

University of Connecticut OpenCommons@UConn

Plant Science Articles

Department of Plant Science

April 2005

The Cell Density-Dependent Expression of Stewartan Exopolysaccharide in Pantoea stewartii ssp. stewartii is a Function of EsaR-Mediated Repression of the rcsA Gene.

Timothy D. Minogue University of Connecticut, Storrs CT

Aurelien L. Carlier University of Connecticut, Storrs CT

Maria D. Koutsoudis University of Connectictut, Storrs CT

Susanne B. von Bodman University of Connecticut, susanne.vonbodman@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/plsc_articles

Recommended Citation

Minogue, Timothy D.; Carlier, Aurelien L.; Koutsoudis, Maria D.; and von Bodman, Susanne B., "The Cell Density-Dependent Expression of Stewartan Exopolysaccharide in Pantoea stewartii ssp. stewartii is a Function of EsaR-Mediated Repression of the rcsA Gene." (2005). *Plant Science Articles*. 17.

https://opencommons.uconn.edu/plsc_articles/17

The cell density-dependent expression of stewartan exopolysaccharide in *Pantoea stewartii* ssp. *stewartii* is a function of EsaR-mediated repression of the *rcsA* gene

Timothy D. Minogue,^{1†} Aurelien L. Carlier,^{1†} Maria D. Koutsoudis² and Susanne B. von Bodman^{1,2*} ¹Departments of Plant Science and ²Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA.

Summary

The LuxR-type quorum-sensing transcription factor EsaR functions as a repressor of exopolysaccharide (EPS) synthesis in the phytopathogenic bacterium Pantoea stewartii ssp. stewartii. The cell densitydependent expression of EPS is critical for Stewart's wilt disease development. Strains deficient in the synthesis of a diffusible acyl-homoserine lactone inducer remain repressed for EPS synthesis and are consequently avirulent. In contrast, disruption of the esaR gene leads to hypermucoidy and attenuated disease development. Ligand-free EsaR functions as a negative autoregulator of the esaR gene and responds to exogenous acyl-homoserine lactone for derepression. The focus of this study was to define the mechanism by which EsaR governs the expression of the cps locus, which encodes functions required for stewartan EPS synthesis and membrane translocation. Genetic and biochemical studies show that EsaR directly represses the transcription of the rcsA gene. RcsA encodes an essential coactivator for RcsA/ RcsB-mediated transcriptional activation of cps genes. In vitro assays identify an EsaR DNA binding site within the rcsA promoter that is reasonably well conserved with the previously described esaR box. We also describe that RcsA positively controls its own expression. Interestingly, promoter proximal genes within the cps cluster are significantly more acyl-homoserine lactone responsive than genes located towards the middle or 3' end of the gene cluster. We will discuss a possible role of EsaR-mediated quorum sensing in the differential expression of the cps operon.

Introduction

Bacterial populations communicate and gauge their own population densities through production and perception of self-produced membrane diffusible or secreted autoinducer (AI) molecules in a process known as quorum sensing (QS) (Kaplan and Greenberg, 1985; Fuqua et al., 1996; Pearson et al., 1999). As a result, bacterial communities can co-ordinate and adjust the expression of specialized target genes in response to external AI concentrations. The paradigm for intraspecies-specific QS in Gram-negative bacteria is the LuxI/LuxR regulatory system that controls bioluminescence in the marine bacterium Vibrio fischeri (reviewed in Fuqua et al., 1994; 2001; Miller and Bassler, 2001). Luxl is a N-acylhomoserine lactone (AHL) synthase. LuxR is an AHLdependent transcriptional activator with affinity for a 20 base pair (bp) palindromic sequence, termed the *lux* box (Engebrecht and Silverman, 1987; Stevens and Greenberg, 1997). In contrast, intraspecies-specific QS in Grampositive bacteria typically utilizes secreted oligopeptide Als and cognate two-component transduction systems (Dunny and Leonard, 1997; Lazazzera et al., 1997; Kleerebezem and Quadri, 2001; Sturme et al., 2002). Both bacterial groups commonly also express a second type of QS system characterized by a LuxS signal synthase for production of furanone-based AI-2 signals and a LuxP/ LuxQ two-component signal transduction system (Miller and Bassler, 2001; Chen et al., 2002; Henke and Bassler, 2004). AI-2 QS systems are thought to play a role in interspecies communication among mixed, natural bacterial communities (Federle and Bassler, 2003). The broad spectrum of physiological processes governed by various QS regulatory systems underscores their biological significance in supporting bacterial colonization of diverse niches including animal and plant hosts (Davies et al., 1998; Williams et al., 2000; Withers et al., 2001).

Pantoea stewartii ssp. stewartii (P. stewartii) is the aetiological agent of Stewart's wilt disease in maize. The bacterium colonizes the xylem of the plant host and produces large amounts of stewartan exopolysaccharide (EPS), a major factor in the cause of Stewart's vascular wilt (Leigh and Coplin, 1992). Mutants deficient in EPS synthesis are avirulent. Stewartan EPS is an acidic, high molecular weight polymer of heptameric oligosaccharide

Accepted 13 December, 2004. *For correspondence. E-mail susanne.vonbodman@uconn.edu; Tel. (+1) 860 486 4408; Fax (+1) 860 486 0534. [†]These authors contributed equally to this work.

repeat units that are composed of glucose, galactose, and glucuronic acid in a 3:3:1 proportion (Nimtz et al., 1996). The synthesis and translocation of EPS is encoded by a ~18 kilobase (kb), 14 gene cps/galF/galE DNA region, which is linked to the rfb/his chromosomal genetic locus analogous to other group I cps gene systems including the colanic acid biosynthetic operon in Escherichia coli (E. coli) (Coplin et al., 1992; Leigh and Coplin, 1992). The nomenclature of individual cps genes has been changed to conform to the proposed wce designation according to Reeves et al. (1996) (Fig. 1). The genetic conservation of these systems has allowed the putative assignment of cps-encoded functions in P. stewartii (Bernhard et al., 1993; Whitfield and Roberts, 1999; Nesper et al., 2003). Stewartan EPS is classified as a group 1 polysaccharide, in part, because polymerization initiation is undecaprenollipid carrier dependent, and the cps gene system is regulated by an RcsC/YojN/RcsB/A multicomponent phosphorelay signal transduction system (Gottesman and Stout, 1991; Kelm et al., 1997; Whitfield and Roberts, 1999; Takeda et al., 2001). RcsC is a transmembrane sensor kinase that responds to an unknown signal, possibly desiccation, changes in osmolarity and/or other membrane perturbations (Parker *et al.*, 1992; Ophir and Gutnick, 1994; Sledjeski and Gottesman, 1996). YojN is an inner membrane protein that is thought to shuttle phosphoryl groups from the RcsC sensor kinase to the RcsB regulator (Takeda *et al.*, 2001; Rogov *et al.*, 2004). RcsB forms an activation complex with RcsA for the cooperative activation of promoters containing an RcsAB-specific binding sequence (Wehland *et al.*, 1999). The expression of the *E. coli* RcsA coactivator is negatively regulated by H-NS, a transcriptional silencer, and positively by *DsrA*, a small RNA molecule that acts as an antisilencer (Sledjeski and Gottesman, 1995). Also, the RcsA protein is highly unstable in presence of a functional Lon protease (Stout *et al.*, 1991).

Several previous studies confirmed that EPS synthesis in *P. stewartii* is Rcs-dependent (Torres-Cabassa *et al.*, 1987; Bernhard *et al.*, 1990; Wehland *et al.*, 1999). However, in *P. stewartii*, QS regulation involving the Esal signal synthase and AHL-responsive EsaR transcription factor is dominant to RcsAB-mediated activation of *cps* (Beck von Bodman and Farrand, 1995). Disruption of the *esal* gene blocks the synthesis of AHL and EPS even in presence of a functional Rcs system. In contrast, a mutation in the

cps gene cluster

Class I:

esaR gene, or a double mutation in *esal* and *esaR*, leads to maximal synthesis of EPS (von Bodman *et al.*, 1998). These findings suggested that EsaR-mediated QS regulation functions by gene repression in a mechanism fundamentally different from the paradigm QS model of AHL-dependent gene activation (Beck von Bodman and Farrand, 1995).

Studies related to the autoregulatory role of EsaR provided experimental proof for a QS repressor mechanism. The promoter of the esaR gene features a well-conserved lux box-like palindrome, the esaR box, which spans the predicted -10 region of a σ^{70} promoter consensus sequence (Beck von Bodman and Farrand, 1995). Genetic and biochemical evaluation of EsaR function at the esaR promoter differentiates EsaR from the LuxR paradigm in three fundamental aspects. First, EsaR dimerizes and becomes DNA binding competent in absence of the cognate AHL signal (Qin et al., 2000). Second, EsaR exhibits reduced affinity for the esaR box DNA target in presence of AHL ligand. Third, EsaR represses an esaR reporter gene fusion, and exogenous addition of AHL promotes dose-dependent derepression (von Bodman et al., 1998; Qin et al., 2000; Minogue et al., 2002).

