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The green algae represent a large group of morphologically diverse photosynthetic eukary-
otes that occupy virtually every photic habitat on the planet. The extracellular coverings of
green algae including cell walls are also diverse. A recent surge of research in green algal
cell walls fueled by new emerging technologies has revealed new and critical insight con-
cerning these coverings. For example, the late divergent taxa of the Charophycean green
algae possess cell walls containing assemblages of polymers with notable similarity to the
cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin
present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose
most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans
and during different life cycle phases. Likewise, these algae produce complex sulfated
polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of
walls ranging from cellulose–pectin complexes to ones made of hydroxyproline-rich glyco-
proteins. Larger and more detailed surveys of the green algal taxa including incorporation
of emerging genomic and transcriptomic data are required in order to more fully resolve
evolutionary trends within the green algae and in relationship with higher plants as well as
potential applications of wall components in the food and pharmaceutical industries.
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INTRODUCTION
The emergence of green algae (Chlorophyta and Streptophyta,
Viridiplantae; sensu Leliaert et al., 2012) onto land roughly 470
million years ago represents one of the most important events in
the history of life on the planet. Their successful colonization of
land and subsequent evolution into modern land plants signifi-
cantly altered the atmosphere, changed terrestrial substrates and
paved the way for the evolution of other biota. Today, humans ulti-
mately depend on the evolutionary “offshoots” of green algae (i.e.,
embryophytes or “land plants”) for food, textiles, building mate-
rial, pharmaceuticals, and fuels. Yet these events and applications
represent only parts of a much larger story of green algae. Contem-
porary green algae are ubiquitous. They are important members of
the ocean’s phytoplankton, common and sometimes nuisance sea-
weeds of coastal marine habitats, peculiar symbionts of lichens and
flatworms, and inhabitants of just about any freshwater ecosystem
ranging from ponds, rivers, lakes, wetlands, and snow banks. In
the 1.5 billion years since they first appeared (Lewis and McCourt,
2004; Becker and Marin, 2009; Finet et al., 2010; Leliaert et al.,
2011; Wodnick et al., 2011), green algae have successfully adapted
to virtually all photic zones of the planet.

Similar to their land plant offspring, the vast majority of extant
green algae today are covered by a very large assortment of types
of extracellular matrix (ECM). These external coverings are prod-
ucts of complex biosynthetic machineries that often make use of
the bulk of the alga’s photosynthetically fixed carbon. The ECM is

integral to growth and development, affords the alga physical pro-
tection and defense against microbial attack, is involved in cell–cell
and cell–substrate adhesion and in some cases, is involved in sexual
reproduction. Some green algae are covered by multiple layers of
intricately sculpted scales while others have crystalline glycopro-
tein coverings or thick multilaminate fibrillar cell walls. A few taxa
though have cell walls with remarkable structural and biochem-
ical similarity to cell walls found in land plants (Sørensen et al.,
2010, 2011). How did these diverse extracellular coverings arise
and what are the evolutionary links between them? Many ana-
lytical approaches and technologies are now being used to study
green algal ECMs and are providing new and critical insight into
structure, chemistry, and evolution of these coverings (Table 1).
Nevertheless, we are only in an infancy stage in our understand-
ing of the green algal extracellular coverings. In this review, we
describe some of these recent discoveries and comment on future
directions for study of the cell walls of green algae.

THE CURRENT STATE OF STUDY OF GREEN ALGAL CELL
WALLS AND EXTRACELLULAR COVERINGS
While the green algae display a large and diverse array of ECM-
coverings, only a few taxa have been studied in detail. It is
widely accepted that taxa of the Ulvophyceae and the Charo-
phycean green algae (CGA) possess fibrillar cell walls (Popper et al.,
2011) consisting of various polysaccharide and proteoglycan con-
stituents while other taxa, especially those of the Prasinophyceae,
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Table 1 | Major methodologies used today in the study of green algal coverings.

