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Abstract

Network densification is a key enabler for providing high data rates and ubiquitous

coverage. Although it enables the ambitious target of 1,000-fold gains in capacity,

installing more base stations (BSs) challenges the energy efficiency targets of future

networks. Cell switch-off (CSO) approaches are proposed to reduce energy consump-

tion in off-peak periods by switching off some BSs. In this thesis, we define an

energy-efficient cellular network as one in which as few BSs as possible are switched

on while still satisfying all the users demand and quality of service. This thesis con-

tributes to the current state of knowledge by directing the CSO research towards a

more realistic, feasible, and practical implementation. We do this by arguing for em-

ploying offline (static) CSO and for considering spatially irregular BS deployments.

First, we propose a dynamic CSO algorithm based on the well-known set cover prob-

lem. Our algorithm outperforms a benchmark algorithm in terms of the total number

of switched-off BSs. While dynamic CSO algorithms are designed to adapt to fast

changes in demand distribution, proper interference modelling is very challenging. To

overcome this challenge, we next study regular static CSO patterns and describe them

systematically. We propose sector-based patterns, where not only entire BSs could

be switched off (site-based), but their individual sectors too. We compare the perfor-

mance of different CSO patterns in terms of their energy efficiency and the number of

supported users. CSO patterns are advantageous for modelling interference properly,

reducing coverage holes, and making the uplink transmissions more energy-efficient

for users. Nevertheless, the underlying assumption is that the BSs are deployed ac-

cording to a regular grid. Finally, we consider spatially irregular BS deployments

as a more realistic network model; therefore, we study applying CSO to irregular

network layouts with the objective of making the active BS locations as regular as

possible. We test the suitability of several algorithms from the p-dispersion problem

literature for networks with BSs deployed with variable amounts of regularity. We

also demonstrate some of these algorithms on real BS locations.
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Chapter 1

Introduction

Energy efficiency has become an essential performance metric in the design of cellular

networks. Cellular operators are looking for ways to improve energy efficiency and

reduce their negative environmental impact. Cell switch-off (CSO) approaches are

proposed to reduce energy consumption in off-peak periods by switching off some

base stations (BSs).

In this thesis, we define an energy-efficient cellular network as one in which as

few BSs as possible are switched on while still satisfying all the users demand and

quality of service. Throughout this thesis, we use the terms energy efficiency and

energy saving interchangeably.

1.1 Motivation

Cellular networks have become the preferred means to access the Internet. The

demand for ubiquitous high data rates is increasing exponentially and the paradigm of

the cellular network is shifting from principally voice-centric to more data-centric [1].

Fifth generation (5G) wireless networks are expected to support up to 1,000-fold

gains in capacity. Several sophisticated techniques are to be employed to achieve this

ambitious target. A key enabler to provide high data rates and ubiquitous coverage

requirements is by installing small cells more densely (network densification) which

can be seen as bringing the network closer to the users in order to improve their

received power [2]. However, this introduces a challenge for energy efficiency targets,

as the growth of the number of BSs increases the overall energy consumption.

BSs can be seen as the wireless supply and the mobile users as the wireless demand.

Outside the peak hours, the wireless demand dramatically drops; yet the wireless
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Figure 1.1: Growth in the number of BSs, 2007-2012. Source: [3].

supply, which was designed to match the peak demand, is still consuming close to the

peak power. CSO is a promising approach that aims at improving energy efficiency

of cellular networks by switching off some BSs during off-peak hours. In other words,

CSO attempts to solve the demand-supply matching problem by adjusting the number

of active BSs according to the expected demand.

1.2 Energy Consumption in Cellular Networks

The number of BSs in different regions of the world has almost doubled in the period

from 2007-2012, as illustrated in Fig. 1.1. On top of network densification, aggres-

sive frequency reuse is adopted to efficiently utilize the scarce spectrum. Although

it promises to achieve higher rates, installing more cells results in higher energy con-

sumption and increase in carbon dioxide emissions [3]. This is because BSs consume

50-80% of the total energy in a cellular network [3, 4], as shown in Fig. 1.2.

Energy efficiency is an important performance metric in 5G cellular networks [2],

therefore, different solutions were proposed to reduce BSs energy consumption, in-

cluding implementing energy-efficient hardware, utilizing solar energy sources, and
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Figure 1.2: Power consumption distribution in a cellular network. Source: [3].

reducing the number of active BSs [3]. Energy consumption of a cell is not propor-

tional to its load level, i.e., a lightly loaded cell consumes approximately the same

energy as a fully loaded one [5, 6].

1.3 Cell Switch-Off: An Energy Saving Approach

for Cellular Networks

Strategically switching off cells in off-peak times is an important way of improving

the energy efficiency of cellular networks. Choosing which cells to switch off when

is a research topic known as CSO. During the planning phase, cells are deployed

in large numbers to cope with the peak traffic times. Therefore, some cells become

underutilized or even redundant outside the peak traffic. Despite being underutilized,

these cells still consume a major portion of their peak energy [5, 6].

This excessive energy consumption conflicts with the energy efficiency targets

of 5G networks [2]. Therefore, the CSO approach was proposed [7] to save energy

by entirely switching off some cells, and hand-over their users to neighbouring cells

without sacrificing the quality of service (QoS) or the coverage area.

Implementing the CSO approach is a complicated planning problem; in particular,
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switching off at inappropriate times and locations may deteriorate the overall system

performance. Although relatively new, several CSO approaches have been proposed

to tackle CSO issues from different angles (see survey papers [8, 9] for details).

Alternative terms for CSO: Other terms are sometimes used the literature when

referring to CSO and similar concepts; some of these terms are cell shaping, topol-

ogy adaptation, network restructuring, load concentration, network adaptation, BS

management, BS switching, cell zooming, and BS sleep mode.

1.3.1 CSO Classifications

There are two main CSO categories: online and offline.

Whereas online CSO, based on immediate user demands and channel states, is

problematic to implement and difficult to model, offline CSO [10–17] is more practical

and tractable. Furthermore, it is known that regular cell layouts generally provide

the best coverage and spectral efficiency [2], which leads us to preferring regular static

(offline) CSO.

1.3.1.1 Online CSO

In online CSO, an algorithm is executed in real time to determine the set of cells to

be switched off. This requires global knowledge of channel state information between

each user and each cell, as well as the load levels of all cells in the network. It

is difficult for this vast amount of information to be exchanged by the network in

a timely manner [8]. The computational time for the optimization might also be

prohibitive for large networks. Finally, another challenge in online CSO is interference

modeling, due to the fact that the set of active cells is not known a priori.

Several algorithms were proposed to implement the dynamic CSO, and most of

them rely on heuristic methods [7, 18, 19]. Using heuristics is reasonable in such

complicated scenarios as they provide good solutions in a timely manner. A simple

greedy-drop algorithm was proposed in [7] and was dubbed cell-zooming. In this al-

gorithm, cells are sequentially switched off, based on their loads starting with the

least loaded one. The algorithm terminates when it encounters the first cell that

cannot be switched off because one or more of its users cannot be served by any of

the neighboring cells. An improved version of this algorithm, improved cell-zooming,

was proposed in [18]; performance enhancement was obtained by slightly adjusting
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the termination criterion such that the algorithm does not terminate prematurely,

but rather checks all the cells in the network for possible switch-off. Applying this

new termination criterion resulted in more energy saving, by switching off more cells.

A greedy-add algorithm was proposed in [19] to switch on as few cells as possible

to accommodate all the demand. Cells are switched on based on their load and the

algorithm terminates when every user is assigned to an active cell. Other different

algorithms inspired from other fields of research were considered to tackle the CSO ap-

proach, e.g., a utility-based algorithm [20] and a genetic algorithm [18]. The common

practice is to switch off cells based on their current load [7, 18,19].

Online CSO is also known as dynamic CSO [9] and can be further classified as

fast-reaction or slow-reaction.

Fast Reaction Online CSO In fast reaction online CSO, the algorithms are sup-

posed to adapt quickly to changes in the current user demand and attempt to find the

combination of active cells that results in the best energy saving [21]. This category

allows for a fast change in the network configuration (within a few seconds at most).

Slow Reaction Online CSO In slow reaction online CSO, the change in the

network configuration requires a relatively longer time and only allows for long term

changes (within tens of seconds to minutes). These algorithms operate based on

the average traffic measures or available user demand statistics, usually relying on

predicting user density at certain times.

Another important obstacle to the practical implementation of online CSO is the

time required for the on-off/off-on switching of BSs and for completing the handover

procedures [22].

1.3.1.2 Offline CSO

One important issue in CSO is interference modelling, which is challenging because it

is hard to know the set of active cells a priori. Typically, users are assigned to the best

sector in terms of downlink signal-to-interference-plus-noise ratio (SINR). However,

when switching off a cell, its users need to be reassigned to another, perhaps less

advantageous, cell. Without a proper interference characterization, these users might

encounter a large amount of interference because the set of active cells that contribute

to the interference is only known at the final stage. The predicted performance is
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hence inaccurate. Indeed, some CSO approaches assume zero interference, i.e., there

is a perfect inter-cell interference coordination (ICIC) [5, 7]. This assumption is too

optimistic and produces an unachievable upper bound on the number of switched-off

cells. Other approaches model interference by assuming that all cells fully contribute

to the interference, as if they were active all the time [18]. This assumption yields a

poor lower bound on the number of switched-off cells.

One accurate way to model interference, thus alleviating the aforementioned prob-

lem, is by predetermining the set of active cells, i.e., the cells that actually generate the

interference in the system. This is sometimes referred to as offline or static CSO [8,9].

It is possible to predetermine several configurations of active cells for different traffic

densities and then select an appropriate configuration to accommodate the specific

demand distribution.

It is possible to predetermine several sets of active cells for different traffic densities

and then select an appropriate set to accommodate the current traffic density.

In offline CSO, different sets of active cells are predetermined offline, and the

operator choses the appropriate set to accommodate the current traffic density [10].

Only information related to the predetermined set of active cells is needed. Offline

CSO is usually applicable for longer time scales (hours) and is often based on historical

load distribution.

Offline CSO is also known as static CSO [9] and can be further classified as static

or regular static CSO.

Static CSO Static CSO is different from online CSO because the network config-

uration remains static for a long period of time. Therefore, the interference could be

modelled appropriately (in statistical terms) by considering only the predetermined

set of active cells [6].

Static CSO can be seen as a cell planning problem, but with a constrained set

of BS locations. While in cell planning the cell placement is based on a wider set of

possible locations, here the candidate locations are restricted to actual sites of BSs,

from which a subset is chosen to be active.

Regular CSO Regular CSO [10–17] is a special case of static CSO, also known

as CSO patterns. Besides being predetermined offline, the set of active cells is se-

lected according to a periodic spatial pattern [9]. Regular CSO patterns resemble the

intuitive well-known frequency reuse patterns [11].
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By applying regular CSO, the choice of active cells minimizes coverage holes. This

aspect is usually overlooked in the literature [23]. Also, regular CSO is more energy-

efficient for users in the uplink, as there is always a nearby active cell [24,25]. Regular

CSO patterns reduce the signal interference between cells due to the careful selection

of active BSs so that their are located as far away from each other as possible. The

patterns are conceptually simple and can be described in a systematic way. Regular

Static CSO is useful when the user distribution is approximately uniform in space.

The effect of different CSO patterns on the outage probability is investigated

in [10, 11], while the effect on the blocking probability is studied in [12, 14]. Authors

in [16] introduce a set of CSO patterns and propose a scheduler to jointly ensure full

coverage for both downlink and uplink.

In the context of regular static CSO, sector-based CSO may offer additional op-

portunities for energy saving that have not been explored, therefore we examined

them in Chapter 5.

1.3.1.3 Hybrid CSO

For best system performance, it might be necessary to have a hybrid CSO approach,

where an online CSO algorithm is executed on top of the offline one. Hybrid ap-

proaches have a static set of active cells to provide coverage and collect network

information. The remaining cells participate in an online CSO algorithm to accommo-

date the fast variability in the demand distribution [10]. Hybrid CSO is particularly

useful when users are non-uniformly distributed in space.

1.3.2 Switching Off Sectors

Most of the research in online CSO is executed in a sector-based manner, i.e., each

sector can be turned off individually [6, 18]. To the best of our knowledge, this is

not the case for regular CSO patterns, where only the entire BS is turned off; i.e.,

individual sector switch-off is not considered in literature. Regular CSO patterns

with individual sector switch-off can be efficient in several interesting cases. In our

simulation, each BS site has three 120◦-sectors and the azimuth orientation of the

sectors is the same for all sites. We are the first to investigate sector-based regular

CSO patterns, as detailed in Chapter 5.

7



1.4 Thesis Contribution

This thesis contributes to the current state of knowledge by directing the CSO re-

search towards a more realistic, feasible, and practical implementation. We do this

by arguing for employing offline (static) CSO and for considering spatially irregular

BS deployments.

This thesis started by investigating the dynamic CSO, the most commonly used

category. We identified some practical difficulties with dynamic CSO, therefore, we

moved on to study regular static CSO patterns. Still the underlying assumption was

that the BSs are regularly placed in a hexagonal layout. Hence, we then focused on

testing static CSO algorithms for networks with spatial irregularly deployed BSs.

At each phase of the thesis, the advantages and disadvantages are highlighted with

some possible extensions.

1.4.1 Contributions in Detail

In this thesis, we study CSO as a promising approach for energy-efficient cellular

networks. The concept is simple: During low traffic periods, some BSs are switched-

off to save energy. Throughout the course of this thesis, we start the study with

designing a dynamic CSO algorithm that is based on a well-known mathematical tool

from the field of operation research. The interference modelling is very challenging as

the active cells which contribute to the interference are not known a priori. Therefore,

we relied on a simplified assumption of perfect interference coordination.

Motivated to overcome this challenge of interference modelling, we study CSO

patterns which predetermine the set of active cell offline and hence the interference

can be properly modelled. These offline approaches do not require the extra-fast time

needed for online algorithms that adapt to fast changes in demand distributions.

Besides being predetermined, the active cells are selected so that their locations form

a regular grid. Based on the traffic density levels, it is possible to predetermine

several configurations, and operators can then select the appropriate configuration to

accommodate the current demand density.

In current cellular networks, the locations of BSs are not regular; however, the

underlying assumption of the CSO patterns is that the original network layout is

regular. This regularity facilitates the achieving of regular layout after CSO. This

encourages us to investigate the possibility of applying the CSO approach to networks
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with spatially irregular BS deployments. Therefore, we evaluate the suitability of

several heuristic algorithms to be adopted for CSO for networks with irregular BS

deployments with the extra objective of making the locations of active cells as close

to regular as possible. We conclude the study by demonstrating the effect of some of

these algorithms when applied to simulated BS locations, as well as real BS locations

obtained from two major cellular operators in Canada.

In this section, we highlight the contributions of the main chapters of the thesis

as follows:

1. The major contributions of Chapter 3 are:

• Introducing the facility location problem (FLP) as an efficient tool in the

context of CSO. We used two basic models of the FLP to formulate the

problems in both Chapter 4 and Chapter 6.

• Summarizing several FLP models and highlighting some possible applica-

tions in cellular networks.

2. The major contributions of Chapter 4 are:

• Implementing the CSO approach as a set cover problem (SCP), which

is a basic model of the FLP, and proposing a greedy-add algorithm that

provides a good solution.

• Investigating different cell sorting criteria (the order in which cells are

switched on) and comparing their impact on energy saving.

• Providing an overview of the applications of the set cover problem in wire-

less networks.

3. The major contributions of Chapter 5 are:

• Investigating sector-based regular CSO patterns, where not only entire BSs

could be switched off, but their individual sectors too. Note that switching

off sectors individually is a common practice in online CSO literature.

• Analytically comparing site-based versus sector-based CSO patterns in

terms of energy efficiency. Because switching off one sector in three per

BS does not necessarily result in one-third of energy saving, we take into

account the power consumption of the common hardware shared between

sectors of the same site.
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• Comparing the performance of different CSO patterns in terms of the num-

ber of supported users. We introduce a novel metric, the equivalent spectral

efficiency (ESE): the mean performance of a given pattern can be captured

using only this one metric, abstracting from the bandwidth and the rate;

the ESE is proportional to the mean number of supported users. We used

a realistic and complex channel model [26], which makes the ESE analyt-

ically intractable. As such, we obtain the ESE values using simulation.

From the simulated values, we analytically obtain the distribution of the

number of users using renewal process theory, which is a novel tool in this

context. We illustrate this in detail with a case study.

• Organizing the existing and newly introduced patterns using a systematic

nomenclature.

4. The major contributions of Chapter 6 are:

• Testing the suitability of several algorithms for applying CSO to irregular

network layouts with the objective of making the active BS locations as

spatially regular as possible. The problem is formulated as a p-dispersion

problem (PDP), which is a basic model of the FLP.

• Finding the optimal algorithms for different amounts of regularity and

percentages of switched-off cells.

• Observing the qualitative behaviour of these algorithms when applied to

both simulated and real BS locations.

1.5 Publications from this Thesis

WCL2’16 Quoc-Nam Le-The, Tamer Beitelmal, Faraj Lagum, Sebastian Szyszkowicz, and

Halim Yanikomeroglu, “Cell switch-off algorithms for spatially irregular base

station deployments”, under review in IEEE Wireless Communications Letters

(submission: 31 October 2016, 1st results: 16 December 2016).

WCL1’16 Faraj Lagum, Quoc-Nam Le-The, Tamer Beitelmal, Sebastian Szyszkowicz, and

Halim Yanikomeroglu, “Cell switch-off for networks deployed with variable spa-

tial regularity”, under review in IEEE Wireless Communications Letters (sub-

mission: 03 October 2016, 1st results: 01 November 2016, 1st revision: 07

January 2017).
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Yanikomeroglu, “Sector and site switch-off regular patterns for energy saving

in cellular networks”, under review in IEEE Transaction on Wireless Commu-

nications (submission: 11 October 2016).

VTC’16 Tamer Beitelmal, Sebastian Szyszkowicz, and Halim Yanikomeroglu, “Regular

and static sector-based cell switch-off patterns”, IEEE Vehicular Technology

Conference (VTC2016-Fall), September 2016, Montreal, QC, Canada.

CORS’14 Tamer Beitalmal and Halim Yanikomeroglu, “Energy saving in cellular net-

works by modeling the cell switch-off approach as a set cover problem”, Cana-

dian Operational Research Society (CORS) International Conference (Network

Planning Session), May 2014, Ottawa, Canada.

ICC’14 Tamer Beitalmal and Halim Yanikomeroglu, “A set cover based algorithm for

cell switch-off with different cell sorting criteria”, IEEE International Confer-

ence on Communications Workshop (ICC Workshop on Small Cell and 5G Net-

works), June 2014, Sydney, Australia.