This study focused on defining the mechanism by which EsaR governs EPS synthesis by gene repression. We utilized an unbiased random transposon mutagenesis approach to consider all potential EsaR regulatory scenarios. This approach yielded two classes of transposon insertion mutations, one that localized to genes within the *cps* biosynthetic locus, and the other to the *rcsA* regulatory gene. Genetic experiments and DNA binding studies detailed here allow us to conclude that EsaR functions as a transcriptional repressor of the *rcsA* gene by binding to an imperfect palindromic DNA sequence located in the *rcsA* promoter. We also show that RcsA is positively autoregulated and that maximal expression of the *rcsA* gene requires AHL inducing conditions.

Results

Insertional mutagenesis of ESAIR

We reported previously that EsaR, the QS regulator of *P. stewartii*, governs the autoregulation of its own gene, *esaR*, and the cell density-dependent synthesis of EPS by transcriptional repression and AHL-dependent derepression (von Bodman *et al.*, 1998; Minogue *et al.*, 2002). These studies did not resolve whether repression of EPS synthesis was by direct EsaR control of the *cps* gene cluster, by indirect control through the Rcs phosphorelay system or by other potential intermediary or alternate regulatory pathways. None of the *cps* and *rcs* promoters revealed obvious conserved *esaR* box-like DNA

sequences, even though EsaR genetically controlled different *rcsA* and *cps* reporter gene fusions. We therefore mutagenized the *esaF*, *esaR*⁻ double mutant, hypermucoid ES Δ IR strain with the Tn*5gfp-km* transposon (Tang *et al.*, 1999) to locate EsaR controlled genes with a role in EPS synthesis. A screen of approximately 40 000 kanamycin resistant transconjugants yielded nearly 300 EPS deficient mutants that actively expressed the transposonencoded promoterless green fluorescent protein (GFP) gene. Of these, 11 mutants showed a significant reduction in GFP fluorescence after coexpression of a functional *esaR* gene from plasmid pSVB60. These 11 EPS deficient, GFP positive, EsaR responsive mutants were selected for further study.

EPS deficient strains carry insertions primarily in the cps locus and the rcsA gene

Genomic DNA, separately isolated from the 11 mutant strains, was subcloned into pBluescript II SK⁺ and expressed in E. coli DH10B. DNA isolated from kanamycin resistant, GFP positive transformants was sequenced with a set of transposon-specific primers (Table 1) to determine the flanking sequences of each insertion. NCBI BLAST searches revealed two classes of mutants designated class I and II. Class I mutants localized to the cps gene cluster, while class II mutants carried allelic insertions in the rcsA gene (Fig. 1). All of the class I mutants were readily complemented with the pES2144 plasmid that carries the entire cps gene system plus galF and galE. All of our class II mutants were complemented with plasmid pES4507 that carries a wild type copy of the rcsA gene. These data are consistent with our original model that EsaR governs the negative control of cps genes directly and/or indirectly through control of rcsA.

Relative expression of rcsA and cps genes under AHL-limiting and AHL-inducing conditions

The location of the transposon insertions (Fig. 1) suggested that QS represses EPS synthesis through direct interaction with the *rcsA* promoter, and potentially, with select promoters of the *cps* gene system. If the expression of the *cps* genes depends strictly on RcsA, then the transcript levels of genes within the *cps* locus should increase in parallel with *rcsA* transcription in response to *N*-(3oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) induction. Real time reverse transcription polymerase chain reaction (RT-PCR) of cDNAs generated from total mRNA isolated separately from 3-oxo-C6-HSL induced and uninduced strain ESN51 (*esal::kan, esaR*⁺) allowed us to measure the relative transcript induction levels of the *rcsA, rcsB* regulatory genes, and the *cps*-encoded structural genes *wceG, wza, wceL* and *galE* against a 16S rRNA Table 1. Oligonucleotides and primers.

Primer	Sequence	Introduced restriction site	Used for
PrcsA5	5'-ccataggatccaaattcacaactatcc	<i>Bam</i> HI	EMSA (Fig. 4A), deletion mutation (Fig. 3A)
P <i>rcsA</i> 3	5'-aagctaagcttgatgatagtggacagac	HinDIII	EMSA (Fig. 4A)
PrcsA3-1	5'-acaccaagcttgggagcaatgtcactat	HinDIII	EMSA, DNase I protection Assays (Fig. 5A)
P <i>wceG</i> 5	5'-aagctaagcttgatgatagtggacagac	HinDIII	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wceG</i> 3	5'-gcataaagctttctttattttatttcct	HinDIII	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wceL</i> 5	5'cacgaggatccaaggcgctaagtgagaa	BamHI	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wceL</i> 3	5'-atggaaagcttgtgtgattccttaaatc	HinDIII	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wceB</i> 5	5'-tgactggatcctcaacccggcgatcgtc	<i>Bam</i> HI	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wceB</i> 3	5'-gaatgaagcttattgccagcacctcatt	HinDIII	EMSA (Fig. 4A)/promoter <i>lacZ</i> fusion
P <i>wza</i> 5	5'-atggtggatcctaacccgcagaaaaagg	<i>Bam</i> HI	EMSA (Fig. 4A)
Pwza3	5'-catttaagctttaatcatttcgctcttc	HinDIII	EMSA (Fig. 4A)
P <i>rcsA</i> (60)5	5'-catcgggatccttgttttggtcataaaa	<i>Bam</i> HI	EMSA (Fig. 4B)
P <i>rcsA</i> (60)3	5'-acaagaagcttcacacaatattttttct	HinDIII	EMSA (Fig. 4A)
P <i>wzx</i> 5	5'-tgactggatcctcaacccggcgatcgtc	<i>Bam</i> HI	Promoter lacZ fusion
P <i>wzx</i> 3	5'-gaatgaagcttattgccagcacctcatt	HinDIII	Promoter lacZ fusion
RcsA∆up	5'-gcgaccctcacgaattcgttatc	<i>Eco</i> RI	Deletion mutation (Fig. 3A)
RcsA∆low	5'-acgctgaattctctccttagca	<i>Eco</i> RI	Deletion mutation (Fig. 3A)
RcsAlow	5'-gttctaagcttcggcaaactatcttacg	HinDIII	Deletion mutation (Fig. 3A)
Tn5Seq	5'-cagtttgtttcagttaaaac		Sequencing ES∆IR Tn5 mutants (Fig. 1)
RcsA1	5'-acatgtctccgcgtatttcc		Real time RT-PCR (Fig. 2)
RcsA2	5'-atgacccgacatccacattt		Real time RT-PCR (Fig. 2)
WceG1	5'-ctgaaattccgttcgatggt		Real time RT-PCR (Figs 2 and 3B)
WceG2	5'-gcataaagctttctttattttatttcct		Real time RT-PCR (Figs 2 and 3B)
Wza1	5'-tatattggtcgggtccgtgt		Real time RT-PCR (Figs 2 and 3B)
Wza2	5'-cgcaccggttacgtaagttt		Real time RT-PCR (Figs 2 and 3B)
WceL1	5'-gctctgtattgctgccatga		Real time RT-PCR (Figs 2 and 3B)
WceL2	5'-tcctcgaagaaactccggta		Real time RT-PCR (Figs 2 and 3B)
16 <i>s</i> 1	5'-gttagccggtgcttcttctg		Real time RT-PCR (Fig. 2)
16 <i>s</i> 2	5'-aggccttcgggttgtaaagt		Real time RT-PCR (Fig. 2)
RseC1	5'-cataccgaagccaaaacctc		Real time RT-PCR (Figs 2 and 3B)
RseC2	5'-attctttggccccagcttat		Real time RT-PCR (Figs 2 and 3B)
EsaR1	5'-tgaccgatccggttattctc		Real time RT-PCR (Fig. 2)
EsaR2	5'-aggtcggacatcagcgtaat		Real time RT-PCR (Fig. 2)
GalE1	5'-ggcattgcacagattatcca		Real time RT-PCR (Fig. 2)
GalE2	5'-ttacatcggctctcataccg		Real time RT-PCR (Fig. 2)
RcsB1	5'-agtaacggaaattgcgaaga		Real time RT-PCR (Fig. 2)
RcsB2	5'-gttgagcagggcaatatcgt		Real time RT-PCR (Fig. 2)
FPprimer	5'-lightsabre green-caggaaacagctatgaccaatgatt		DNase I protection assays (Fig. 5A)
T7	5'-taatacgactcactataggg		DNase I protection assays (Fig. 5A)

internal calibrator. Transcripts were also measured for the esaR and rseC genes as representative internal standards for well-characterized 3-oxo-C6-HSL responsive and unresponsive genes, respectively. The rseC gene encodes an enhancer of the RpoE stress response sigma factor (Missiakas et al., 1997). Real time RT-PCR was performed using the specific sets of primers listed in Table 1. The data presented in Fig. 2 show that the relative rcsA transcript levels increased approximately fivefold under 3-oxo-C6-HSL inducing conditions, while those of rcsB remained largely unchanged. The wceG and wza genes, which represent the first and second genes of the cps gene cluster (see Fig. 1) yielded about five and eightfold enhanced transcript levels in response to 3-oxo-C6-HSL, respectively. The transcript level of wceL, a gene located in the middle of the cps locus, was nearly threefold higher, while the galE gene located at the 3' end of the 18 kb cps gene cluster appeared to be expressed marginally higher in response to 3-oxo-C6-HSL. The transcript levels measured for *esaR* increased threefold, which is in good agreement with previous genetic induction studies (Minogue *et al.*, 2002). As expected, 3-oxo-C6-HSL had no effect on the transcript levels of *rseC*. These data support the hypothesis that EsaR negatively controls the transcription of the *rcsA* gene, not *rcsB*, and affects the transcription of the *cps* genes, particularly those located closest to the *wceG* promoter (see Fig. 1).