Methodology Technical aspects Data obtained/status Reference

Biochemical Chemical and enzymatic fractionation;

methylation analysis-GC/MS; NMR;

electrophoresis

Monosaccharide composition, glycosidic linkage

composition, conformational studies, molecular weights

of various cell wall polysaccharides

Popper et al. (2011),

Popper and Fry (2003),

Estevez et al. (2009)

Carbohydrate

microarrays

Sequential extraction of

polysaccharides; immobilization onto

nitrocellulose, mAb probing

Early divergent CGA walls differ from late divergent taxa

walls; late divergent taxa possess HGA, RG-I, MLG,

various hemicelluloses, AGPs, extensins

Sørensen et al. (2010,

2011), Moller et al.

(2007)

Immunocytochemistry Immunofluorescence and

immunogold labeling of live cells and

sections of fixed cells

Wall polymer mAbs may be used in live cell studies;

Coleochaete walls possess lignin-like epitopes

Domozych et al. (2009,

2011), Eder and

Lutz-Meindl (2010),

Sørensen et al. (2011)

FTIR

microspectroscopy

IR spectral arrays obtained from

microscopically imaged covering

Analysis of presence and distribution of polymers in the

cell wall of Ulvophyceae

Estevez et al. (2009),

Fernández et al. (2011a),

Carpita et al. (2001)

Molecular Transcriptome and genome

acquisition; annotation of genes

Genomes sequenced in Volvox carteri, Chlamydomonas

reinhardtii, Micromonas sp. RCC299, Ostreococcus

tauri, and Ostreococcus lucimarinus (see

http://bioinformatics.psb.ugent.be/plaza/) and Chlorella

variabilis NC64; several transcriptomes analyzed

Blanc et al. (2010),

Timme and Delwiche

(2010), Vannerum et al.

(2011), Timme et al.

(2012)

mAb, monoclonal antibody; RG-I, rhamnogalacturonan-I; MLG, mixed linkage glucans; AGP, arabinogalactan protein; FTIR, Fourier transform infrared; CGA,

Charophycean green algae.

Chlorodendrophyceae, and some taxa of the Chlorophyceae, pro-
duce coverings that are structurally and biochemically unique.
Presently, extant green algae are classified into six distinct clades
(Delwiche and Timme, 2011; Leliaert et al., 2011, 2012). The fol-
lowing represent brief synopses of the current state of knowledge
concerning the ECM of these groups (see also Table 2).

THE PRASINOPHYCEAEN MATRIX: SUBTLE TO THE
SPECTACULAR!
The Prasinophyceae or prasinophytes represent a group of motile
and non-motile unicells that are presently classified in four clades
(Leliaert et al., 2012) and are most commonly found in marine
habitats. In photic zones of oceans, picoplanktonic prasinophytes
(perhaps the smallest extant eukaryotes; 0.8 μm cell size), like
Ostreococcus and Micromonas, exist in very large numbers. Previ-
ous microscopy-based research has shown that taxa like these are
either covered with scales or do not have any discernable matrix
at all (i.e., they are naked; Piganeau et al., 2011). However, recent
analysis of the Ostreococcus genome plus immunocytochemical
investigations in our laboratories together raise questions as to
the nakedness of this picoalga. Other prasinophytes are signifi-
cantly larger and covered with layers of thousands of distinctly
shaped scales coating both the cell and flagellar membrane surfaces
(Moestrup and Walne, 1979). Biochemical analyses have shown
that these scales are comprised primarily of neutral and acidic sug-
ars including 2-keto sugars such as 3-deoxy-lyxo-2-heptulosaric
acid (DHA; Becker et al., 1991, 1994). All scales of prasinophytes
are believed to be processed in the Golgi apparatus, packaged in
secretory vesicles and secreted to the cell surface near the flagellar
apparatus or to vacuole-like scale reservoirs before release to the
cell surface.