VTC’12 Rainer Schoenen, Gurhan Bulu, Amir Mirtaheri, Tamer Beitelmal, and Halim

Yanikomeroglu, “First survey results of quantified user behavior in user-in-the-

loop scenarios for sustainable wireless networks”, IEEE Vehicular Technology

Conference (VTC-Fall), September 2012, Quebec City, Quebec, Canada.

ICC’12 Tamer Beitelmal, Rainer Schoenen, and Halim Yanikomeroglu, “On the impact

of correlated shadowing on the performance of user-in-the-loop for mobility”,

IEEE Workshop on User-Centric Networking (ICC U-NET workshop), June

2012, Ottawa, Canada.

EW’12 Rainer Schoenen, Gurhan Bulu, Amir Mirtaheri, Tamer Beitelmal, and Halim

Yanikomeroglu, “Quantified user behavior in user-in-the-loop spatially and de-

mand controlled cellular systems”, European Wireless Conference (EW), April

2012, Poznan, Poland.
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1.6 Thesis Summary

This thesis is organized as follows: the channel model and simulation setup model are

described in Chapter 2. Chapter 3 introduces the FLP which is a useful mathematical

tool for locating facilities (BSs in this context). Two versions of the FLP are found

very similar to the problems introduced in Chapters 4 and 6. Chapter 4 is about

dynamic CSO, where we use the SCP to model dynamic CSO. Chapter 5 investigates

the sector-based regular static CSO patterns. Chapter 6 evaluates some heuristic

algorithms to apply CSO for irregular BS deployments. The thesis ends with the

conclusion and future work in Chapter 7.

1.6.1 Chapter 2

In order to study, compare, and evaluate different CSO algorithms, we first design

a system-level simulation platform according to the long term evolution (LTE) stan-

dards. We calibrate our simulated SINR curves were calibrated against the SINR

CDFs obtained from WINNER+ partners.

1.6.2 Chapter 3

In order to formulate the CSO problem, we found a well-studied optimization prob-

lem that has a similar objective to CSO, which is managing facility locations. This

problem is called the FLP and is well-known in the fields of operation research and

decision making [27]. We introduce the FLP in this Chapter and highlight its dif-

ferent models with possible application in cellular networks. Among the different

FLP models, we used the the SCP formulation to model and solve a dynamic CSO

approach in Chapter 4; also we used the PDP to formulate the CSO approach for

irregular BS deployment in Chapter 6.

1.6.3 Chapter 4

In dynamic CSO, an algorithm is executed in real time to determine the set of cells

to be switched off. This requires global knowledge of the channels between each user

and each BS, in order to execute the CSO algorithm. Dynamic CSO allows for a

fast change in the set of active BSs to adapt to the rapid changes in immediate user

demand. We found that, this problem formulation is similar to the well-known SCP
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mathematical tool. We devised a heuristic algorithm that is designed for the SCP to

jointly solve the dynamic CSO and user-to-BS assignment problems. Our algorithm

outperforms a benchmark algorithm. Another important aspect we investigate here is

the cell sorting criterion, which is the order in which BSs are selected to be switched

on. The common criterion is to switch off cells based on their current load, which,

as our results show, might not always be the best criterion. We faced two major

challenges while working with dynamic CSO; the first one is interference modelling,

since the set of active BSs is not known a priori. The second challenge is adapting to

the fast changes in the users’ arrivals and departures, and the computational cost of

executing the algorithm online.

1.6.4 Chapter 5

One accurate way to model interference properly is by predetermining the set of active

cells (configurations), which are the cells that actually generate the interference in

the system. Based on the traffic density levels, it is possible to predetermine several

configurations, and operators can then select the appropriate configuration to accom-

modate the current traffic density. Static CSO is usually designed for longer time

scales (hours) and often based on historical load distributions. Regular static CSO

is a special case of static CSO, also known as CSO patterns. Regular CSO patterns

are advantageous in terms of modeling interference properly, reducing coverage holes,

and making the uplink transmissions more energy-efficient for users in the uplink

as there is a guaranteed maximum distance to an active (nearby) BS. We introduce

sector-based regular CSO patterns for the first time. We organize the existing and

newly introduced patterns using a systematic nomenclature; studying 26 patterns

in total. We compare these patterns in terms of energy efficiency and the average

number of users supported, via a combination of analysis and simulation. We also

compare the performance of CSO with two benchmark algorithms. We show that

the average number of users can be captured by one parameter. Moreover, we find

that the distribution of the number of users is close to Gaussian, with a tractable

variance. Our results demonstrate that several patterns that activate only one out of

three sectors per BS are particularly beneficial. For instance, the network can support

half the users with only one third of the sectors on; such CSO patterns have not been

studied before.
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1.6.5 Chapter 6

In most of the CSO literature, the BS deployment is usually assumed to follow a

regular grid or sometimes a fully random (Poisson point process) placement. Given

that the best network performance can be achieved when BSs are located on a regular

grid, we evaluate different algorithms for applying CSO to irregular network layouts

with the objective of making the active BS locations as regular as possible. This

problem has been introduced only recently. We test the suitability of several CSO

algorithms from the literature of facility location management for this new problem.

We also evaluate a recent algorithm which performs very well when the number of BSs

to switch off is high. We vary the amount of spatial regularity of the BS locations from

perfectly regular to totally random. Moreover, we also demonstrate some algorithms

on real BS locations obtained from two major cellular operators in Canada.

1.6.6 Appendix A

In Appendix A, we touched on improving the efficiency at the demand side by in-

cluding the users as active participants of the system, not just as consumers. The

user-in-the-loop (UIL) concept was proposed to incentivize users to assist the cellular

network when needed. If some users are willing to assist the network, by changing

physical location or postponing their data request, then some radio resources could

be saved. These saved resources might be used to provide higher data rates or to

serve more users. We analyze the UIL concept in a more realistic environment by in-

tegrating the effect of spatially-correlated shadowing. We also evaluate the impact of

the shadowing model on the resulting average moving distance for users, considering

both cases of uncorrelated and spatially-correlated shadowing.

1.7 Thesis at a Glance

The organization of the thesis is illustrated in Fig. 1.3, which shows the chapters of

the thesis and how they are related, providing the related publications.
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The Cell Switch-off Approach 

for Energy Efficient Cellular Networks 

 Ch.2 Channel Modelling and Simulation Setup 

Ch.4 Dynamic CSO  

                  [ICC’14, CORS’14] 

Ch.5   Regular Static CSO  

            [TWC’16, VTC’16] 

Ch.3 Facility Location Problem 

Ch.6 CSO for spatially Irregular BS Deployments 

 [WCL1’16 , WCL2’16 ]  
 [Comm. Magazine (under preparation)] 

Appendix   User-in-the-Loop (UIL) + shadowing  

       [ICC’12,  VTC’12, EW’12] 

Figure 1.3: Thesis at a glance.
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Chapter 2

Simulation Setup

2.1 Introduction

A realistic and validated simulation platform is necessary to ensure accurate results

when applying, testing, and comparing different algorithms. In Chapters 4 and 5,

we consider a cellular network based on the guidelines of the International Mobile

Telecommunications-Advanced (IMT-Advanced) [26]. These guidelines provide de-

tails on how to realistically model the wireless channel between the transmitter and

the receiver. We design a system-level simulator to evaluate the downlink system

performance of a cellular network.

The problems we consider throughout this thesis operate on a slow time scale;

therefore, it is not necessary to take into account small scale variation when evaluating

our algorithms.

Our results are based on a snapshot analysis, where users are randomly uniformly

distributed over the network area and assumed to be fixed with all channel conditions

unchanged for the snapshot duration. Then we obtain all channel measurements be-

tween users and BSs including distance, antenna gain, pathloss, large scale shadowing

and received power.

The simulation parameters described in this chapter are generally used, unless

specified inside the chapter. However, the network layout varies in each chapter,

depending on the nature of the problem, and is explained in each chapter. Also,

the spatially-correlated shadowing model is not always the same; in particular, in

the appendix, a different shadowing model is implemented, and is explained in detail

therein.
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2.2 Channel Model

We now describe the two test environments used in the thesis, namely: urban micro-

cell (UMi) and urban macro-cell (UMa).

The UMi scenario describes a dense small cell implementation, with high user

density and low-to-no mobility. This is a typical representative of city centres in

a dense urban region. The distinct characteristic of this environment is high traffic

load. This scenario is interference-limited. Micro cells are installed outside and below

rooftops, where the line-of-sight (LOS) condition is not common due to obstacles.

The UMa scenario describes large cell implementation for continuous coverage,

where BSs are located above rooftops, non-LOS (NLOS), or obstructed LOS, condi-

tion is common. This scenario is interference-limited as well.

The general simulation parameters for the channel models of IMT-Advanced are

listed in Table 2.1. The system is reuse-one, i.e., the whole spectrum is used in each

cell.

2.2.1 Pathloss and Shadowing Model

Our essential performance metric is the downlink signal-to-noise-plus-interference ra-

tio (SINR), which is the ratio of the average power received from the serving cell to

the sum of the average powers received from all other cells, plus the noise power at

the receiver. The average received power Pr by a user is calculated in a simple way,

and without loss of generality, from the following equation:

Pr [dB] = Pt + Gt + Gr − PL + Xi, (2.1)

where: Pt is the transmitted power in dB, Gt is the transmitter antenna gain, Gr is

the receiver antenna gain, and PL and Xi are the distance-dependent pathloss and

the shadowing effect; their expressions are provided later. The antenna patterns used

in our simulation are the same as described in in [26, Sec. 8.5.1].

The propagation conditions are based on the LOS and the NLOS cases. To find

the pathloss, we first determine the LOS probability.
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Table 2.1: Simulation Parameters for UMi and UMa Scenarios

Parameter Setting

ITU scenario UMi UMa

Cell transmitted power 41 dBm 46 dBm

Inter-site distance 200 m 500 m

BS antenna height 10 m 25 m

Maximum forward-to-backward 20 dB [26, Sec. 8.5]

user antenna height 1.5 m

Carrier frequency 2.5 GHz 2 GHz

User distribution independent and uniform

Probability of indoor user 0.5 0

User noise figure 5 dB

BS noise figure 7 dB

Thermal noise -174 dBm/Hz

LOS shadowing spread 3 dB 4 dB

NLOS shadowing spread 4 dB 6 dB

LOS correlation distance 10 m 37 m

NLOS correlation distance 13 m 50 m

SINR range [-7, 18] dB

Traffic type full queue

LOS pathloss model (2.3), (2.4)

NLOS pathloss model (2.5) (2.6)

Antenna gain (boresight) 17 dBi

Antenna tilt −12 ◦ [28]

Antenna aperture, horizontal 70 ◦

Antenna aperture, vertical 15 ◦

Loss through wall 20 dB N/A
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2.2.1.1 Probability of Line-of-Sight

After placing each user, we find the distance d between that user and the BS. Based

on this distance, the probability of LOS is then calculated according to

PLOS(d) = min(18 m/d, 1)(1− e−d/d0) + e−d/d0 , (2.2)

where d0 = 36 m for the UMi scenario, and 63 m for the UMa scenario. Based on this

probability, we decide if a user has a LOS signal to the transmitting BS or not, and

calculate the pathloss accordingly.

2.2.1.2 Pathloss

The pathloss calculation depends on the LOS probability, the pathloss exponent, and

the distance to the transmitter. The pathloss is measured in dB in the following

equations. For the LOS case, both the UMi and UMa have the same expressions,

which depend on the breakpoint distance d′
BP = 4h′

BSh′
userfc/c, where fc is the carrier

frequency, c = 2.998× 108 m/s is the propagation velocity in free space, and h′
BS and

h′
user are the effective heights of the BS and user antennas, respectively, and calculated

by subtracting 1 meter from the actual antenna height [26]. If a user is receiving a

LOS signal from the transmitter, then its pathloss is calculated as

PLLOS(d) = 28.0 + 22.0 log10(d) + 20 log10(fc), for d < d′
BP , (2.3)

and,

PLLOS(d) = 7.8 + 40 log10(d)− 18 log10(h′
BS)

− 18 log10(h′
user) + 2 log10(fc), for d > d′

BP .
(2.4)

If a user is receiving a NLOS signal, there are different expressions to calculate

the pathloss in UMi and UMa. For UMi, the pathloss is given by

PLNLOS(d) = 22.7 + 36.7 log10(d) + 26 log10(fc), (2.5)
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while for the UMa, the NLOS pathloss is given by

PLNLOS(d) = 161.04− 7.1 log10(w) + 7.5 log10(h)

− (24.37− 3.7(h/hBS)2) log10(hBS))(log10(d)− 3)

+ 20 log10(fc)− (3.2(log10(huser))
2 − 4.97),

(2.6)

where hBS and huser are the antenna heights of BS and user, respectively; h = 20 m

is the average building height, and w = 20 m is the street width.

2.2.1.3 Shadowing Model

The shadow fading Xi is measured in dB, and assumed to be log-normal, with zero-

mean and with standard deviation given in Table 2.1 depending on the propagation

case. The shadowing is used to consider the effect of obstacles between transmitter

and receiver. The fading values of adjacent receivers are correlated. The correlated

shadowing is calculated as a function of the distance ∆x between two receivers and

is described by

R(∆x) = e−|∆x|/dcor , (2.7)

where dcor is the correlation distance tabulated in Table 2.1. Besides the correlation

between one BS and many receivers, there is the correlation among BSs, which is

assumed to be 50%.

2.3 User Distribution and SINR Ranges

Users are independently and uniformly distributed in the region of interest. the users’

traffic profile is assumed to be full buffer with infinite queue, i.e., there is always a

packet to be sent and there is no packet loss.

User-to-cell assignment is based on the strength of the received power, i.e., users

are connected to the cell that provides them with the strongest received power. Each

user is assumed to have a minimum rate requirement that is needed in order to

guarantee its quality of service (QoS).

The relationship between the SINR values and the corresponding spectral effi-

ciencies γ is summarized in Table 2.2, and is based on the adaptive modulation and

coding (AMC) scheme. The highest γ of 5 bps/Hz is achieved when using 64QAM

with a coding rate of 5/6. On the other extreme, a γ as low as 2/3 bps/Hz is obtained

20



from QPSK with a 1/3 coding rate.

Table 2.2: AMC scheme based on SINR intervals in LTE.

Index m 1 2 3 4 5 6 7 8

SINR[dB] 0.9 2.1 3.8 7.7 9.8 12.6 15.0 18.2

Modulation QPSK 16QAM 64QAM

Coding Rate 1/3 1/2 2/3 1/2 2/3 5/6 2/3 5/6

γ[b/s/Hz] 2/3 1 4/3 2 8/3 10/3 4 5

Among the users that select to be connected to a sector j, some of them might

have a very weak SINR (< γmin); below this value, a user cannot receive any useful

communication and is considered in outage. Other users might have very high SINR

values (> γmax), which is higher than what the current constellations can use; there-

fore, these values are truncated to γmax. For LTE networks, typical values for γmin

and γmax are −7 dB and 18 dB, respectively [28,29].

2.4 Calibration

In this section, we validate our results for the UMi scenario for a network layout

consists of 19 BS sites with three 120◦ sectors at each BS, with the whole spectrum

reused at each sector (reuse-one), as shown in Fig. 2.1. In reality, this network

represents just a sample of the network, and this network will be extended in all

directions to cover a whole city.

Our simulation is wrapped-around to avoid edge effects. The wrap-around is

necessary in particular so that each cell will experience the same level of interference.

For example, if we look at cell 57 in Fig. 2.1, without a wrap-around, it will only have

three neighbouring interferers whereas cell 1 will have 7 neighbouring interferers.

With wrap-around, each cell will have the same number of interferers so that the cells

are equivalent.

We place many users uniformly in the network area, and then each user determines

its best sector based on the received power values. At each sector j, we randomly

select 10 users from the those who chose sector j as the best serving sector. This is

done mainly to avoid bias towards users with high received power.
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Figure 2.1: A network layout consisting of 19 BSs (57 hexagonal sectors).

The implementation of the wrap-around is checked by comparing the SINRs of

different ring of sectors (sectors 1, 2, and 3 represents the first ring). Fig. 2.2 illustrates

that the cumulative distribution function (CDF) of the SINR from different rings are

matched, meaning that our wrap-around is working, and there is no edge effect in the

obtained results.

To calibrate our simulation platform, we compare our results with the simulated

SINR CDF obtained from the WINNER+ project partners using multiple simulation

tools [28]. As shown in Fig. 2.3 the SINRs obtained by our simulator closely matches

the WINNER+ results.
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Figure 2.2: CDFs of SINR for different rings of sectors for the network layout in
Fig. 2.3, to check the effectiveness of the wrap-around in avoiding the edge-
effect.
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Figure 2.3: CDF of SINR for the network layout in Fig. 2.1 for the UMi scenario,
with WINNER+ calibration.
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Chapter 3

Mathematical Tool: Facility Location

Problem

In order to formulate the CSO problem, we found a well-studied optimization problem

that is very similar to CSO. This problem is called the facility location problem (FLP)

and is well-known in the fields of operation research and decision making [27]. We

introduce the FLP in this chapter and highlight its different types with possible

application in cellular networks. We used two of the FLP model formulation in

Chapters 4 and 6. We then made the analogy between FLP and CSO in Section 3.3.

The FLP is a combinatorial optimization problem that has been used in several

problems, ranging from the traditional application of optimizing warehouse locations,

to a modern application like microchip manufacturing [27].

The general FLP is formulated as choosing a subset of the facilities to be open,

given a set S = {s1, .., sm} of potential facility locations and a set of demand points

(customers) U = {u1, .., un} which are served by the facilities. The objective is

to minimize the total cost of serving all customers, while solving the assignment

problem of which customer should be served by which facility. Fig. 3.1 is a graphical

representation of the FLP and a possible assignment between facilities and customers.

Each facility has an opening cost fj. There is also the connection cost cij, which is

the cost of connecting a customer i to the serving facility j, e.g., transportation cost.
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Table 3.1: List of Symbols in FLP.

Symbol Description

U set of customers

S set of candidate facility locations

fj fixed cost of opening a facility at site j

dij distance between customer i and facility j

cij cost of connecting customer i to facility j

Dc cover distance (maximum distance a facility can serve a customer )

Gi {j|dij ≤ Dc}, set of facilities that can cover customer i

K maximum distance between any customer and its serving facility

yj =







1 if a facility is opened on location j

0 otherwise

xij =







1 if customer i is assigned to facility j

0 otherwise

Ri demand of customer i

p required number of facilities to be open

zi =







1 if customer i is covered

0 otherwise

DM a large constant (≥ max{Dij})

D minimum separation distance between any pair of facilities

Wj capacity of facility j

C cost per unit demand per unit distance

hij number of units of flow between nodes i and j

26



 

 S  U
u  1

u  n

s  1

s  m

Figure 3.1: Bipartite graph represents the FLP, showing the set of facilities S and
the set of customers U , and a possible assignment.

