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Abstract 63 

 64 

The COVID-19 pandemic, caused by SARS coronavirus 2 (SARS-CoV-2), has resulted in excess 65 

morbidity and mortality as well as economic decline. To characterise the systemic host immune 66 

response to SARS-CoV-2, we performed single-cell RNA-sequencing coupled with analysis of 67 

cell surface proteins, providing molecular profiling of over 800,000 peripheral blood mononuclear 68 

cells from a cohort of 130 patients with COVID-19.  Our cohort, from three UK centres, spans the 69 

spectrum of clinical presentations and disease severities ranging from asymptomatic to critical. 70 

Three control groups were included: healthy volunteers, patients suffering from a non-COVID-19 71 

severe respiratory illness and healthy individuals administered with intravenous 72 

lipopolysaccharide to model an acute inflammatory response. Full single cell transcriptomes 73 

coupled with quantification of 188 cell surface proteins, and T and B lymphocyte antigen receptor 74 

repertoires have provided several insights into COVID-19: 1. a new non-classical monocyte state 75 

that sequesters platelets and replenishes the alveolar macrophage pool; 2. platelet activation 76 

accompanied by early priming towards megakaryopoiesis in immature haematopoietic 77 

stem/progenitor cells and expansion of megakaryocyte-primed progenitors; 3. increased clonally 78 

expanded CD8+ effector:effector memory T cells, and proliferating CD4+ and CD8+ T cells in 79 

patients with more severe disease; and 4. relative increase of IgA plasmablasts in asymptomatic 80 

stages that switches to expansion of IgG plasmablasts and plasma cells, accompanied with higher 81 

incidence of BCR sharing, as disease severity increases. All data and analysis results are available 82 

for interrogation and data mining through an intuitive web portal. Together, these data detail the 83 

cellular processes present in peripheral blood during an acute immune response to COVID-19, and 84 

serve as a template for multi-omic single cell data integration across multiple centers to rapidly 85 

build powerful resources to help combat diseases such as COVID-19.  86 

 87 

Introduction 88 

 89 

The outbreak of coronavirus disease 2019 (COVID-19) was declared a global pandemic on 11 90 

March 20201, and as of 12 January 2021 has led to over 91 million infections and 1.9 million 91 

deaths worldwide2. Common symptoms, which are often mild and transient, include cough, fever 92 

and loss of taste and/or smell3. In a small proportion of those infected, symptoms can worsen and 93 
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lead to hospitalisation, with the elderly and those with comorbidities being most at risk4. In critical 94 

cases, patients may develop acute respiratory distress syndrome (ARDS) necessitating intensive 95 

care therapy, including endotracheal intubation and mechanical ventilation5. Clinical trials of 96 

vaccines and therapeutics have been performed at an unprecedented pace6, leading to the 97 

emergency authorisation of several vaccine candidates for susceptible populations in December 98 

20207. Treatment strategies under investigation include medication with anti-viral, anti-99 

inflammatory and immunomodulatory properties8.  100 

 101 

The aetiologic agent of COVID-19 is a novel highly-infectious pathogenic coronavirus, severe 102 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This enveloped, positive-sense single-103 

stranded RNA betacoronavirus utilises the cell surface receptor angiotensin-converting enzyme 2 104 

(ACE2) to enter host cells9. ACE2 is expressed in various barrier tissues, including nasal 105 

epithelium, conjunctival epithelium and intestines, as well as internal organs, including alveoli of 106 

the lung, heart, brain, kidney and the uterine-placental interface10. Neuropilin (NRP1), a cell 107 

surface receptor expressed in respiratory and olfactory epithelium, can also facilitate SARS-CoV-108 

2 cellular entry11. Patients with COVID-19 infection often have lymphopenia in association with 109 

high neutrophil and platelet counts, parameters which may give prognostic indication12.  110 

 111 

Several studies have highlighted a complex network of peripheral blood immune responses in 112 

COVID-19 infection, with the role of T cells during infection being an area of particular focus13,14. 113 

A reduction of absolute numbers of T cells linked with disease severity has been reported, as well 114 

as a decrease in IFN-γ production by lymphocytes15. However, a significant expansion of highly 115 

cytotoxic effector T cell subsets has also been found in patients with moderate disease16. 116 

