 3′ UTR siRNA and control plasmid. (c) Syntenin-1 knockdown correlates with 
reduced HPV18 and HPV31 infectivity. HeLa cells were treated as in (a) and infectivity of HPV18 or HPV31 
PsV was analysed as above.
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MVEs. Indeed, when analysed by immunofluorescent stainings, ALIX showed a prominent colocalisation with 
syntenin-GFP and HPV16 L1 in vesicular structures (Fig. 9a). These data suggest that ALIX may function in the 
context of the CD63-syntenin-1 complex to ensure viral trafficking through MVEs. Accordingly, we found that 

Figure 5. Syntenin-1-binding deficient mutants of CD63 fail to recover L1-7 reactivity. (a) Representative 
pictures of wild-type (wt) and mutant CD63. Rat1 cells were transfected with a plasmid encoding CD63 mutant 
T7 (human) and stained with species-specific CD63 antibodies, sc-5275 (human) and AD1 (rat). CD63-T7 
mutant (green) colocalises with endogenous rat CD63 (red). (b) CD63-T7 mutant cannot interact with 
syntenin-1. CHO cells were cotransfected with plasmids encoding flag-tagged syntenin-1 and human CD63 
as indicated. Immunoprecipitation was carried out using mouse anti-human CD63 mAb 6H1. Precipitated 
proteins were detected by Western blotting using rabbit Flag (lower panels) or CD63 antibodies (upper panels). 
Lysates were loaded as positive controls for transfection. Asterisks mark non-specific bands. (c–e) Recovery of 
L1-7 reactivity using CD63 mutants. CD63 depleted HeLa cells were transfected with control or mutant CD63 
plasmid and infected with HPV16. (c) CD63 mutants efficiently reexpress CD63 after respective knockdown. 
(d) Shows representative pictures of CD63 and L1-7 double staining in different CD63 mutants. (e) L1-7 
reactivity was quantified as in Fig. 2e,f. *P <  0.05 significant decrease compared to control, $P <  0.05 significant 
increase compared to cells transfected with CD63 siRNA and control plasmid.
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depletion of ALIX significantly reduced HPV infectivity rate (Fig. 9b, control in Supplementary Fig. S1). The 
N-terminal 3LYPSL7 sequence of syntenin-1 was shown to be critical for its interaction with ALIX44, a finding 
which we could reproduce using surface plasmon resonance (SPR) experiments. Here, ALIX shows strong bind-
ing to the peptide corresponding to the first fourteen amino acids of syntenin-1 including the LYPSL sequence 
(Fig. 9c). This binding was impeded when we used syntenin-1-derived peptides with point mutations at tyrosine 4 
(Y4F) or serine 6 (S6A) of the LYPSL sequence (Fig. 9d). Accordingly, Synt-∆ N (a mutant lacking the first 100 AA),  
Synt-Y4F, and Synt-S6A mutants were unable to restore early steps of viral infection when reexpressed in 
syntenin-1 depleted cells (Fig. 9e,f, Supplementary Fig. S6 and controls in Supplementary Fig. S7). Interestingly, 
we found that overexpression of Synt-∆ N and Synt-S6A has a suppressive effect on L1-7 reactivity when overex-
pressed in control cells (Supplementary Fig. S6) thus further supporting the importance of the ALIX-binding site 
in HPV trafficking. These results demonstrate that the CD63-syntenin-1 complex requires ALIX to control the 
post-entry pathway in HPV infection.

Discussion
Previous data revealed that various oncogenic human papillomaviruses (HPV) enter cells via a novel endocyto-
sis mechanism22,24,26,40. Here, the post-endocytic intracellular pathway controlling virus capsid disassembly and 
infection was investigated. We identified the CD63-syntenin-1-ALIX complex as a novel factor in the viral rep-
lication cycle regulating post-endocytosis trafficking of viruses to multivesicular endosomes. Having previously 
established the contribution of tetraspanin-enriched microdomains in HPV cell entry, our current data empha-
sise the critical role of tetraspanin-based protein platforms in regulation of various aspects of HPV infection.