The mathematical symbols for the FLP are introduced in Table 3.1, and the

generalized problem is formulated as:

minimize
∑

j∈S

fjyj +
∑

j∈S

∑

i∈U

cijxij, (3.1a)

subject to
∑

j∈S

xij ≥ 1, ∀i ∈ U , (3.1b)

yj − xij ≥ 0, ∀i ∈ U , j ∈ S, (3.1c)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ S, (3.1d)

yj ∈ {0, 1}, ∀j ∈ S. (3.1e)

Usually, a natural extension of the general FLP is the weighted case, where not all

the facilities are assigned the same weight (cost). Another extension is the capacitated

FLP, where facilities have limited resources; and hence might not be able to serve all

customers within their geographical area.

3.1 Basic Facility Location Models

Different FLP models are available for different location problems. The variety of

models is due to differences in the objective functions, the constraints, the chosen

cost functions, and a number of other parameters [27]. The FLP aims in general
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at finding the optimal value for some objective. The fundamental measure in such

problems is usually the distance, or a function that is directly related to the distance,

such as cost or time. Thus, FLP classification is based on the distance point of view.

There are two general FLP categories, the maximum distance models and the total

(or average) distance models [27]. Another factor that can be considered is the prior

knowledge of the number of facilities to be opened. In all of the following models,

it is assumed that all the locations of the customers and the candidate facilities are

given. For simplicity, all the models we introduce in this section are un-capacitated

cases of the FLP.

3.1.1 Maximum Distance Models

In this category, there is a maximum coverage distance Dc, usually known in advance,

beyond which a customer can not be served by a particular facility. The first and

simplest model is the SCP which is introduced hereafter. The SCP formulation is

used as the basis of formulating other FLP models.

3.1.1.1 Set Cover Problem (SCP):

The SCP is a fundamental problem in combinatorial optimization; therefore, it has a

wide range of applications. In this model, a cover distance is given and the objective

is to minimize the number of open facilities required to cover (serve) all customers.

The SCP is NP-hard [30].

The SCP can be formulated as:

minimize
∑

j∈S

yj, (3.2a)

subject to
∑

j∈S

xij ≥ 1, ∀i ∈ U , (3.2b)

yj ∈ {0, 1}, ∀j ∈ S. (3.2c)

In this formulation is called the unweighted SCP, where all facilities are assumed

to have the same opening cost, so the objective becomes minimizing the number of

open facilities. If facilities have different opening costs, then the cost (weight) of the

facility is included in the objective function.
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3.1.1.2 Maximal Covering Location Problem (MCLP):

In the SCP, there is no upper bound on the number of facilities to open; One can open

as many facilities as required to satisfy all customers. However, the MCLP is useful

in situations when there is a maximum number of facilities p that can be opened due

to budget constraints. With those p facilities, the objective of the MCLP is to select

p facilities to open in such a way that maximizes the coverage of customers. In other

words, if not all customers can be covered, the MCLP model tries to cover the most

demand possible. The MCLP is also NP-hard [30].

The MCLP can be formulated as:

minimize
∑

i∈U

hizi, (3.3a)

subject to
∑

j∈Gi

yj − zi ≥ 0, ∀i ∈ U , (3.3b)

∑

j∈S

yj = p, (3.3c)

yj ∈ {0, 1}, ∀j ∈ S, (3.3d)

zi ∈ {0, 1}, ∀i ∈ U . (3.3e)

3.1.1.3 p-Center Problem (PCP):

In the SCP and MCLP, the coverage distance Dc is a fixed predetermined value.

But what if, for equity reasons, Dc becomes the target? The PCP has the objective

of minimizing the maximum distance K that a customer is from its serving facility,

constraint by a predetermined number p of facilities that can be open. Given the

previous definitions, and these new variables:
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The PCP is formulated as :

minimize K, (3.4a)

subject to
∑

j∈S

yj = p, (3.4b)

∑

j∈S

xij = 1, ∀i ∈ U , (3.4c)

xij − yj ≤ 0, ∀i ∈ U , j ∈ S, (3.4d)

K −
∑

j∈S

Ridijxij ≥ 0, ∀i ∈ U , (3.4e)

yj ∈ {0, 1}, ∀j ∈ S, (3.4f)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ S. (3.4g)

For fixed values of p, the PCP can be solved in O(Np) time; whereas for variable

values of p, the problem is NP-hard [30].

3.1.1.4 p-Dispersion Problem (PDP)

While in the previous models the concern was on the distances between customers

and facilities, the concern of the PDP is on the mutual distances between open facil-

ities, with the objective of maximizing the minimum distance between any two open

facilities.

To formulate this model, an extra input DM , which is a large constant, and a

decision variable v are introduced:

maximize v, (3.5a)

subject to
∑

j∈S

yj = p, (3.5b)

v ≤ Dij + DM(1− yi) + DM(1− yj),

∀i, j ∈ S, i < j, (3.5c)

yj ∈ {0, 1}, ∀j ∈ S. (3.5d)

3.1.2 Total or Average Distance Models

In several cases, the objective is to minimize the total or average distance instead

of minimizing the maximum distance. This category can be considered as min-sum
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problems, as opposed to the min-max problems in the previous category.

3.1.2.1 p-Median Problem (PMP):

The objective here is to find the locations of p facilities that minimize the total dis-

tance between customers and their associated facilities. The PMP can be formulated

as follows:

minimize
∑

i∈U

∑

j∈S

Ridijxij, (3.6a)

subject to
∑

j∈S

yj = p, (3.6b)

∑

j∈S

xij = 1, ∀i ∈ U , (3.6c)

xij − yj ≤ 0, ∀i ∈ U , j ∈ S, (3.6d)

yj ∈ {0, 1}, ∀j ∈ S, (3.6e)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ S. (3.6f)

3.1.2.2 Un-capacitated Fixed Charge Location Problem (U-FCLP):

The PMP has some limitations and it might not be applicable to some problems.

Those limitations are associated with its assumptions. First, the opening cost is the

same for all facilities. Secondly, a priori knowledge of how many facilities to open, p,

is assumed. To avoid these two assumptions, the objective of the U-CFLP is to jointly

minimize the total facility and connection costs. The result of solving the U-FCLP

is the optimal number and locations of facilities and a mapping that connects each

customer to a facility.

minimize
∑

j∈S

fjyj + C
∑

i∈U

∑

j∈S

Ridijxij, (3.7a)

subject to
∑

j∈S

xij = 1, ∀i ∈ U , (3.7b)

yij − xj ≤ 0, ∀i ∈ U , j ∈ S, (3.7c)

yj ∈ {0, 1}, ∀j ∈ S, (3.7d)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ S. (3.7e)

31



3.1.2.3 Hub Location Problem (HLP):

This model is concerned with locating distribution points (hubs), not the original

facilities. In some logistics scenarios, hubs are needed, especially when distributing

goods. For cost efficiency, it is better to use larger trucks to deliver the goods to the

hubs and then use smaller trucks to deliver the goods to the final destination. The

objective here is to locate hubs and delivery routes in order to minimize the total

cost.

Different from previous formulations, the decision variables yj and xij refers to

hub j not facility j, and constant cij refers to the cost of connecting customer i to

hub j. The HLP is formulated as follows:

minimize
∑

i∈U

∑

j∈S

bij





∑

k∈N

cikyik +
∑

m∈N

cjmyjm +
∑

k∈N

∑

k∈N

ckmyikyjm



, (3.8a)

subject to
∑

j∈S

yj = p, (3.8b)

∑

j∈S

xij = 1, ∀i ∈ U , (3.8c)

yij − xj ≤ 0, ∀i ∈ U , j ∈ S, (3.8d)

yj ∈ {0, 1}, ∀j ∈ S, (3.8e)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ S. (3.8f)

3.2 Solution Approaches for FLP

The FLPs are mainly formulated as a mixed integer linear programming (MILP)

problems as seen in the previous section. The fact that all the location models are

NP-hard excludes the use of the standard optimization approaches such as branch-

and-bound. In particular, for large-scale networks, the execution time is prohibitive,

with no guarantee of finding a solution (even a poor one). Several methods have been

introduced to find a solution for FLP problems, if not the optimal, at least a very

good one [27].
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Table 3.2: FLP Models Summary Table

 

 
Model Objective 

Assumptions Possible Applications 

 in Cellular Networks 

M
ax

im
um
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e 
M

od
el

s 

SCP 

Minimize the number of open 

facilities required to cover all 

customers. 

- All customers must be covered. - dynamic CSO (see Ch. 4) 

- interference minimization 

MCLP 

Locate p facilities, in such a way 

as to maximize the covered 

demand. 

- Upper limit on the number of facilities. 

- Some customers may not be covered. 

- cell planning 

- CSO with QoS guarantee 

 

PCP 

Minimize the maximum distance 

between each customer and their 

nearest open facility. 

-  Predetermined number of facilities. - power control 

PDP 

Maximize the minimum mutual 

distance between any pair of 

facilities. 

-  Predetermined number of facilities. 

 - Concerned only with the mutual distances 

between open facilities. 

- CSO for irregular BS 

placement (see Ch. 6) 

To
ta

l/A
ve

ra
ge

 D
is

ta
nc

e 

M
od

el
s 

PMP 

Minimize the total distance 

between customers and their 

serving facilities. 

- Predetermined number of facilities.  

U-FCLP 
Minimize total of facility cost plus 

transportation costs. 

- Consider the transportation cost. - CSO + power control 

HLP 
Locate distributing points (hubs) 

to minimize total cost. 

- Each node is assigned to exactly one hub. 

- Customers may be assigned to a farther hub. 

- relay placement problem 

- drone (UAV) placement 
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3.2.1 Greedy Algorithms

Greedy algorithms are designed to find a good solution to the FLP with no guarantee

of finding the optimal solution. After a first step of creating disjoint sets of customers

each facility can cover, the algorithm calculates the effectiveness of each set, and

choses the facility with the greatest impact on the objective function and marks it as

open. The same procedure is repeated to open (add) facility sequentially in a matter

known as greedy-add. There exists a reverse algorithm called greedy-drop that starts

with all the facilities open and then closes (drops) the facility that yield the least

impact on the objective function [27].

3.2.2 Improvement Heuristics

Although greedy approaches can generate results fast, they might not yield good re-

sults consistently. Several algorithms have been proposed to start with an initial point

and try to improve it. A preliminary algorithm, such as a greedy-add, can be used

to obtain a good initial solution. Some examples of these algorithms are neighbor-

hood search, heuristic concentration, and fast interchange. A common problem with

heuristic algorithms is that they might fail to find the global optima and find local

optima instead. A metaheuristic is an intelligent way to guide heuristics to escape

from local optima and search for better solution in the whole region. An example of a

metaheuristic is the Tabu search, which restricts some types of moves after a certain

number of iterations [27].

3.2.3 Lagrangian Relaxation

A key purpose of heuristics is to reduce the execution time in exchange for the solution

quality. Therefore, it is difficult to ensure any performance guarantee (i.e., we don’t

know how far the solution is from the optimum.) A good way to evaluate the quality

of the solution is by finding upper and lower bounds, which can be obtained by using

the Lagrangian relaxation method. Lagrangian relaxation formulation modifies the

original objective function by adding one of the constraints multiplied by an associated

Lagrange multiplier in order to find a bound. This new formulation is referred to as

a relaxed problem, and is usually much easier to solve optimally. The difficulty here

is in finding optimal values for the Lagrangian multipliers [27].
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customers ← user

facilities← BSs

candidate facility locations← all BSs in the network

open facilities← BSs that remain active

fixed cost← energy consumption at a BS

capacity← bandwidth

connection cost← transmit power or required bandwidth

Figure 3.2: Analogy between CSO and FLP

3.3 Modeling the CSO Approach as a FLP

The CSO approach is used to save energy by switching off some BSs during periods of

light traffic. Switching off BSs is not as simple as it seems; it includes a lot of planning,

decision making, and signal exchanging to ensure that active users are satisfied. We

need to optimize the number and choice of switched-off BSs, and hand-over users

to other active BSs in a way that maximizes the overall network performance and

results in the most energy saving. The objectives of the CSO approach (minimize the

number of active BSs and find the user-to-cell assignment) are similar to that of the

FLP; however, the two problems are not identical. We need to be very careful when

modeling the CSO as a FLP.

The FLPs are application-specific; therefore, we first clarify the terminology of the

FLP in the context of cellular networks, with the analogy made in Fig. 3.2. Based on

this analogy, we can determine the appropriate model to formulate the CSO approach,

and modify its available algorithm to find a solution.

According to the FLP classification, the CSO approach would be a capacitated

and weighted FLP with unsplittable demand. Splittable demand means that the

demand of a customer can be satisfied by more than one facility. If we restrict the

demand to be served by a single facility, then it is unsplittable.

Later, in Chapter 4, we model a dynamic CSO approach using as an unweighted

capacitated SCP. We also use PDP to find solutions for the CSO for spatially irregular

BS deployments.
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Chapter 4

Dynamic Cell Switch-Off: A Set Cover

Based Algorithm for Cell Switch-Off

4.1 Introduction

In this chapter, we explore a slow-reaction dynamic (online) CSO approach.

Looking at the different FLP models, we find that the set cover problem (SCP)

is the most suitable one to model the CSO approach. The objective of the SCP is to

minimize the number of open facilities (active BSs). The connection cost between a

customer and its serving facility is ignored in the SCP, this matches the CSO problem

well, because we assume that the BS transmission power is a small portion of its total

power consumption. We formulate the CSO approach as a SCP after modifying it to

include the special characteristics of cellular networks. Consequently, we propose an

algorithm to solve the CSO problem, and show that it outperforms the benchmark

algorithm in terms of the amount of saved energy.

The SCP is usually denoted as (U ,S, C), where U is a universe of n elements, S

= {S1, ...,Sm} is a set of m subsets of U , and C = {c1, ..., cm} is the set giving the

cost associated to each subset Sk ∈ S. A set cover is a collection of subsets from

S such that all elements in U are included in at least one subset. The objective of

the SCP is to find the set cover S∗ ⊆ S that minimizes the cost [30]. If all subsets

have the same cost, the problem becomes the unweighted SCP case (U ,S, 1): find the

S∗ that contains the least number of sets that cover all the elements of U . Fig. 4.1

illustrates an example of the SCP, with both {S1,S2,S3} and {S4,S5} can cover all the

customers. If all sets have the same weight (cost), then the cover set that minimizes
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Figure 4.1: A SCP example with two cover sets: {S1,S2,S3} and {S4,S5}. Black
circles represent customers and the rectangles are subsets of users.

the cost is the one with the smallest number of sets, which is {S4,S5} in this example.

From the capacity point of view, there are two versions of the problem: un-

capacitated and capacitated SCP. In the un-capacitated version, every subset Sk is

assumed to have unlimited resources and can serve all the elements in the set, while

in capacitated SCP, each element i has a demand bi and each subset has limited

resources to distribute among its elements.

4.1.1 Applications in Wireless Networks

The SCP has already been used to solve various problems in wireless networks, as

highlighted in this subsection. In wireless mesh networks, the SCP was used in the

planning phase to optimally locate the gateways, in order to minimize the deployment

cost while covering all the routers [31, 32]. It was used in ad hoc networks to solve

the problems of broadcasting [33] and energy saving [34]. Minimizing the interfer-

ence is another application of the SCP in both wireless sensor networks (WSNs) [35]

and cellular networks [36]. Yet the most common application of the SCP in wireless

networks is to solve the coverage problem in WSNs [37–46]. According to the survey

papers [34, 47], the coverage problem in WSNs is classified into two categories: area

coverage and discrete point coverage. The objective of the former category is to mon-

itor a geographical area, while in the latter it is to cover a set of points. The SCP

in WSNs is somewhat similar to the CSO approach. Hence, the objective in both

of them is to cover some points with the minimum number of sets. This objective

corresponds to maximizing energy saving by minimizing the number of active BSs.
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However, modeling the CSO approach as a SCP cannot follow the exact same proce-

dure as for WSNs. This is because of three major differences that should be carefully

addressed. The first and key difference is the capacity constraint. While in CSO the

cell capacity is a vital factor, it is not as important in WSNs because only low data

rates are transmitted. The second difference is the coverage pattern. The coverage

area in WSNs is usually assumed to be circular [37], whereas in CSO, it is not circular,

due to the shadowing effect caused by obstacles, reflection, and diffraction. The third

difference is the type of requirements for energy saving.

4.1.2 Problem Formulation

The objective of the CSO approach is to switch off as many cells as possible while

providing users with their required rates. Our formulation is based on the observa-

tion that this objective can be achieved using the SCP. Moreover, there are several

algorithms to solve the SCP and they provide a very good solution with polynomial

time complexity [30]. The SCP formulation is a consistent strategy to implement the

CSO approach, while its available solutions can be modified to address the special

characteristics of the CSO. The results shown later in this section demonstrate the

efficacy of the proposed CSO algorithm based on a SCP formulation.

The CSO approach is formulated as a (U ,S, 1) SCP, where U is the set of user

equipments (UEs) in the network, S is the set of subsets of UEs belonging to each cell,

and 1 corresponds to the unweighted SCP. In the CSO context, unweighted means

that all cells have the same cost, where the cell cost is equal to the consumed energy

when the cell is active1.

One possible formulation of the CSO approach as a SCP is the following:

minimize
∑

j∈S

yj (4.1a)

subject to
∑

j∈S

xijyj = 1, ∀i ∈ U , j ∈ S, (4.1b)

xij, yj ∈ {0, 1}, ∀i ∈ U , j ∈ S. (4.1c)

The notations used in the formulation and algorithms are introduced in Table 4.1.

1This formulation can easily be extended to the case of cells with different costs, e.g., in HetNets
scenarios with macro, micro, or pico cells.
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Table 4.1: Symbols for Dynamic CSO

Symbol Description

U universe of n users (elements)

S set of m subsets of U

C set of the cost associated to each subset ∈ S

yj binary variable, = 1 if cell j is active

xij binary variable, = 1 if UE i is connected to cell j

X = [xij]: UE-to-cell assignment matrix

Ri rate required by UE i

βij SNR of UE i when connected to cell j

ηij spectral efficiency between UE i and cell j

ηth spectral efficiency of a central UE

Wj bandwidth of cell j

bij = Ri

ηij
required bandwidth for UE i if served by cell j

B = [bij]: required bandwidth matrix

Nj set of UEs covered by cell j

Mj set of UEs currently served by cell j

Sj set of UEs can be served by cell j

V set of connected/served UEs

L set of active cells

This un-capacitated SCP (4.1) can be solved by a simple greedy-add algorithm [30,

Algorithm 2.2] which provides a good solution. Despite the similarities, the CSO

approach has distinct characteristics that should be considered when formulating it

as a SCP. To accommodate these characteristics, we made three modifications to the

simple greedy-add algorithm.

