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Introduction

Within an infected cell, viral nucleic acid, be it RNA or DNA, 

is relatively cosseted by cellular membranes and a protective 

cytosolic environment, but the cell-free stage that viral genomes 

must transit to access new host cells is fraught with danger.  

Viruses mitigate against these risks by packaging their nucleic 

acid into particles protected by a membrane and/or protein shell. 

This packaging poses a thermodynamic dilemma for a virus: 

particles must be resilient enough to protect the genome from 

environmental and/or immunological insults but also appropri-

ately labile to ensure the contents are released when encountering 

suitable target cells. Thus, viruses are constructed as metastable 

molecular assemblages that can be unlocked during entry by 

speci�c molecular and/or cellular environmental cues, with 

minimal energetic input (Marsh and Helenius, 2006). Receptors 

are key to the unlocking process, either directly triggering the 

molecular changes that lead to fusion/penetration or by guiding 

virions to speci�c cellular sites where environmental cues trig-

ger fusion/penetration and subsequent infection. Thus, the un-

locking process is usually directly coupled to the mechanisms 

through which viral genomes are transferred across a limiting 

cellular membrane (usually the plasma membrane or endosome 

membrane), the principal barrier to infection.

In this review, we discuss how events at the cell surface deter-

mine viral entry pathways and, using several different examples, 

examine some of the strategies viruses use to overcome cellular bar-

riers to infection (Fig. 1). Receptor-mediated signaling will emerge 

throughout the review as an important component of virus entry 

that can operate at multiple stages, as will insights into the variations 

that viruses have developed on the principle themes for entry.

Virus receptors

Initial encounters between a virus and a host cell are mediated  

through viral surface components, either membrane glycopro-

teins or sites on a viral capsid (Marsh and Helenius, 2006), bind-

ing to glycolipid and/or glycoprotein attachment factors, such  

as heparan sulfate proteoglycans, on the target cell surface  

(de Haan et al., 2005; Vlasak et al., 2005). These �rst interactions,  

which may lack speci�city, are often electrostatic and serve pri-

marily to give a virus an initial catch-hold from which it can 

then recruit speci�c receptors that drive the reactions leading 

to entry. The receptors are cell surface molecules that provide 

functions essential for productive infection. In simple situations,  

receptors can ef�ciently target viruses for endocytosis (Fig. 1 A); 

alternatively, receptors may be used to activate speci�c signal-

ing pathways that facilitate entry, or they may directly drive 

fusion/penetration events at the surface of a target cell or within 

endocytic compartments by inducing conformational changes in 

key virus surface structures (Fig. 1). In other cases, the reasons 

underlying the use of speci�c receptors are more obscure, and a 

full appreciation will probably require better understanding of 

the mode of entry of the virus into the hosts, the architecture of 

target cells within different tissue environments, and the biol-

ogy of the virus within its hosts. The use of speci�c cell surface 

components with restricted expression patterns is frequently  

responsible for viral tropism, i.e., the ability of a virus to infect 

a limited set of target cells.

A number of the cell surface components exploited by 

viruses have now been identi�ed (Table I). Many viruses use 

The cell imposes multiple barriers to virus entry. However, 
viruses exploit fundamental cellular processes to gain  
entry to cells and deliver their genetic cargo. Virus entry 
pathways are largely defined by the interactions between 
virus particles and their receptors at the cell surface. 
These interactions determine the mechanisms of virus at-
tachment, uptake, intracellular trafficking, and, ultimately, 
penetration to the cytosol. Elucidating the complex inter-
play between viruses and their receptors is necessary for 
a full understanding of how these remarkable agents in-
vade their cellular hosts.
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fusion (Choe et al., 1996; Deng et al., 1996; Dragic et al., 

1996; Feng et al., 1996; Haim et al., 2011). Engagement of the 

coreceptor drives further Env structural rearrangements that 

culminate in fusion of the viral and host membranes (Fig. 2 B; 

Dragic et al., 1996).

Another intriguing example of a virus requiring multiple 

cell surface components for entry is hepatitis C virus (HCV). 

Aside from attachment factors that include heparan sulfate 

and L-SIGN (Barth et al., 2003; Gardner et al., 2003; Pöhlmann  

et al., 2003), the HCV envelope glycoprotein E2 interacts di-

rectly with two receptors: the tetraspanin CD81 that is thought 

to be involved in membrane microdomain architecture (Pileri 

et al., 1998) and SR-B1 that binds several lipoproteins, including 

high-density lipoprotein, low-density lipoprotein, and very low-

density lipoprotein (Scarselli et al., 2002). In addition to these 

key components, the minimal HCV entry complex requires the  

tight junction components claudin-1 and occludin. Thus, co-

expression of four proteins—CD81, SR-B1, claudin-1, and  

occludin—is required to confer permissivity for HCV entry 

(Fig. 2 C; Evans et al., 2007; Liu et al., 2009; Ploss et al., 2009; 