Additionally, higher expression of exhaustion markers PD-1 and Tim-3 on CD8+ T cells have been 117 

described in patients receiving Intensive Care Unit (ICU) therapy17. 118 

 119 

The response of myeloid cells and B cells have been less well explored in COVID-19. Emergency 120 

myelopoiesis, driven by inflammation, is thought to arise as a way to prevent tissue damage18,19. 121 

In severe cases, dysregulation of myelopoiesis coupled with abnormal monocyte activation can 122 

occur18, but the underlying mechanisms remain to be explored. Extrafollicular B cell activation is 123 

present in critically ill patients but despite the high levels of SARS-CoV-2 specific antibodies and 124 
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antibody secreting cells, many of these patients do not recover from the disease14. Neutralising 125 

antibodies are protective against infection and potentially confer immunity to reinfection, as 126 

adoptive transfer of anti-SARS-CoV-2 monoclonal antibodies into naive animals were shown to 127 

reduce virus replication and disease development20. Vaccine-induced neutralising antibody titers 128 

have been correlated with protection in nonhuman primates21, and recovered patients display 129 

robust antibody responses correlated with neutralisation of authentic virus for at least several 130 

months22. 131 

 132 

In this study we combined single cell resolution analysis of transcriptomes, cell surface proteins 133 

and lymphocyte antigen receptor repertoires to characterise the cellular immune response in 134 

peripheral blood to COVID-19 across a range of disease severities, integrating results across three 135 

UK medical centres.  136 

 137 

Results 138 

 139 

Altered transcriptomic and surface protein profiles related to severity of COVID-19 infection 140 

To delineate the immune response to COVID-19 infection, we collected venous blood samples 141 

from patients with asymptomatic, mild, moderate, severe and critical23 COVID-19 infection across 142 

three UK centres in Newcastle, Cambridge and London. Controls included healthy volunteers, 143 

patients with a non-COVID-19 severe respiratory illness, and healthy volunteers administered with 144 

intravenous lipopolysaccharide (IV-LPS) as a surrogate for an acute systemic bacterial 145 

inflammatory response (Fig. 1A, Supplementary Table 1). We generated single cell 146 

transcriptome data from peripheral blood mononuclear cells (PBMCs) of all individuals as well as 147 

a census of cell surface proteins using a panel of 192 antibody derived tags (ADT) (Fig. 1A, 148 

Supplementary Table 2). In total, following demultiplexing and doublet removal, we sequenced 149 

1,141,860 cells from 143 samples with 850,100 cells passing quality control (min of 200 genes 150 

and <10% mitochondrial reads/cell) (Extended Data 1A). The full scRNA-seq dataset was 151 

integrated using Harmony24 (Fig. 1B). There was good mixing of cells by the kBET statistic 152 

calculated for each cluster across sample IDs (rejection rate improved from 0.62 to 0.36 following 153 

integration, p<2.1x10-8 by Wilcoxon paired signed rank test (Extended Data 1B-C)).   154 

 155 
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 6 

Following Leiden clustering, cells were manually annotated based on the RNA expression of 156 

known marker genes. RNA-based annotation was supported by surface protein expression of 157 

markers commonly employed in flow cytometry to discriminate PBMC subpopulations (Extended 158 

Data 1D). We defined 18 cell subsets across the datasets (Fig. 1B), with an additional 27 cell states 159 

identified following sub-clustering (Fig. 1B, 2A, 3A-B, 4A-B). Our annotation was further 160 

validated using the Azimuth annotation tool for PBMC where more than 50% of the cells were 161 

mapped and matched to a unique cluster in 32/33 of the clusters defined in the Azimuth PBMC 162 

dataset (proliferating CD8 T cells mapped across two clusters). Clusters unique to our data include 163 

proliferating monocytes, ILC subpopulations and isotype-specific plasma cells. (Extended Data 164 