RcsA is a central factor in the EsaR-mediated QS control of EPS synthesis

To determine whether EsaR controls EPS synthesis exclusively through repression of *rcsA* or dual control of *rcsA* and *cps*, we designed an epistasis experiment to compare the phenotypes of strain ESN10 (*esal::cat*) and strain PSS11 (*esal::cat*, *rcsA::kan*). As shown in Fig. 3A, both strains exhibit a non-mucoid phenotype when grown in absence of exogenous 3-oxo-C6-HSL. However, growth

Fig. 2. Induction of specific gene expression in response to 3-oxo-C6-HSL. The relative transcript induction of specific *cps*-encoded EPS biosynthetic genes, the *esaR*, *rcsA* and *rcsB* regulatory genes, and *rseC*, as an example of a 3-oxo-C6-HSL neutral gene, was measured by real time RT-PCR. Template cDNAs were generated from total RNA extracts of strain ESN51 grown to exponential phase separately in the absence (\Box) or presence (\blacksquare) of 10 µM 3-oxo-C6-HSL. Target transcript levels were normalized using 16S rRNA as an internal reference. Relative fold induction (RFI) was calculated using the mathematical equation: RFI = 2^{-ΔΔCT} (see *Experimental Procedures*). Each experiment was repeated three times and error bars represent the standard deviation.

in the presence of 3-oxo-C6-HSL induces mucoidy in strain ESN10, but not in strain PSS11. Expression of the rcsA gene from several different plasmid vectors overrides the EsaR-mediated repression of EPS production in strain ESN10 and complements the defect in strain PSS11 (data not shown). These genetic data establish that QS signalmediated inducibility of mucoidy in P. stewartii depends on a functional rcsA gene. Direct in vitro transcriptional analysis supports this genetic conclusion. Specifically, real time RT-PCR showed that strain ESN10 (esal::cat, esaR⁺) has induced levels of wceG, wceL and wza transcripts in response to 3-oxo-C6-HSL (data not shown) similar to those measured for ESN51 (esal::kan, esaR⁺) in Fig. 2. In contrast, the transcript levels of these genes in PSS11 (esal::cat; rcsA::kan) remained roughly the same, even under 3-oxo-C6-HSL inducing conditions (Fig. 3B). Correspondingly, genetic assays to measure the activity of several cps and rcsA promoter lacZ fusions in E. coli demonstrated that EsaR only repressed the PrcsA::lacZ transcriptional fusion and not the Pcps::lacZ fusions (data not shown). Together these data confirm that *rcsA* is the primary target for EsaR-mediated repression and 3-oxo-C6-HSL specific derepression, and, that the effect of EsaR regulation on EPS synthesis is indirect and dependent on RcsA.

EsaR directly and specifically binds to the RcsA promoter

The above experimental data establish a role for EsaR as a direct negative regulator of the *rcsA* gene under 3-oxo-

Quorum sensing control of stewartan EPS 193

C6-HSL restrictive conditions and related derepression of the *rcsA* gene under inducing conditions. Therefore, ligand-free EsaR (Apo-EsaR) should physically interact with a target sequence of the *rcsA* promoter. Correspondingly, if the hierarchical regulatory model is correct, then EsaR should not bind to promoters associated with the *cps* gene system. We employed electromobility shift assays (EMSAs) to measure relative binding of purified native Apo-EsaR to specific sequences of the *rcsA* promoter and sequences corresponding to the primary *wceG* promoter, and potential intergenic promoters upstream of

Fig. 3. Epistasis experiments to establish the regulatory dominance of EsaR over RcsA.

A. Strains ESN10 (*esal::cat*) and PSS11 (*esal::cat, rcsA::kan*) were grown on glucose-rich agar supplemented with (lower panel) or without (upper panel) 10 μ M 3-oxo-C6-HSL and incubated at 28°C. Both strains lack a typical mucoid phenotype when grown in absence of 3-oxo-C6-HSL. Growth in presence of 3-oxo-C6-HSL induced mucoidy in strain ESN10, but not in strain PSS11.

B. Transcript levels of *wceG*, *wza* and *wceL* were determined by real time RT-PCR. The cDNAs generated from total RNA of PSS11 cultures grown separately to exponential phase in the absence (\Box) or presence (\blacksquare) of 10 μ M 3-oxo-C6-HSL. Relative transcript levels were calculated based on *rseC* levels as an internal 3-oxo-C6-HSL neutral standard. Experiments were repeated three times and error bars represent the standard deviation.

cggtacacagagtcatcgacagggttgttttggtgataaaatcggcaatgcattgaaatt 60mer gccatgagtctcagtagatgtcccaacaaaaccactattttagccgttacgtaactttaa

Fig. 4. In vitro EsaR binds to the rcsA promoter.

A. Radiolabelled PCR products (20 nM) from the upstream regions of *wceG*, *wza*, *wceL*, *wceB*, and *rcsA* were incubated without (lanes 1, 3, 5, 7, 9) and with 200 nM purified Apo-EsaR (lanes 2, 4, 6, 8, 10) and resolved by native polyacrylamide gel electrophoresis. B. A 60 bp radiolabelled PCR product (40 μ M), amplified from the *rcsA* promoter (lane 1) was incubated with increasing concentrations of purified Apo-EsaR (lanes 2–5) and resolved by native polyacrylamide gel electrophoresis. Addition of excess (25×, 50×, 100×) 60 bp unlabelled competitor effectively excluded the labelled target DNA indicative of a specific EsaR/target DNA interaction (lanes 6–8).

the wza, wceL, wceB, and wzx genes (see Fig. 1). The autoradiograph shown in Fig. 4A shows that Apo-EsaR formed a specific protein/DNA complex only with the rcsA promoter, and failed to complex with DNA fragments of the primary promoter and intergenic sequences of the cps gene cluster. The rcsA promoter sequence did not reveal an obvious EsaR binding site. Therefore, we assayed smaller PCR fragments of the rcsA promoter region using primers listed in Table 1, which allowed us to localize an rcsA-specific EsaR binding site to a 60 bp DNA fragment (Fig. 4B). Binding specificity of EsaR for this fragment was demonstrated by addition of excess unlabelled 60 mer competitor DNA, which effectively excluded the radiolabelled probe from the EsaR/DNA complex in a concentration-dependent manner. These data confirm that EsaR physically and specifically interacts with an operator site located within the rcsA promoter.

Footprint analysis defines a 20 bp DNA fragment with characteristics of an esaR box

We used DNase I protection assays to define the specific EsaR DNA binding site within the rcsA promoter. This study employed a plasmid-borne 260 bp DNA fragment of the *rcsA* promoter that includes the 60 bp binding region (see Fig. 4B). This DNA served as a template to generate separate sense and antisense, fluorescently labelled PCR fragments, which were incubated with DNase I in the presence or absence of EsaR before resolution by capillary electrophoresis. The results, which are displayed as superimposed electropherograms in Fig. 5A, draw attention to a single 20 bp region in both the sense (black) and antisense strand (grey) that was specifically protected by EsaR. Careful analysis of this protected region reveals a limited, but significant DNA sequence conservation with other lux box-like palindromes (Fig. 5B) including the previously characterized esaR box (Minogue et al., 2002). The protected site overlaps a putative –10 $\sigma^{\mbox{\tiny 70}}$ consensus sequence located in the rcsA promoter (Fig. 6), analogous to the position of the esaR box in the esaR promoter (Beck von Bodman and Farrand, 1995; Minogue et al., 2002). From these data, we conclude that EsaR binds at a semiconserved esaR box to repress rcsA expression presumably through steric interference with RNA polymerase transcription initiation.