Dorner et al., 2011). There is limited evidence for a direct inter-

action between the HCV glycoproteins and claudin-1 or occlu-

din (Evans et al., 2007; Krieger et al., 2010), indicating that  

these molecules may act by regulating the activities of CD81  

and/or SR-B1 rather than binding viruses directly; indeed, 

heterodimers of claudin-1 and CD81 may be necessary for 

single molecular species as receptors, for example CD155 for  

poliovirus (Mendelsohn et al., 1989), the low-density lipo-

protein receptor (LDLR) for human rhinovirus 2 (Fig. 2 A; Hofer  

et al., 1994), and dendritic cell–speci�c intercellular adhesion 

molecule-3–grabbing nonintegrin (DC-SIGN) for the phlebo-

viruses (a subgroup of bunyaviruses; Lozach et al., 2011b). Alter-

natively, some viruses can use more than one molecular species 

as receptors, each with equivalent roles, for example, angiotensin-

converting enzyme (ACE) or liver-SIGN (L-SIGN) for SARS 

coronavirus (Li et al., 2003; Jeffers et al., 2004) and scaven-

ger receptor-B2 (SR-B2) or P-selectin glycoprotein ligand-1  

(PSGL-1) for enterovirus 71 (Table I; Nishimura et al., 2009; 

Yamayoshi et al., 2009). However, other viruses exhibit a 

more complex receptor dependency that involves engage-

ment with at least two distinct plasma membrane components, 

each of which is essential (Fig. 2). Human immunode�ciency 

viruses (HIVs) are the archetype for such a process. After 

adsorption to cell surface attachment factors, the HIV enve-

lope protein (Env, consisting of trimers of gp120/gp41 hetero-

dimers) binds to the primary receptor CD4 (Dalgleish et al., 

1984; Klatzmann et al., 1984). By relieving constraints that 

prevent Env from transitioning to thermodynamically more 

stable conformations, these interactions initiate conforma-

tional changes that facilitate strain-speci�c interactions of 

gp120 with the coreceptors CCR5 or CXCR4 and allow initial 

structural changes in gp41, the Env component that promotes 

Figure 1. Virus entry strategies. The cell imposes intrinsic barriers to virus entry including the plasma membrane, actin cortex, and limiting intracellular 
membranes. (A and B) Viruses have evolved various strategies to overcome these barriers, such as receptor-mediated endocytosis followed by pH-dependent/
independent fusion from endocytic compartments (A) or pH-independent fusion at the plasma membrane, coupled with receptor-mediated signaling and 
coordinated disassembly of the actin cortex (B). Enveloped viruses are shown; nonenveloped viruses use similar strategies, although the mechanisms of 
action are different. MVB, multivesicular body.
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Krummenacher, 2008; Burckhardt et al., 2011). Simply, the use of  

multiple receptors will increase binding avidity, but, of more 

consequence, the sequential engagement of distinct receptor moi-

eties allows the timing of key events in virus fusion/penetration 

to be tightly coordinated (López and Arias, 2004; Burckhardt  

et al., 2011). Although viruses have the potential to cluster ho-

mogenous or heterogenous receptors, we know relatively little 

of the stoichiometry of receptor engagement. How viruses as-

semble multimeric receptor complexes on the surfaces of cells 

and the impacts that variations in this process have on fusion/

penetration dynamics, sites of entry, and subsequent uncoating 

remain poorly understood. Lateral motion on the cell surface 

or along �lopodia has been observed for several viruses and 

may help viruses encounter necessary coreceptors in numbers 

suf�cient to generate productive entry events (Lehmann et al., 

2005; Burckhardt and Greber, 2009). Alternatively, it may bring 

viruses to positions of endocytosis or where fusion/penetration 

is more likely to lead to productive infection. High-resolution 

mapping of most cell surface receptors by EM, super-resolution 

light nanoscopy, and live-cell single-molecule tracking remains 

to be performed. In the case of virus receptors, mapping the 

infection (Harris et al., 2008, 2010). HCV requires clathrin-

mediated endocytosis and low endosomal pH for productive in-

fection (Blanchard et al., 2006; Meertens et al., 2006; Tscherne  

et al., 2006). That HCV uses such a complex array of cell surface 

components to achieve this goal suggests that receptor engage-

ment plays a more substantial role in virus entry than just guiding 

virions into clathrin-coated vesicles. Hints that this may be the 

case include the observation that HCV particles associate with 

host lipoproteins that bind both SR-B1 and/or the LDLR and that 

SR-B1 can facilitate the bidirectional transport of cholesterol 

from lipoproteins, raising the possibility that virion-associated 

lipoproteins can locally modify the lipid environment of a host 

cell membrane (Scarselli et al., 2002; Shimizu et al., 2011). 

In addition, HCV entry can be modulated by receptor tyrosine 

kinases (EGF receptor [EGFR] and EphA2), possibly through 

mechanisms that in�uence CD81 interaction with claudin-1 

(Lupberger et al., 2011).