1E). Our complete COVID-19 peripheral blood multi-omic data is available through the web-165 

portal at https://covid19cellatlas.org. 166 

 167 

We assessed how cell populations varied with severity of COVID-19 and observed a relative 168 

expansion of proliferating lymphocytes, proliferating monocytes, platelets, and mobilized 169 

haematopoietic stem/progenitor cells (HSPCs) with worsening disease.  In the B cell compartment, 170 

there was an expansion of plasmablasts in COVID-19 and an increase in B cells in severe and 171 

critical disease. In contrast to these expansions, there were reductions in MAIT cells with disease 172 

severity (Fig. 1C, Extended Data 2A). These changes were in keeping with the trends observed 173 

in clinical blood lymphocyte, monocyte and platelet counts of COVID-19 patients (Extended 174 

Data 2B, Supplementary Table 3). To assess the broader impacts of patient characteristics and 175 

clinical metadata on the altered proportion of cell type/states, we used a Poisson linear mixed 176 

model (see Methods and Supplementary Note 1) which predicted the COVID-19 swab result (BF 177 

corrected LR P=2.3x10-4; see Methods), disease severity at blood sampling (BF corrected LR 178 

P=3.5x10-7), and centre (contributed by increased RBC and reduced monocytes in the Cambridge 179 

patient cohort; BF corrected LR P=3.5x10-142) as the main contributing factors to cell population 180 

frequency among 7 different clinical/technical factors (Extended Data 2C). Further, we found 181 

that PBMC composition varied depending on symptom duration, with increased relative frequency 182 

of pDCs, NK cells, CD14+ and CD16+ monocytes (FDR 10%) and decreased relative frequency 183 

of B cells, Tregs, RBCs, platelets and CD4 T cells with a longer symptomatic interval before 184 

sampling (Extended Data 2E).   Critically ill patients were sampled at later time points from onset 185 

of symptoms than mild-moderate-severe patients, consistent with the protracted course of infection 186 
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in critical disease (Extended Data 2D). However, concordant changes according to symptom 187 

duration were still found when excluding critical patients, indicating the additional influence of 188 

symptom duration on peripheral immune cell changes in SARS-CoV-2 infection (Extended Data 189 

2F). 190 

 191 

We observed expression of Type I/III interferon response genes in monocytes, DCs and HSPCs 192 

across the spectrum of COVID-19 severity, but not in patients challenged with IV-LPS, in keeping 193 

with the importance of type I and III interferons in the innate immune response to viral infection 194 

(Fig. 1D). Type I/III interferon response-related genes were recently identified as harbouring 195 

association signals in a Genome Wide Association Study (GWAS) for COVID-19 196 

susceptibility25,26. Of the genes identified in this study, we found IFNAR2 was both upregulated in 197 

COVID-19 compared to healthy in most circulating cell types and highly expressed by 198 

plasmablasts, monocytes and DCs (Extended Data 2G).  199 

 200 

To provide information on the cytokine and chemokine context influencing peripheral immune 201 

cells, we performed multiplexed analysis of 45 proteins in serum.  Two contrasting cytokine 202 

profiles were evident when comparing mild/moderate to severe/critical patients.  CCL4, CXCL10, 203 

IL7 and IL1A were associated with severe and critical disease, suggesting an augmented drive for 204 

monocyte and NK lymphocyte recruitment as well as support for T cell activity/pathology 205 

(Extended Data 2H, Supplementary Table 4).  206 

 207 

To take advantage of the comprehensive protein expression data, we used Cydar27 to characterise 208 

how the immune landscape changes with disease severity based on surface protein expression. We 209 

divided cells into phenotypic hyperspheres based on the expression of 188 proteins. We then 210 

quantified the number of cells from each severity group within the hyperspheres, which allowed 211 

us to identify 430 hyperspheres that differed significantly in abundance with increasing severity 212 

(spatial FDR < 0.05, Fig. 1E). Examining the surface protein expression profiles post-hoc showed 213 

that differentially abundant hyperspheres were present in all major immune compartments. In 214 

particular, we found an increase in populations of B cells (CD19+/CD20+), plasma cells (CD38+) 215 

and HSPCs (CD34+) as well as a previously reported remodelling of the myeloid compartment18 216 

(Fig. 1E).  217 
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Mononuclear phagocytes and haematopoietic stem progenitors  218 

Transcriptome and surface proteome analysis of blood mononuclear phagocytes identified known 219 