CHLORODENDROPHYCEAE: WALLS FROM A FUSION
Taxa of the small Chlorodendrophyceae group of green algae
consist of motile or non-motile and sometimes stalked unicells
(Tetraselmis and Scherffelia) that are covered by a single cell wall
or layers of cell walls. Furthermore, the wall or theca consists
of regular repeating subunits and unlike the cell walls of other
green algae, this wall is believed to be a product of fused scales.
The subunits of the theca are scale-like and are processed in the
Golgi apparatus like those of scaly prasinophytes. The acid sugars,
2-keto-3-deoxy-d-manno-octulosonic acid, 5-O-methyl 2-keto-
3-deoxy-d-manno-octulosonic acid, and DHA comprise 60% of
the sugars present in the theca (Becker et al., 1991).

TREBOUXIOPHYCEAE: WALLS OF UNUSUAL POLYMERS
The Trebouxiophyceae consists of an assemblage of primarily
freshwater and terrestrial forms that exhibit diverse phenotypes
ranging from unicells to colonies to filaments as well as represent-
ing most of the photobiont green algae of lichens (e.g., Trebouxia).
Some are considered highly attractive candidate genera for use in
algal biofuel production (e.g., Chlorella; Rodrigues and da Silva
Bon, 2011). Most members of this group possess cell walls but
surprisingly little is known about their biosynthesis, composition,
or architecture. In Chlorella, the wall contains cellulose and in
some species, the wall is coated by a highly resistant outer stra-
tum consisting of “algaenan,”an aliphatic polymer containing long
polymethylenic chains that are decorated with amide and N -alkyl
substituted pyrroles (Rodrigues and da Silva Bon, 2011). In Tre-
bouxia isolated from lichens and grown separately from its fungal
partner, β-galactofuranan has been demonstrated, a polysaccha-
ride previously found in fungi but not known from green algae
(Cordeiro et al., 2006).
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Table 2 | Summary of the composition of extracellular coverings in green algae.

Taxon Covering type Biochemical composition Reference

Prasinophyceae “Scales,” coatings 2-Keto sugars (e.g., DHA), mannans, glycoproteins Becker et al. (1991, 1994), Moestrup

and Walne (1979)

Chlorodendrophyceae Wall of fused scales 2-Keto sugars (e.g., DHA), proteins Becker et al. (1991)

Trebouxiophyceae Cell walls Cellulose, algaenan, β-galactofuranan Rodrigues and da Silva Bon (2011),

Cordeiro et al. (2006)

Chlorophyceae Crystalline glycoprotein

walls; fibrillar cell walls

Hyp-rich glycoproteins, cellulose pectins, AGP, extensin Voigt et al. (2001, 2007), Kirk (1998),

Estevez et al. (2008)

Ulvophyceae Cell walls Cellulose, β-mannans, β-xylans, sulfated (sometimes

pyruvylated) polysaccharides or sulfated

rhamnogalacturonans, AGP, extensin

Ciancia et al. (2012), Estevez et al.

(2009), Percival (1979), Lahaye and

Robic (2007)

Charophyceae-early

divergent clades

Scales, cell walls 2-Keto sugars, cellulose, homogalacturonans, 1,3

β-glucans, AGP

Sørensen et al. (2011), Domozych et al.

(1991)

Charophyceae-late

divergent clades

Cell walls Cellulose, homogalacturonans, RG-I xyloglucans,

mannans, xylans, mixed linkage glucans, 1,3 β-glucans,

AGP, extensin, lignin

Sørensen et al. (2011, 2012), Popper

and Tuohy (2010)

For further detailed information, key references are provided. AGP, arabinogalactan proteins; Hyp, hydroxyproline.