We have recently reported that the association with other tetraspanins is essential in the CD151-dependent 
HPV infection pathway23. As CD151 controls viral uptake, other tetraspanins may either facilitate this process, or 
function downstream by directing trafficking of internalised viruses along the endocytic pathway. Here, we pres-
ent evidence that the latter is regulated by a complex of tetraspanin CD63 and its interaction partner syntenin-1. 
These results provide a novel mechanistic insight into the poorly characterised process of post-endocytosis HPV 
trafficking. We demonstrated that HPV16 is physically linked to a CD63-containing protein complex and that the 
delivery of endocytosed viral particles to multivesicular endosomes was repressed in cells depleted of CD63 or 
syntenin-1 while MVE biogenesis was not affected. These observations are in line with an earlier report describ-
ing that lack of CD63 does not lead to any marked morphological alterations of the late endosomal/lysosomal 

Figure 6. CD63-binding deficient mutants of syntenin-1 fail to recover L1-7 reactivity. Syntenin-1-depleted 
HeLa cells were transfected with control or syntenin-1 expression plasmid as indicated, infected with HPV16 
and sequentially stained with 33L1-7 and syntenin-1 antibodies. L1-7 reactivity assays were performed as in 
Fig. 2e,f. (a) Shows representative pictures of 33L1-7 and syntenin-1 immunostaining. (b) Shows quantification 
of L1-7 reactivity. *P <  0.05 significant decrease compared to control, $P <  0.05 significant increase compared to 
cells transfected with CD63 siRNA and control plasmid.
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compartment53. Furthermore, depletion of these trafficking components led to decreased transport of the viral 
DNA to the Golgi implying that the CD63-syntenin-1-complex controls the transition of virus-containing endo-
somes to acidic cellular compartments, a critical step preceding retrograde trafficking of HPV to the Golgi.

With its physical proximity to HPV receptors within tetraspanin-enriched microdomains (e.g. EGFR, annexin 
A2, laminin-binding integrins6,41,54–56) and interaction capacity with syntenin-1 at virus containing endosomes, 
CD63 provides a critical physical link between internalised viral particles and intracellular endocytic machinery 
represented in the complex by syntenin-1 (see below). CD63 has been previously implicated in endocytic traffick-
ing of various transmembrane proteins (e.g. CXCR4, VEGFR2, synaptotagmin VII) via mechanisms involving its 
tyrosine-based sorting signal (G-Y-E-V-M sequence)57–59. As expected50, we found that mutation of this sequence 
(in CD63-GY→ AA mutant) stabilised CD63 on the plasma membrane and precludes recruitment of the protein 
to HPV-containing endosomes. Importantly, the CD63-GY→ AA mutant was unable to support HPV infection 
thereby suggesting that the CD63-dependent step in virus infection relies on the endosomal CD63 protein pool.

Progressive recruitment of syntenin-1 to virus-containing endosomes and retention of internalised HPV in 
small peripheral endosomes in syntenin-depleted cells supports the idea that the CD63-syntenin-1 complex con-
trols the pathway directing internalised viruses towards multivesicular endosomes. Accordingly, we observed that 
CD63 and syntenin-1 knockdown lead to reduced degradation of viral capsid proteins (data not shown). The role 