RcsA autoregulates its own expression in a 3-oxo-C6-HSL dependent fashion

RcsA of *E. coli* has positive autoregulatory characteristics (Ebel and Trempy, 1999). An RcsAB binding site is located in the rcsA promoter of P. stewartii with 71% identity to other confirmed RcsAB box sequences (Wehland and Bernhard, 2000). To experimentally test the autoregulatory role of RcsA in P. stewartii, we constructed a PrcsA::gfp promoter gene fusion carried on plasmid pAUC30 for parallel expression in strains ESN10 (esal-, esaR⁺) and PSS11 (rcsA⁻, esal⁻, esaR⁺). Strain ESN10 exhibited a fivefold increase in GFP fluorescence, while the fluorescence of strain PSS11 increased only slightly (1.2-fold) in response to 3-oxo-C6-HSL induction (data not shown). We conclude from these data that RcsA activates its own expression from the rcsA promoter. More significantly, maximal RcsA autoregulation requires 3-oxo-C6-HSL to remove the EsaR-specific transcriptional block.

Discussion

This study establishes that the fundamental mechanism for QS regulation of EPS production in *P. stewartii* involves the direct repression of *rcsA* transcription by EsaR. The critical evidence for this conclusion is threefold. First, the

esal mutant strain ESN51 (*esaR*⁺) can be induced for EPS synthesis by exogenous addition of 3-oxo-C6-HSL, while the corresponding *esal/rcsA* double mutant strain, PSS11, is non-inducible and remains blocked for EPS synthesis even in presence of the signal. Second, Apo-EsaR binds specifically to the *rcsA* promoter, but does not interact with sequences of the primary *wceG* promoter or intergenic regions within the *cps* operon. Third, DNase protection assays identify a region within the *rcsA* promoter that corresponds to a semiconserved *esaR* box element. This

Quorum sensing control of stewartan EPS 195

element spans the predicted -10 promoter consensus sequence. We also show that the activation of *rcsA* is subject to positive feedback regulation by RcsA, similar to *rcsA* in *E. coli* and *Erwinia amylovora* (Ebel and Trempy, 1999; Wehland *et al.*, 1999). These data permit us to formulate a hierarchical model for QS regulation of EPS synthesis in *P. stewartii*, as summarized in Fig. 7. At low cell density, in absence of threshold concentrations of 3-oxo-C6-HSL ligand, Apo-EsaR is DNA binding competent and acts as a direct repressor of *rcsA* transcription. Even

A. DNase I digestion reactions of a 260 bp *rcsA* promoter fragment spanning the full-length *rcsA* promoter (35 nM) were resolved by capillary electrophoresis on a Beckman Coulter CEQ 2000XL. The electropherograms shown are of the sense (\blacksquare) and antisense (\blacksquare) strands in the absence (upper panel) or presence of purified EsaR (0.9 μ M) (lower panel). Fluorescence Intensity, *y*-axis, is proportional to the relative fragment abundance and elution time, *x*-axis, correlates to fragment length. Numeric values (bottom scale) refer to nucleotide position relative to the putative transcription start of the *rcsA* promoter. The protected sequence is as indicated and falls between nucleotides –24 and –5.

B. The EsaR binding site from the *rcsA* promoter was compared to other *lux* box-like DNA sequences found in *P. stewartii* (*esaR*) (Minogue *et al.*, 2002), *Vibrio fischeri* (*luxI*) (Egland and Greenberg, 1999), *Serratia marcescens* (*spnR*) (Horng *et al.*, 2002) and *Pseudomonas aeruginosa* (*lasB*) (Rust *et al.*, 1996). Highly conserved nucleotides are highlighted in black, while other conserved nucleotides are displayed in grey; R = A or G; Y = T or C; M = A or C; K = G or T; H = A, C or T; V = A, C or G; D = A, G or T.

Fig. 6. Schematic depiction of the *rcsA* promoter. The promoter features a well-conserved RcsA/B binding site (grey), an EsaR binding motif (black) positioned between a putative -35 (underlined) and overlapping a putative -10 (underlined) σ^{70} recognition sequence. An arrow indicates a possible transcriptional start. Comparison of the published *rcsA* DNA sequence (GenBank Accession X58707) with the sequences obtained from the flanking regions of the *rcsA* transposon insertions revealed minor, but significant discrepancies (black circles above individual nucleotides). Sequence analyses of PCR fragments amplified from the genome of several different *P. stewartii* strains confirmed the discrepancies. We deposited a corrected DNA sequence for the *rcsA* promoter in GenBank as Accession AY819768.

so, the *rcsA* gene expresses at measurable basal levels under EsaR repressive conditions (data not shown). This is likely a function of the less stringent conservation of the esaR box in the rcsA promoter compared to the corresponding palindrome in the esaR promoter (Minogue et al., 2002). RcsA is also subject to rapid proteolysis by Lon protease presumably to keep cellular RcsA protein below a functionally relevant concentration. Consistent with this assessment is the observed enhanced mucoidy of lon mutant strains of P. stewartii analogous to lon mutants of *E. coli* and *E. amylovora* (Stout *et al.*, 1991; Eastgate et al., 1995; M. D. Koutsoudis, unpubl.). At high cell density, or after exogenous addition of 3-oxo-C6-HSL, EsaR repressor activity relaxes, thus permitting the rapid expression of the rcsA gene. In this context, it is important to note that EsaR does not govern the expression of the rcsB gene, and rcsB transcript levels remain constant under inducing conditions. This model also indicates that EsaR-mediated QS is functionally dominant to the RcsC-YojN-RcsB environmental sensing phosphorelay system.

The genetic evidence for this assertion is twofold. First, the *esal* mutant strains ESN10 and ESN51 grown on high glucose medium remain repressed for EPS synthesis unless exposed to inducing levels of 3-oxo-C6-HSL. Second, an *esaR* or *esal/esaR* double mutant strain of *P. stewartii* exhibits a mucoid phenotype even when grown on low glucose medium (von Bodman *et al.*, 1998).

The role of RcsA/B activation of several group 1 capsule gene clusters including *cps* of *P. stewartii* is well documented (Poetter and Coplin, 1991; Stout *et al.*, 1991; Kelm *et al.*, 1997; Wehland *et al.*, 1999). Our data confirm that the RcsA protein is essential for the activation of the *cps* gene system and stewartan EPS synthesis in *P. stewartii*. However, it is interesting to note that the promoter proximal genes (*wceG*, *wza*) of the *cps* gene cluster are induced to a significantly higher degree by 3-oxo-C6-HSL than genes located toward the middle (*wceL*) and 3' end (*galE*) of the ~18 kb operon. The primary promoter upstream of *wceG* features a conserved JUMPstart sequence (just <u>upstream of many polysaccharide starts</u>)

Fig. 7. A model depicting the hierarchical EsaR QS regulatory pathway. At low cell density, ligand-free EsaR represses the transcription of *rcsA*, yielding basal levels of RcsA protein that is subject to degradation by Lon protease (Gottesman and Stout, 1991) preventing significant RcsA/RcsB activation complex formation. At high cell density or 3-oxo-C6-HSL inducing conditions, EsaR repression of *rcsA* is relieved resulting in RcsA levels exceeding the degradation capacity of Lon. RcsA recruits RcsB to form an activation complex for the positive feedback regulation of *rcsA* and activation of the *cps* gene cluster.

(Hobbs and Reeves, 1994; Wehland et al., 1999). This sequence contains an eight bp element termed ops (operons polarity suppressor), which recruits the RfaH antitermination protein into the transcription complex to promote the synthesis of full-length operonic transcripts (Bailey et al., 1997; Stevens et al., 1997; Marolda and Valvano, 1998; Rahn et al., 1999; Artsimovitch and Landick, 2002). The cps operon of P. stewartii also features a putative stem-loop structure at the 3' end of the wzc gene, analogous to the Rho-independent termination stem-loop structure found in the K30 cps cluster of E. coli (Rahn et al., 1999; Rahn and Whitfield, 2003). By analogy, this terminator region separates genes involved in higher-order polymerization and surface expression of EPS from the genes that encode specific glycosyltransferase enzymes for the biosynthesis of oligosaccharide repeat units. We assume that this putative stem-loop structure plays an important role in the differential expression of these two blocks of cps genes in P. stewartii. It is conceivable that under optimal RcsA/B-mediated activation of the cps operon, a subpopulation of transcripts escape antitermination leading to the accumulation of truncated transcripts. This scenario would explain the differential transcript levels detected of genes located upstream and downstream of the termination loop in response to 3-oxo-C6-HSL induction (Fig. 2). The dual galF/galE genes positioned at the 3' end of the cps gene system could be expressed from an independent promoter (Torres-Cabassa et al., 1987; Dolph et al., 1988), although additional experiments are needed for unequivocal proof. In any case, we show that EsaR and 3-oxo-C6-HSL do not significantly control the expression of the *galE* gene. The GalF and GalE enzymes serve important functions in UDP-glucose and UDP-galactose synthesis, which are important precursors of stewartan EPS (Dolph et al., 1988; Nimtz et al., 1996).