The first modification is the following capacity constraint

∑

i∈U

bijxij ≤ Wj, ∀j ∈ S. (4.2)

The input of the original algorithm is the cover set Nj, which is the set of all
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UEs that are covered by cell j. Instead of complicating the formulation in (4.1) by

adding an extra constraint, the constraint in (4.2) is enforced by running a preliminary

algorithm to obtain the service set Sj, which is the set of UEs that can be served

by cell j without exceeding the cell capacity. Only a subset of UEs covered by cell j

will be included in its service set Sj so that the sum of the demand does not exceed

the total bandwidth Wj. In other words, a cell may not be able to serve all UEs

in its cover set, i.e., the service Sj set is a subset of the cover set Nj. Using the

service set as an input to the main algorithm instead of the cover set allows the use

of [30, Algorithm 2.2] that is originally designed for un-capacitated SCP. The term

served UEs is used instead of covered UEs to emphasize the capacity aspect.

The second modification is regarding the possibility of splitting the demand. If

the demand (required bandwidth bi) of UE i can be satisfied by more than one cell,

then the demand is referred to as splittable demand. In the original SCP formulation,

the splittable demand is introduced by the constraint

∑

j∈U

xijyj ≥ 1, ∀i ∈ U , j ∈ S. (4.3)

However, in traditional cellular networks, the UE demand is usually satisfied by a

single cell; this is referred to as un-splittable demand. This was achieved by replacing

constraint (4.3) with constraint (4.1b) in the original CSO formulation (4.1).

The third modification is due to the type of demand. In the capacitated SCP,

UE i requires the same demand bi from any cell. However, in the context of cellular

networks, the required bandwidth of UE i differs based on which cell is providing

the service: we referred to this as dissimilar demand. Therefore, the notation bij

is needed to differentiate between the different required bandwidths when served by

different cells. Although there are algorithms to solve the the capacitated SCP [48],

we were not able to use them because they are very specific and not designed for

dissimilar demand.

4.1.3 The Proposed Algorithm

A centralized two-stage algorithm is proposed here to solve the CSO problem. The

first stage, described in Algorithm 1, is used to obtain the service set that enforces

the capacity constraint of (4.2). To find the service set Sj for cell j, we first start with

an empty set Sj, and then the set Mj of UEs that are currently served is are added
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to Sj. After that, the cell bandwidth Wj is filled up by adding new UEs from set Nj

starting with UE i∗ that requires the least bandwidth bi∗j. The algorithm terminates

after obtaining the service sets S = {S1,S2, ...,Sm}, where m is the number of cells

in the network.

The second stage (the main algorithm) is described in Algorithm 2. The input of

this algorithm is the set of service sets S obtained from Algorithm 1. This algorithm is

a modified version of the simple greedy-add algorithm for the un-capacitated SCP [30,

Algorithm 2.2]. The algorithm starts with the initial condition that all cells are

switched off and all UEs are unconnected. In each iteration, the algorithm selects a

cell j∗ to be switched on. The order in which cells are selected (cell sorting) highly

impacts future cell switch-off decisions. The common practice is to select a cell based

on its current load. However, switching off a cell does not depend solely on the cell’s

own load but also on several factors such as the available bandwidth of neighbour cells
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and the channel quality between its UEs and other cells. Therefore, we investigate

three different cell sorting criteria and analyze their effect on the final number of

switched off cells. The cell selection procedure is explained in steps 6-16 of Algorithm

2. Furthermore, the three different cell sorting criteria are introduced as follows:

1. MaxLoad: In this case, the next cell to be selected is the cell with the highest

load. Selecting cells based on their loads is the common practice in literature.

2. MaxUsers: In this case, the next cell to be selected is the cell that can serve the

most unconnected UEs.

3. MaxCentres: In this case, the next cell to be selected is the cell that has the

most number of cell-central UEs (UEs with good channel quality). A UE i is

a cell-central UE for cell j if ηij ≥ ηth, where ηth is the spectral efficiency of a

central UE and is achieved when SNR is 30 dB or more.

After selecting a cell j∗ to switch on, all UEs in its service set Sj∗ are added to

the set V and the assignment matrix X is updated accordingly. The service set is

updated at each iteration, by calling Algorithm 1, based on the updated values of V

and X. The algorithm terminates when all UEs are connected to a BS. Finally, the

cells in set V will stay active while all other cells are switched off.

4.1.4 Simulation Results

We evaluate the proposed algorithms for the UMi scenario, for a square network

layout of 100 BSs with omni-directional antennas. The number of UEs per cell and

their required rates are selected to simulate a lightly-loaded network, which is the

normal operating situation of the CSO approach. For highly-loaded networks, all

cells are expected to be active, and hence the CSO approach is not applicable.

In our simulations, we assume that all UEs in the network area are included in

the cover set of each cell. This assumption is valid because of the natural dense cell

deployment of the UMi scenario. To make the problem tractable, we assume that

the inter-cell interference is managed by some interference management techniques.

Therefore, the spectral efficiency ηij is calculated based on βij the signal-to-noise ratio

(SNR) between UE i and cell j is using Shannon’s formula:

ηij = log2(1 + βij). (4.4)
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The proposed algorithm represents a centralized approach where all cells are con-

nected to a central entity (cloud) that has global information about SNR values

between all UEs and all cells. The average number of switched-off cells is obtained

by taking the average over 100 realizations. The energy saving is assumed to be pro-

portional to the number of switched-off cells. This is because of the fact that cells are

consuming a significant amount of energy even when not serving any users; therefore,

the energy consumed for transmission and processing can be neglected.

The proposed algorithm is compared with the benchmark greedy-drop algorithm

from [18], and the results are illustrated in Fig. 4.2. This figure presents the energy

saving (y-axis) for different numbers of UEs per cell (x-axis). For the sake of a

fair comparison, we compare both algorithms using the same cell sorting criterion,

MaxLoad. For a very small number of UEs per cell (5) the benchmark algorithm

performs slightly better. However, when the number of UEs per cell increases to

10 or more, our algorithm outperforms the benchmark algorithm by achieving up to

20% more energy saving (in the case of 25 UEs per cell). This improvement might be

credited to the fundamental difference between the greedy-add and the greedy-drop

approaches. In greedy-drop approaches, UEs of a cell are handed over before the cell

is switched off it off. This may not result in using 100% of the bandwidth of other

cells. Hence, the focus is to get rid of the cell load, and not to maximize the load in

some cells. On the other hand, our greedy-add algorithm concentrates the load in a

cell before switching it on by trying to load it to the maximum. This maximum cell

loading results in an increased number of switched off cells when using our greedy-add

algorithm.

Fig. 4.3 demonstrates the energy saving when applying different cell sorting cri-

teria: MaxLoad, MaxUsers and MaxCentres. As shown in the figure, the selection

of the cell sorting criterion affects the achieved energy saving. Both MaxLoad, and

MaxCentres criteria performed very close to each other regardless of the number of

UEs per cell. However, the MaxUsers criterion outperformed the other two sorting

criteria in terms of energy saving: A gain of about 5% was constant throughout all the

different numbers of UEs per cell. This improvement can be explained as follows: in

MaxUsers, the next cell to switch on is determined based on the number of UEs that

a cell can serve. Thus the selection includes the future contribution of this particular

cell to accommodate unconnected UEs. However, in MaxLoad, the selection is based

on the current load of the cell without any indication of how much it can contribute
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Figure 4.2: The average number of switched-off BSs for the proposed algorithm vs
the benchmark algorithm from [18] using the MaxLoad cell sorting criterion.

to the unconnected UEs. In this latter case, the selected cell might not be the best

cell to select as it cannot contribute much to the unconnected UEs.

Fig. 4.4 shows a realization for 5 UEs per cell to demonstrate the impact of

the the cell sorting criterion on the CSO procedure and the resulting UE-to-cell

assignments. Fig. 4.4(a) shows the initial UE-to-cell assignment before applying the

proposed CSO algorithm. Figs. 4.4(b) and 4.4(c) illustrate the difference in UE-

to-cell assignment after applying different sorting criteria MaxLoad and MaxUsers

respectively. As shown in Fig. 4.4, the set of active cells highly depends on the cell

sorting criterion.

Fig. 4.5 shows the load distribution of BSs after applying CSO. We find that most

cells are very highly loaded, however, there remain some cells that are very lightly

loaded (as light as 10%). Some opportunities for extra energy saving may come from

switching off those cells through multi-carrier cooperation or user-assisted CSO.

45



Number of UEs per cell
5 10 15 20 25

N
um

be
r o

f s
w

itc
he

d 
of

f c
el

ls

45

50

55

60

65

70

75

80
Proposed algorithm with MaxLoad
Proposed algorithm with MaxUsers
Proposed algorithm with MaxCentres
95% confidence interval

Figure 4.3: Comparing different cell sorting criteria in terms of The average number
of switched-off BSs.
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Figure 4.4: A visualization of the UE-to-cell assignments for the case of 5 UEs per
cell; to show the impact of cell sorting criterion.

4.2 Conclusion

Dynamic CSO is a promising approach for energy saving in cellular networks through

switching off some appropriate cells. Most of the existing algorithms for implementing

the CSO approach switch off cells based on their current load. However, the switch-

off procedure is affected by the order in which cells are switched off (cell sorting).

Therefore, three different cell sorting criteria were investigated and compared to show

their impact on the total energy saving. Simulations showed that switching off cells

based on the number of UEs they can serve provided the best performance among

the investigated cell sorting criteria.

Furthermore, we formulated the CSO approach as a SCP. Using this formulation,

we proposed a greedy-add algorithm for dynamic CSO. This proposed algorithm was

shown to outperform the benchmark algorithm, improved cell-zooming, when the

number of UEs per cell is large.
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Chapter 5

Sector-Level and Site-Level Regular

Switch-Off Patterns

5.1 Introduction

Regular CSO is a special case of static CSO, also known as CSO patterns. A pattern

refers to the configuration of active sectors. Besides being predetermined offline, the

set of active sectors is selected according to a periodic spatial pattern [9]. It has

been shown that, for the same number of BSs, the best SIR distribution can be

achieved when the BSs are located on a regular grid [49]. Therefore, CSO patterns

were introduced in literature to make the interference tractable and to avoid coverage

holes at the same time.

By applying regular CSO, the choice of active cells minimizes coverage holes. This

aspect is usually overlooked in the literature [23]. Also, regular CSO is more energy-

efficient for UEs in the uplink, as there is always a nearby active cell [24,25]. Regular

CSO patterns reduce the interference between cells due to the careful selection of

BS locations so that the are as far from each other as possible. The patterns are

conceptually simple and can be described in a systematic way. Regular Static CSO

is useful when the UEs’ distribution is approximately uniform in space.

Regular CSO patterns resemble the intuitive and well-known frequency reuse1

patterns [11].

1Regular CSO patterns have conceptual similarities with frequency reuse. Here we can make a
contrast with the performance of frequency reuse schemes, in which the average SINR increases with
the frequency reuse factor [50, Table I]. This is because the distance to the nearest interfering BS is
increased, while the cell size remains about the same. In regular static CSO, however, the cell grows
with the decrease of the proportion of active sectors [15], which is analogous to the frequency reuse
factor. The current practice in LTE is to employ a frequency reuse of one.
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Table 5.1: Regular CSO Patterns in the Literature.

Ref. Site-level
Sector-level

3
3

2
3

1
3

[10] 1
4

Omni-directional

[11] 2
3
, 2

4
, 3

7
Omni-directional

[14] 1
3
, 1

4
1
7
, 1

9
Omni-directional

[16] 1
3
, 2

3
, 1

4
, 2

4
, 3

4
Omni-directional

[13] 1
4
, 1

7
Omni-directional

[15] 1
4
, 1

7
, 1

9
Yes No No

[17] 1
4
, 2

4
, 3

4
Yes No No

Our work [51] 1
3
, 2

3
, 1

4
, 2

4
, 3

4
, 1

7
, 1

9
Yes Yes Yes

CSO patterns are already under consideration by several research groups. Ta-

ble 5.1 summarizes the existing work on regular CSO patterns. The effect of different

CSO patterns on the outage probability is investigated in [10, 11], while the effect of

the blocking probability is studied in [12,14]. Authors in [16] introduce a set of CSO

patterns and propose a scheduler to jointly ensure full coverage for both downlink

and uplink.

The patterns in the literature [10–17] we will call site-level patterns, since only

entire sites (BSs) are switched off. We introduce sector-level patterns, where a certain

number of sectors is switched off at each site. Sector-based regular CSO patterns

are based on a logical AND combination of site-level and sector-level patterns. We

compare the performance of these patterns using only one parameter, abstracting from

bandwidth and required rate. Results show that regular CSO patterns with individual

sector switch-off can be efficient in several interesting cases. In our simulations, each

BS site has three 120◦-sectors and the azimuth orientation of the sectors is the same

for all sites.
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Table 5.2: List of Symbols for Static CSO Patterns.

W total system bandwidth
N number of UEs that can be served per active sector

N̄(w) renewal process
γi SINR between UE i and its serving sector

γmin minimum SINR at which a UE can receive information
γmax maximum SINR that can be supported

ηi spectral efficiency of UE i,
= log2(1 + γi) [bps/Hz]

Ri rate required by UE i
bi bandwidth required by UE i,

= Ri/ηi [Hz]
ηeq equivalent spectral efficiency (ESE),

= 1/E {1/η} [bps/Hz/Sector]
PX(n/m, k/3) CSO pattern where n out of m BSs are active,

k out of 3 sectors are active, and
X is to distinguish between different rotations

ρ proportion of active sectors in the network,
= |P(n/m, k/3)| = nk

3m
∈ [0, 1]

Psite total power consumed at a fully active site
Ppattern power consumed per system site for the selected pattern

PS power consumed per sector
PC common power consumed at a site
α = PC/PS

δ ratio of ESEs of two patterns
Po probability of signal outage (when γi < −7 dB)

CoV {X} coefficient of variation of a random variable X

=
√

VAR {X}/E {X}

5.2 Methodology

In this section, we explain the analysis for estimating the average number of supported

users, introduce the two levels of CSO patterns (site-level and sector-level), and then

compare the sector-based versus site-based CSO patterns in terms of energy efficiency.

The symbols used are provided in Table II.
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5.2.1 Analysis of the Number of Supported Users

In this subsection, we study the distribution of the number N of UEs served by an

active sector, and derive expressions for the mean number E {N} of UEs, as well as

for the distribution and variance of N .

In our system, UEs are uniformly and independently distributed. The UE-to-cell

assignment is such that UE i is connected to the sector that provides it with the best

SINR γi. Hence, the spectral efficiency of UE i is calculated as

ηi = log2(1 + γi) [bps/Hz]. (5.1)

Some UEs might have a very weak SINR (< γmin). When this happens, a UE cannot

receive any useful signal and as a result will be in outage (considered when estimating

the outage probability Po). Other UEs will have a very high SINR (> γmax), to the

extend that it might be higher than what the current constellations can utilize. As

a result, these SINRs are truncated. For LTE networks, typical values for γmin and

γmax are −7 dB and 18 dB, respectively [28], [29].

In order to find the number of UEs N that can be served by an active sector, we

formulate the problem as a renewal process (RP) [52, Chapter 7]. We assume that the

UEs are admitted to the network on a first-come, first-served basis. This is regardless

of their bandwidth demand bi, where

bi =
Ri

ηi

, (5.2)

which depends on the UE’s downlink rate requirement Ri, and its downlink spectral

efficiency ηi. At each sector, UEs are admitted one-by-one; their bandwidth require-

ments are added up until the next UE exceeds the sector’s downlink bandwidth W .

Thus we have
N
∑

i=1

bi ≤ W, and

N+1
∑

i=1

bi > W.

(5.3)

Since {b1, ..., bN , bN+1} is a sequence of positive independent and identically dis-

tributed (iid) random variables (RVs), the RP N̄(w) is defined in terms of N , bi, and
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Figure 5.1: A renewal process used to find the number of users N that can be sup-
ported by one sector with a bandwidth W , where bi is the bandwidth required
from UE i to satisfy its rate Ri.

a bandwidth w as

N̄(w) = max

{

N ∈ N :
N
∑

i

bi ≤ w

}

. (5.4)

Fig. 1 illustrates the RP, where UEs are admitted until there is no more bandwidth

available in that sector for the next user UEN+1. If we consider W as the stopping

time of this RP, we find that N̄(W ) = N is the number of UEs that will be admitted

by one active sector.

5.2.1.1 Mean Number of Users

From the Central Limit Theorem for RPs (RP-CLT)2: for large W , the distribution

of N̄(W ) is approximately Gaussian [52, Chapter 7] with mean

E {N} = W/E {b}. (5.5)

2The RP-CLT for renewal processes is very different from the ordinary Central Limit Theorem
(CLT): In the CLT, it is the sum of the RVs that is approximately Gaussian [52, Chapter 2], while in
the RP-CLT, it is the number N of the summed RVs that is approximately Gaussian [52, Chapter 7].
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To find E {N}, we first calculate E {b} as

E {b} = E

{

R

η

}

= E {R}E

{

1

η

}

, (5.6)

since Ri and ηi are independent RVs. Then, substituting E {b} in (5.5),

E {N} ∼=
W

E {R}
ηeq , (5.7)

where we call ηeq the equivalent spectral efficiency (ESE), and is calculated as:

ηeq =
1

E {1/η}
(bps/Hz/Sector). (5.8)

The ESE ηeq is an interesting metric, as it predicts the pattern performance abstract-

ing from the bandwidth and the rate. It is obtained by simulating many UEs in the

network and considering their spectral efficiency.

5.2.1.2 Variance and Distribution of Number of Users

Similarly, again from the RP-CLT [52, Chapter 7], the variance of N̄(W ) is approxi-

mated by

VAR {N} ∼=
W VAR {b}

E3 {b}

∼=
W VAR {b}

E3 {R}E3 {1/η}
.

(5.9)

First, we find VAR {b} as

VAR {b} = VAR

{

R

η

}

= VAR {R}VAR

{

1

η

}

+ VAR {R}E2

{

1

η

}

+ E
2 {R}VAR

{

1

η

}

.

(5.10)
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After plugging (5.10) into (5.9), and doing some simplifications, we obtain

VAR {N} ∼= E {N}CoV2

{

1

η

}

×

(

CoV2 {R}+
CoV2 {R}

CoV2 {1/η}
+ 1

)

,

(5.11)

where the coefficient of variation of a random variable X is defined as CoV {X} =
√

VAR {X}/E {X}.

For a constant UE rate requirement R, CoV {R} = 0. Therefore, the variance

simplifies to

VAR {N} ∼= E {N}CoV2

{

1

η

}

. (5.12)

Since the distribution of N̄(W ) is approximately Gaussian [52, Chapter 7], we

now know the approximate distribution of N . Thus, for example, the number of UEs

we can support 97.5% of the time is approximately

E {N} − 1.96
√

VAR {N}

=E {N} − 1.96
√

E {N}CoV

{

1

η

}

,
(5.13)

where 1.96 comes from the Gaussian table for the 97.5% area of the normal distribu-

tion.