Figure 7. Ultrastructural analyses of HPV16-filled endosomes. (a–d) HeLa cells were treated with CD63 
or control siRNA and infected with HPV16 PsV. (a) Representative electron micrographs illustrating the 
morphology of virus containing endosomes (black arrow: HPV16 PsV; white arrow: intraluminal vesicles). 
Scale bar represents 200 nm. (b) For quantification of the size (diameter) of virus containing endosomes, 20 
micrographs of target and control siRNA-treated cells were measured. (c) Representative electron micrographs 
of virus containing endosomes (diameter >  400 nm) after mock or HPV16 PsV infection. Scale bar represents 
200 nm. (d) Quantification of viruses per vesicle with diameter > 400 nm was determined by analysing 20 
micrographs of control or target siRNA-treated cells, respectively. *P <  0.05 compared to control.
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of syntenin-1 in various aspects of endocytic trafficking is well established42,43,60,61. Its ability to link numerous 
transmembrane partners to key components of the endocytic molecular machinery (i.e. phospholipids, small 
GTPases, ubiquitylated proteins) is likely to be central in the diverse endocytic functions of syntenin-1. Our 
results demonstrate that syntenin-1 partner protein ALIX is required for productive HPV infection. Interestingly, 
interaction between syntenin-1 and ALIX is critical for the production of exosomes, nanovesicles released by 
cells after MVEs fuse with the plasma membrane44. This, and other overlapping functions of CD63, syntenin-1 
and ALIX such as viral egress from cells, ubiquitin-independent sorting of transmembrane cargos to MVEs52,62, 
suggest diverse cellular functionality of the complex. Previous studies demonstrated that ALIX interacts 
with TSG10163,64, an ESCRT-I protein binding to the HPV minor capsid component L232. Therefore, spatial 

Figure 8. Trafficking of HPV16 to multivesicular endosomes requires CD63/syntenin-1 complex.  
(a) Representative pictures of CD63-GFP (green), LBPA (red), and HPV16 L1 (blue) triple staining with 
LBPA mAb and L1 pAb K75 antibodies. (b,c) Colocalisation analysis of HPV16 L1 and LBPA. HeLa cells 
were transfected with control siRNA, CD63 siRNA or syntenin-1 siRNA and infected with HPV16 PsV and 
stained with LBPA mAb and L1 pAb K75 antibodies. (b) Shows representative pictures of L1 (red) and LBPA 
(green) colocalisation. Nuclei are shown in blue. (c) Colocalisation of LBPA and L1 as well as early endosome 
marker EEA1 and L1 was analysed as in Fig. 3e (P =  0,062 for CD63 siRNA and 0,069 for syntenin-1 siRNA). 
(d,e) Colocalisation analysis of viral DNA and the Golgi. HeLa cells were transfected with control, CD63 or 
syntenin-1 siRNA and infected with EdU-HPV16 PsV for 7 or 12 hours. (d) Shows representative pictures of 
viral DNA (vDNA, green) and Golgi (red) 12 hours post infection. (e) Colocalisation of viral DNA and Golgi 
was analysed as above and normalized to infected control siRNA treated cells. *P <  0.05 compared to control.
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Figure 9. ALIX interacts with syntenin-1 and is required for papillomavirus infection. (a) HPV16 L1 
colocalises with syntenin-1 interacting protein ALIX. Representative pictures of ALIX-HA and syntenin- 
GFP overexpression show colocalisation of syntenin-1 (green), ALIX (red) and L1 (blue) marked by arrows. 
(b) ALIX knockdown correlates with reduced infectivity. Upper panels show efficiency of ALIX knockdown in 
HeLa and HaCaT cells. Bottom panels show HPV16 infection assay of HeLa and HaCaT cells after ALIX siRNA 
treatment. Infectivity was measured as in Fig. 2b. (c,d) Affinity of ALIX V-domain-syntenin1 interaction by 
SPR equilibrium binding analysis. (c) Double referenced sensorgrams are shown as a plot of relative response 
of ALIX V-domain/syntenin-1 N-terminal wild-type peptide (654 RU) immobilized surfaces over time. 
Streptavidin coated non-peptide immobilized surface served as reference. RU, Response units. (d) Data points 
of ALIX V-domain binding to syntenin-1 wild-type peptide (filled circle), Y4F peptide (filled triangle) or S6A 
peptide (filled square) fitted to a one-site binding model. Syntenin-1 wild-type peptide showed a KD of 29 µ M. 
(e,f) Syntenin-1-depleted HeLa cells were transfected with control, syntenin-1 wild-type or syntenin-1 mutant 
expression plasmid. L1-7 reactivity assay was performed as in Fig. 2e,f. (e) Shows representative pictures.  
(f) Shows quantification of L1-7 reactivity. *P <  0.05 compared to control, $P <  0.05 compared to cells 
transfected with CD63 siRNA and control plasmid.
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juxtaposition of ALIX with endocytosed viruses may be important for the subsequent egress of disassembled 
virions from MVEs to the Golgi.