Group 1 polysaccharides can be produced in several distinct forms. A short, or low molecular weight form assembles on a lipid A-core and consists of one or a few oligosaccharide repeat units (MacLachlan et al., 1993; Drummelsmith and Whitfield, 1999; Rahn and Whitfield, 2003). This form is referred to as KLPS. Multiple oligosaccharide repeat units attached to the lipid A-core leads to the synthesis of O-antigen, sometimes referred to as smooth LPS (S-LPS). A high molecular weight capsular or EPS form is assembled on the cell surface in a translocation pathway that requires functions including Wza, an outer membrane lipoprotein, Wzb, an acid phosphatase, and Wzc, an inner membrane tyrosine kinase (Stevenson et al., 1996; Drummelsmith and Whitfield, 1999; Geider, 2000; Beis et al., 2004). These proteins are encoded by genes located between wceG and the putative stem-loop structure upstream of wceL in P. stewartii. We therefore envision a model in which basal level expression of the

cps gene system directs oligosaccharide repeat units into O-antigen and or K_{LPS} synthesis, while RcsA/B-mediated activation of the *cps* gene system may be a mechanism to shunt these same oligosaccharide repeat units into high molecular weight stewartan EPS biosynthesis. Thus, EsaR-mediated QS regulation may serve as a key switch between LPS and EPS synthesis in *P. stewartii*. It should be noted that the *cps* gene cluster of *P. stewartii* lacks a *wzi* gene, which encodes an outer membrane protein thought to anchor the high molecular weight polymer to the cell surface typical of capsular polysaccharides (CPS) (Rahn *et al.*, 2003). It is therefore likely that most of stewartan is in the cell-free EPS form.

We recognize that EPS synthesis is controlled by other global regulatory mechanisms in addition to QS. For example, the role of Lon protease in EPS synthesis is well established (Gottesman *et al.*, 1985). Chatterjee and colleagues reported a role of the CsrA/*csrB* (Romeo *et al.*, 1993) homologue pair, RsmA/*rsmB*, in the control of EPS synthesis in several *Erwinia* strains and *P. stewartii* (Cui *et al.*, 1995). Additionally, this group and others showed that RsmA functions by destabilizing transcripts of LuxI homologue QS signal synthases in different *Erwinia* species (Cui *et al.*, 1995; Whitehead *et al.*, 2002). It is therefore possible that the effect of RsmA on EPS synthesis is a consequence of controlled intrinsic levels of 3-oxo-C6-HSL.

Finally, one must ask why EsaR, a reasonably conserved LuxR orthologue, should have evolved to function as a repressor with affinity for its DNA binding target in a ligand-free state while LuxR requires the signal cofactor for DNA binding and transcriptional activation? We recently reported that EsaR retains the ability to function also as a transcriptional activator in the ligand free state if provided a properly positioned *cis* binding site (von Bodman et al., 2003). Preliminary data indicate that EsaR may positively control one or more genes in P. stewartii under signal-limiting conditions. In the overall context of QS regulation, such dual functionality would be possible only if EsaR is DNA binding proficient in absence of the signal ligand to correspondingly activate genes required at low cell density, while repressing genes needed for cellular function at a higher cell density. This regulatory scenario would be an attractive mechanism for bacteria to transition between different stages of growth or development particularly when colonizing a specific niche or host.

Experimental procedures

Bacterial strains, growth conditions and DNA techniques

The *E. coli* strains used as cloning hosts include DH5 α (Life Technologies), Top10 (Invitrogen), DH10B (Invitrogen), and

Table 2. Strains and plasmids.

	Relevant genotype ^a	Reference or source
Strain		
DH10B	E. coli ∆lacX74 ara∆139 ∆(ara-leu)	Invitrogen
DC283	<i>P. stewartii</i> wild type, <i>Nal</i> ^R	Dolph <i>et al.</i> (1988)
ESAIR	P. stewartii ∆(esaI-esaR)	von Bodman <i>et al.</i> (1998)
ESN51	P. stewartii esal::Tn5segN51	(von Bodman <i>et al.</i> (1998)
S17-1	RP4 <i>Mob</i> ⁺	Simon <i>et al.</i> (1982)
ESN10	P. stewartii esal::cat	This study
PSS11	P. stewartii esal::cat rcsA::kan	This study
Plasmid		
Topo pCR2.1	Cloning vector Ap ^R	Invitrogen
pBluescriptII KS+	Cloning vector, ColE1 ori, Ap ^R	Stratagene
pTGN	Tn5gfp-km, Ap ^R , Km ^R , R6K ori	Tang <i>et al</i> . (1999)
pFPV25	Ap ^R , promoterless <i>gfpmut gene</i>	Valdivia and Falkow (1996)
pKNG101	Suicide vector, R6K ori, Sp ^R , sacB	Kaniga et al. (1991)
pKD4	Km ^R , source of kan cassette	Datsenko and Wanner (2000)
pBBR1MCS	Broad host range vector, Cm ^R	Kovach <i>et al.</i> (1995)
pKOK5	Ap ^R , Km ^R , lacZ-Km cassette	Kokotek and Lotz (1989)
pBAD22:: <i>esaR</i>	esaR coding region driven by ParaC	von Bodman <i>et al.</i> (2003)
pES2144	genomic clone (<i>wceG-galE</i>), <i>Tc</i> ^R	Dolph <i>et al</i> . (1988)
pES4507	genomic clone (<i>rcsA</i>), <i>Tc</i> ^R	Poetter and Coplin (1991)
pCM1	Chloramphenicol cassette	Close and Rodriguez (1982)
pSVB60	esaR driven by native esaR promoter	Minogue et al. (2002)
pAUC1	PrcsA::lacZ cloned in pBBR1MCS	This study
pAUC2	PwceG::lacZ cloned in pBBR1MCS	This study
pAUC3	PwceB::lacZ cloned in pBBR1MCS	This study
pAUC4	PwceL::lacZ cloned in pBBR1MCS	This study
pAUC5	Pwzx::lacZ cloned in pBBR1MCS	This study
pAUC10	PrcsA cloned in pCR2.1 (sense orientation)	This study
pAUC11	PrcsA cloned in pCR2.1 (antisense orientation)	This study
pAUC20	rcsA::kan cloned in pKNG101	This study
pAUC30	PrcsA::gfpmut cloned in pFPV25	This study

a. Ap^R, ampicillin; Cm^R, chloramphenicol; Km^R, kanamycin; Nal^R, nalidixic acid; Sp^R, streptomycin; resistance.

S17-1 (Simon et al., 1982) for conjugal transfer of RK2based plasmid constructs into P. stewartii strains. Escherichia coli strains were grown at 37°C on nutrient agar (NA) plates or Luria-Bertani broth (LB) in presence of appropriate antibiotics, where applicable. The P. stewartii strains were grown at 28°C in LB in presence of 30 µg ml-1 of nalidixic acid on NA plates, glucose-rich CPG (0.1% casamino acids, 1% peptone and 1% glucose) (Bradshaw-Rouse et al., 1981), AB minimal medium (Clark and Maaløe, 1967) or LB. All relevant strains and plasmids are listed in Table 2. DNA techniques were performed by standard methods as previously described (Beck von Bodman and Farrand, 1995; von Bodman et al., 1998). DNA fragments were amplified using Ex Taq Polymerase (Takera/Panvera), Taq polymerase (Applied Biosystems), or Deep Vent (NEB) and synthetic oligonucleotides ordered to specification from Qiagen Operon.

Plasmid cloning strategies

The DNA fragments containing the putative *rcsA*, *wceG*, *wceL*, *wceB* and *wzx* promoters were amplified by PCR using purified genomic DNA from wild type *P. stewartii* strain DC283 as template in presence of the following primer pairs: PrcsA5/PrcsA3, PwceG5/PwceG3, PwceL5/PwceL3, PwceB5/PwceB3, and Pwzx5/Pwzx3 (Table 1). Amplicons were digested with the appropriate restriction enzymes

(Table 1) and ligated into plasmid pBBR1MCS (Kovach *et al.*, 1995). The constructs were digested with *Sal* for insertion of a similarly digested *lacZ-kan* cassette from plasmid pKOK5 (Kokotek and Lotz, 1989), to generate plasmids pAUC1 through pAUC5 (Table 2). The putative *rcsA* promoter was PCR amplified using wild type genomic DNA and primers P*rcsA*5 and P*rcsA*3 (Table 1). The PCR fragment was cloned into Topo pCR2.1 plasmid by TA cloning (Invitrogen). The resulting construct was digested with *Bam*HI and the released ~800 bp fragment was ligated into pFPV25 plasmid (Valdivia and Falkow, 1996), resulting in pAUC30 (Table 2).

Tn5gfp-km mutagenesis

The *P. stewartii esal/esaR* double mutant strain, ES Δ IR (Table 2) was mutagenized with the transposon Tn5*gfp-km* carried on the pTGN plasmid (Table 2). *Escherichia coli* strain S17-1 (pTGN) served as a conjugal donor to mobilize pTGN into strain ES Δ IR. Each strain was grown separately to an OD₆₀₀ of 0.6 in AB minimal medium. Cells were collected by centrifugation at 7000 *g* and washed with sterile PBS. Donor and recipient strains were combined and transferred to 0.2 μ M nitrocellulose filters (Millipore). Filters were placed on NA plates and incubated at 28°C for 6 h. Stable transposition events were selected on NA supplemented with 30 μ g ml⁻¹ kanamycin and 30 μ g ml⁻¹ nalidixic acid.