5.2.2 Site-Level CSO Patterns

We consider 14 different site-level regular CSO patterns, where only entire BSs are

switched off (i.e., there is no individual sector switch-off). Most of these patterns

appear in the regular CSO patterns literature (see Table 5.1).

The pattern for which all BSs are active (without CSO) is called P(1). Then

P(n/m) is the pattern where n out of every m BSs are active; the proportion of

active cells in these patterns is ρ = n
m

. For some patterns with the same n
m

there

are several distinct rotations. To differentiate between those rotations, patterns are

referred to as PX(n/m), where the subscript X denotes a particular rotation.

Fig. 5.2 shows the different possible patterns we investigate at the site-level.

Those patterns are based on the well-known frequency reuse patterns, where m is the

number of BSs in the reuse cluster. The patterns are assumed to be periodic, i.e.,
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they expand to infinity. However we limited the simulation region, keeping in mind

that there should be enough BSs to model all the dominating interferers.

5.2.3 Combining Sector-Level and Site-Level Patterns

Previous papers on regular CSO patterns focus on site-level patterns only, i.e., there

is no individual sector switch-off. For the first time, we investigate the effect of using

sector-level regular CSO patterns; these patterns are denoted as P(1, k/3), where k is

the number of active sectors per site. The proportion of active sectors is ρ = k
3
. There

are three different patterns at this level: all sectors are active: P(1); two sectors are

active: P(1, 2/3); and only one active sector: P(1, 1/3). No rotations are necessary

at this level, as site-level patterns already contain all possible rotations. Fig. 5.3

illustrates the sector-level patterns that can be combined with each site-level pattern

to form new patterns.

Sector-level CSO patterns become more interesting when combined with site-level

CSO patterns. Any site-level pattern can be combined with any sector-level pattern,

in which case the active sectors are those resulting from the logical-AND operation

of the two patterns (there are 14 × 3 combinations). These patterns are denoted as

PX(n/m, k/3), where the subscript X denotes the rotation of the pattern, the first

term inside parenthesis denotes the site-level pattern, and the second term denotes

the sector-level pattern. The proportion of active sectors is ρ = |P(n/m, k/3)| = nk
3m
∈

[0, 1].

In order to further illustrate this idea, we focus on two interesting examples. These

examples introduce different patterns with the same proportion of active sectors.

5.2.3.1 One-Third of the Sectors are Active

In this example, we illustrate all the CSO patterns where One-third of the sectors

are active (i.e., ρ = 1
3
), namely: P(1, 1/3), P(1/3), PA(2/4, 2/3), PB(2/4, 2/3), and

PC(2/4, 2/3). These patterns are illustrated in Fig. 5.4. It is worth mentioning that

there are different rotations for the case of P(2/4, 2/3). Two of them, PA(2/4, 2/3) and

PB(2/4, 2/3), represent different sectors in the same pattern, whereas PC(2/4, 2/3) is

a different pattern.
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P (1) PA(2/3) PB(2/3) P (1/3)

PA(3/4) PB(3/4) PC(3/4)

PA(2/4) PB(2/4) PC(2/4) P (1/4)

PA(1/7) PB(1/7) P (1/9)

Figure 5.2: Site-level patterns. Black triangles are site locations, each site having
three sectors. The red hexagon is sector 1, to which the UE is connected; green
hexagons are active sectors which cause interference to the UE; while white
hexagons are switched-off sectors. Patterns with the same number of active
BSs but having different rotations are enclosed in a rectangle.
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P(1) P(1,2/3)

P(1,1/3)

Figure 5.3: Sector-level patterns. All BSs are active and only the number of active
sectors per BS is different.

5.2.3.2 One-Sixth of the Sectors are Active

In this example, we illustrate all the CSO patterns where one-sixth of the sectors are

active (i.e., ρ = 1
6
), namely: P(1/4, 2/3), PA(2/4, 1/3), PB(2/4, 1/3) and PC(2/4, 1/3).

These patterns are illustrated in Fig. 5.5. It is worth mentioning that there are differ-

ent rotations for the case of P(2/4, 1/3). Two of them, PB(2/4, 1/3) and PC(2/4, 1/3),

are the same patterns, whereas PA(2/4, 1/3) is a different pattern.

We will investigate the first example in detail in Section 5.4.

5.2.4 Number of Supported Users in the Network

The total number of supported UEs over the total number of sectors in the network

is found by multiplying (5.7) by ρ:

E {ρ N} ∼=
W

E {R}
ηeq ρ. (5.14)
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P (1/3) P (1,1/3)

PA(2/4,2/3) PB(2/4,2/3)

PC(2/4,2/3)

Figure 5.4: All patterns with ρ = 1/3. Patterns inside the rectangle are parts of
the same overall pattern.
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P (1/4,2/3) PA(2/4,1/3)

PB(2/4,1/3) PC(2/4,1/3)

Figure 5.5: All patterns with ρ = 1/6. Patterns inside the rectangle are the same.
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Figure 5.6: Power consumption at a site Psite = PC +3PS when all sectors are active.

In order to find the average number of UEs supported by the network, one simply

multiplies (5.14) by the total number of sectors in the network. Thus, ηeq ρ is propor-

tional to the average number of UEs supported by the network for a given pattern.

Conversely, (5.14) allows us to choose the CSO pattern that can support a given user

density based on ηeq ρ.

5.2.5 Sector-Based vs. Site-Based Energy Efficiency

In some CSO literature, the amount of energy saving is assumed to be directly pro-

portional to the number of switched-off BSs [5, 6, 53]. This is a valid assumption,

especially as the power consumption of a BS is highly independent of its load [5, 6].

It is worth investigating the relationship between site-level switch-off and sector-level

switch-off energy in terms of energy efficiency. In a typical LTE network, each BS

has three sectors; however, switching off one sector per BS does not necessarily re-

sult in one-third of energy saving. This is because there is common hardware that is

shared among the three sectors at each site, such as cooling and baseband processing

equipment. This is summarized in Fig. 5.6.

The average power consumption at each system site of pattern P(n/m, k/3) is

Ppattern =
n

m
(PC + kPS), (5.15)

61



where PC is the common power consumption at the site; and PS is the power con-

sumption per sector. This equation is useful to determine which pattern to choose

when considering two patterns with the same ρ.

In this subsection, we provide the analysis to compare the energy efficiency of site-

level CSO pattern P(n/3m); with that of the sector-level CSO pattern P(n/m, 1/3).

Both patterns have the same proportion of active sectors ρ = n
3m

. Then, for pattern

P(n/m, 1/3), we have

Ppattern,1 =
n

m
(PC + 1PS), (5.16)

and for pattern P(n/3m), we have

Ppattern,2 =
n

3m
(PC + 3PS). (5.17)

We compare the energy efficiency in terms of power consumption per user as

Ppattern,1

N1

=
Ppattern,2

N2

. (5.18)

The average number of users N is found from (5.7) and we substitute in (5.18) to get

Ppattern,1

ηeq,1W/E {R}
=

Ppattern,2

ηeq,2W/E {R}
, (5.19)

which simplifies to
Ppattern,1

Ppattern,2

=
ηeq,1

ηeq,2

. (5.20)

Then, substituting (5.16) and (5.17) in (5.20), we obtain

(1 + α)

(1 + α
3
)

=
1

δ
, (5.21)

where, δ = ηeq,2/ηeq,1 and α = PC/PS.3

Finally, we can find the breakpoint as

α∗ =
1− δ

δ − 1
3

. (5.22)

If α < α∗ then the site-level pattern P(n/3m) is more energy efficient; otherwise, the

3The value of α would be known by the network operator.
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pattern P(n/m, 1/3) with 1/3 active sectors is preferred.

Similar calculations can be done for the case of 2/3 active sectors; however, we

will find in the next section that those patterns are not favourable in terms of energy

efficiency, regardless of α.

5.3 Simulation Evaluation of Patterns

We consider the downlink of a cellular network with a hexagonal layout. We simulate

two ITU scenarios, the Urban Micro-cell (UMi) and the Urban Macro-cell (UMa),

according to the evaluation guidelines of [26]. The simulation parameters are listed

in Table 2.1.

Sector 1 (the red hexagon) is chosen as a typical sector; we consider all UEs

that get the best downlink SINR when connected to sector 1. Other active sectors

(green hexagons) will cause interference to those UEs. All UEs are uniformly and

independently distributed over the entire network area.

For each CSO pattern, we simulate a large number of UEs to estimate the ESE

according to (5.8), as well as Po and CoV {1/η}. Results are summarized in Table 5.3

for both the UMi and the UMa scenarios.

Fig. 5.7 compares the performance of different CSO patterns. The x-axis is pro-

portional to the average number of UEs that can be supported by the network, as

given by (5.14), and hence is also proportional to the aggregate rate. The y-axis is

the proportion of active sectors ρ. The energy consumption of the network when

configured to a particular pattern is computed from both ρ and the marker type;

different markers indicate the number of active sectors per BS site. The reference line

indicates where the performance of the network is scaled proportionally with respect

to the fully active network P(1). The trend is that patterns with all sectors active fall

close to the reference line, while patterns with two active sectors per BS fall to the

left of the reference line (i.e., perform worse). Interestingly, patterns with one active

sector per BS fall to the right of the line (i.e., perform better). Notably, consider the

case of ρ = 1/3: the number of active sectors is reduced to One-third; however, the

average number of UEs that can be supported by pattern P(1, 1/3) is only reduced to

48.5%. This means that almost half of full capacity is achieved using only 1/3 of the

sectors. The yellow staircase curve shows the operational region based on the best
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Table 5.3: Characteristic Values of CSO Patterns.

UMi UMa

Pattern ηeq ηeq.ρ Po% CoV
{

1
η

}

ηeq ηeq.ρ Po% CoV
{

1
η

}

P(1) 1.53 1.53 0.00 0.75 1.37 1.37 0.00 0.63
P(1, 2/3) 1.36 0.91 0.10 0.75 1.36 0.91 0.00 0.66
P(1, 1/3) 2.22 0.74 0.00 0.82 2.06 0.69 0.08 0.86

PA(2/3)
1.53 1.02 0.00 0.75 1.32 0.88 0.05 0.70

PB(2/3)
PA(2/3, 2/3)

1.36 0.61 0.057 0.73 1.31 0.59 0.07 0.73
PB(2/3, 2/3)
PA(2/3, 1/3)

2.08 0.46 0.01 0.94 1.72 0.39 0.67 0.95
PB(2/3, 1/3)

P(1/3) 1.44 0.48 0.76 0.84 1.36 0.45 0.82 0.83
P(1/3, 2/3) 1.28 0.29 0.15 0.78 1.17 0.26 1.35 0.80
P(1/3, 1/3) 1.92 0.21 0.14 0.95 1.48 0.16 3.41 0.97

PA(3/4)
1.54 1.15 0.01 0.74 1.33 1.0 0.07 0.69

PB(3/4)
PC(3/4)
PA(3/4, 2/3)

1.36 0.68 0.05 0.74 1.31 0.66 0.09 0.72PB(3/4, 2/3)
PC(3/4, 2/3)
PA(3/4, 1/3)

2.14 0.55 0.01 0.91 0.78 0.44 0.46 0.95PB(3/4, 1/3)
PC(3/4, 1/3)

PA(2/4)
1.51 0.76 0.01 1.75 1.35 1.67 0.08 1.71PB(2/4)

PC(2/4)
PA(2/4, 2/3)

1.30 0.44 0.08 0.74 1.18 0.40 0.75 0.76
PC(2/4, 2/3)
PB(2/4, 2/3) 1.41 0.47 0.01 0.73 1.42 0.47 0.09 0.75
PA(2/4, 1/3) 1.75 0.29 0.30 1.03 1.36 0.23 2.64 0.97
PB(2/4, 1/3)

2.02 0.34 0.01 0.90 1.63 0.27 1.29 0.96
PC(2/4, 1/3)

P(1/4) 1.55 0.39 0.00 0.69 1.45 0.36 0.39 0.75
P(1/4, 2/3) 1.26 0.21 0.35 0.76 1.14 0.19 2.80 0.83
P(1/4, 1/3) 1.74 0.14 0.54 0.98 1.42 0.12 5.66 0.98

PA(1/7)
1.24 0.18 0.84 0.77 1.15 0.17 5.82 0.82

PB(1/7)
PA(1/7, 2/3)

1.08 0.10 2.63 0.78 1.05 0.10 9.57 0.81
PB(1/7, 2/3)
PA(1/7, 1/3)

1.46 0.07 4.66 1.05 1.37 0.07 14.45 1.03
PB(1/7, 1/3)

P(1/9) 1.20 0.13 1.21 0.78 1.16 0.13 8.53 0.84
P(1/9, 2/3) 1.08 0.08 4.65 0.79 1.04 0.08 13.26 0.82
P(1/9, 1/3) 1.41 0.05 8.46 1.06 1.32 0.05 18.68 1.01
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Figure 5.7: Performance comparison of different patterns and other CSO schemes
for the UMi scenario. The x-axis is proportional to the average number of UEs
supported by the network. The y-axis is the proportion of active sectors. The
reference line gives locations where the performance of the network is scaled
proportionally with respect to the fully active network P(1). The operational
region curve follows the best performing pattern for any given ρ. The irregular
static CSO is a benchmark from [23], while the dynamic CSO is a benchmark
from [21]. Patterns with outage Po > 2% are not included.
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performing pattern for any given ρ. This curve can be used by operators to select

the best pattern that can support a given user density demand. The operational

region (yellow staircase), could be used directly only for the specific case of α = 0 (no

common power).

In order to make the study complete, we compare the performance of regular

CSO patterns with irregular static (offline) CSO [23] and also with dynamic (online)

CSO [21]. Note that the values for irregular static CSO are obtained according to

the simulation parameters indicated in [23], but with a uniform UE distribution.

As we can conclude from the figure, regular CSO patterns perform comparably and

even better at some points, to the irregular static CSO. For the case of dynamic

CSO, the values in the curve are obtained according to the simulation parameters

indicated in [21], but with a uniform UE distribution. It is worth mentioning that

the simulation parameters used in [21] are not entirely compliant with our simulation

parameters. One fundamental difference is that in [21], UEs are served in a way

that maximizes the aggregate network capacity, i.e., UEs with high spectral efficiency

are provided with large bandwidth, while UEs with low spectral efficiency might be

blocked. In contrast, in our simulation, UEs are served on a first-come, first-served

basis. Thus [21] can be considered as an upper bound for both CSO and admission

control design.

Fig. 5.8 shows a similar comparison for the UMa scenario, with similar trends.

5.4 Case Study

In this section, we further investigate all the CSO patterns with ρ = 1/3, shown in

Fig. 5.4 (the first example from Section 5.2.3). All the figures in this section are

for the UMi scenario; however, we find that the UMa scenario results in a similar

trend [54].

5.4.1 SINR Distribution

Each CSO pattern results in a different spatial distribution of the SINR of a typical

UE conditioned to be connected to sector 1, as seen in Fig. 5.9.
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Figure 5.8: Performance comparison of different patterns for UMa scenario. The x-
axis is the average number of UEs supported per system sector when W/R = 20.
The y-axis is the proportion of active sectors. The trend is similar to that of
the UMi scenario.

Fig. 5.10 shows the effect of the chosen patterns on the resulting cumulative dis-

tribution function (CDF) of the downlink SINR for UEs connected to sector 1. To

validate our simulation platform, we also included the average CDF results obtained

from the WINNER+ project using multiple simulation tools [28]. As shown in the

figure, the SINRs obtained from pattern P(1) have a CDF that closely matches the

WINNER+ results. Note that pattern P(1) is the case where all cells are active, i.e.,

without CSO.

It is worth mentioning that there is a high improvement in the SINR in pattern

P(1, 1/3), where only one sector is active per site. This improvement is due to the

significant reduction in the number of nearby interferers. Moreover, the SINR values

are truncated at 18 dB [29]; these higher SINR values might be of interest in future

systems that allow for higher constellations.

5.4.2 Number of Users per Sector

We now compare the number of supported UEs per active sector for all patterns with

ρ = 1/3. After finding ηeq and CoV {1/η} for each pattern, we assume a constant rate
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P (1/3) P (1,1/3)
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Figure 5.9: Conditional spatial distribution of the SINR (in dB) of a typical UE
when connected to sector 1, for patterns in Fig. 5.4, for the UMi scenario (the
UMa scenario shows a similar trend). The UE is connected to the sector that
results in the highest downlink SINR.
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Figure 5.10: CDFs of SINR for patterns in Fig. 5.4 for the UMi scenario, with
WINNER+ calibration for the fully active network (pattern P(1)).

demand of 500 kbps and a system bandwidth of 10 MHz, resulting in W/E {R} =

20 and CoV {R} = 0. We also find the number of UEs that a typical sector can

support, and show both the simulated and the closely matching analytical CDFs

(from Section 5.2.1.2) in Fig. 5.11. Analytical calculations show that the P(1, 1/3)

pattern can support the most UEs (44.5 UEs) per sector on average - this is also

approximately the median (50%), since N is close to Gaussian- and about 33 UEs

97.5% of the time (according to (5.13)). The distribution of the number of UEs closely

follows a Gaussian distribution, as expected from the analysis in Section 5.2.1.2.

5.4.3 Energy Efficiency Aspects

Based on the calculations in Section 5.2.5, we can find the breakpoint that indicates

which pattern is better in terms of energy efficiency per UE. While the patterns with

2/3 active sectors are never advantageous, the pattern P(1, 1/3) is advantageous over
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Figure 5.11: CDFs of the number N of UEs supported for patterns in Fig. 5.4, when
R is constant and W/R = 20, for the UMi scenario. The y-axis is transformed so
that all and only Gaussian distributions appear as straight lines. The coloured
curves are simulated CDFs, which closely match the analytical CDFs. Black
circles are the analytical means, which are close to the simulation medians
(50%).
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pattern P(1/3), as long as PC/PS > α = 1.114, as found from (5.22).

5.5 Conclusion

CSO is a promising approach for more energy-efficient cellular networks. In this

chapter, classified and investigated 26 different regular CSO patterns in detail, and

presented them using a systematic nomenclature. Furthermore, this paper was the

first to investigate sector-based regular CSO patterns. The performances of different

CSO patterns were compared using only one parameter. The distribution of the num-

ber of users supported was found to be close to Gaussian with a variance estimated

using one additional parameter. The maximum number of supported users was usu-

ally obtained from patterns where one sector out of three is active at a site. In many

cases, the performance of regular CSO patterns is comparable to that of a benchmark

irregular static CSO. Moreover, although a benchmark dynamic CSO outperforms

the regular CSO patterns, it is still reasonable to employ the regular CSO patterns

because of their simplicity and scalability.