DC subsets (pDC, ASDC, DC1, DC2, DC3) and several monocyte states (Figs. 2A-B).  Three cell 220 

states of CD14+ monocytes are present (proliferating, classical CD14+ and activated CD83+) in 221 

addition to two CD14+CD16+ monocyte cell states (non-classical CD16+ and C1QA/B/C+) (Figs. 222 

2A-B). Proliferating monocytes and DCs expressing MKI67 and TOP2A are present in increasing 223 

frequency with worsening severity of COVID-19 (Figs. 2A-B). In contrast, circulating numbers 224 

of DC2 and DC3 are reduced.  Proliferating monocytes have previously been identified by flow 225 

cytometry of COVID-19 patients’ blood19.  Here, we add that they share an extended protein and 226 

RNA expression profile with CD14+ monocytes (Figs. 2A-B).  Proliferating DCs most closely 227 

resemble DC2. C1QA/B/C-expressing CD16+ monocytes are present at a low frequency relative to 228 

whole PBMC in healthy blood, but are expanded in COVID-19 and are the only source of C1 229 

complement components in PBMCs (Fig. 2B, Extended Data 3A). 230 

 231 

We previously demonstrated the egress of blood DCs and monocytes from blood to alveolar space 232 

with rapid acquisition of a lung molecular profile following human inhalational LPS challenge28. 233 

To better understand the relationship between circulating and lung alveolar mononuclear 234 

phagocytes in COVID-19, we compared the transcriptome profile of blood DCs and monocytes 235 

with their bronchoalveolar lavage (BAL) counterparts during COVID-19 using recently published 236 

data (GSE145926)29 (Extended Data 3B). As expected, partition-based graph abstraction (PAGA) 237 

suggests transcriptional similarity between healthy circulating CD14+ monocytes and healthy BAL 238 

macrophages, in agreement with recent data demonstrating that BAL macrophages can arise from 239 

circulating CD14+ monocytes (Fig. 2C)30. However, there is a surprisingly greater transcriptional 240 

similarity between BAL macrophages and the expanded population of circulating 241 

C1QA/B/C+CD16+ monocytes in COVID-19 (Fig. 2C). These observations raise the possibility of 242 

a differential origin of alveolar macrophages during health and COVID-19.  Both BAL 243 

macrophages and C1QA/B/C+CD16+ monocytes express FCGR3A and C1QA/B/C and are 244 

enriched for expression of type I interferon response genes (Fig. 2A). Myeloid hyperinflammatory 245 

response has been reported to mediate lung and peripheral tissue damage via secretion of 246 

inflammatory cytokines such as IL-6 and TNFa in COVID-19. We evaluated the expression of 247 

these cytokines and found that they are primarily expressed by tissue rather than blood 248 
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mononuclear phagocytes (Fig. 2C). Genes differentially expressed in CD83+ CD14+ monocytes 249 

and BAL macrophages across pseudotime identified expression of IL15, which is produced in 250 

response to viral infections to promote NK proliferation, and leukocyte recruiting chemokines 251 

including CCL2, CCL4, CCL7, and CCL8 upregulated by BAL macrophages (Fig. 2D).   252 

 253 

Tissue DCs respond to local inflammation and pathogen challenge by migrating to the draining 254 

lymph node to activate naïve T cells. BAL contains a population of mature, migratory DCs that 255 

express CCR7 and LAMP3 but downregulate DC-specific markers such as CD1C and CLEC9A 256 

(Extended Data 3B). These migratory DCs express IL10 in healthy BAL but express TNF and the 257 

common IL-12 and IL-23 subunit IL12B in COVID-19, suggesting altered capacity for T cell 258 

polarisation (Fig. 2E). In peripheral blood, C1QA/B/C+CD16+ monocytes expressed the highest 259 

amount of Type 1 IFN response genes compared to all peripheral blood myeloid cells (Fig. 2F). 260 

We detected minimal TNF- or IL6-mediated JAK-STAT signaling pathway activation in 261 

circulating monocytes and DCs but this was upregulated by COVID-19 BAL mononuclear 262 

phagocytes (Fig. 2F).   263 

 264 

Coagulation abnormalities and monocyte-platelet aggregates have been previously reported in 265 

COVID-19 patients31,32 and we observe an expansion of platelets associated with disease severity 266 