In addition to HIV and HCV, other viruses including  

adenoviruses, rotaviruses, picornaviruses, and herpesviruses 

require multiple cell surface components (Table I; López 

and Arias, 2004; Coyne and Bergelson, 2006; Heldwein and  

Table I. Virus receptors used in this study

Virus Family Receptors Reference

Old World arenaviruses Arenaviridae -Dystroglycan Cao et al., 1998

New World arenaviruses Arenaviridae Transferrin receptor Radoshitzky et al., 2007

Norovirus Caliciviridae HBGA Huang et al., 2003; Lindesmith et al., 2003 

Japanese encephalitis virus Flaviviridae Hsp70 Das et al., 2009

Influenza A Orthomyxoviridae Sialic acid Matlin et al., 1981

Henipahvirus Paramyxoviridae Nephrin B2 Negrete et al., 2005

Bunyavirus Phleboviridae DC-SIGN Kaplan et al., 1996

Hepatitis A virus Picornaviridae TIM-1 Lozach et al., 2011b

Poliovirus Picornaviridae CD155 Mendelsohn et al., 1989

Rhinovirus (major group) Picornaviridae ICAM-1 Greve et al., 1989; Staunton et al., 1989

Rhinovirus (minor group) Picornaviridae LDLR Hofer et al., 1994

John Cunningham polyomavirus Polyomaviridae LSTc Neu et al., 2010

SV40 polyomavirus Polyomaviridae GM1 Tsai et al., 2003

Reovirus Reoviridae JAM Barton et al., 2001

Sindbis virus Togaviridae Laminin receptor Wang et al., 1992

SARS coronavirus Coronaviridae ACE 2 or L-SIGN Li et al., 2003; Jeffers et al., 2004

Herpes simplex virus 1/2 Herpesviridae Nectin-1/2 or HVEM Montgomery et al., 1996; Geraghty et al., 1998;  
Krummenacher et al., 1998

Measles virus Paramyxoviridae SLAM or Nectin-4 Tatsuo et al., 2000; Noyce et al., 2011

Enterovirus 71 Picornaviridae PSGL-1 or SR-B2 Nishimura et al., 2009; Yamayoshi et al., 2009

Human T cell leukemia virus 1 Retroviridae GLUT-1 or Neuropilin-1 Manel et al., 2003; Ghez et al., 2006

Adenovirus 2 Adenoviridae CAR and v integrins Wickham et al., 1993; Bergelson et al., 1997; Tomko et al., 1997

Ebola virus Filoviridae TIM-1 and NPC1 Carette et al., 2011; Côté et al., 2011; Kondratowicz et al., 2011

HCV Flaviviridae CD81 and SR-B1 
(claudin-1 and occludin)

Pileri et al., 1998; Scarselli et al., 2002;  
Evans et al., 2007; Ploss et al., 2009

Epstein–Barr virus Herpesviridae CD21 and MHC-II Fingeroth et al., 1984; Li et al., 1997

Coxsackievirus B Picornaviridae DAF and CAR (occludin) Bergelson et al., 1997; Martino et al., 1998; Coyne et al., 2007

Rotavirus Reoviridae Sialic acid and integrins Yolken et al., 1987; Coulson et al., 1997; Guerrero et al., 2000

HIV Retroviridae CD4 and CCR5 or CXCR4 Dalgleish et al., 1984; Klatzman et al., 1984; Choe et al., 1996; 
Deng et al., 1996; Dragic et al., 1996; Feng et al., 1996

Virus particles engage a variety of cell surface molecules to facilitate entry. Some virus particles use single-receptor species; others use alternative molecules, either of 
which is sufficient, whereas other viruses require a specific combination of receptors. Factors in parentheses may not directly interact with virus particles; however, they 
are necessary for virus entry. Examples from each category are given and illustrate the diversity of receptors. The majority of the viruses listed are human pathogens. 
ACE, angiotensin-converting enzyme; DAF, decay-accelerating factor; HBGA, histoblood group antigen; HVEM, herpesvirus entry mediator; JAM, junctional adhesion 
molecule; PSGL-1, P-selectin glycoprotein ligand-1; SLAM, signaling lymphocyte-activation molecule.
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exquisite example of how sequential receptor engagement and  

receptor-induced signaling are coupled to facilitate virion trans-

location and entry. Recent �ndings indicate that a related pico-

rnavirus, echovirus 11, also undergoes DAF-dependent transport 

to the tight junctions, although a junctional coreceptor has yet 

to be identi�ed (Sobo et al., 2011).

Like coxsackievirus B, hepatitis A virus is a fecal orally 

transmitted picornavirus; however, its principal site of replica-

tion is the liver, and it must therefore have developed mecha-

nisms to cross the gut epithelium. In vitro studies suggest that 

hepatitis A virus–speci�c IgA facilitates transcytosis of virus  

particles through polarized epithelial cells via the polymeric  

immunoglobulin receptor (Dotzauer et al., 2005). Critically, com-

plexed IgA can subsequently mediate hepatitis A virus entry to 

hepatocytes via asialoglycoprotein receptors (Dotzauer et al., 

2000). Thus, IgA acts as a bridging component for sequential 

receptor-mediated hepatitis A virus transit and infection. This 

process appears to be independent of the standard hepatitis A 

virus receptor T cell immunoglobulin and mucin domain 1 

(TIM-1; Kaplan et al., 1996).