Regular CSO patterns are conceptually simple and can be characterized system-

atically both statistically and geometrically. Location regularity of CSO patterns

provides the advantages of: 1) ensuring that interferer cells are as far away as possi-

ble, 2) allowing for realistic interference modelling, 3) minimizing the coverage holes,

and 4) being more energy-efficient for users in the uplink transmission, since users do

not need to transmit at full power because there is always a nearby active cell.

The advantages of the regularity of CSO pattern are very encouraging. In the

next chapter, we studied the possibility of benefit from CSO in making the cellular

layout to be more regular even for networks with irregular BS placements.
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Chapter 6

Evaluating Cell Switch-Off Algorithms for

Networks with Spatially Irregular BS

Deployments

6.1 Introduction

In Chapters 4 and 5, we introduced the CSO approach and its potential for energy

saving in cellular networks in periods of light traffic. We found that regular CSO

patterns are advantageous in terms of modeling interference properly, reducing cover-

age holes, and making the uplink transmissions more energy-efficient for UEs. These

advantages came without much compromise of the performance of the CSO patterns

over dynamic CSO, as investigated in detail in Chapter 5.

In most of the CSO literature, BSs are placed according to a triangular lattice

(TL). The geographical cell boundary is a function of the Euclidean distance that

correspond to a hexagonal Voronoi tessellation. Hexagonal cell shapes are preferred

because it covers an entire area without gaps or overlaps. Another BS locations

model is placing BSs randomly according to a Poisson point process (PPP). For the

same number of BSs in the network, the TL model produces an upper bound on he

downlink SIR, and SINR performance, whereas the PPP model results in a lower

bound [57].

1Part of this chapter is a collaboration work that resulted in the submission of two letters [55,56]
and a magazine paper under preparation. The contribution of Quoc-Nam Le-The (a summer student
with the NSERC Undergraduate Student Research Award program) was inventing a new algorithm,
conducting the programming, and wrote an early draft of [56]. Faraj Lagum (a PhD student in our
research group) provided expertise in stochastic geometry, provided simulation code, and introduced
the new CSO problem formulation in [55].
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6.1.1 BS Location Models in CSO Literature

In CSO literature the common BS location models are

• Manhattan layout: BSs are placed on the vertices of a square grid [58].

• Hexagonal layout: BSs are placed on TL [6,18,58].

• Poisson layout: BSs are distributed over the service area according to a two-

dimensional homogeneous PPP with density λP [58–60].

While the first two models represent a perfect regular grid, the last one represents a

totally random layout.

However, due to geographic restrictions of site placement and the network plan-

ning, BS locations are neither regular nor completely random [2, 61]. In addition to

providing coverage, extra BSs might be located in hot spots to deliver more capacity,

making their placement irregular.

While placing BSs based on a TL model results on an upper bound on the SIR,

placing them according to a PPP model produces a lower bound. Therefore, there is a

need to have a model that can change the BS regularity between these two extremes.

The repulsive point processes (RPPs), from the literature of stochastic geometry, are

found to be useful to model actual BS locations. Recent work [55, 56] in the context

of CSO use RPPs to model BS locations so that they are neither perfect regular nor

totally random.

If we combine this irregularity with the observation that the best SIR distribution

can be achieved when BSs are located on a regular grid [49, 61], we find a great op-

portunity for applying CSO to irregular network layouts with the objective of making

the active BS locations as regular as possible.

This problem has been introduced only recently in [55]. Therefore, it is worth

evaluating CSO algorithms designed for layouts with irregular BS locations.

In this chapter, we evaluate CSO algorithm designed for networks with spatially

irregular BS deployment with the extra objective of selecting the set of active BSs so

that their locations form a layout with maximum regularity, regardless of the irregu-

larity of the original network layout. This problem is motivated by two observations:

• Regular CSO patterns are simple and perform very well, as discussed in Chap-

ter 5.
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Table 6.1: List of Symbols.

M number of BSs in the network
ρ fraction of active BSs in the network

ρM number of desired active BSs
∆ inter-site distance between BSs
r hard-core distance
Γ disc radius for uniform PTL

Γ̃ normalized perturbation radius = Γ/∆
λ BS density

λP BS density of a PPP
Dij distance between BS i and BS j

D the minimum distance between any pair of active BSs
CD coefficient of variation of the Delaunay triangulation edge lengths
kD normalization factor
µD mean of the Delaunay edge lengths
σD standard deviation of the Delaunay edge lengths

GSIR(X) downlink SIR gain for fraction X of users

• The best download SIR is achieved when BSs are located on regular grid [49,61].

In this chapter, we generate irregular BS locations using a perturbed triangular

lattice (PTL) model, where we can vary the spatial regularity of BS locations contin-

uously from perfect regular grid to totally random. We test the suitability of several

algorithms for applying CSO to irregular network layouts with the objective of mak-

ing the active BS locations as regular as possible, regardless of the irregularity of the

original network layout. Moreover, we also evaluate some of these algorithms on real

BS locations obtained from a major cellular operator in Canada.

6.2 Problem Formulation

Consider a network with M BSs. The idea of CSO is that when the users service

demand decreases (at night time for example), the demand could be supported by

only fraction ρ of BSs. Without loss of generality, we assume that, for a given service

level, the required number of active BSs ρM is proportional to the decrease in demand.

Moreover, additional BSs might be switched of as the SIR improves. All the symbols

used in this chapter are shown in Table 6.1.
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Different algorithms result in different sets of combinations of ρM active BSs. We

are interested in evaluating these algorithms to find the one that results in the best

downlink SIR.

In order to evaluate different algorithms in different spatial regularity levels, we

first need a point process that has the ability to vary the spatial regularity regularity

of BS locations over the full range between TL and PPP.

6.2.1 Modeling BS Locations

In cellular networks, the actual layout of BS locations lies somewhere in between the

perfect TL and the totally random PPP [49, 57, 61–63]. Therefore, we first need to

have a point process that can generate BSs locations so that it can sweep the entire

regularity spectrum, from perfect regular grid (TL) to totally random deployment

(PPP).

The BS density λ (number of BSs per km2) is the main parameter to describe the

layout of the network. However, density by itself cannot describe the the regularity of

BS locations, therefore, another parameter is needed to quantify the distance between

any pairs of BSs. RPPs can characterize this parameter and it can be classified, based

on the strictness of the allowable distance condition r, as soft-core and hard-core

models.

6.2.1.1 Soft-Core Point Processes

Points have probabilities of being closer than r to each other. Some examples of

soft-core point processes are determinantal point process models [64], and the family

of Gibbs point processes [49,63].

6.2.1.2 Hard-Core Point Processes

A minimum separation (hard-core) distance r > 0 is assumed, where points are not

allowed to be closer than r to each others. Three different hard-core processes are

proposed to model BS locations [65, 66]. The generation of these processes usually

starts with a PPP and then some points are eliminated. The type of the hard-core

process is determined by the point elimination criterion as follows:

• Matérn Hard-Core Process of Type I: Generate a PPP with density λP BSs per

km2, and then simultaneously eliminate points that are separated by a distance
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that is shorter than r. The resulting density of this model is λ = e−λPπr2

.

• Matérn Hard-Core Process of Type II: This process starts with a PPP as well.

It assigns to each point a mark between [0,1], points with higher marks than

their neighbouring are simultaneously eliminated. A neighbour of a point is

defined as any point that is within radius r from that point. The resulting

density of this model is λ = (1− e−λPπr2

)/πr2.

• Simple Sequential Inhibition (SSI): Points are generated sequentially according

to a PPP. If a point is closer than r to any previously generated point, then it

is discarded. This is repeated until the required density λ is reached.

6.2.1.3 Perturbed Triangular Lattice

This is the model we use for irregular BS deployment. We will discuss it in detail in

the following subsection.

6.2.2 Chosen BS Location Model: Perturbed Triangular Lat-

tice

A significant limitation of the RPPs is the difficulty of generating a very high regu-

larity with these models because points are generated independently based on their

distances. Therefore, we choose to model BS locations using the PTL model which

have the capability of sweeping over the full range of regularity from perfect regular

TL to totally random PPP (asymptotically). [67].

The PTL process begins with generating a TL, where BSs are located on a hexag-

onal layout with inter-site distance ∆.

The PTL is obtained by displacing each point by an independent random vector.

Depending on the distribution of this random vector, there are two PTL models:

uniform PTL, and Gaussian PTL. The two models results in similar SIR [67]. We

model BS locations using a uniform PTL, in which, in which the displacement vector

has a uniform distribution over a disc of radius Γ. The most interesting parameter is

the normalized radius Γ̃ = Γ/∆, which controls the amount of regularity.

Fig. 6.1 shows visualizations of cell layouts of BSs deployed with different spatial

regularities. Fig. 6.1(a) visualizes a layout of BSs deployed with TL (perfect regular-

ity). Fig. 6.1(d) visualizes a layout with BSs deployed according to PPP. Fig. 6.1(b)
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Table 6.2: Relationship between normalized perturbation radius Γ̃ and regularity
metric CD [67].

CD 0.1 0.2 0.3 0.4 0.5

Γ̃ 0.059 0.129 0.202 0.278 0.360

CD 0.6 0.7 0.8 0.9 ≈ 1

Γ̃ 0.450 0.562 0.729 1.063 ≥ 2

and Fig. 6.1(c) visualize layouts that are neither regular nor totally random.

6.2.3 Spatial Regularity Metrics

In order to compare the performance of different algorithms, we first define the met-

rics.

6.2.3.1 Geometry-Based Metrics for Spatial Regularity

The first geometry-based metric is the distance between the two nearest BSs. Our

objective is to maximize the minimum distance D between any pair of BSs.

The second geometry-based metric is CD. This metric was proposed in [61, 68],

and is used to measure the spatial regularity of the locations of all BSs in the network.

It is the normalized coefficient of variation of the Delaunay triangulation edge lengths

of a set of points. It is called CD, and can be found by:

CD =
1

kD

.
σD

µD

, (6.1)

where µD and σD are the mean and the standard deviation of the Delaunay edge

lengths, respectively; and kD
∼= 0.492 is the normalization factor such that for a PPP

CD = 1 on average [61]. CD is thus a measure of spatial regularity of points, where TL

is a perfectly regular layout with CD = 0 and PPP is the totally random (irregular)

layout with CD = 1 [67].

The CD metric is a bijective function of Γ̃ [67] with values shown in Table 6.2.
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(a) Triangular lattice, Γ̃ = 0.
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(b) Perturbed lattice with Γ̃ = 0.202.

x

-400 -300 -200 -100 0 100 200 300 400

y

-400

-300

-200

-100

0

100

200

300

400

(c) Perturbed lattice with Γ̃ = 0.450.
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(d) PPP with Γ̃ ≥ 2.

Figure 6.1: BSs (black triangles) located according to random point processes, with
their Delaunay triangulation (dashed green lines) and Voronoi tessellation (solid
blue lines).
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6.2.3.2 SIR-Based Metric

It is known that the best downlink SIR is achieved when BSs are placed on a regular

grid [49, 61]. Also, from the UE perspective, it is more energy efficient for UEs to

have regular grid, which guarantees not only having a nearby BS, but also insures

that interfering BSs are carefully located far away.

The metric used to evaluate different CSO algorithms is the downlink SIR gain

GSIR(X%) in dB, which is the difference between the SIR for the best X% of users

when the active BSs are selected according to a given algorithm, and the SIR in a

network with the same number of BSs but deployed randomly (according to a PPP).

We measure the SIR gain for 50% and 95% of users.

Although the objective of the problem in hand is to maximizing the minimum

distance between active BSs, measuring the SIR is a good indicator of the algorithm

performance. A problem with the same objective exist in literature of operation

research known as the PDP which is a simple version the FLP.

6.2.4 p-Dispersion Problem

The PDP concerns about the mutual distances between open facilities, with the ob-

jective of maximizing the minimum distance between any two open facilities [27]. The

PDP has the objective of maximizing the minimum mutual distance between any pair

of facilities for a given number of active facilities. The distance between BS i and BS

j is given by Dij. The objective is to maximize the minimum separation distance D

between any pair of active BSs.

maximize v, (6.2a)

subject to
∑

j∈S

yj = ρM, (6.2b)

v ≤ Dij + DM(1− yi) + DM(1− yj),

∀i, j ∈ S, i < j, (6.2c)

yj ∈ {0, 1}, ∀j ∈ S. (6.2d)

The first constraint is to have exactly ρM active BSs. The second constraint

defines the minimum distance between pairs of active BSs [69]; this constraint is

binding only when both BSs i and j are active then the constraint is equivalent to
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v ≤ Dij. Therefore, maximizing D has the effect of forcing the minimum pairwise

distance to be as large as possible. The last constraint is the binary constraint that

a BS j should be either on or off.

6.3 Algorithms for Maximizing Spatial Regularity

The PDP is well-studied problem that has different proposed algorithms. Given

that the PDP is NP-hard, heuristic algorithms are encouraged. Authors in [70, 71]

compared the performance of ten heuristic algorithms to solve the PDP. The pseudo-

codes for all these algorithms can be found in [70].

In this chapter, we evaluate the performance of nine of these algorithms, plus one

proposed in [56], to solve the CSO problem with the aim of maximizing the SIR by

switching of some BSs to improve the regularity of the remaining active BSs.

6.3.1 Triangular Lattice Fit (TLF) Algorithm

This algorithm is proposed in [56]. As known from the literature, the best SIR is

achieved with regularly placed BSs; therefore we propose the TLF as a novel algorithm

for the CSO problem at hand. For a given CSO percentage, the TLF algorithm starts

by creating a regular TL with the required number of active BSs. This generates the

theoretical locations of BSs that would maximize regularity. These theoretical points

are transformed (rotated and/or shifted) to best fit the real BS locations. This is

done by overlaying the theoretical points on top of the real BS locations. To find the

best fit, we calculate the distance from each BS to its nearest theoretical point. For

each transformation of the theoretical points, we find the sum of those distances. The

transformation that yields the minimum sum distance is chosen to be the best fit.

6.3.2 Greedy Algorithms

These algorithms start with a set of BSs and then iteratively select one BS to add to

or remove from the solution set. The two common varieties are greedy construction

(GC) and greedy deletion (GD). GC starts with the two furthest BSs and iteratively

activates the BS that maximizes the minimum distance to other BSs already in the

solution set. GD initializes with all BSs active and finds the nearest two active

BSs then switches off the one that has the shortest distance to its second nearest
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neighbour, doing so iteratively. The semi-greedy deletion (SG) is similar to the GD

but the selection among the two nearest BSs being random. The algorithms terminate

when the desired number of active BSs is achieved. The three greedy algorithms were

implemented in [55]. While GC and GD result in good performance, SG was found

to perform poorly, and hence we excluded it from the discussion.

6.3.3 Neighbourhood Algorithms

The neighbourhood algorithms are similar to GC as they iteratively add one BS to the

solution set at each step [70]. However, they have a restriction that any added point

must be outside of the neighbourhood of all of the existing points in the solution set.

A neighbourhood of an active BS is defined as a circle with radius r centered at the

BS. All other BSs in the circle are switched off. The objective of the neighbourhood

algorithms is to generate a solution with a guaranteed separation distance of radius r.

Each neighbourhood algorithm has a different criterion for selecting the new BS

to add to the solution set. The three neighbourhood algorithms are first point outside

the neighbourhood (FP), closest point outside the neighbourhood (CS) and furthest

point outside the neighbourhood (FS). The name of the algorithms specify the criteria

used for BS selection. We exclude the FP algorithm due to its poor performance.

6.3.4 Interchange Algorithms

The interchange algorithms initialize with a solution set that contains the desired

number ρM of BSs, randomly selected to be active. Then BSs from the solution

set are repeatedly interchanged with BSs from outside the set (inactive BSs) if the

new BSs increase the objective function. The algorithm terminates when no more

interchanges result in an increase in the regularity metric. The three interchange

algorithms are first pairwise interchange (IF), best pairwise interchange (IM), and

simulated annealing (SA). Whereas IF interchanges an active BS with the first inactive

BS that would increase the minimum distance, IM interchanges with the inactive BS

that would increase the minimum distance the most. A disadvantage of both IF and

IM is that the algorithm could get stuck in a local maximum. SA was proposed

in [70] to escape the local maximum by allowing some interchanges that decrease the

performance metric in order to eventually hopefully reach the global maximum [72].

Therefore, we were tempted to apply the SA to our problem.
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6.3.5 Simulated Annealing

The probability of accepting a worse solution is proportional to the solution quality

compared to the current incumbent solution. The probability of accepting a worse

solution decreases as the time passes. SA plays an important role in the metaheuristic

field. The probability of changing from the current network configuration to a new

one is specified by the acceptance function P (e, T ) which depends on two factors: the

error value e (the difference between the objective function) and the temperature T

(the length of the simulation); this probability decreases as the time increases or the

difference decreases. The pseudo code of the SA algorithm is shown in Algorithm 3.

However, we did not implement the SA here due to its prohibitive computational

time, its several parameters that were complicated to tune correctly, and the high

variability (instability) of its output solutions.

6.3.6 Bounds

We place ρM BSs according to a PPP, which is known to give the worst SIR per-

formance [55]: We consider this as the base-line. The algorithms’ performance is

compared in terms of the SIR gain GSIR (with respect to a PPP deployment). For

the same number of BSs, the best SIR is achieved with a TL placement, which is

known to have a GSIR of 3.4 dB (compared to the PPP) [73]; this value is considered

as the upper bound on the algorithm performance [55]. As a lower bound, we switch

off BSs randomly: any reasonable algorithm should at least perform better than this.

6.4 Simulation Setup

First we place 600 BSs in a square area according to a PTL and vary the spatial

regularity from TL to PPP to obtain different amounts of spatial regularity CD, by

tuning Γ̃ according to Table 6.2. All BSs are assumed to have the same transmit

power, operating frequency, and are equipped with an omni-directional antenna.

The performance is measured in terms of downlink SIR gain. Users are uniformly

distributed inside the central area of the network. The received power is calculated

assuming a pathloss exponent of 4 and no shadowing. Users are connected to the BS

with the strongest received signal and all of the links experience independent Rayleigh

fading. After finding the SIR values of all users, the SIR gain GSIR is then calculated
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for 50% and 95% of users. We compare the algorithms at different values of initial

network regularity CD. We vary the CSO percentage from 5% to 90%.

6.5 Algorithm Comparison Results

In this section, we compare the results obtained from different CSO algorithms.

6.5.1 SIR Gain

The performance of the algorithms is illustrated in Fig. 6.2 for selected CD values of

the initial deployment. We show the SIR gains GSIR(0.50) and GSIR(0.95), for 50%

and 95% of users, respectively. For both threshoulds, the ordering of the algorithms

is similar.