(Fig. 1C). This led us to investigate the receptor-ligand interactions predicted to mediate 267 

monocyte-platelet interactions using CellPhoneDB, which identified ICAM1 interactions on 268 

platelets with CD11a-c/CD18 primarily on C1QA/B/C+CD16+ monocytes and CD16+ monocytes 269 

(Fig. 2G).  This is accompanied by increased expression of surface proteins indicative of platelet 270 

activation (Fig. 2H).  271 

 272 

Our large dataset (850,100 PBMCs) allowed us to interrogate rare populations, including the HSPC 273 

compartment. To this end, we selected all cells in clusters with significant expression of the HSPC 274 

marker CD34, which resulted in a total of 3,085 HSPCs, following removal of minor clusters co-275 

expressing mature lineage markers. Leiden clustering and UMAP visualisation resulted in a cloud-276 

like representation with closely attached clusters, consistent with a stem/progenitor landscape 277 

previously described for bone marrow HSPCs33 (Fig. 2I, Extended Data 3C). Absence of CD38 278 

mRNA and protein expression marks the most immature cells within the CD34 compartment, 279 
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while expression of markers such as GATA1, MPO and PF4 characterises distinct erythroid, 280 

myeloid and megakaryocytic progenitor populations (Fig. 2I). Accordingly, we were able to 281 

annotate six transcriptional clusters as CD34+CD38- HSPCs, CD34+CD38+ early progenitor 282 

HSPCs, and CD34+ CD38+ erythroid, megakaryocytic and myeloid progenitors as well as a small 283 

population distinguished by the expression of genes associated with cell cycle (S-phase) (Fig. 2I).  284 

 285 

Following stratification by disease severity, the most noteworthy observation was that the 286 

megakaryocyte progenitors were essentially absent in healthy and asymptomatic individuals, but 287 

comprised approximately 5% of CD34+ cells in mild, moderate, severe and critical patients (Fig. 288 

2J). Unlike the bone marrow, which contains rapidly cycling progenitors, the peripheral blood is 289 

not thought to constitute a site for haematopoiesis34, consistent with the low number of CD34+ 290 

cells expressing a cell cycle signature, which was furthermore restricted to genes associated with 291 

S-phase (Fig. 2I). Disease-associated alterations of the circulating CD34+ progenitor cells are 292 

therefore a likely reflection of COVID-19 mediated perturbation of the normal homeostatic 293 

functioning of the bone marrow haematopoietic stem/progenitor compartment. 294 

 295 

In light of our earlier observations of platelet activation and enhanced C1QA/B/C+CD16+ 296 

monocyte-platelet interactions (Figs. 2G-H), the appearance of CD34+ megakaryocyte progenitors 297 

was of particular interest, as it suggested a rebalancing of the stem/progenitor compartment. The 298 

overall number of these megakaryocyte progenitors however was low, prompting us to seek 299 

additional evidence for reprogramming of immature haematopoiesis.  To this end, we carried out 300 

differential gene expression analysis between the megakaryocyte, myeloid and erythroid 301 

progenitor clusters, and used the resulting gene lists to build gene signatures in order to interrogate 302 

early activation or priming of lineage-specific transcriptional programs in the most immature 303 

haematopoietic progenitor cell clusters (Extended Data 3D). This analysis showed activation of 304 

the megakaryocyte progenitor signature in both the CD38- and CD38+ HSPC populations (Fig. 305 

2K), with less pronounced effects seen with the erythroid and myeloid signatures (Extended Data 306 

3E). Of note, the megakaryocyte signature was also strongly induced in the asymptomatic patients, 307 

which do not contain substantial numbers of CD34+ megakaryocyte progenitors in their peripheral 308 

blood. Our earlier observation of increased platelet activation within the context of normal platelet 309 

counts (Fig. 2H, Extended Data 2B) is therefore consistent with a model whereby exaggerated 310 
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megakaryopoiesis may be compensating for peripheral platelet consumption in COVID-19 311 

patients. Of note, our HSPC compartment analysis suggests that immature haematopoiesis is also 312 

affected in asymptomatic patients, but possibly through distinct differentiation and/or cell 313 

mobilisation processes. Taken together, our data suggest that alterations in the cellular composition 314 

and transcription programs of the stem/progenitor compartment contribute to the patho-315 

physiological response to SARS-CoV-2 infection.  316 

 317 

T-lymphocytes and TCR changes  318 

To further characterise T-lymphocytes during the infection, we re-clustered the T cell compartment 319 

and identified 15 clusters of CD4 T cells, CD8 T cells, and innate-like T cells including γδ T cells, 320 