In contrast, adenoviruses exploit both the activities of  

immune sentinel cells and receptor polarity to penetrate the respi-

ratory epithelium. Adenovirus type 2 uses CAR and 3/5 

integrins for productive entry (Wickham et al., 1993; Bergelson 

et al., 1997; Tomko et al., 1997). As with CAR, 3 and 5 

are located on the basolateral membrane of polarized respira-

tory epithelial cells, and intact epithelial monolayers are resis-

tant to adenovirus type 2 infection from the apical side. Uptake 

of adenovirus type 2 into macrophages associated with the api-

cal surface of the epithelium induces the secretion of cytokines, 

in particular, CXCL8 (IL-8). In response to CXCL8, receptors 

expressed on respiratory epithelial cells (CXCR1/2) induce re-

distribution of both 3 and CAR to the apical surface, where 

they mediate virus entry (Lütschg et al., 2011). Not only do 

these examples illustrate the sophisticated ways in which some 

viruses sequentially exploit distinct cell surface moieties and 

receptor-signaling activities to successfully mediate infection 

or overcome the barrier function of epithelia, but they also dem-

onstrate how analyzing virus entry in experimental systems that 

normal distributions of receptor components and how these 

distributions are modulated by physiological or viral ligands is 

likely to provide key insights to how receptor engagement facili-

tates virus entry and may suggest novel strategies for abrogating 

these events.

Exploiting receptors to cross  

epithelial barriers

Many mammalian viruses initially gain access to their hosts 

by crossing epithelial barriers in the respiratory, digestive, or 

reproductive tracts, either with or without infection of the epi-

thelial cells themselves. Although these epithelial tissues act as 

barriers between body cavities and underlying tissues, viruses 

have become adept at �nding ways across. Some viruses exploit 

cells of the immune system, such as macrophages and dendritic 

cells, which have innate capacities to cross or extend processes 

across epithelia, as “Trojan horses” to penetrate the epithelial 

barrier (Shannon-Lowe et al., 2006; Stamataki et al., 2009; 

Lemon et al., 2011). Others have developed remarkable capaci-

ties to exploit epithelial cell surface proteins. The entry of cox-

sackievirus B provides a striking example. This virus infects its  

human hosts through the epithelial lining of the gut. For infec-

tion of polarized epithelial (Caco-2) cells in culture, coxsackie-

virus B requires the coxsackievirus and adenovirus receptor 

(CAR), which is located on the basolateral surface and within 

tight junctions and is inaccessible to apically delivered viruses 

(Cohen et al., 2001). The virions initially bind to an apically 

expressed glycosylphosphatidylinositol-linked protein, CD55/ 

decay-accelerating factor (DAF), the clustering of which acti-

vates Abl kinase and drives Rac-dependent actin reorganization 

that in turn leads to translocation of virus particles to tight junc-

tions where they engage CAR and undergo endocytosis (Coyne 

and Bergelson, 2006). Binding to CD55 also activates the non-

receptor tyrosine kinase Fyn, which phosphorylates caveolin, 

thus facilitating endocytosis (Coyne and Bergelson, 2006). As 

CD55 cannot link directly to the actin cytoskeleton, it is unclear 

how actin-dependent translocation of virus–receptor complexes 

occurs, nor is it clear how the virus transits tight junctions and 

undergoes endocytosis. Nevertheless, this system provides an 

Figure 2. Virus receptors. Virus entry is initiated by specific interactions between virus particles and receptors. (A) Human rhinovirus 2 undergoes receptor-
mediated endocytosis after interaction with LDLR. (B) CD4 is the primary receptor for HIVs, but virus penetration requires further interactions with chemo-
kine receptor CCR5 or CXCR4. Initial observations indicated that coreceptor engagement triggered fusion directly at the plasma membrane; however, 
recent studies suggest that fusion can also occur after endocytosis (Miyauchi et al., 2009). Although these mechanisms appear mutually exclusive, it is 
possible that both may operate, and additional studies are required to establish the relevant pathway for key target cells in vivo. (C) HCV entry requires 
at least four host factors. The virus particle is thought to directly interact with SR-B1 and CD81, whereas the tight junction components claudin-1 and 
occludin are indirectly involved. Data suggest that CD81/claudin-1 heteromers are necessary for infection. It is currently unknown how HCV is directed 
to clathrin-coated vesicles.
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et al., 2003). Clathrin-mediated endocytosis is also required for 

DC-SIGN–mediated uptake of phleboviruses, with endocytic 

sorting signals in the N-terminal cytoplasmic domain of DC-

SIGN being essential for endocytosis and infection (Lozach  

et al., 2011b).