Screening Tn5gfp-km mutants

Colonies exhibiting stable expression of Tn5*qfp-km* were viewed under a stereomicroscope for identification of EPS deficient mutants. Such mutants were patched onto AB minimal medium to ensure prototrophy. Secondary screening was based on the comparative expression of the Tn5gfp-km encoded GFP in the presence or absence of EsaR. Plasmid pSVB60 (Table 2) was introduced into independent mutants using *E. coli* S17-1 (Table 2) as a conjugal donor. The ES∆IR Tn5gfp-km mutants and corresponding strains carrying pSVB60 were cultured in AB minimal medium and grown to an OD₆₀₀ of 0.6. Aliquots of 5 µl cell suspensions, standardized to OD₆₀₀ of 1.0, were spotted onto fresh AB minimal plates in replicates of six, and evaluated over the course of 3 days using a Molecular Imager FX (FITC) (Bio-Rad). GFP levels of each sample were quantified using QUANTITY ONE software (Bio-Rad). Insertional mutants showing less than 50% GFP-specific fluorescence in the presence of EsaR were selected for further characterization.

Cloning and sequencing of the genomic DNA flanking Tn5gfp-km insertions

Genomic DNA was extracted using the MasterPureTM DNA Purification Kit (Epicentre) and digested to completion with *Kpnl* (Invitrogen), *Hin*DIII (Invitrogen) or *Xmal* (NEB). Digested DNA was cloned into pBluescriptII KS⁺ (Stratagene) using T4 ligase (Invitrogen). Ligation reactions were transformed into *E. coli* strain DH10B and transformants were analysed for GFP production. Plasmid DNA from GFP expressing, Km^{R}/Ap^{R} transformants was isolated using QIAPrep Spin Mini-prep Kit (Qiagen). The purified DNA was sequenced at the W.M. Keck Foundation Biotechnology Resource Center (Yale University) using a primer specific to the 5' region of Tn5*gfp-km* (Tn5 seq, Table 1).

Sequence analysis of the rcsA promoter

The *rcsA* promoter region was PCR amplified from the following sources: plasmid pES4507, DC283, ESN51 and ES Δ IR. PCR amplicons were cloned using the pCR[®]2.1-TOPO[®] TA cloning kit (Invitrogen) as per manufacturer's recommendations. Resulting plasmids were isolated using QIAPrep Spin Mini-prep Kit (Qiagen) and sequenced at the W.M. Keck Foundation Biotechnology Resource Center (Yale University). The *rcsA* promoter sequence was deposited to GenBank under Accession (AY819768).

Real time RT-PCR analysis

Pantoea stewartii strains were grown in AB minimal medium to an OD₆₀₀ of 0.6. Total RNA was extracted using the Ribopure[™]-Bacteria (Ambion) RNA extraction kit following the manufacturer's instructions. RNA concentrations were quantified by absorbance at 260 nm. Total cDNAs were synthesized using 500 ng of total RNA and the iScript[™] cDNA Synthesis Kit (Bio-Rad). Reactions were incubated for 5 min at 25°C, 30 min at 42°C, 5 min at 85°C. Real time RT-PCR was performed using iQ[™]SYBR[®]Green Supermix and an iCycler (Bio-Rad) using the appropriate primers (Table 1). Primers were designed using the Primer3 algorithm (Rozen and Skaletsky, 1998). The 25 µl standard reaction volume consisted of 12.5 µl of iQ[™]SYBR[®] Green Supermix, 1 µl of cDNA, 1.25 μ l of each 5'- and 3' primer (10 μ M), and 9 μ l of water. Amplifications were performed using the following conditions: an initial 4 min incubation at 95°C followed by 40 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C. Fluorescence was monitored at the end of each cycle using a SYBR-490 filter setting. Melt curve analysis, 80 increments of 0.5°C every 30 s starting at 55°C, was performed after experiment completion to check for primer-dimer formation. All experiments were performed in triplicate. The 16S rRNA or rseC mRNAs were used as internal references. Data analysis to determine the cycle threshold (C_T) values was performed using the MyiQ software (Bio-Rad) and ΔC_{T} values were calculated as the average C_T of target DNA – average C_{τ} of reference DNA. The calculation of comparative expression levels, or relative fold induction (RFI) (Applied Biosystems), used the formula $2(^{\Delta CT} \text{ target gene } - \Delta CT \text{ internal reference gene)}$ or (2^{-\!\Delta\!\Delta CT}) to reflect the difference between each samples ΔC_T and the baseline or reference $\Delta C_{\scriptscriptstyle T}\!.$ Statistical analysis was performed using Microsoft Excel (Microsoft).

Deletion mutagenesis and allelic replacement

The ESN10 mutant (Table 2) was created by cloning the *esal/esaR* locus into pUC18 as a *Smal/Pst* fragment resulting in plasmid pMDK2. The chloramphenicol acetyl-tranferase cassette (*cat*) was released from pCM1 (Close and Rodriguez, 1982) as a *Sal* fragment. This fragment was inserted into the *Sal* restriction site located in the *esal* gene. The resulting construct was digested with *Smal/Hpal* and the released 2.8 kb fragment was cloned into the *Smal* digested pKNG101 (Kaniga *et al.*, 1991) to create pMDK10. This plasmid was mobilized into *P. stewartii*, wild type strain, DC283 by conjugal transfer using *E. coli* S17-1 (pMDK10) as donor strain. Allelic replacement events were select on the basis of chloramphenicol resistance and sucrose sensitivity.

The PSS11 (*esal*⁻, *rcsA*⁻) double mutant strain was created by the amplification of partial 5'- and 3' fragments of the rcsA gene using the primer pairs PrcsA5'/RcsA Δ up and RcsA Δ low/RcsA3' (Table 1). The PCR products were digested with the appropriate endonucleases and ligated into pBluescript SK+ cloning vector. The resulting construct lacking a 355 bp internal fragment was digested with EcoRI to allow the insertion of a kanamycin resistance cassette (kan) released from plasmid pKD4 (Datsenko and Wanner, 2000). The construct, which contained the 5'- and 3' regions of rcsA and an internal Km^R cassette, was excised from the pBluescript and subcloned into the suicide vector pKNG101 to yield pAUC20. This plasmid was introduced into E. coli strain S17-1 and transferred by conjugation into the P. stewartii, ESN10. Allelic replacement events were select on the basis of chloramphenicol resistance and sucrose sensitivity. Southern Blot hybridization (DIG Detection Kit, Roche) and PCR analysis were used to verify all allelic replacement events.

Purification of EsaR

Native EsaR was purified from *E. coli* strain DH10B carrying

the pBAD22::*esaR* essentially as previously described (Minogue *et al.*, 2002).

Gel retardation assays

DNA/protein complexes were resolved essentially as previously described (Minogue et al., 2002). DNA fragments were amplified from genomic DNA using the primers listed in Table 1 to obtain the desired rcsA and cps promoter fragments. PCR products were digested with the appropriate enzymes (Table 1), and labelled by a fill-in reaction using Deep Vent polymerase in presence of $[\alpha^{-32}P]$ -dATP, specific activity 3000 Ci mmol⁻¹ (Perkin Elmer). DNA binding reactions, using varying concentrations of EsaR and labelled DNA product, were incubated at 28°C for 30 min The reaction buffer consisted of 20 mM Hepes (pH 7.6), 1 mM EDTA, 10 mM (NH4)₂SO₄, 1 mM DTT, 0.2% Tween-20, 30 mM KCl, 50 μ g ml⁻¹ λ -DNA, and 150 μ g ml⁻¹ BSA. Each reaction was resolved by electrophoresis on a native 6% polyacrylamide gel in 0.25 × TBE buffer (pH 8.3) (Fisher Scientific). Gels were dried using a vacuum gel drier. Radioactivity was detected using a Molecular Imager FX phosphorimager system and analysed using QUANTITY ONE software (Bio-Rad).