NKT cells, and MAIT cells across sample collection sites, donors and disease severity groups (Fig. 321 

3A, Extended Data 4). Our cell annotation is based on both RNA and protein expression of marker 322 

genes, as well as effector cytokines (Figs. 3B-C). In the CD4 T cell compartment, we identified 323 

naïve CD4 T cells, central memory T cells (CD4 CM), effector memory T cells (CD4 EM), 324 

activated CD4 T cells expressing IL-22 (CD4 IL22), Th1 cells, Th2 cells, Th17 cells, Treg cells, 325 

and circulating T follicular helper cells (cTfh). In the CD8 compartment, we found naïve CD8 T 326 

cells, effector/cytotoxic T cells (CD8 TE), and effector memory T cells (CD8 EM) (Fig. 3A).  327 

 328 

Cellular composition of the T cell compartment varied between the healthy and infected groups 329 

(Fig. 3D). Notably, based on their relative proportions and differential abundance testing (FDR 330 

10%), we found activated CD4 expressing IL-22, circulating Tfh cells, Th1 cells, Treg cells, CD8 331 

EM cells, and MAIT cells relatively enriched in patients with asymptomatic and mild infection 332 

phenotype, with NKT, proliferating CD8 and CD4, and CD8 TE cells enriched in patients with 333 

more severe phenotypes (Fig. 3E, Extended Data 5A-B). Moreover, we observed multiple cell 334 

populations that displayed non-linear differences across severity phenotypes (proliferating CD4 & 335 

CD8, CD8 TE, CD4 Th1, CD4 Th17, CD4 CM, IL-22+ CD4, Treg), illustrating the complex 336 

compositional changes to peripheral T cells that occur with COVID-19 severity (Fig. 3E, 337 

Extended Data 5B). Interestingly, the enrichment of Treg cells and IL-22 expressing CD4 T cells 338 

in the patients with less severe disease (asymptomatic & mild) could be associated with immuno-339 

regulatory and tissue-protective responses that may restrict immunopathology (Fig. 3E) as IL-22 340 

was previously shown to be involved in tissue protection in influenza A virus infection35, and 341 
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associated with low viral load in the lung parenchyma of COVID-19 patients36. The enrichment of 342 

proliferating CD4+ and CD8+ T cells, which also express some exhaustion marker genes (LAG3, 343 

TOX), could account for the previous observation of increased expression of exhaustion markers 344 

on CD8+ T cells in patients with severe disease17. 345 

 346 

To investigate T cell phenotype beyond differential abundance of T cell subsets, we performed 347 

differential gene expression analysis across disease severity (FDR 1%) followed by gene set 348 

enrichment analysis (GSEA) in each cell type and found enrichment of pathways associated with 349 

inflammation and T cell activation across multiple T cell subsets, including IL-2/STAT5 signaling, 350 

mTORC1 signaling, inflammatory response, interferon gamma response, and IL-6/JAK/STAT3 351 

signaling (Extended Data 5C). Increases in activation and cytotoxic phenotype in the T cells from 352 

COVID-19 patients stimulated ex vivo with SARS-CoV-2 peptide was confirmed independently 353 

by protein expression of CD137 and CD107α using flow cytometry (Extended Data 5D). 354 

 355 

Next, we interrogated TCR clonality and the relative proportions of specific T cell subsets within 356 

clonally expanded T cells in different disease groups (Fig. 3F). As expected, among the COVID-357 

19 patients, effector CD8 T cells were the most clonally expanded, with enriched large clone sizes, 358 

across different disease groups, and their relative proportion increased with disease severity (Figs. 359 