We propose that syntenin-1 has a central role in regulating the functionality of the CD63-syntenin-ALIX 
complex in HPV infection. Indeed, recent reports demonstrated that syntenin-1 can be transiently phospho-
rylated at Tyr4 by the Src kinase65 and downstream of activated FGFR266, both of which were previously linked 
to HPV infection18,21,26,67. Our data indicate that this modification is likely to control the dynamics of syntenin-
1-ALIX binding preventing interaction during the earlier steps of viral cell entry. Likewise, the assembly of the 
syntenin-1-ALIX complex may be suppressed by ULK1-induced phosphorylation of syntenin-168. ULK1 is a 
serine-threonine kinase which was shown to play a critical role in the initiation of autophagy69,70. Autophagy 
pathway activation and subsequent dissociation of the CD63-syntenin-ALIX complex may divert trafficking 
of internalised viral particles from MVEs to other endolysosomal compartments formed under environmen-
tal insults. The proposed regulatory role of syntenin-1 phosphorylation is in agreement with Schelhaas and 
colleagues finding that broad range inhibitors of tyrosine and serine/threonine phosphatases suppressed HPV 
entry26. Finally, syntenin-1 was shown to interact with Rab5 and Rab771, key regulators of endocytic trafficking, 
which are suggested to control endocytic routes of internalised HPV26,33.

In conclusion, our study presents the CD63-syntenin-ALIX complex as a principal regulator of post-endocytic 
trafficking of HPV to multivesicular endosomes (Fig. 10). These compartments contain factors such as the 
V-ATPase, required for virus disassembly30,31, and cyclophillins, required for separation of L1 and L229, which 
enables interaction of L2 with cytosolic proteins to facilitate retrograde transport to the nucleus30,34–36,39,72,73. 
Within the CD63-syntenin-1-ALIX-complex, syntenin-1 may represent the key factor integrating intracellu-
lar signalling pathways and ensuring their spatio-temporal coordination during early steps of HPV infection. 
Further analysis of the molecular network involving syntenin-1 is needed to draw a comprehensive map of traf-
ficking routes directing endocytosed HPV to MVEs for productive infection.

Materials and Methods
Cell lines and Pseudovirions. Normal human epidermal keratinocytes (NHEK) were purchased from 
PromoCell, Heidelberg, Germany and cultivated according to manufacturer’s instructions. The human cervical 
carcinoma cell line HeLa was purchased from the German Resource Centre for Biological Material (DSMZ), 
Braunschweig, Germany. HaCaT cells (human non-virally immortalised keratinocytes) were obtained from Cell 
Lines Services (CLS), Eppelheim, Germany. The cells were grown at 37 °C in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% foetal calf serum (FCS), 1% Glutamax I (Invitrogen, Carlsbad, CA, USA), 1% 
modified Eagle’s medium nonessential amino acids and antibiotics. CHO-K1 cells were grown in Ham’s F-12 
media supplemented with 10% fetal calf serum.

HPV16, -18, and -31 pseudovirions (PsV) were prepared as previously described74. Briefly, expression 
plasmids carrying codon-optimized L1 and L2 expression vectors were cotransfected with a pcDNA3.1/
Luciferase reporter plasmid into 293TT cells39,75. L1 and L2 expression vectors pUF3/hu16L1, pUF3/hu16L2, 
pe18L1bhb, pe18L2bhb, p31L1h and p31L2h for HPV16, -18 and -31 were kindly provided by Martin Müller, 
Heidelberg, Germany, Chris Buck, Bethesda, MD, and Tadahito Kanda, Tokyo, Japan, respectively24,76–78. 48 hours 
post-transfection, the cells were processed by lysis and nuclease digestion. The pseudovirions were purified from 