DNase I nucleotide protection assay

A 260 bp DNA fragment was PCR amplified from the rcsA promoter using the primers PrcsA5 and PrcsA3-1 (Table 1). Products were cloned into the vector pCR2.1® Topo® (Invitrogen) (Table 2). Inserts in both orientations yielded, respectively, plasmids pAUC10 (sense) and pAUC11 (antisense). Insert DNAs were confirmed by automated DNA sequencing. The LightSabre Green Primer, FPprimer (Synthegen) (Table 1), was used to generate fluorescently labelled double stranded DNA by PCR using pAUC10 and pAUC11 as templates. The PCR product was purified using the Qiagen PCR Purification kit. Binding reactions of 20 µl consisted of binding buffer (20 mM Hepes (pH 7.6), 1 mM EDTA, 10 mM (NH4)₂SO₄, 1 mM DTT, 0.2% Tween-20, 30 mM KCl), 100 ng of labelled DNA (0.4 pmol), 500 ng of λ DNA (NEB), and 9 μ g of total protein (0.9 µM purified EsaR + BSA or BSA alone). Binding reactions were incubated for 30 min at 25°C. Footprint assays were performed using a protocol adapted from Yindeeyoungyeon and Schell (2000). DNase I digestion was performed by adding 10 µl of DNase I (Amersham) diluted to 10^{-2} units μ l⁻¹ in dilution buffer (10 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 5 mM CaCl₂ and 0.1 mg ml⁻¹ (BSA) and incubating at 26°C for 4 min The DNase I digestions were stopped by the addition 30 µl of 0.5 M EDTA (pH 8.0). Digested DNA was extracted using the Qiagen Nucleotide Removal Kit and resuspended in 40 µl of Sample Loading Solution (Beckman Coulter). Before loading, 0.5 µl of size standard 400 (Beckman Coulter) was added to each sample. Samples were resolved using a Beckman Coulter CEQ 2000XL capillary electrophoresis unit under the following conditions: denaturation for 2 min at 90°C; injection at 2.0 kV for 30 s; separation at 7.5 kV for 45 min The resulting electropherograms were analysed using Beckman Coulter CEQ 2000 software (Beckman Coulter).

Acknowledgements

The authors gratefully acknowledge Dr David Coplin (The Ohio State University) for providing cps clones used for genetic complementation in this study and Tonia Vassilovitch for assisting in the transposon mutagenesis phase of this study. This work was supported by Grant MCB-0211687 from the National Science Foundation.

References

- Artsimovitch, I., and Landick, R. (2002) The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed non-template DNA strand. *Cell* **109**: 193–203.
- Bailey, M.J., Hughes, C., and Koronakis, V. (1997) RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. *Mol Microbiol* 26: 845– 851.
- Beck von Bodman, S., and Farrand, S.K. (1995) Capsular polysaccharide biosynthesis and pathogenicity in *Erwinia stewartii* require induction by an *N*-acylhomoserine lactone autoinducer. *J Bacteriol* **177:** 5000–5008.
- Beis, K., Collins, R.F., Ford, R.C., Kamis, A.B., Whitfield, C., and Naismith, J.H. (2004) Three-dimensional structure of Wza, the protein required for translocation of group 1 capsular polysaccharide across the outer membrane of *Escherichia coli. J Biol Chem* **279**: 28227–28232.
- Bernhard, F., Poetter, K., Geider, K., and Coplin, D.L. (1990) The *rcsA* gene from *Erwinia amylovora*: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. *Mol Plant Microbe Interact* **3**: 429–437.
- Bernhard, F., Coplin, D.L., and Geider, K. (1993) A gene cluster for amylovoran synthesis in *Erwinia amylovora*: characterization and relationship to *cps* genes in *Erwinia stewartii*. *Mol Gen Genet* **239**: 158–168.
- von Bodman, S.B., Majerczak, D.R., and Coplin, D.L. (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in *Pantoea stewartii* subsp. *stewartii. Proc Natl Acad Sci USA* **95:** 7687–7692.
- von Bodman, S.B., Ball, J.K., Faini, M.A., Herrera, C.M., Minogue, T.D., Urbanowski, M.L., and Stevens, A.M. (2003) The quorum sensing negative regulators EsaR and ExpR (Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription. *J Bacteriol* **185**: 7001–7007.
- Bradshaw-Rouse, J., Whatley, M., Coplin, D., Woods, A., Sequeria, L., and Kelman, A. (1981) Agglutination of *Erwinia stewartii* strains with a corn agglutinin: correlation with extracellular polysaccharide production and pathogenicity. *Appl Environ Microbiol* **42**: 344–350.
- Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B.L., and Hughson, F.M. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. *Nature* **415**: 545–549.
- Clark, J.D., and Maaløe, O. (1967) DNA replication and the division cycle in *Escherichia coli. J Mol Biol* 23: 99–112.
- Close, T.J., and Rodriguez, R.L. (1982) Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. *Gene* **20**: 305–316.

- Coplin, D.L., Frederick, R.D., Majerzak, D.R., and Tuttle, L.D. (1992) Characterization of a gene cluster that specifies pathogenicity in *Erwinia stewartii*. *Mol Plant Microbe Interact* **3**: 271–279.
- Cui, Y., Chatterjee, A., Liu, Y., Dumenyo, C.K., and Chatterjee, A.K. (1995) Identification of a global repressor gene, *rsmA*, of *Erwinia carotovora* subsp. *carotovora* that controls extracellular enzymes, *N*-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting *Erwinia* spp. *J Bacteriol* **177**: 5108–5115.
- Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci USA* 97: 6640–6645.
- Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. *Science* **280**: 295–298.
- Dolph, P.J., Majerczak, D.R., and Coplin, D.L. (1988) Characterization of a gene cluster for exopolysaccharide biosynthesis and virulence in *Erwinia stewartii*. J Bacteriol **170**: 865–871.
- Drummelsmith, J., and Whitfield, C. (1999) Gene products required for surface expression of the capsular form of the group 1 K antigen in *Escherichia coli* (O9a: K30). *Mol Microbiol* **31:** 1321–1332.
- Dunny, G.M., and Leonard, B.A. (1997) Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol 51: 527–564.
- Eastgate, J.A., Taylor, N., Coleman, M.J., Healy, B., Thompson, L., and Roberts, I.S. (1995) Cloning, expression, and characterization of the *lon* gene of *Erwinia amylovora*: evidence for a heat shock response. *J Bacteriol* **177**: 932–937.
- Ebel, W., and Trempy, J.E. (1999) *Escherichia coli* RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. *J Bacteriol* **181:** 577–584.
- Egland, K.A., and Greenberg, E.P. (1999) Quorum sensing in Vibrio fischeri: elements of the luxl promoter. *Mol Microbiol* **31:** 1197–1204.
- Engebrecht, J., and Silverman, M. (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. *Nucleic Acids Res* **15:** 10455–10467.
- Federle, M.J., and Bassler, B.L. (2003) Interspecies communication. *J Clin Invest* **112**: 1291–1299.
- Fuqua, C., Winans, S.C., and Greenberg, E.P. (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. *Annu Rev Microbiol* **50**: 727–751.
- Fuqua, C., Parsek, M.R., and Greenberg, E.P. (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. *Annu Rev Genet* **35**: 439–468.
- Fuqua, W.C., Winans, S.C., and Greenberg, E.P. (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. *J Bacteriol* 176: 269–275.
- Geider, K. (2000) Exopolysaccharides of *Erwinia amylovora*: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In *Fire Blight: the Disease and*
- © 2005 Blackwell Publishing Ltd, Molecular Microbiology, 56, 189-203

Causative Agent, Erwinia Amylovora. Vanneste, J.L. (ed.). Wallingford, UK: CAB International, pp. 117–140.

- Gottesman, S., and Stout, V. (1991) Regulation of capsular polysaccharide synthesis in *Escherichia coli* K12. *Mol Microbiol* **5:** 1599–1606.
- Gottesman, S., Trisler, P., and Torres-Cabassa, A. (1985) Regulation of capsular polysaccharide synthesis in *Escherichia coli* K-12: characterization of three regulatory genes. *J Bacteriol* **162:** 1111–1119.
- Henke, J.M., and Bassler, B.L. (2004) Bacterial social engagements. *Trends Cell Biol* **14:** 648–656.
- Hobbs, M., and Reeves, P.R. (1994) The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. *Mol Microbiol* **12:** 855–856.
- Horng, Y.T., Deng, S.C., Daykin, M., Soo, P.C., Wei, J.R., Luh, K.T., *et al.* (2002) The LuxR family protein SpnR functions as a negative regulator of *N*-acylhomoserine lactone-dependent quorum sensing in *Serratia marcescens. Mol Microbiol* **6**: 1655–1671.
- Kaniga, K., Delor, I., and Cornelis, G.R. (1991) A wide-hostrange suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the *blaA* gene of *Yersinia enterocolitica. Gene* **109**: 137–141.
- Kaplan, H.B., and Greenberg, E. (1985) Diffusion of autoinducer is involved in regulation of the *Vibrio fischeri* luminescence system. *J Bacteriol* **163**: 1210–1214.
- Kelm, O., Kiecker, C., Geider, K., and Bernhard, F. (1997) Interaction of the regulator proteins RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in *Erwinia amylovora. Mol Gen Genet* **256**: 72–83.
- Kleerebezem, M., and Quadri, L.E. (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. *Peptides* 22: 1579–1596.
- Kokotek, W., and Lotz, W. (1989) Construction of a *lacZ*kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. *Gene* 84: 467–471.
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**: 175–176.
- Lazazzera, B.A., Solomon, J.M., and Grossman, A.D. (1997) An exported peptide functions intracellularly to contribute to cell density signaling in *B. subtilis. Cell* 89: 917–925.
- Leigh, J.A., and Coplin, D.L. (1992) Exopolysaccharides in plant–bacterial interactions. *Annu Rev Microbiol* 46: 307– 346.
- MacLachlan, P.R., Keenleyside, W.J., Dodgson, C., and Whitfield, C. (1993) Formation of the K30 (group I) capsule in *Escherichia coli* O9: K30 does not require attachment to lipopolysaccharide lipid A-core. *J Bacteriol* **175**: 7515– 7522.
- Marolda, C.L., and Valvano, M.A. (1998) Promoter region of the *Escherichia coli* O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. *J Bacteriol* **180**: 3070–3079.
- Miller, M.B., and Bassler, B.L. (2001) Quorum sensing in bacteria. *Annu Rev Microbiol* **55:** 165–199.
- Minogue, T.D., Wehland-von Trebra, M., Bernhard, F., and

von Bodman, S.B. (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in *Pantoea stewartii* ssp. *stewartii*: evidence for a repressor function. *Mol Microbiol* **44**: 1625–1635.