Although highly effective in many cases, the strat-

egy of passive receptor-mediated uptake may limit the rate 

of entry, leaving a virus particle exposed on the cell surface. 

Thus, some viruses have developed the means to trigger their  

uptake into endocytic vesicles. In�uenza A virus, for example, 

is internalized by both clathrin-mediated endocytosis and  

clathrin/caveolin-independent mechanisms (Rust et al., 2004). 

mimic normal tissues can provide new insights to infection 

mechanisms. Signi�cantly, both coxsackievirus B and adeno-

virus type 2 entry require the activation of speci�c kinases that 

are potential targets for pharmacological intervention.

Receptor-mediated endocytosis

Receptor engagement initiates events that enable viruses to 

transit the barrier imposed by the plasma membrane and associ-

ated structures. In most cells, the cortex (an elaborate network 

of actin �bers, actin-binding proteins, membrane-linker pro-

teins [e.g., ERM proteins], motor proteins, and other compo-

nents tens of nanometers thick) supports and modulates the 

physical and dynamic properties of the plasma membrane (Taylor 

et al., 2011). From the virus perspective, little attention has been 

paid to the actin cortex, in part because of the paucity of tools to 

study the structure but also because of the extent to which the 

cortex varies in different cell types, particularly in tissue culture 

lines. The cortex has the potential to prevent or delay the transit 

of large molecular assemblies from the cytoplasm toward the 

plasma membrane—for example, it excludes ribosomes from 

regions adjacent to the plasma membrane—and presumably sim-

ilarly restricts incoming virus particles (Marsh and Bron, 1997). 

In the few examples in which it has been studied, virus-induced 

receptor-mediated signaling can cause local actin perturbation 

to allow viruses that undergo penetration at the cell surface to 

transit the cortex (Fig. 1 B; Wang et al., 2005; Yoder et al., 

2008; Taylor et al., 2011). For HIV, Env engagement with the 

coreceptor CXCR4 on resting CD4+ve T cells leads to Gi sig-

naling and subsequent activation of the actin-depolymerizing 

protein co�lin to induce local cortex reorganization that facili-

tates infection (Yoder et al., 2008). Cross-linking EGFR and 

v3 integrin by human cytomegalovirus at the cell surface re-

sults in the cooperative activation of phosphoinositide 3-kinase 

(PI3K) and Src, culminating in actin reorganization through 

RhoA and co�lin, events that correlate with translocation of 

human cytomegalovirus capsids to the nucleus and infection 

(Wang et al., 2005).

Endocytosis provides a mechanism through which viruses 

can pass through the cortex by exploiting intrinsic properties of 

endocytic vesicles to migrate (Fig. 1 A). The requirement for 

exposure to low pH, lysosomal enzymes, or even the reducing 

environment of the ER (see below) by many viruses ensures 

that they are captured by endocytic vesicles before undergoing  

the fusion/penetration reactions that allow them to transit the 

membrane barrier (Fig. 3). Recent system-based approaches 

have identi�ed several endocytic mechanisms, either constitu-

tively active or induced, that viruses can exploit (Mercer et al., 

2010b). One obvious feature of this endocytic involvement 

is that virus size tends to in�uence the mechanism of uptake. 

Thus, small viruses (approximately <140 nm in diameter) tend 

to use small endocytic vesicles. The best characterized of these 

is the clathrin-mediated pathway that is essential for produc-

tive infection by many viruses. Initially demonstrated for the 

alphavirus Semliki Forest virus (Helenius et al., 1980; Marsh 

and Helenius, 1980), a more recent study shows, for example, 

that human rhinovirus 2 is internalized via the constitutive 

clathrin-mediated endocytosis of its receptor LDLR (Snyers  

Figure 3. Sites of virus particle fusion/penetration. Virus particles must 
transport genetic material across limiting membranes; this can be achieved 
at various locations within the cell. (A) Enveloped virus particles can fuse 
directly at the plasma membrane at neutral pH after interaction with cell 
surface receptors. (B and C) Alternatively, internalized virus particles can 
escape from the endosomal network. This is often dependent on endosome 
acidification and occurs at either mild pH (6.5–6) from the early endosome 
(B) or low pH (5.5–4) from late endosome and/or lysosome (C). In addi-
tion to the acidic environment, other molecular cues may be required to 
trigger fusion/penetration, for example, membrane lipid content (Semliki 
Forest virus and Dengue virus) or proteolytic cleavage (reovirus and SARS 
coronavirus; Skehel et al., 1982; Schlegel and Wade, 1984; Mothes 
et al., 2000; Brabec et al., 2003). (D) Polyomaviruses such as SV40  
undergo atypical transport through the endosomal pathway to the ER, 
where partially disassembled virus particles are shuttled to the cytosol by 
the retrotranslocation machinery.
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Mimiviruses are the largest known viruses. With �brils extending 

out to a diameter of 750 nm from an icosohedral capsid, these 

viruses are similar in size to small bacteria. Although typically 

found in amoebal hosts, in vitro mimivirus can infect profes-

sional phagocytes, such as macrophages, via PI3K and dynamin-II– 

dependent phagocytosis (Ghigo et al., 2008).