Figure 10. Model of CD63-syntenin-ALIX-dependent trafficking pathway of internalized HPV16. HPV16 
is endocytosed via tetraspanin-enriched microdomains. Virus uptake results in recruitment of syntenin-1 and 
ALIX. CD63-syntenin-ALIX complex formation regulates HPV post-endocytic trafficking to multivesicular 
endosomes, which is a precondition for HPV capsid disassembly, transport of the L2/vDNA complex to the 
Golgi compartment, and infection.
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the cell lysates by OptiPrep (Sigma-Aldrich, St. Louis, MO, USA) gradient centrifugation. Quantification of 
pcDNA3.1/Luciferase positive pseudovirions was performed as described23,39. Optional labeling of the pseudoge-
nomes with 5-ethinyl-2′ -deoxyuridine (EdU) was performed by supplementing the growth medium with 100 µM 
EdU 6 h post transfection79.

Statistics. All experiments were reproduced at least three times. All analysable data points were included in 
statistical analysis. Statistical differences between groups and statistical graphs were assessed with a two-tailed, 
paired t-test using Microsoft Office Excel 2016. Differences between groups were considered significant when the 
P-value was < 0.05.

Plasmids and Antibodies. Expression plasmids encoding CD63 and syntenin-1 were described previously50,80,81.  
CD63/T7 was generated using a standard PCR protocol generating a CD63 protein which resembles the 
C-terminus of Tspan7 (primers are available upon request). CD63 was amplified from clone IRAUp969A121D6 
(imaGenes, Berlin, Germany) by standard PCR. The CD63 sequence was then cloned into the XhoI-KpnI site of 
the pEGFP-C1 (Clontech, Heidelberg, Germany) vector. The ALIX-HA containing plasmid (pCAGGS-HA-AIP1) 
was a kind gift from Prof. Takemasa Sakaguchi (Hiroshima, Japan)82. The ALIX V-domain containing plas-
mid (pGST2-ALIX364–716) was a kind gift from Prof James Hurley (NIH, USA). The HPV16 L1-specific anti-
bodies mouse mAbs L1-7, H56.E, and 16L1-312F and rabbit pAb K75 (detecting HPV16, 18, and 31)  
have been described previously22,24,29,47,83. The CD63 antibody 6H1 was described previously84, the CD63 mAb 
sc-5275, rat CD63 mAb AD1, syntenin-1 mAb sc-100336, Rab5 mAb sc-46692, mouse Golgin-97 mAb A-21270, 
ALIX mAb sc-53540, rat HA Ab 3F10 and the mouse mAb anti β -Actin (AC-15) were purchased from Santa 
Cruz (Dellas, TX, USA), Molecular Probes (Eugene, OR, USA), Roche (Basel, Switzerland), and Sigma-Aldrich  
(St. Louis, MO, USA), respectively. The LBPA mAb was kindly provided by Jean Gruenberg, Geneva, Switzerland.

Immunofluorescence microscopy. NHEK or HeLa cells were grown on coverslips. After transfection and/
or infection (with approximately 200 particles per cell), cells were treated with paraformaldehyde/Triton X-100 or 
methanol. For LBPA staining, cells were fixed with 4% paraformaldehyde, and afterwards incubated with 50mM 
NH4Cl. Fixed cells were stained with the indicated primary antibodies (LBPA in the presence of 0,5% saponin51) 
and with Alexa-conjugated species-specific secondary antibodies (Invitrogen, Carlsbad, CA, USA). DNA was 
stained with Hoechst 33342 (Sigma-Aldrich, St. Louis, MO, USA). Coverslips were mounted onto slides using 
Fluoprep mounting medium (bioMérieux). Images were acquired using the LSM 710 (Carl Zeiss, Jena, Germany) 
and the LSM software ZEN 2008 or using a Zeiss Axiovert 200 M microscope equipped with a Plan-Apochromat 
100x (1.4 NA) and Axiovision deconvolution and colocalisation software 4.7 (Carl Zeiss, Jena, Germany). Image 
files were assembled into figures using InDesign software (Adobe). For colocalisation analysis, cells were grown 
on coverslips and/or transfected with siRNA. Cells were infected with pseudoviruses for 7 or 8 (EdU-viruses) 
hours and stained with antibodies as indicated. Colocalising pixels of at least 10 images (3–5 cells per image) were 
analysed using Colocalisation Software 4.7 (Carl Zeiss, Jena, Germany).