CHLOROPHYCEAE: GLYCOPROTEINS AND CELLULOSE
The Chlorophyceae are the largest group of green algae and exhibit
great morphological diversity ranging from motile unicells to
large filaments to blade-like thalli. The extracellular coverings of
the Chlorophycean algae are also very diverse and consist of a
distinct assortment of “cell walls.” In Oedogonium, the cell wall
resembles those of higher plants in containing microfibrillar cel-
lulose, homogalacturonans and rhamnogalacturonan-I, extensin,
and arabinogalactan constituents (Estevez et al., 2008). Many
of the polysaccharides that are common to embryophyte walls
are thought to have evolved within the CGA, so these results
were unexpected. Further biochemical study and a much wider
screening of this and other Chlorophycean taxa will be required
to ascertain the similarity of these polymers with those of the
CGA and embryophytes. However, in the Chlamydomonas–Volvox
assemblage (i.e., volvocalean flagellates), the cell wall does not con-
tain cellulose but is made of crystalline glycoproteins, specifically
one based upon aggregates of hydroxyproline-rich glycoproteins
(HRGPs) and glycine-rich glycoproteins (Imam et al., 1985; Adair
et al., 1987; Kirk, 1998; Voigt et al., 2001, 2007). Extensins of
plants are a group of cell wall glycoproteins that probably share
at least some glycosylation motives and a common ancestry with
the HRGPs of Chlamydomonas–Volvox assemblage. The glycosy-
lation motives that govern extensin-type glycosylation comprise
the SPPPP sequence (i.e., serine-proline-proline-proline-proline)
usually occurring several times. The prolines are hydroxylated by
prolyl hydroxylases prior to glycosylation. Showalter et al. (2010)
used SPPPSPPP to define the class of extensins in their bioin-
formatic classification of HRGPs. The genetic encoding of the
repetitive structures allows for substantial genetic drift without
loss of function (Kieliszewski and Lamport, 1994), this being the
reason why clear orthologies between individual vascular plant
and chlorophyte extensins cannot be traced. The core arabinosy-
lation machinery is clearly equivalent, however. Egelund et al.
(2007) used the phylogenetic distances between family GT77

glycosyltransferases to deduce the function of the Arabidopsis
GT77 clade A genes. This proposition that the genes encode
extensin arabinosyltransferases, was later corroborated by extensin
phenotypes of mutants knocked out in these genes (Velasquez
et al., 2011). The prolyl hydroxylases described in that paper also
have orthologs in the chlorophyte genomes and one from Chlamy-
domonas has been shown to be involved in cell wall biogenesis
(Keskiaho et al., 2007) and the CAZy-database classifies Chlamy-
domonas gene BAF46284 to family GT75. The encoded protein is
68.6% identical to Arabidopsis At3g02230, one of the mutases that
catalyzes the interconversion of UDP-Arap and UDP-Araf (Raut-
engarten et al., 2011), which we believe to be the donor substrate
also of these arabinosyl transferases.

ULVOPHYCEAE: SULFATED POLYSACCHARIDES, FIBRILLAR
POLYMERS, AND GLYCOPROTEINS
The Ulvophyceae area diverse assemblage of organisms including
the best known marine seaweeds with siphonocladous, sipho-
nous, and filamentous forms (Leliaert et al., 2012). Some of them
have cellulose as a major fibrillar component of their cell walls.
However, others possess (1→4)-β-mannans or (1→3)-β-xylans
(Percival and McDowell, 1981; Painter, 1983; Yamagaki et al., 1997;
Dunn et al., 2007; Estevez et al., 2009; Ciancia et al., 2012) and
in some, the type of fibrillar polysaccharide is life cycle stage-
dependent (Huizing and Rietema, 1975; Wutz and Zetsche, 1976;
Huizing et al., 1979; Dunn et al., 2007).

These algae synthesize sulfated polysaccharides, an adaptation
to the marine habitats that is also observed in many other marine
organisms, including angiosperms and invertebrates (Aquino
et al., 2011). These sulfated wall constituents may be classified
into one of two groups as originally designated by Percival (1979):
(1) uronic acid-rich polysaccharides also containing rhamnose,
xylose, and sometimes galactose, and (2) uronic acid-limited poly-
saccharides consisting of major quantities of galactose, arabinose
and, in some cases, xylose. The first group is represented by Ulva,
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Monostroma, Gayralia, and Acetabularia (Ray, 2006; Chattopad-
hyay et al., 2007a; Dunn et al., 2007; Lahaye and Robic, 2007;
Cassolato et al., 2008; Mao et al., 2008, 2009) and the second
one includes Caulerpa, Codium, and Bryopsis (Bilan et al., 2007;
Chattopadhyay et al., 2007b; Estevez et al., 2009; Ciancia et al.,
2012).