In contrast, macropinocytosis, which usually mediates the 

uptake of large volumes of extracellular �uid and bulky cargo 

such as apoptotic bodies (Mercer and Helenius, 2008; Mercer 

et al., 2010b), involves actin remodeling mediated by Rac-1 

GTPase and its effector p21-activated kinase 1 (Pak-1), lead-

ing to the extension of membrane ruf�es and blebs from the 

cell surface. These large membrane protrusions can fold/drop 

back on themselves, enclosing extracellular material (Swanson, 

2008). Macropinocytosis can occur constitutively in profes-

sional phagocytes such as dendritic cells but can be induced in 

other cell types by activation of tyrosine kinases such as EGFR 

(Swanson, 2008). Kaposi’s sarcoma-associated herpesvirus,  

adenovirus (2 and 3), echovirus 1, Ebola virus, and Vaccinia,  

the prototype poxvirus, are internalized via macropinocytosis  

(Amstutz et al., 2008; Liberali et al., 2008; Mercer and Helenius,  

2008; Raghu et al., 2009; Mercer et al., 2010a; Nanbo et al., 

2010; Saeed et al., 2010; Valiya Veettil et al., 2010; Schmidt 

et al., 2011). Poxviruses have the unusual characteristic of 

producing two forms of infectious particle. Mature virions are 

brick-shaped particles that form in the cytoplasm of infected 

cells and possess a single-bilayer membrane. These particles are 

released when infected cells lyse. A second form, the so-called 

extracellular virus, is a mature virion that undergoes further  

envelopment by wrapping in membrane cisternae derived from 

the TGN or endosomes. These particles are secreted before cell 

lysis and have two membranes (Roberts and Smith, 2008). Dur-

ing entry, mature virus particles attach to preexisting �lopodia 

and migrate toward the cell body, where they induce strain- 

speci�c atypical macropinocytosis via membrane blebbing or �lo-

podial extension (Mercer et al., 2010a). The cellular receptors 

for Vaccinia virus are unknown, and it remains unclear how 

these processes are initiated. However, attachment of mature 

virions activates EGFR, Rho-GTPases, and actin remodeling 

(Mercer and Helenius, 2008; Mercer et al., 2010a). Phospha-

tidylserine associated with the mature virion membrane has 

been proposed to contribute to Vaccinia virus–induced macro-

pinocytosis in a process mimicking the uptake of apoptotic cells 

(Mercer and Helenius, 2008), though another study disputes this 

(Laliberte and Moss, 2009). Recent work suggests that entry of 

the extracellular virion also involves macropinocytosis, though 

phosphatidylserine is not involved, and entry is not affected by 

exogenous addition of the phosphatidylserine-binding protein 

annexin 5 (Schmidt et al., 2011).

The �lamentous particles of Ebola virus have a diameter 

of only 80–100 nm but range from 1–2 µm in length. It is not 

surprising that these viruses also induce macropinocytosis 

through Rac-1/Pak-1–dependent membrane ruf�ing. Although 

the role of the putative Ebola virus receptor TIM-1 in macro-

pinocytosis is unclear, Ebola virus uptake is promoted by the 

receptor tyrosine kinase Axl. The virus particle is not thought to 

directly engage Axl; however, Gas-6, an Axl ligand, has been 

For clathrin-mediated endocytosis, at least, in�uenza A virus 

attachment to sialic acid moieties on membrane glycoproteins 

and ganglioside initiates de novo clathrin-coated pit formation 

under surface-bound virions in a process that appears to involve 

ubiquitin-dependent recruitment of the clathrin adaptor protein 

Epsin-1 (Rust et al., 2004; Chen and Zhuang, 2008). An indepen-

dent study has demonstrated that activation of PI3K, but not Akt, 

is required for in�uenza A virus entry, and inhibition of PI3K 

prevents virus uptake into endosomes (Ehrhardt et al., 2006). 

It is proposed that in�uenza A virus–mediated clustering of  

sialylated receptor tyrosine kinases, such as EGFR or c-Met, 

activates tyrosine kinase and PI3K signaling (Eierhoff et al., 

2010). However, it remains unclear whether this signal propa-

gation is linked to virus internalization by a clathrin-dependent 

or -independent route. Virus-induced receptor clustering also 

seems to be important for signaling-dependent DC-SIGN– 

mediated infection of phleboviruses (Lozach et al., 2011b).