Based on both CSO percentage and CD values, we can choose the best performing

algorithm as illustrated in Fig. 6.4. The three dominating algorithms are GD, FS

and TLF. Although, the main factor is the CSO percentage, CD also has a moderate

effect on the choice of algorithm.

For low CSO percentages (< 50%), GD is the best algorithm for any input CD

value. For very high CSO percentages (> 75%), the TLF is the best algorithm. For

CSO percentages between 50% and 75%, the best performing algorithm is chosen

based on the following formula:

CD ≷ 1.875− 3.5ρ, 0.50 < (1− ρ) < 0.75, (6.3)

where ρ is the fraction of active BS, i.e., = 1 − (CSO Percentage), and CD can

be estimated for a given point set using (6.1). Based on (6.3) and Fig. 6.4, we have

three regions, each having a preferred algorithm:

1. above the line (CD + 3.5ρ < 1.875) : TLF,

2. below the line (CD + 3.5ρ > 1.875) : GD,

3. on the line (CD + 3.5ρ ≈ 1.875) : FS.
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Figure 6.2: The SIR gain GSIR for 50% users as a function of the CSO percentage
(1− ρ), for different deployment regularity (CD) of the initial BSs.
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Figure 6.3: The SIR gain GSIR for 95% users as a function of the CSO percentage
(1− ρ), for different deployment regularity (CD) values.
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Figure 6.4: Map of the best performing algorithms. The selection of the algorithm
can be approximately based on the location with respect to the red line.

Finally, algorithms GC and IF are nowhere optimal, but they are still good overall

choices.

It is worth mentioning that the TLF algorithm outperforms all other algorithms

for very high CSO percentages (within 1 dB SIR of the upper bound). This is because

the number of active BSs decreases as the CSO percentage increases, which results

in a greater probability of finding a subset of the BSs that almost matches a regular

hexagonal layout. However, for very low CSO percentages the TLF do not perform

as well, especially for the case of high spatial regularity, where it performs as poorly

as the random algorithm. This is because, when the BSs are already close to regular,

switching off some of them often results in a less regular layout.

A summary of all the algorithms and their relative performance is included in

Table 6.3.
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Table 6.3: Algorithm Summary
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Figure 6.5: The standard deviation (std) of the SIR gain GSIR for 50% users as a
function of the CSO percentage (1−ρ), for different deployment regularity (CD)
values.

6.5.2 SIR Standard Deviation

We also compare the standard deviation of the SIR of 50% of users after applying

different algorithms, as illustrated in Fig. 6.5. Both the random CSO and the simu-

lated annealing (SA) have a very high standard deviation up to 0.8 dB, especially in

the case of higher CSO percentages. For this reason, we prefer not to study the SA

algorithm, and leave it for future study where a comprehensive parameter calibration

would be necessarey before considering it for CSO.
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6.6 Visualization of Algorithms

In this section, we visualize the effect of applying different algorithms on the cellular

layout and how the algorithms try to maximize regularity.

6.6.1 Simulated Networks

We simulate networks with initial BS density of λ = 100 BSs per km2, deployed for

two spatial irregularity values of CD = 0.3 and CD = 0.6 shown in Fig. 6.1(b) and

Fig. 6.1(c), respectively. We select four algorithms – Random, TLF, IF and GC – to

visualize the change on the cellular layout as a result of applying each CSO algorithms.

We visualize the active cells after applying CSO algorithms at three different CSO

percentages: 25%, 50%, and 75%. As we can see from Figs 6.9, 6.10, and 6.11, the

more BSs are to be switched off, the more freedom algorithms have to make the

layout more regular. As the CSO percentage increases, we notice an improvement in

the regularity (the cells become close to hexagons), and as we reach the case of 75%

CSO, we gain more freedom in selecting the set of active cells and hence improve the

regularty, and consequently the SIR.
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(a) Random CSO
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Figure 6.6: Voronoi tessellation of active BSs (black triangles) after 25% CSO with
initial regularity of CD = 0.3; empty triangles are the locations of switched-off
cells.
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Figure 6.7: Active cells after 50% CSO with initial regularity of CD = 0.3.
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Figure 6.8: Active cells after 75% CSO with initial regularity of CD = 0.3.

93



x

-500 0 500

y

-500

-400

-300

-200

-100

0

100

200

300

400

500
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Figure 6.9: Active cells after 25% CSO with initial regularity of CD = 0.6.
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Figure 6.10: Active cells after 50% CSO with initial regularity of CD = 0.6.
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Figure 6.11: Active cells after 75% CSO with initial regularity of CD = 0.6.
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6.6.2 Real BS Locations

Now, we examine the behaviour of some of these CSO algorithms when applied to

real networks in different Canadian regions:

1. Richmond, BC: We consider a Telus LTE network in Richmond, BC. This re-

gion represents a suburban environment with BSs placed with similar inter-site

distances. An illustration of the city map and the data set of this region is

shown in Fig. 6.12. We apply different CSO algorithms and show the resulting

network layout in Figs. 6.13, 6.14, and 6.15 for CSO percentages of 25%, 50%,

and 75%, respectively.

2. Toronto, ON: We consider a Rogers LTE network in the downtown area; this

represents an urban environment, where BSs have irregular spatial distribution

to cope with the variable user density. An illustration of the city map and the

data set of this region is shown in Fig. 6.16. We apply different CSO algorithms

and show the resulting network layout in Figs. 6.17, 6.18, and 6.19 for CSO

percentages of 25%, 50%, and 75%, respectively.

For real BS locations, we only examine Random, IF and GC algorithms as we

discovered a drawback of the TLF algorithm. TLF showed the best performance for

regimes in which the number of switched-off cells is high. However, it shows improper

results when applied to real networks. This is due to the fact that in real networks,

the actual BS density cannot be easily estimated; therefore the TLF needs extra

calibration before being applied to real networks.

The Toronto network is clearly designed to serve non-uniform user density (refer

to [23] for a study on the effect of non-uniform distribution on the performance of CSO

algorithms). All of these algorithms considers the distances between BSs as the sole

parameter without considering user distribution. However, since CSO is designed for

low traffic period, we can say that making the network regular is acceptable in periods

of low traffic density. Nevertheless, further study is needed on how to design algorithm

that can couple both the BS irregularity and the non-uniform user distribution.
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(a) BSs on city map
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(b) Point set

Figure 6.12: Real BS locations in Richmond, BC of the LTE Telus network, taken
from [74].
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(a) Random CSO
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Figure 6.13: Active cells after 25% CSO of Richmond BSs.
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(a) Random CSO
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Figure 6.14: Active cells after 50% CSO of Richmond BSs.
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Figure 6.15: Active cells after 75% CSO of Richmond BSs.

99



(a) BSs on city map
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(b) data set

Figure 6.16: Real BS locations Toronto, ON of the LTE Rogers network, taken
from [74].
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Figure 6.17: Active cells after 25% CSO of Toronto BSs.
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Figure 6.18: Active cells after 50% CSO of Toronto BSs.
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Figure 6.19: Active cells after 75% CSO of Toronto BSs.
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6.7 Conclusion

We evaluated several algorithms for solving the recently studied problem of cell switch-

off that considers spatially irregular BS deployments. Generally, the greedy algo-

rithms GC and GD were found to be good choices overall; we found that for high

CSO percentage, all exiting algorithms perform suboptimally. We also examined a

recent algorithm (TLF), which performs very well in high CSO percentages, and its

performance is close to the known performance upper bound. For low CSO percent-

ages, we found that all algorithms, although very different in design, perform quite

similarly.

The optimal choice of algorithm is primarily influenced by the desired CSO per-

centage, and also by the spatial regularity of the entire network. If implementing

only one algorithm is preferable, then the two algorithms GC and IF, although never

best, offer a good overall performance.

We evaluated these algorithms in real network deployments for both a suburban

and an urban environment. The main observation was that the TLF algorithm failed

to perform well because an important input is the BS density which is hard to find

for real networks because the area borders can is not clearly defined.

Future research may include:

1. Finding a tighter upper bound for the algorithms.

2. Modifying the TLF so that it is applicable to real networks.

3. Designing algorithms for non-stationary deployments, as these algorithms as-

sume stationary BSs deployments (i.e., the BSs are deployed with the same

density in every part of the network).

4. Extending this research to HetNets and non-uniform user distributions.
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Chapter 7

Conclusion and Future Works

7.1 Summary and Conclusion

Key aspects of future cellular networks are the ability to support ubiquitous and

exponentially increasing data rates, while being energy-efficient at the same time.

Operators are striving to implement techniques to make the best use of the scarce

radio resources. During the planning phase, cells are deployed in large numbers

to cope with the peak traffic. Therefore, some cells become underutilized or even

redundant when the demand is low. Despite being underutilized, these cells still

consume a major portion of their peak energy. CSO is introduced to strategically

switch off cells during off-peak times. The contribution of this thesis is advancing the

research of the CSO approach by efficiently switching off cells in space (which cell)

and in time (when to switch off).

In Chapter 2, we presented the channel model and simulation setup used to study,

evaluate, and compare different CSO algorithms. In order to ensure the reliability of

our results, our SINR curves were calibrated against the SINR CDFs obtained from

WINNER+ partners. Our results matched closely with those standard results and

we are confident about our simulator.

In Chapter 3, we introduced the FLP, which is a location problem concerned with

locating service points with the objective of minimizing the total of implementation

and transportation cost, while serving demand points. We believe that the FLP is a

very diverse and efficient problem formulation that is capable, through its different

models, to address several research problems related to cellular networks. Therefore,

we introduced those models and provided a summary table. We used two of these

models in Chapter 4 and Chapter 6 to design CSO algorithms.
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In Chapter 4, we proposed a dynamic CSO algorithm based on the well-known

SCP. The proposed algorithm outperformed a benchmark algorithm in terms of overall

energy saving, especially as the number of users per BS increased. Dynamic CSO

approaches have the advantage of adapting to current traffic situations; however, we

faced several problems regarding modelling the interference properly and avoiding

the possibility of coverage holes, as well as challenges in adapting to possible sudden

changes in user distribution. Therefore, we investigated the other category of CSO:

static CSO.

Chapter 5 is dedicated to regular CSO patterns, which is a specific case of static

CSO. This chapter provides a systematic characterization of different CSO patterns

and serves as a systematic summary of CSO patterns. We identified previous work

and proposed a possible way to form new regular patterns. In particular, we were

the first to study the sector-based regular CSO patterns. Although CSO patterns are

conceptually much simpler, they perform comparably to dynamic CSO approaches.

CSO patterns are advantageous in terms of ensuring interfering cells are far away,

minimizing coverage holes, and energy-efficiency for users.

In Chapter 6, motivated by the advantages of CSO patterns, we evaluated several

CSO algorithms designed for cellular networks with irregular BS placement, which is

a better model for real network deployments. We examine some of these algorithms

in real networks.

In the Appendix, we focused on the demand side of cellular networks as we stud-

ied the impact of the spatially-correlated shadowing on the user-in-the-loop (UIL)

which is a user-centric approach that aims at shaping the demand by including users

as active participants of the cellular system. Users are encouraged, through financial

incentives, to relocate to locations with better SINR, in order to alleviate congestion

situations. By doing so, users can achieve the same data rate with fewer radio re-

sources. Operators can benefit from these saved resources by providing higher data

rates to current users or accommodating new users. Our results confirmed the increase

in cell-average spectral efficiency after applying the UIL, and also showed that the

average moving distance increases with the correlation parameters. It would be in-

teresting to investigate a user-assisted CSO approach by considering the UIL concept

when designing a CSO algorithm with the aim of switching off extra BSs.
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7.2 Future Work

Although the CSO literature is rich, there exist some gaps in the literature that we

think need to be addressed. Within each chapter, we provide some future works that

can extend that topic of that chapter. Here, we introduce the advantages of applying

CSO in a non-traditional cellular structure where several parties may own and share

different entities of the network.

7.2.1 Software-Defined Cell Switch-Off for Virtual Cellular

Networks.

The architecture of 5G cellular networks is expected to change [2], and several parties

may own small parts of the network, unlike the current situation, where one operator

may own an entire large network. This opens the door for opportunities to share

resources and cooperate. Enabling technologies are network function virtualization

(NFV) and software defined networks (SDN); therefore we propose to investigate the

CSO approach in future scenarios with multi-operator cooperation in order to reduce

the overall energy consumption and benefit from the advantages of NFV and SDN.

The main objective of the CSO approach is to reduce energy consumption in

cellular networks by switching off unnecessary cells, which results in concentrating

the load (users) in as few cells as possible. After applying CSO, the majority of cells

are heavily loaded (more than 70% load); however, there can remain some cells that

are very lightly loaded (less than 30% load), Fig. 4.5 illustrates a possible realization.

Different cellular operators can dynamically share physical infrastructure, radio

resources to reduce energy consumption without affecting users’ QoS. One possible

solution for doing so is by offloading the users of the lightly loaded BSs to another

operator’s BSs (multi-operator cooperation).

We propose the possibility of a novel approach called software-defined CSO for

virtual cellular networks to exploit the advantages of network function virtualization

(NFV) and software defined networking (SDN), see Fig. 7.1.

7.2.1.1 Challenges of Applying CSO among Multiple Operators

In order to identify enabling technologies, we first need to discuss some possible

challenges related to CSO. Here, we emphasize challenges related to applying CSO
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NFV SDN 

Figure 7.1: This work is the intersection of three topics: CSO, SDN and NFV.

with multi-operator cooperation, see [75] for general challenges in cellular networks.

Some possible challenges can be summarized as:

1. Control signaling: A lot of information needs to be exchanged among different

operators and entities; therefore it is necessarily to manage these signals.

2. Global information: This information should be available at a central entity, so

that different parties can have access to it.

3. Resource discovery and allocation: Before deciding to switch off a cell, an op-

erator should first discover available resources before sending a request to a

central entity, which manages and allocates resources accordingly.

4. Inter-operator CSO management: Relying on other operators’ resources might

pose the possibility of conflict between the decisions of switching-off BSs. There-

fore, we need to manage CSO procedures among different operators.

5. Stability: We need to make sure that the CSO procedure is stable and will not

affect the original network’s operation.
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7.2.1.2 Enabling Technologies

In traditional networks, one mobile network operator (MNO), which is the main

service provider (SP), usually owns an entire cellular network, including the infras-

tructure, the radio access network (RAN), the core network (CN), and the transmis-

sion network (TN). In future networks, different network entities may be owned and

managed by different parties such as infrastructure providers (InPs), mobile virtual

network operators (MVNOs), and service providers (SPs) [75].

Future networks are expected to be cloud-enabled, and some research is already

available about cloud-RAN [2]. This is a very suitable network topology for CSO

approaches as they require global knowledge and need to run centrally. Two important

enabling technologies are:

Network Functions Virtualization (NFV): Virtualizing the network simply

means abstracting the infrastructure from the function it supports. This allows to

divide the physical network into several virtual networks called slices. Virtualization

should facilitate the CSO cooperation procedure and reduce the execution time.

In NFV, a full knowledge of the network is assumed to be acquired by each oper-

ator. Operators who want to apply CSO and want to utilize other operators’ RANs

are assuming that the RAN resources will be available upon request. However, this

might cause a problem when several operators decide to run the CSO concurrently.

Therefore, we need SDN to manage the available resources flexibly among different

parties, and consequently, it will facilitate the CSO procedures.

Software Defined Networking (SDN): SDN allows for dynamic reconfiguration

of the network through the separation of the control plane, data plane, and man-

agement plane. The SDN controller has a global view of the network so that it

can optimize the resource allocation and avoid any possible conflict of the operators’

objectives.

7.2.1.3 Problem Statement

3GPP has recognized the importance of supporting network sharing [76], and five

main scenarios were defined:

• Scenario 1: Multiple core networks sharing common RAN;
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• Scenario 2: Geographically split networks sharing;

• Scenario 3: Common network sharing;

• Scenario 4: Common spectrum network sharing; and

• Scenario 5: Multiple RANs sharing common core network.

There exist some research on applying CSO for multi-operator cooperation; for

example, authors of [77] studied the collaboration among several MNO that serve the

same geographical area, and they proposed network switch-off, where the entire net-

work of one operator is switched off to save energy. This might not always be possible

or desired, and more sophisticated cooperation scenarios are needed and encouraged,

as seen from the growing body of literature [77–81]. However, the previous work is

restricted to the physical aspects of sharing BSs among operators, and do not address

possible benefits of including SDN nor NFV.

The problem of multi-operator cooperation for CSO is such that an operator could

handoff its users to BSs belonging to other operators, as opposed to its own BSs only.

This cooperation provides on-demand resources so that operators can share physical

BSs to minimize the total number of active BSs in the networks. This can be done

in two ways:

• Each operator conducts its own CSO procedure and then communicate with

another operator to offload users and switch off extra BSs.

• All operators in the network construct a virtual network, and conduct the CSO

procedure jointly.

Although the first is simpler, the latter provides the maximum benefit. However, we

need to pay special attention not to fall into the trap of switching off virtual BSs, as

the actual energy consumed is from physical BSs.

7.2.1.4 Case Study

As a starting point, examine the simple network-sharing scenario presented in [80]

with the following assumptions:

• Two operators, MVNO1 and MVNO2, serve partly-overlapping geographical

areas.
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Figure 7.2: Example of two MVNOs, with different user densities, serving partly-
overlapping geographical areas. Each MVNO has its own RAN, RAN1 owned
by MVNO1 is enclosed in the blue circle, while RAN2 owned by MVNO2 is
enclosed in the green circle.

• Operators do not have any shared sites.

• Each MVNO has a different user density.

• Each MVNO provides a single service with rate requirements.

• MVNOs have their own RANs, their individual CNs, and their own licensed

spectrum.

In this case study, we assume the following: Figure 7.2 shows a realization of a

possible network scenario in which MVNO1 has high user density, while MVNO2 has

a very low user density. The performance metric is the number of active BSs after

running the CSO procedure. The area of overlap between the two MVNOs can be

considered as a variable. Also, the number of users per operator could be another

variable. There might or might not be a correlation between the number of users

served by each operator. Also, the required rate and the type of service can vary.
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Appendix A

Impact of Spatially-Correlated Shadowing

on the User-in-the-Loop Concept

The current practice is mainly to improve the performance of cellular networks from

the supply side (i.e., by implementing new transmission techniques or installing more

BSs); however, the demand side stays unchanged, while users are expecting ubiquitous

and very high data rates, which is not always viable. A new user-centric paradigm

could be considered to motivate users to be active participants of the system and not

just consumers. Some reasons for this consideration are:

• The increase in required data rates leads to an excess of demand over supply.

Many of the existing techniques on the supply side are reaching their theoretical

limits and further improvements are not expected soon.

• BSs have limited radio resources, bandwidth, that are shared among several

users. It is useful to raise users’ awareness towards sharing network services

and resources to avoid the possibility of the tragedy of the commons [82].