Cell walls from the first group as represented by several Ulva
species comprise two major polysaccharide components, soluble
ulvans and cellulose, and two minor ones, an alkali-soluble linear
xyloglucan and a glucuronan. Ulvan is the family of sulfated poly-
saccharides that consist of large quantities of glucuronic acid and
rhamnose with the main repeating disaccharide being →4)-β-d-
GlcAp-(1→4)-α-l-Rhap-(1→. α-l-Iduronic acid or β-xylose can
replace glucuronic acid to a certain extent with the latter sugar also
found as a side chain linked to C-2 of some rhamnose residues.
Sulfation appears mostly on C-3 of the rhamnose units and on C-2
of the glucuronic acid side chains. Distribution of these polymers
in the cell walls of the bi-seriated thallus of Ulva was determined
by cytochemical and physicochemical data (Lahaye and Robic,
2007). These polymers are structurally related to glycosamino-
glycans from animal tissues, like chondroitin sulfate or heparin,
but they have glucosamine units instead of rhamnose in their
backbone, and the sulfation pattern is different.

The second group is represented by coenocytic Codium species,
which produce a 4-linked β-D-mannan as fibrillar component.
Three different sulfated polysaccharide structures were isolated
from C. vermilara including: (1) highly ramified sulfated and
pyruvylated β-(1→3)-d-galactans, also present in other Codium
species (Bilan et al., 2007; Ciancia et al., 2007; Farias et al., 2008;
Ohta et al., 2009; Fernández et al., 2011a); (2) linear highly sulfated
β-(1→3)-l-arabinans, with the arabinose units in the pyranose
form (P. V. Fernandez, J. M. Estevez, A. S. Cerezo, and M. Cian-
cia, unpublished results); and (3) linear β-(1→4)-d-mannans
partially sulfated mainly on C-2 of some of the mannose units
(Fernández et al., 2011b). Also, HRGPs with characteristics simi-
lar to those of arabinogalactan proteins (AGPs) and extensins from
vascular plants were detected in these cell walls (Estevez et al., 2009;
Fernández et al., 2011a). Distribution of β-mannans and HRGP-
like epitopes was shown to be found in two distinct cell wall layers,
whereas sulfated polysaccharides were distributed in the middle
area of the wall.

CHAROPHYCEAE: CELL WALLS AND THE ORIGIN OF LAND
PLANTS
The Charophyceae or CGA are the extant group of green algae
most closely related and ancestral to land plants. Over the past
decade, a surge of research activity focusing on the walls of CGA
taxa has revealed important insight into cell wall structure and
evolution (Popper and Fry, 2003; Domozych et al., 2007, 2009;
Eder et al., 2008; Eder and Lutz-Meindl, 2010; Popper and Tuohy,
2010; Sørensen et al., 2010, 2011; Popper et al., 2011). First, the
cell walls of taxa of the early divergent CGA such as the Chloroky-
bales and Klebsormidiales, do not possess most of the polymers
commonly found in late divergent CGA and land plants. The
basal clade of CGA, the Mesostigmales, does not even have a cell
wall but rather produces layers of scales (Domozych et al., 1991).
Second, the late divergent clades, the Charales, Coleochaetales,

and Zygnematales, possess cell walls with notable similarity to
those of land plants. Polysaccharides like cellulose, pectins (includ-
ing homogalacturonans and rhamnogalacturonan-I), β-(1-3) glu-
cans, and hemicellulosic polymers like xyloglucans, mannans, and
xylans are found in the cell wall of these advanced CGA. Mixed
linkage glucans or MLGs that were once thought to be found
only in members of the grass family of angiosperms, were also
found in Zygnematalean taxa, demonstrating a more widespread
occurrence in green plants. Also surprising is the presence of
lignin-like compounds in the cell walls of several species of the
genus Coleochaete.