Knockdown of CD63, syntenin-1, and ALIX. The CD63-specific siRNAs CD63#1 (GUUCUUGCUCU 
ACGUCCUCdTdT, Sigma-Aldrich, St. Louis, MO, USA), CD63 3′ UTR (GGUUUUUCAAUUAAACGGAdTdT, 
Sigma-Aldrich, St. Louis, MO, USA), CD63#2 (GGAGAACUAUUGUCUUAUGdTdT, Sigma-Aldrich, St. Louis, 
MO, USA), syntenin-1 #1 (HS_SDCBP_2, Qiagen, Hilden, Germany), syntenin-1 3′ UTR (HS_SDCBP_4, Qiagen, 
Hilden, Germany), syntenin-1 #3 (HS_SDCBP_5, Qiagen, Hilden, Germany), syntenin-1 #4 (smart pool of four 
siRNAs: GGAGAGAAGAUUACCAUGA, GACCAAGUACUUCAGAUCA, GGAUGGUCUUAGAAUAUUU, 
GCAUUUGACUCUUAAGAUU, Dharmacon, Lafayette, CO, USA). The ALIX-specific siRNAs pool (smart pool, 
M-004233-02, Dharmacon, Lafayette, CO, USA), ALIX #1 (GCAGTAATATGTCTGCTCA85). Nonsilencing control 
siRNA (AllStars Neg. Control siRNA) was obtained from Qiagen, Hilden, Germany. The 3′ UTR siRNAs are target-
ing the 3′ UTR of the target genes and are not able to silence CD63 or syntenin-1 plasmid expression. HeLa, HaCaT 
or NHEK cells were transfected with 30 nM of siRNA using RNAiMAX (Invitrogen, Carlsbad, CA, USA) according 
to manufacturer’s instructions. Subsequent experiments were done 24 hours or 48 hours after siRNA transfection.

Pseudovirus infection assay. Cells were grown in 24-well plates and treated with CD63-, syntenin-1 
or ALIX siRNA for 48 hours. Cells were infected with 100 (HeLa and HaCaT) or 500 (NHEK) luciferase 
vector-positive pseudovirions per cell39,75. Infection efficiencies of HPV pseudovirions were assessed by quanti-
fication of luciferase expression 24 (HeLa and HaCaT) or 48 hours (NHEK) post infection. Luciferase expression 
control and pseudovirus infection assay were performed as described in Scheffer et al.23.

Recovery experiments. HeLa cells were treated with CD63- or syntenin-1-specific siRNA targeting the 
3′ UTR of the gene or control siRNA for 24 hours and transfected with the indicated plasmids encoding CD63 
or syntenin-1-wt and various mutants or control plasmid (pZeoSV or pCMV-HA) using Lipofectamine 2000 
(Invitrogen, Carlsbad, CA, USA) for additional 24 hours. Afterwards, the cells were infected with HPV16 pseu-
dovirions for 7 hours and infection or L1-7 reactivity assay was performed.