• Users located close to BSs generally receive a much stronger signal power than

users located far away. In addition to this distance-dependent power attenua-

tion, there is the shadowing effect that impacts the signal before reaching the

receiver and hence users at equal distances from the BS may receive quite dif-

ferent signal powers [26]. If users with weak received powers are willing to move

to better locations with higher received power, these users could obtain higher

data rates, resulting in an increase in the overall system performance.

Consequently, an approach to encourage users to be active participants in the net-

work by changing their locations is very useful, both for users (they can get financial

110



incentives) and operators (they can support more users and cope with congestion).

The target population for this approach is mainly young healthy individuals with a

constrained budget, such as students.

A.1 User-in-the-Loop Concept

The user-in-the-loop (UIL) concept was proposed in 2010 [83–85] and has gained

attention in recent years [84–89]. The main idea of UIL is to encourage users to be

active participants of the system and not just consumers; in particular, to alleviate

network congestion by reducing the demand in periods/locations of high traffic. This

is done by providing instantaneous feedback on the cost of the session and a possible

financial incentive if users cooperate by changing physical locations (spatial UIL), or

by postponing their sessions (temporal UIL).

User terminals (UTs) at low power locations require more radio resources to

achieve the same data rate than UTs at locations with a stronger received power.

Therefore, a higher overall capacity may be achieved if some users cooperate by mov-

ing to better locations. The effect of user relocation on the cell spectral efficiency was

discussed in [83]. When users relocate to better signal locations, by moving walkable

distances, the cell saves some resources, which can then be used to serve other users

or to provide higher data rates for current users. The results in [83] are promising and

an increase of more than 100% in the spectral efficiency is achieved without any mod-

ification to the current system. This improvement is gained simply from users being

active participants of the system. Those results are based on the pathloss calculation

only, which is a simplified scenario.

The goal of the UIL approach is to increase the cell spectral efficiency γ, measured

in bps/Hz. The cell spectral efficiency is the averaged rate achieved over the cell cov-

erage area and divided by the system bandwidth [90]. The spectral efficiency for each

UT depends on its SINR, the higher the SINR the higher the spectral efficiency [83].

UTs with low SINRs have low spectral efficiencies and acquire more radio resource

blocks to achieve high data rates. To increase the average cell spectral efficiency, more

UTs should receive higher SINRs, which might not be possible because of their bad

locations and the limitations on the maximum transmitted power. The relationship

between the SINR values and the corresponding spectral efficiency (γ) is summarized

in Table 2.2 based on the AMC scheme.
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In order to achieve higher SINR, instead of increasing the transmit power, the

user is incentivized to assist the network by relocating to better SINR locations.

The general idea of including users in the loop is shown in Fig. A.1. The controller

provides users with information, and users then decide in return whether to change

their locations or not.

 

2.5 bit/s/Hz 
PM 

=
 0.5 

Figure A.1: The user becomes a part of the system (in the loop). Source: [83].

With smartphones widely available, it has become possible to provide users with

all the information necessary to make the decision, such as the distance to move

and the incentive advertised. Fig. A.2 is an example of a graphical user interface to

facilitate the decision of relocating to higher spectral efficiency spots [83].

This cooperation from users may provide advantages for the operators, because

fewer radio resources are assigned to users in good SINR locations; consequently

they can save resources to better serve current users or accommodate new ones.

Users who decided to relocate receive an incentive (reduced prices or higher data

rates). Physically relocating to a better spot is well-observed in Wi-Fi (IEEE802.11)

networks, where users change their locations to get higher data rates.

Fig. A.2 shows an example of a graphical display that provides directions to better

locations and the possible incentive, so users can decide if they want to participate

or not.

Users are expected to relocate with a probability pM which is the probability that

a user will move from the current location ~p1 = (x1, y1) with spectrum efficiency γ1

to the new location ~p2 = (x2, y2) with spectrum efficiency γ2, where γ2 ≥ γΘ ≥ γ1.

This SE γΘ is chosen to determine the average cell spectral efficiency to be achieved

after the user’s movement.
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Figure A.2: Example of a map to facilitate the decision of relocating. It shows the
direction and distance to walk and the incentive offered. Based on an incentive,
users are expected to relocate to a stronger signal location with probability pM .
Source: [83].

A.2 Modeling Spatially-Correlated Shadowing

Shadowing is an important factor that should be considered, to have a more realistic

model of the SINR in space. Considering spatially-correlated shadowing is especially

important in the context of UIL, as it can affect the average walking distance.

Shadowing results from obstruction of the transmitted signal by buildings, nat-

ural obstacles, vehicles, etc. Shadowing plays an important role in determining the

received power at a UT from a specific BS.

The shadowing can be modeled as either independent (uncorrelated) shadowing

or spatially-correlated shadowing. In the first case, each point is assumed to have

an independent shadowing value Zn ∼ N(0, σ), a Gaussian random variable with

zero mean and a σ [dB] standard deviation [26]. In this model, the shadowing val-

ues are taken as independent at each point, i.e., two neighbouring points may have

completely different shadowing values despite their adjacency. This independence in

shadowing values is a simplified assumption. A more realistic model is correlated

shadowing that implies: if a UT is in deep/light shadowing, its neighbours probably

have deep/light shadowing as well. The correlation in shadowing can significantly
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Fig. 2. Example of two-dimensional uncorrelated shadowing field.
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Fig. 3. Example of two-dimensional correlated shadowing field.

it is separable. A separable model is necessary to reduce the

simulation complexity especially in this paper to calculate the

spectral efficiency all over the coverage area (too many points

are considered). Separability means that correlation can be

imposed in one dimension first, and then the correlation in

the other dimension can be calculated according to (4) [10] as

Figure A.3: Realization of a 2D uncorrelated shadowing field.

affect the mobility behaviour and the received power and hence impacts the overall

system performance [91]. The UIL approach is based on user displacement, therefore

using the correct shadowing model is vital in calculating the moving distance and

the resulting spectral efficiency. In such a user mobility approach, it is essential to

correctly calculate the distance to move and give an accurate movement suggestion

to users, and this can be modeled by choosing a correlated shadowing model instead

of the uncorrelated one. Simulations with different correlation distances (including

independent shadowing) are performed in order to highlight the effect of the amount

of spatial correlation on the results.

Spatial correlation in shadowing is widely studied in the literature and there are

many proposed models [92]. Some models are correlated in distance only, while others

consider only the angle between the two points, and other models take into account

both the distance and the angle between any two points [93–96]. For a visualization

of correlated shadowing, see Figs. A.3 and A.4. Both figures show the value of the

shadowing on a 2D field representing the coverage area for the given scenario. In

Fig. A.3, each point has a shadowing value independent from its neighbours’, while
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Fig. 3. Example of two-dimensional correlated shadowing field.

it is separable. A separable model is necessary to reduce the

simulation complexity especially in this paper to calculate the

spectral efficiency all over the coverage area (too many points

are considered). Separability means that correlation can be

imposed in one dimension first, and then the correlation in

the other dimension can be calculated according to (4) [10] as

φ = |∠�r1 − ∠�r2| ∈ [0 ◦, 180 ◦], (2)

R [dB] = |10 log(r1/r2)|, R0 > 0, (3)

h(φ,R) = hφ(φ)hR(R). (4)

Here is the abstract description of this model: If two UTs are

located at the same point then they are 100% correlated. This

correlation ratio decreases as the distance ratio and/or the angle

between the UTs increases [10]. After certain values, the two

UTs are considered to be totally uncorrelated. These values are

defined as (φ0): the maximum angle after which any two UTs

are uncorrelated in angle, and (R0): the maximum distance

ratio after which any two UTs are uncorrelated in distance.

This model starts with a set of independent random variables

Figure A.4: Realization of a 2D correlated shadowing field using model (A.1) with
R0 = 6 dB and φ0 = 60◦, as in [91].

 

 
 

𝑟1  

𝑟2  BS UT2 

UT1 

 ϕ 

Figure A.5: Two UT positions ~r1 and ~r2, relative to a BS.

in Fig. A.4, the adjacent points have correlated shadowing values.

The correlated shadowing model selected among many others in [92] and studied

in [91] is used here. This is a two-parameter model that depends on both the angle

φ and the distance ratio R (in dB) between any two points ~r1 and ~r2, as shown in

Fig. A.5. The calculation of these two parameters is shown in (A.2) and (A.3).

In the model selected in [91], the correlation coefficient between any two points ~r1

and ~r2 is given by:

h(~r1, ~r2) = max{1− φ/φ0, 0} ·max{1−R/R0, 0}, (A.1)
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where,

φ = |∠~r1 − ∠~r2| ∈ [0 ◦, 180 ◦], (A.2)

R[dB] = |10 log10(‖~r1‖/‖~r2‖)|, (A.3)

and R0 and φ0 are the tuning parameters of the model.

This specific shadowing model was chosen partly because it has two tunable pa-

rameters and it is separable in its two dimensions [91]. A separable model is necessary

to reduce the simulation complexity of calculating the spectral efficiency for too many

points over the coverage area. Separability means that the filtering of the spatial field

can be done in one dimension first and then in the other dimension to obtain the cor-

related shadowing field according to (A.1) [91], as seen in Fig. A.4.

The qualitative description of this model is that if two UTs are located at the same

point, then their shadowing values are 100% correlated (the same). This correlation

ratio decreases as the distance ratio and/or the angle between the UTs increases [91].

After certain distances, the two UTs are considered to be totally uncorrelated. These

values are defined as φ0: the maximum angle after which any two UTs are uncor-

related in angle, and R0: the maximum distance ratio after which any two UTs are

uncorrelated in distance.

Generating a 2D shadowing field according to this model starts with a set of

independent random variables to obtain an independent shadowing field (such as

Fig. A.3). After that, the independent Gaussian field (Fig. A.3) is passed through a

linear filter in both the radial and the angular direction in order to obtain the corre-

lated shadowing field (Fig. A.4) as described in [91]. Applying this model guarantees

that each shadowing value will be correlated with all the neighbouring points. After

obtaining this correlated shadowing field, the shadowing value at any point can be

obtained directly by mapping the location of that point onto the field and reading

the corresponding shadowing value from the field.

A.3 Simulation Results

The performance study is done by finding the average cell spectral efficiency before

and after applying the UIL concept, and the methodology is as described in [83].

First, it is informative to visualize the effect of correlated shadowing on the SINR

map. Fig. A.6(a) shows the LOS SINR distribution in the simplified case (without
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shadowing). In this case, the SINR values depend on the distances and antenna

patterns only. The 2D SINR map changes when the correlated shadowing is included,

as shown in Fig. A.6(b). The importance of correlated shadowing on the distribution

of the SINR is observed in Fig. A.6.

The spectral efficiency values obtained by running our simulation are very similar

to those obtained in the original UIL work in [83]. Although the SINR distribution

is different in the two cases, the average spectral efficiency is almost the same.

Moderate values are chosen for the pM and the γΘ as 0.5 and 2.5 bps/Hz respec-

tively. pM = 0.5 means half of the users are willing to walk to better locations. The

user moving distance depends on the chosen pM and γΘ, as well as the parameters of

the evaluation scenarios.

In order to understand the effect of spatially-correlated shadowing on the mov-

ing distance, the results with spatially-independent shadowing are shown in row 3 of

Table A.1. This result shows a shorter distance to move compared with the original

UIL approach without the shadowing effect (row 2). This distance can be as small

as the grid resolution used for the simulation model. In fact, shorter moving dis-

tances are expected with independent shadowing as users will likely find at least one

adjacent location with γ ≥ γΘ. Therefore, spatially-independent shadowing is not

a good model for studying UIL. To analyze the model in a more realistic scenario,

the correlated shadowing model in [91] is applied. In this case, the moving distance

depends on the correlation parameters φ0 and R0. Different φ0 and R0 values were

selected to evaluate their impact on the spectral efficiency and the user movement

distance. Some results are tabulated in Table A.1 and can be summarized as: the

smaller the correlation parameters, the smaller the distance to move.

Figs. A.7, A.8, and A.9 illustrate the relations between the correlation parameters

and the corresponding moving distance. As extracted from these figures, the average

moving distance is as low as 3.34 m for small correlation parameters (R0 = 1 dB and

φ0 = 3 ◦), that is approximately 30% shorter than the average moving distance in

the original UIL. On the other hand, large correlation parameters result in a longer

average moving distance (6.06 m compared with 4.7 m). However, calculated cell-

average spectral efficiencies is very similar for the different shadowing models.
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(a) LOS SINR without correlated shadowing.
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Fig. 4. Examples of the effect of shadowing on the strength of the SINR.
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Fig. 7. A 3-D presentation of the relation between the maximum correlation
(angle φ0 and distance ratio R0) and the average moving distance d̄.

V. CONCLUSION

The massive growth of data traffic in cellular network

requires a paradigm shift to be more user-centric. The UIL

approach is a user-centric approach based on convincing users

to be part of the system by providing them some incentive.
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Table A.1: Cell-average spectral efficiencies [bps/Hz/sector] with and without UIL
and the resulting moving distance for different shadowing models, with pM = 1

2

and γΘ = 2.5 bps/Hz.

Scenario γ γ Average moving
without UIL with UIL distance [m]

No shadowing effect 1.254 1.974 4.7
Uncorrelated shadowing model 1.225 2.028 2.69

Correlated shadowing 1.227 2.041 3.34
R0 = 1 dB, φ0 = 3 ◦

Correlated shadowing 1.234 2.016 4.69
R0 = 3 dB, φ0 = 30 ◦

Correlated shadowing 1.220 2.005 6.06
R0 = 6 dB, φ0 = 60 ◦

A.4 Conclusion

The massive growth of data traffic in cellular networks requires a paradigm shift to be

more user-centric. UIL is a user-centric approach based on encouraging users through

incentives to be active participants of the system. Users can cooperate by moving

to better SINR locations. This user cooperation can lead to a significant increase

in the cell-average spectral efficiency without any changes on the supply side of the

cellular networks. A further investigation was done in this chapter by including the

shadowing effect to analyze the performance of the UIL approach in a more realistic

environment and to obtain more accurate results. The results obtained confirm the

previous promising results for the cell-average spectral efficiency increase. However,

the average moving distance was affected: Results show the relation between the

spatial correlation parameters and the average moving distance.

In summary, the average moving distance increases with the correlation param-

eters. The shortest moving distance is achieved when modeling the shadowing as

uncorrelated in space.
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V. CONCLUSION

The massive growth of data traffic in cellular network

requires a paradigm shift to be more user-centric. The UIL

approach is a user-centric approach based on convincing users

to be part of the system by providing them some incentive.

Users can cooperate by moving to higher SINR locations.

This user cooperation can lead to a significant increase in the

cell spectral efficiency with no change to the current cellular
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[51] T. Beitelmal, D. González G, S. S. Szyszkowicz, and H. Yanikomeroglu, “Sector
and site switch-off regular patterns for energy saving in cellular networks,” IEEE
Trans. Wireless Commun., submitted Oct. 2016.

[52] S. M. Ross, Introduction to Probability Models. 2010.

[53] H. Holtkamp, G. Auer, V. Giannini, and H. Haas, “A parameterized base station
power model,” IEEE Commun. Lett., vol. 17, pp. 2033–2035, Nov. 2013.

[54] T. Beitelmal, S. S. Szyszkowicz, and H. Yanikomeroglu, “Regular and static
sector-based cell switch-off patterns,” in IEEE Vehicular Technology Conference
(VTC-Fall), pp. 1–5, Sept. 2016.

[55] F. Lagum, Q.-N. Le-The, T. Beitelmal, S. S. Szyszkowicz, and H. Yanikomeroglu,
“Cell switch-off for networks deployed with variable spatial regularity,” IEEE
Wireless Commun. Lett., submitted Oct. 2016.

[56] Q.-N. Le-The, T. Beitelmal, F. Lagum, S. S. Szyszkowicz, and H. Yanikomeroglu,
“Cell switch-off algorithms for spatially irregular base station deployments,”
IEEE Wireless Commun. Lett., submitted Oct. 2016.

[57] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Trans. Commun., vol. 59, pp. 3122–3134,
Oct. 2011.

[58] B. Rengarajan, G. Rizzo, and M. A. Marsan, “Energy-optimal base station den-
sity in cellular access networks with sleep modes,” Computer Networks, vol. 78,
pp. 152–163, Feb. 2015.

[59] E. Altman, C. Hasan, M. K. Hanawal, S. S. Shitz, J.-M. Gorce, R. El-Azouzi, and
L. Roullet, “Stochastic geometric models for green networking,” IEEE Access,
vol. 3, pp. 2465–2474, Nov. 2015.

[60] J. Peng, P. Hong, and K. Xue, “Stochastic analysis of optimal base station energy
saving in cellular networks with sleep mode,” IEEE Commun. Lett., vol. 18,
pp. 612–615, Apr. 2014.

[61] F. Lagum, S. S. Szyszkowicz, and H. Yanikomeroglu, “CoV-based metrics to
quantify the regularity of hard-core point processes for modeling the locations of
base stations.,” IEEE Wireless Commun. Lett., vol. 5, pp. 276–279, June 2016.

[62] J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE
Commun. Mag., vol. 51, pp. 136–144, Mar. 2013.

[63] D. B. Taylor, H. S. Dhillon, T. D. Novlan, and J. G. Andrews, “Pairwise inter-
action processes for modeling cellular network topology,” in IEEE Global Com-
munications Conference (GLOBECOM), pp. 4524–4529, Dec. 2012.

[64] Y. Li, F. Baccelli, H. S. Dhillon, and J. G. Andrews, “Fitting determinantal point
processes to macro base station deployments,” in IEEE Global Communications
Conference (GLOBECOM), pp. 3641–3646, Dec. 2014.

127



[65] T. V. Nguyen and F. Baccelli, “On the spatial modeling of wireless networks
by random packing models,” in IEEE International Conference on Computer
Communications (INFOCOM), pp. 28–36, Mar. 2012.

[66] M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun.
Lett., vol. 15, pp. 792–794, Aug. 2011.

[67] F. Lagum, S. S. Szyszkowicz, and H. Yanikomeroglu, “Quantifying the regularity
of perturbed triangular lattices using CoV-based metrics for modeling the loca-
tions of base stations in HetNets,” in IEEE Vehicular Technology Conference
(VTC-Fall), pp. 1–5, Sept. 2016.

[68] M. Mirahsan, R. Schoenen, and H. Yanikomeroglu, “HetHetNets: Heterogeneous
traffic distribution in heterogeneous wireless cellular networks,” IEEE J. Sel.
Areas Commun., vol. 33, pp. 2252–2265, Oct. 2015.

[69] D. Pisinger, “Upper bounds and exact algorithms for p-dispersion problems,”
Computers & Operations Research, vol. 33, pp. 1380–1398, May 2006.
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