Other endocytic mechanisms used by viruses have been 

identi�ed (Mercer et al., 2010b). Less is known about the mo-

lecular mechanisms and receptors involved or whether these 

pathways are constitutively active or driven by receptor engage-

ment. One such example is the pathway used by the polyoma-

virus SV40. This nonenveloped virus measures only 40 nm in 

diameter and exhibits a penetration mechanism that is currently 

unique to some polyomaviruses. SV40 particles bind directly to 

the cell surface via the sialic acid moieties of GM1 ganglio-

sides, for which there are 360 binding sites on the virion surface 

(Stehle et al., 1994). Aggregation of GM1 by multivalent parti-

cles results in lipid phase separation and the induction of mem-

brane deformation (Ewers et al., 2010). These two properties 

drive SV40 particles into tightly �tting membrane tubules that 

extend into the cell interior. Membrane tubulation is dependent 

on the long acyl chains of GM1 but is independent of cellular 

energy (Ewers et al., 2010). Subsequent scission of these invag-

inations requires tyrosine kinase activity and actin rearrange-

ments (Pelkmans et al., 2002; Ewers et al., 2010; Römer et al., 

2010). It has been suggested that caveolae coat proteins and  

dynamin are also recruited (Pelkmans et al., 2001, 2002); how-

ever, other studies indicate that Cav-1 is not essential for SV40 

infection (Damm et al., 2005; Ewers et al., 2010). Interestingly, 

membrane deformation by SV40 has parallels with the endo-

cytosis of shiga and cholera toxins (Römer et al., 2007, 2010).  

Although there is no sequence homology, similar pentameric 

ganglioside binding sites on SV40 and the two toxins, in con-

junction with the rigid structure of the long-chained glycosphin-

golipids, appear to induce asymmetric compressive stress that 

promotes local membrane tubulation (Neu et al., 2010). Some 

related polyomaviruses also induce tubulation and may share a 

common route of internalization (Ewers et al., 2010).

Physically larger virus particles, including poxviruses,  

�loviruses, herpesviruses, and the recently described mimiviruses 

(La Scola et al., 2003), cannot be accommodated by small 

endocytic vesicles and instead induce the formation of larger 

structures such as phagosomes or macropinosomes. Phagocyto-

sis is receptor driven and involves the actin-dependent forma-

tion of vesicles, the membrane of which is closely apposed to 

the surface of the internalized particle (Mercer et al., 2010b). 
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and lysosomes (involving decreasing luminal pH, increasing 

levels of active hydrolytic enzymes, and alteration in lipid com-

position) correlates with movement of endocytic organelles 

toward the nucleus by microtubule-mediated retrograde translo-

cation. The need for some viruses to be delivered to more peri-

nuclear environments may be particularly important in some 

cell targets in vivo where cell organization is more elaborate 

and key for cell function. Neurons are an extreme example in 

which viruses may be taken into the cell by endocytosis at a 

peripheral synapse such as a neuromuscular junction but require 

transport, in some cases many tens of centimeters to the cell 

body and nucleus. In such cases, viruses can exploit endosomal 

transport along axons and use the lower pH of late endosomes 

(approximately pH 5.0) or exposure to acid hydrolases to delay  

penetration until endosomal or lysosomal delivery to a peri-

nuclear location (Fig. 3 C; Lozach et al., 2011a).

Additional molecular cues for fusion/penetration may 

be provided by the lipid composition of endosomal mem-

branes. The fusion of tick-borne encephalitis virus requires 

cholesterol in the target membrane (Stiasny et al., 2003), and 

fusion of Semliki Forest virus is dependent on both choles-

terol and sphingolipids (Kielian and Helenius, 1984; Nieva 

et al., 1994), both of which are available in the plasma mem-

brane as well as endosomal membranes. Dengue virus tran-

sits through the early endosomes to fuse with late endocytic 

organelles (van der Schaar et al., 2008). In addition to low 

pH, Dengue virus fusion requires the target membrane to con-

tain anionic lipids such as lysobisphosphatidic acid, which 

is predominantly found within the lysosome (Brotherus and  

Renkonen, 1977; Zaitseva et al., 2010). Other viruses, includ-

ing SARS coronavirus and orthoreoviruses, also exhibit atypi-

cal pH-dependent entry; in these cases, proteolytic cleavage 

of the viral envelope or surface proteins by acid-dependent 

cellular proteases (cathepsins L and B) triggers the structural 

changes required for fusion (Figs. 3 C and 4; Ebert et al., 2002; 

Chandran et al., 2005; Simmons et al., 2005). Ebola virus GP1 

glycoprotein also undergoes cleavage by cathepsins to reveal a 

putative binding domain for the late endosomal/lysosomal cho-

lesterol transporter Niemann–Pick C1 (NPC1; Chandran et al., 

2005; Schornberg et al., 2006; Côté et al., 2011). Depletion of  

NPC1 from target cells prevents Ebola virus glycoprotein- 

dependent fusion, suggesting that NPC1 acts as a postendocytic 

intracellular receptor necessary for virus penetration (Carette 

et al., 2011). These and other recent �ndings have provided in-

creasing clarity on Ebola virus infection, suggesting a putative 

entry pathway for this infamous virus (Fig. 4).