Coimmunoprecipitation assay. HeLa cells were seeded on 100-mm dishes in duplicate and cultured over-
night. Cells of one dish were infected with HPV16 PsVs for five hours. Dishes were put on ice, cells were washed 
with Hepes buffer (25 mM Hepes, 150 mM NaCla, 5 mM MgCl2) and lysed in 1% Chaps/Hepes buffer with pro-
tease inhibitors Aprotinin and Leupeptin (10 µ g/ml each). Lysates were incubated for 15 minutes at 4 °C on a 
rotating wheel, treated with an ultrasonifier three times for 20 seconds each (30% duty cycle; output control, 30%; 
Branson Sonifier 250, Emerson Industrial Automation, St. Louis, MO, USA) and incubated for 30 minutes at 4 °C 
on a rotating wheel. Dynabeads (M280 Sheep anti-Rabbit IgG, Invitrogen, Carlsbad, CA, USA) were prepared 
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according to manufacturer’s instructions and incubated with K75 rabbit IgG for 20 minutes at room tempera-
ture on a rotating wheel. Cell lysates were incubated with K75-coupled Dynabeads overnight at 4 °C on a rotat-
ing wheel. Beads were washed in lysis and Hepes buffer. Likewise, CHO cells were seeded and transfected with 
Flag-tagged syntenin-1 and/or human CD63 plasmids. At 48 hours post-transfection, cells were lysated by immu-
noprecipitation buffer (0.5% Brij 98–0.5% Triton X-100– PBS, 2 mM phenylmethylsulfonyl fluoride, 10 µ g/ml  
Aprotinin and Leupeptin) for 4 to 16 hours at 4 °C. Undissolved material was pelleted at 12,000 rpm for 10 min. 
Immune complexes were collected by incubation of cellular lysate with anti-CD63 mAb (6H1) pre-bound to 
protein G agarose beads for 16 hours and washed four times with immunoprecipitation buffer. Hela and CHO 
cell precipitates were boiled in Laemmli sample buffer and processed for Western blotting with anti-bodies as 
indicated in figure legends. CD63 Western blots were performed under non-reducing conditions.

Cell binding assay by Western blotting. HeLa cells grown in 12-well plates were transfected with siRNAs 
for 48 hours. Subsequently, cells were incubated with HPV16 PsV for 1 hour at 37 °C, washed four times with PBS 
and then collected in SDS sample buffer for Western blotting. Cell-bound HPV16 particles were stained with 
anti-L1 antibody 312F and β -Actin was stained as input control.

Detection of surface bound particles by flow cytometry. HeLa cells were transfected with the indi-
cated siRNAs and/or plasmids and infected with HPV16 PsV for 1 hour (cell binding assay). Subsequently, cells 
were extensively washed with PBS to remove unbound virions and analysed by flow cytometry or incubated 
for additional 23 hours. Cells were trypsinized with 0,25% Trypsin/2,5mM EDTA. Surface-bound particles were 
stained using the anti-L1 (K75) antibody and secondary anti-rabbit Alexa Fluor-488 antibody. Background stain-
ing was determined using a non-specific IgG serum. Measurements of surface bound particles at 1 hour post virus 
addition served as virus-cell binding analysis (see above) and comparison of bound particles at 1 h versus 24 h to 
show virus disappearance from the cell surface by endocytosis.

Detection of L1-7 epitope by immunofluorescence. HeLa cells were grown on coverslips and trans-
fected with siRNAs. 48 hours later cells were infected with HPV16 pseudovirions (with approximately 200 parti-
cles per cell) and incubated for 7 hours at 37 °C. Subsequently, cells were fixed with methanol and processed for 
staining with mAb 1-7 as described previously22. This mAb recognizes a specific epitope located in the interior of 
the pseudovirion capsid and is not accessible in intact virions. The samples were analysed by fluorescence micros-
copy using a Zeiss Axiovert 200M inverted microscope (Carl Zeiss, Jena, Germany) and quantified by ImageJ 
software. For quantification, the relative amount of internalised particles was determined based on the L1-7 pos-
itive pixels relative to the cell nucleus signal (DNA/Hoechst 33342 positive pixels) out of 100 randomly selected 
cells (knockdown experiments) and 100 CD63 or syntenin-1 expressing cells (recovery experiments) from at least 
four independent experiments. A threshold value was set to exclude background.