3F-G, Extended Data 5E-F). Conversely, the relative proportion of clonally expanded effector 360 

memory CD8 T cells decreased in patients with more severe disease (Figs. 3F-G). The ratio of 361 

effector CD8 T cells to effector memory CD8 T cells correlated with disease severity (Fig. 3G), 362 

suggesting that CD8 T cell differentiation outcome may contribute to both anti-viral protection 363 

and immunopathology. This could be a result of the degree of inflammation set by innate immunity 364 

in the first instance, resulting in biased CD8 differentiation into antigen-specific short-lived 365 

effector CD8 T cells (equivalent to CD8 effector T cells in this study) versus memory precursor 366 

effector CD8 T cells (equivalent to CD8 effector memory T cells in this study), as previously 367 

reported in animal models37. 368 

 369 

 370 

 371 

 372 
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B-lymphocytes and BCR changes 373 

Re-clustering of B and plasma cells in isolation identified 9 clusters that were annotated according 374 

to canonical marker expression (Figs. 4A-B), and appropriate enrichment of previously published 375 

transcriptional signatures (Extended Data 6A). This included immature, naïve, switched and non-376 

switched memory B cells, and a cluster of cells that enriched for markers previously described in 377 

exhausted memory B cells38,39 (Figs. 4A-B, Extended Data 6A). We also found a large population 378 

of CD19/CD20-negative plasmablasts, with high expression of the proliferation marker MKI67, as 379 

well as IgM+, IgG+, and IgA+ plasma cells (Figs. 4A-B). In patients with symptomatic COVID-380 

19, there was a significant expansion of plasmablasts and plasma cells compared with healthy 381 

controls and LPS-treated subjects (Fig. 4C, Extended Data 6B). Notably, this phenomenon was 382 

less evident in COVID-19 patients with asymptomatic disease. IgG plasma cells, in particular, 383 

were expanded in symptomatic COVID-19 compared with other groups, and the magnitude of this 384 

expansion increased with worsening disease severity from mild to severe disease but surprisingly, 385 

was less evident in patients with critical disease (Fig. 4C, Extended Data 6B). When considering 386 

plasmablasts and plasma cells using the V(D)J data, IgA+ cells were expanded in patients with 387 

asymptomatic COVID-19 (Fig. 4D), suggestive of an effective mucosal humoral response in this 388 

patient group. This is paralleled by the greatest expansion of circulating Tfh cells in asymptomatic 389 

patients and underlined by the strong correlation between cTfh cells with plasma cells in 390 

asymptomatic/mild patients (Fig. 3E, 4E, Extended Data 5A-B), suggesting a potential 391 

contribution of coordinated T cells/B cells response to effective humoral anti-viral protection in 392 

these patients that is lost in severe and critical disease. This is consistent with previous findings 393 

relating to the requirement of Tfh cells for optimal antibody responses and high-quality 394 

neutralising antibodies in viral infection40.  395 

 396 

To interrogate the effect of COVID-19 infection on humoral immune cells beyond differential 397 

expansion of subsets, we performed GSEA in each cell type. Interferon alpha response and 398 

interferon gamma response pathway genes were enriched in all B cell subsets in COVID-19 399 

patients, but this response was generally more marked in patients with asymptomatic or mild 400 

disease, and attenuated in severe and critical disease (Fig. 4F, Extended Data 6C). The magnitude 401 

of type 1 interferon transcriptional response in B cells mirrored serum IFN-ɑ levels, which were 402 

highest in patients with mild disease (Extended Data 2H), suggesting that the low expression of 403 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.21249725doi: medRxiv preprint 

https://paperpile.com/c/VUNPCS/7MmY+yJyy
https://paperpile.com/c/VUNPCS/z6ek
https://doi.org/10.1101/2021.01.13.21249725
http://creativecommons.org/licenses/by/4.0/


 14 

IFN response genes in B cells in severe or critical disease does not reflect an inability of B cells to 404 

respond to IFN-ɑ, but rather attenuation of IFN-ɑ. This may be because the initial anti-viral 405 

response has waned in patients with severe or critical disease or because these patients fail to 406 

sustain adequate IFN-ɑ production by myeloid cells and pDCs following symptom onset as 407 

previously reported13. Longitudinal sampling would be required to distinguish these two 408 

possibilities.  409 

 410 

In asymptomatic patients, TNFA signalling via NF-kB pathway genes were also enriched in 411 

immature, naïve and switched memory B cells, but decreased in immature B cells and plasma cells 412 

in critical and severe disease (Fig. 4F, Extended Data 6C). Assessment of the leading-edge genes 413 

in this pathway demonstrated their markedly higher expression in all B cell and plasmablast/cell 414 

subsets in asymptomatic COVID-19 patients compared with those with symptomatic disease (Fig. 415 