However, fusion/penetration is not restricted to endo-

cytic organelles. After their internalization, several polyoma-

viruses take an intracellular retrograde vesicular pathway to 

the ER via endosomes before penetration (Kartenbeck et al., 

1989). In the ER, these particles undergo partial uncoating 

mediated by protein-folding factors, including ERp57 and 

protein disulfide isomerase, and retrotranslocation to the  

cytosol by the machinery that normally mediates retrograde 

transport of misfolded ER proteins for cytosolic degradation 

(Fig. 3 D; Lilley et al., 2006; Schelhaas et al., 2007; Jiang  

et al., 2009).

shown to play a role in the entry of other viruses and may asso-

ciate with Ebola virus particles to act as a bridge for indirect  

interaction with Axl (Shimojima et al., 2006; Nanbo et al., 

2010; Saeed et al., 2010; Brindley et al., 2011; Hunt et al., 

2011; Kondratowicz et al., 2011; Morizono et al., 2011).

Although it is clear that many viruses—in particular, 

pH-dependent viruses—have an absolute dependence on endo-

cytosis for productive infection, some viruses may exhibit plas-

ticity in their mechanism of entry. For example, a study has 

demonstrated entry by direct fusion at the cell surface as well 

as by fusion after endocytosis for herpesviruses (Heldwein and 

Krummenacher, 2008). For HIV, pH-independent fusion, the 

ability of infected cells to form syncytia, and images of puta-

tive fusion events at the cell surface have led to the idea that 

entry occurs by direct fusion at the plasma membrane (Stein  

et al., 1987). However, work with inhibitors of endocytosis and 

direct single-particle tracking have recently provided evidence 

that fusion and infection occur after endocytic uptake (Daecke 

et al., 2005; Miyauchi et al., 2009; von Kleist et al., 2011). 

Moreover, HIV infection of macrophages has been suggested 

to require an atypical form of macropinocytosis (Maréchal et al., 

2001; Carter et al., 2011). Thus, factors that in�uence the kinet-

ics of fusion and internalization, such as receptor density and 

mobility, may determine whether pH-independent viruses pen-

etrate directly at the cell surface or after endocytosis. The abil-

ity to use different mechanisms may have distinct advantages 

for viruses, providing access to a broader range of cell types or 

rendering them less susceptible to situations in which a speci�c 

pathway is absent or blocked.

The great escape

As with virtually all endocytic cargoes, regardless of the mech-

anism of uptake, most viruses internalized by endocytosis are 

delivered to endosomes. Many of these will use endosomal 

environmental cues, usually low pH, to trigger the membrane  

fusion/penetration reactions that deliver the viral genetic mate-

rial to the cytoplasm (Fig. 3; details of the fusion and penetration 

mechanisms used by different viruses will not be considered 

here; Kielian and Rey, 2006; Moyer and Nemerow, 2011).  

Fusion or penetration from endosomes offers several potential 

advantages to a virus: it ensures that there is no cortical actin 

barrier to contend with, limits the display of viral components 

on the surface of the cell where they may be targets for the 

immune system, and, in the case of viruses that cause mem-

brane lysis, such as adenoviruses, limits membrane damage to 

a single endosome.

For an invading virus, the endosomal lumen is a dynamic 

labyrinth of vesicles and tubules. The sorting function of the 

early and recycling endosomes can potentially return virus– 

receptor complexes to the cell surface. Alternatively, matura-

tion to late endosomes and lysosomes renders the endosomal  

lumen a potentially hazardous environment (Dikic, 2006). Thus, 

many viruses fuse/penetrate at mildly acid pH (approximately 

pH 6.0) in early endosomes to avoid these fates (Fig. 3 B), 

whereas others exploit the changing environment within endo-

somes to precisely regulate the timing or cellular location of  

fusion/penetration. Endosomal maturation to late endosomes 
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so-called actin comets to propel virus particles during viral 

egress is well documented for Vaccinia virus (Taylor et al., 

2011). However, the intracellular transport strategy of insect 

baculoviruses is unique in their capacity to induce comet forma-

tion during entry. Upon reaching the cytoplasm, the baculovirus 

Autographa californica P78/83 capsid protein acts as a nucle-

ation site for Arp2/3-dependent actin polymerization that drives 

the virion through the cell interior. As capsids reach the nucleus, 

they are held against the nuclear membrane by continuing actin 

polymerization, promoting their ultimate invasion through nu-

clear pores (Ohkawa et al., 2010).

Conclusions

Cells raise multiple barriers to prevent virus infection. These are 

either general physical barriers, such as the plasma membrane or 

actin cortex, that de�ne the cell or other restriction factors, often 

induced by interferons, that can be mobilized to limit viral repli-

cation. Although most viruses use broadly similar tactics to 

breach these barriers, many have developed unique approaches 

that ensure their delivery to optimal cellular sites for replication. 

The details of these speci�c mechanisms are starting to emerge. 

New technologies—in particular, in imaging—will provide key 

mechanistic insights into how virus receptors are organized, how 

they are commandeered by viruses to form functional entry com-

plexes, and how they engage the machinery of the cell to mediate 

infection. Such information will be essential in the development 

of targeted and speci�c inhibitors of virus entry and infection.
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