- Missiakas, D., Mayer, M.P., Lemaire, M., Georgopoulos, C., and Raina, S. (1997) Modulation of the *Escherichia coli* sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. *Mol Microbiol* 24: 355–371.
- Nesper, J., Hill, C.M., Paiment, A., Harauz, G., Beis, K., Naismith, J.H., and Whitfield, C. (2003) Translocation of group 1 capsular polysaccharide in *Escherichia coli* serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. *J Biol Chem* **278**: 49763– 49772.
- Nimtz, M., Mort, A., Wray, V., Domke, T., Zhang, Y., Coplin, D.L., and Geider, K. (1996) Structure of stewartan, the capsular exopolysaccharide from the corn pathogen *Erwinia stewartii. Carbohydr Res* **288**: 189–201.
- Ophir, T., and Gutnick, D.L. (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. *Appl Environ Microbiol* **60:** 740–745.
- Parker, C.T., Kloser, A.W., Schnaitman, C.A., Stein, M.A., Gottesman, S., and Gibson, B.W. (1992) Role of the *rfaG* and *rfaP* genes in determining the lipopolysaccharide core structure and cell surface properties of *Escherichia coli* K-12. *J Bacteriol* **174**: 2525–2538.
- Pearson, J.P., Van Delden, C., and Iglewski, B.H. (1999) Active efflux and diffusion are involved in transport of *Pseudomonas aeruginosa* cell-to-cell signals. *J Bacteriol* **181:** 1203–1210.
- Poetter, K., and Coplin, D.L. (1991) Structural and functional analysis of the *rcsA* gene from *Erwinia stewartii. Mol Gen Genet* **229:** 155–160.
- Qin, Y., Luo, Z.Q., Smyth, A.J., Gao, P., Beck von Bodman, S., and Farrand, S.K. (2000) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. *EMBO J* **19:** 5212–5221.
- Rahn, A., and Whitfield, C. (2003) Transcriptional organization and regulation of the *Escherichia coli* K30 group 1 capsule biosynthesis (*cps*) gene cluster. *Mol Microbiol* **47**: 1045–1060.
- Rahn, A., Drummelsmith, J., and Whitfield, C. (1999) Conserved organization in the *cps* gene clusters for expression of *Escherichia coli* group 1 K antigens: relationship to the colanic acid biosynthesis locus and the *cps* genes from *Klebsiella pneumoniae. J Bacteriol* **181:** 2307–2313.
- Rahn, A., Beis, K., Naismith, J.H., and Whitfield, C. (2003) A novel outer membrane protein,. Wzi, is involved in surface assembly of the *Escherichia coli* K30 group 1 capsule. *J Bacteriol* 185: 5882–5890.
- Reeves, P.R., Hobbs, M., Valvano, M.A., Skurnik, M., Whitfield, C., Coplin, D., *et al.* (1996) Bacterial polysaccharide synthesis and gene nomenclature. *Trends Microbiol* 4: 495–503.
- Rogov, V.V., Bernhard, F., Lohr, F., and Dotsch, V. (2004) Solution structure of the *Escherichia coli* YojN histidinephosphotransferase domain and its interaction with cognate phosphoryl receiver domains. *J Mol Biol* **343**: 1035–1048.
- Romeo, T., Gong, M., Liu, M.Y., and Brun-Zinkernagel, A.M. (1993) Identification and molecular characterization of

csrA, a pleiotropic gene from *Escherichia coli* that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. *J Bacteriol* **175**: 4744–4755.

- Rozen, S., and Skaletsky, H.J. (1998) Primer3 Software Distribution. [URL] http://www-genome.wi.mit.edu/ genome_software/other/primer3.html
- Rust, L., Pesci, E.C., and Iglewski, B.H. (1996) Analysis of the *Pseudomonas aeruginosa* elastase (*lasB*) regulatory region. *J Bacteriol* **178**: 1134–1140.
- Simon, R., Priefer, U., and Pühler, A. (1982) A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in gram-negative bacteria. *Biotechnology* **1**: 784–769.
- Sledjeski, D., and Gottesman, S. (1995) A small RNA acts as an antisilencer of the H-NS-silenced *rcsA* gene of *Escherichia coli. Proc Natl Acad Sci USA* **92:** 2003–2007.
- Sledjeski, D.D., and Gottesman, S. (1996) Osmotic shock induction of capsule synthesis in *Escherichia coli* K-12. *J Bacteriol* **178:** 1204–1206.
- Stevens, A.M., and Greenberg, E.P. (1997) Quorum sensing in *Vibrio fischeri*: essential elements for activation of the luminescence genes. *J Bacteriol* **179**: 557–562.
- Stevens, M.P., Clarke, B.R., and Roberts, I.S. (1997) Regulation of the *Escherichia coli* K5 capsule gene cluster by transcription antitermination. *Mol Microbiol* 24: 1001–1012.
- Stevenson, G., Andrianopoulos, K., Hobbs, M., and Reeves, P.R. (1996) Organization of the *Escherichia coli* K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. *J Bacteriol* **178**: 4885–4893.
- Stout, V., Torres-Cabassa, A., Maurizi, M.R., Gutnick, D., and Gottesman, S. (1991) RcsA, an unstable positive regulator of capsular polysaccharide synthesis. *J Bacteriol* **173**: 1738–1747.
- Sturme, M.H., Kleerebezem, M., Nakayama, J., Akkermans, A.D., Vaugha, E.E., and de Vos, W.M. (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. *Antonie Van Leeuwenhoek* **81:** 233–243.
- Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H., and Mizuno, T. (2001) A novel feature of the multistep phosphorelay in *Escherichia coli*: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. *Mol Microbiol* **40**: 440– 450.
- Tang, X., Lu, B.F., and Pan, S.Q. (1999) A bifunctional transposon *mini-Tn5gfp-km* which can be used to select for promoter fusions and report gene expression levels in *Agrobacterium tumefaciens. FEMS Microbiol Lett* **179:** 37–42.
- Torres-Cabassa, A., Gottesman, S., Frederick, R.D., Dolph, P.J., and Coplin, D.L. (1987) Control of extracellular polysaccharide synthesis in *Erwinia stewartii and Escherichia coli* K-12: a common regulatory function. *J Bacteriol* 169: 4525–4531.
- Valdivia, R.H., and Falkow, S. (1996) Bacterial genetics by flow cytometry: rapid isolation of *Salmonella typhimurium* acid-inducible promoters by differential fluorescence induction. *Mol Microbiol* **22**: 367–378.
- Wehland, M., and Bernhard, F. (2000) The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. *J Biol Chem* **275:** 7013–7020.

- Wehland, M., Kiecker, C., Coplin, D.L., Kelm, O., Saenger, W., and Bernhard, F. (1999) Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide biosynthetic operons from *Erwinia amylovora* and *Pantoea stewartii* subspecies *stewartii*. J Biol Chem **274**: 3300– 3307.
- Whitehead, N.A., Byers, J.T., Commander, P., Corbett, M.J., Coulthurst, S.J., Everson, L., *et al.* (2002) The regulation of virulence in phytopathogenic *Erwinia* species: quorum sensing, antibiotics and ecological considerations. *Antonie Van Leeuwenhoek* **81:** 223–231.

Whitfield, C., and Roberts, I.S. (1999) Structure, assembly

and regulation of expression of capsules in *Escherichia coli. Mol Microbiol* **31:** 1307–1319.

- Williams, P., Camara, M., Hardman, A., Swift, S., Milton, D., Hope, V.J., *et al.* (2000) Quorum sensing and the population-dependent control of virulence. *Philos Trans R Soc Lond B Biol Sci* **355:** 667–680.
- Withers, H., Swift, S., and Williams, P. (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. *Curr Opin Microbiol* **4:** 186–193.
- Yindeeyoungyeon, W., and Schell, M.A. (2000) Footprinting with an automated capillary DNA sequencer. *Biotechniques* **29:** 1034–1036, 1038, 1040–1031.