Preparation of endosomes. 4.5 ×  106 HeLa cells were either left untreated or were infected with 50 vge/cell 
of HPV16 PsV for 4 or 7 hours. Endosomal fractions were prepared as described86,87. Briefly, cells were harvested 
and homogenized, a post-nuclear supernatant was prepared and adjusted to 40.6% sucrose, 3 mM imidazole, 
pH 7.4, loaded at the bottom of an SW60 tube, and overlaid sequentially with 35% and 25% sucrose solutions in 
3 mM imidazole, pH 7.4, and homogenization buffer (HB; 8.5% sucrose, 3 mM imidazole, pH 7.4). The gradient 
was centrifuged for 90 min at 14 000 ×  g. Thirteen fractions were collected. Early endosomal fractions (35%/25% 
interface) were identified by immunoblotting using the endosomal marker Rab587,88.

Quantitative mass spectrometry. For protein digest early endosomes were pelleted by ultracentrifuga-
tion (100.000 ×  g, 1 h, 4 °C), proteins reduced by adding 5 mM DTT, free cysteines alkylated with iodoaceta-
mide (Sigma-Aldrich, St. Louis, MO, USA), and proteins digested with 0.2 µ g porcine sequencing grade trypsin 
(Promega, Mannheim, Germany)89. Nanoscale liquid chromatography of tryptic peptides was performed with 
a Waters NanoAcquity UPLC system equipped with a 75 µ m ×  150 mm BEH C18 reversed phase column and a 
2.6 µl PEEKSIL-sample loop (SGE, Darmstadt, Germany). Mass spectrometry analysis of tryptic peptides was per-
formed using a Waters Q-TOF Premier API system, operated in V-mode with typical resolving power of at least 
10,000. All analyses were performed using positive mode ESI using a NanoLockSpray source. For data processing 
and protein identification the continuum LCMSE data were processed and searched using the IDENTITYE- 
Algorithm of ProteinLynx Global Server (PLGS) version 2.3. The resulting peptide and protein identifications 
were evaluated by the software using statistical models similar to those described by Skilling et al.90. Protein iden-
tifications were assigned by searching the UniProtKB/Swiss-Prot Protein Knowledgebase Release 52.3.

Electron Microscopy. HeLa cells were infected with HPV16 PsV (approx. 500 p/cell) and after 7 hours fixed 
with 2.5% glutaraldehyde in PBS for 45 minutes at room temperature. Cells were washed with PBS, harvested 
and embedded in Epon 812 according to standard procedures. 70 nm ultrathin sections were cut, stained with 
1% lead citrate and 2% uranyl acetate and finally analysed in a Zeiss CEM 902 electron microscope (Carl Zeiss, 
Jena, Germany), equipped with TRS digital camera. For quantification, 20 pictures of each sample were analysed.

Surface Plasmon Resonance. The interaction of ALIX and syntenin-1 was quantified using a BIAcore 
3000 instrument (GE Healthcare) in 10 mM HEPES (pH 7.4) buffer, 150 mM NaCl and 0.005% Surfactant P20. 
Streptavidin (Sigma-Aldrich, St. Louis, MO, USA) was covalently coupled to CM5 sensor chips (GE Healthcare) 
via primary amines using the standard amine coupling kit (GE Healthcare). For coupling, streptavidin was 
injected at 0.5 mg·mL−1 in 10 mM sodium acetate (pH 5.5) with coupling levels ranging from 6000 to 8000 RU. 
Biotinylated syntenin-1 N-terminal 11-mer peptides (LifeTein LLC, Somerset, NJ, USA) were immobilized at 
the indicated levels by injection at 20 to 50 mg·mL−1 for 0.5 min over streptavidin-coupled surfaces. Equilibrium 
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affinity measurements involved injecting ALIX V-domain (purified as described91) over immobilized syntenin 
N-terminal peptides at 20 µ l/min. Data was collected from two replicates and analysed using Scrubber 2 software 
(Biosensor Tools LLC, Salt Lake City, UT, USA).
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