Arabinogalactan proteins and extensin have also been described
in many CGA taxa. Extensins surprisingly are not detected in
Nitella and Chara (Charales; Gotteli and Cleland, 1968). Ara-
binosyltransferases involved in extensin arabinosylation belong
to the GT77 A- and C-clades sensu Petersen et al. (2011) and
it is remarkable that the Chara transcriptome (courtesy of Ger-
not Glöckner, Leibniz-Institute of Freshwater Ecology and Inland
Fisheries, Berlin) as well as that of Nitella hyalina (Timme et al.,
2012) each have a putative member in family GT77 clade D, but
none in clade A or C. The transcriptome of Nitella, but not that of
Chara comprises putative prolyl hydroxylases allowing for the exis-
tence of AGPs even though extensins are missing. It thus appears
that members of Charales have evolved and separated themselves
significantly from other members of the CGA, notably the Zygne-
matales and Coleochaetales which feature cell walls that more
closely resemble that of vascular plants and which are known
to express enzymes involved in cell wall metabolism akin to that
observed in angiosperms (e.g.,Vannerum et al., 2011). These latter
similarities suggest that late divergent taxa of the CGA (i.e., their
ancestors 470 million years ago) may have possessed cell wall char-
acteristics that pre-adapted them for successful emergence onto
and life on land.

THE NEXT GOALS?
More detailed characterization of the various taxa will be required
before we can fully understand the evolution of extracellular cov-
erings of green plants as well as adaptations to ECM chemistry
in response to life in marine, freshwater, and terrestrial habitats.
Some specific questions and areas of focus for future study include:

(1) Insights into the polysaccharide biosynthetic machinery of
CGA are and will at the same time offer insights into the evo-
lutionary events that accompanied adaptation to life on land.
This will require full genomic sequencing as transcriptomic
analysis is useful for demonstrating the functional expression
of genes, but not for the absence. This endeavor offers many
challenges as many relevant CGA genomes are estimated to
be as big as if not bigger than that of Arabidopsis (Kapraun,
2007).

(2) Detailed analysis of the roles of cell wall polymers in the CGA
is critical. Although the CGA share many cell wall constituents
with their embryophyte descendents, it is not clear if they are
used in equivalent roles.

(3) Sulfated polysaccharides from ulvophyte seaweeds have only
recently been reexamined and have yet to be widely used
in the hydrocolloid industry. Ulvan has been investigated as
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potential dietary fiber for human diet (Lahaye and Robic,
2007) due to its medical properties and potentially prof-
itable extraction yields from harvested specimens. In addition,
ulvans have some interesting biological activities, including
acting as antioxidants, modifying certain macrophage activi-
ties, and serving as potential anti-hyperlipidemic agent (Wije-
sekara et al., 2011). Sulfated polysaccharides from the Bryop-
sidales are not obtained in large yields (Ciancia et al., 2007,
2012), but have piqued interest as bioactive compounds with
several potential pharmacological applications (Ohta et al.,
2009; Ciancia et al., 2010; Costa et al., 2010; Lee et al., 2010).
More detailed characterization of these molecules is needed
in order to fully recognize their potential.

(4) Comprehensive chemical and functional screening of the large
but virtually unknown polysaccharide complexes secreted
outside the cell walls of many Zygnematalean taxa (Domozych
et al., 2005) will be important for understanding their
physiology and importance to ecosystem dynamics.

The study of green algal cell walls and other coverings has now
entered a truly exciting phase whereby new methodologies espe-
cially from the biochemical and molecular fronts are allowing for
detailed resolution of wall polymers. While evolutionary and cell
biology-based studies have been and will continue to be driving
forces for this, the study of green algal coverings represents a criti-
cal step for emerging applied technologies as green algae are being,
or will be, used as food sources for humans and domesticated
animals, hydrocolloids for the food and pharmaceutical industry,
bioactive compounds for medicinal use and starting material for
biofuels.
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