4G, Extended Data 6D). TNFɑ was barely detectable in COVID-19 serum samples and highest 416 

in patients with moderate disease (Extended Data 1E), suggesting that another cytokine e.g. IL-6 417 

or stimulus may be responsible for NF-kB activation in asymptomatic COVID-19 patients. 418 

 419 

Hypoxia pathway genes were enriched in immature and naïve B cells only in asymptomatic 420 

patients (Fig. 4F, Extended Data 6C). Since these individuals are unlikely to be hypoxic (given 421 

their lack of symptoms) we postulated that this signature may reflect another hypoxia-inducible 422 

factor (HIF) activating stimulus, which includes B cell receptor (BCR) cross-linking41. We 423 

assessed the expression of genes associated with BCR activation, such as CD79A/B, and 424 

downstream kinases such as BTK in B cell subsets. Overall, BCR activation-associated genes were 425 

most highly expressed in B cells in healthy control cells, followed by asymptomatic COVID-19 426 

patients, with lower expression observed in all symptomatic COVID-19 groups (Fig. 4G, 427 

Extended Data 6D). BCR activation threshold is also modulated by immune tyrosine inhibitory 428 

motif (ITIM)-containing receptors that recruit phosphatases, increasing the activation threshold of 429 

B cells42. BCR inhibitory gene expression was limited, but CD22 was detectable across B cell 430 

subsets in asymptomatic COVID-19, whilst FCGR2B, CD72 and PTPN6 expression was evident 431 

in severe COVID-19 B cells (Fig. 4G, Extended Data 6D). Together, this analysis suggests that 432 

B cells in asymptomatic COVID-19 patients and those with mild disease have a more pronounced 433 

response to interferons, increased NF-kB activation, and a higher expression of genes associated 434 
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with BCR activation signaling, suggesting a potential for greater BCR activation. This may 435 

indicate that more avid responses early in disease prevent progression to a more severe phenotype, 436 

or may merely reflect the immune response in the early phase of the disease. Longitudinal analysis 437 

of patient samples would be required to address this question. 438 

 439 

Following activation, B cells differentiate into antibody-producing plasma cells, accompanied by 440 

a progressive increase in oxidative metabolism43,44. We observed differences in metabolic gene 441 

pathway expression in plasmablasts and plasma cells between disease severity categories, with 442 

enrichment of oxidative phosphorylation pathway genes in critical and severe disease, but increase 443 

in glycolysis pathway genes in asymptomatic patient plasmablasts (Fig. 4F, Extended Data 6D).   444 

  445 

We next assessed BCR clonality using dandelion, a novel single cell BCR-sequencing analysis 446 

package (see methods), and found significantly more clonal expansion in symptomatic COVID-447 

19 patients compared with those with asymptomatic disease or healthy controls (Fig. 4H, 448 

Extended Data 7A). Expanded clonotypes were found across all major cell types with larger 449 

clonotypes primarily present in plasmablast/plasma cell clusters (Extended Data 8A-B). Within 450 

the expanded clonotypes, there was some evidence of class switching within symptomatic COVID 451 

groups but not in the asymptomatic/healthy (Extended Data 8C).  Some related BCRs were 452 

present in different individuals, with more incidence of V-, J- gene usage and related amino acid 453 

sequences of heavy and light chain CDR3s observed in patients with severe or critical disease, and 454 

in patients within one of the clinical centres (Newcastle) (Fig. 4I), which could arise due to local 455 

variants of the virus driving expansion of specific B cell clones. We note that none of these related 456 

BCRs were found to be expanded in the individuals which was expected as only a relatively small 457 

number of B cells per individual were sampled. It would have been extremely unlikely to find 458 

exactly matching heavy- and light-chain sequences across different individuals (even when 459 

allowing for somatic hypermutation variation) given the expected low coverage that arises from a 460 

small number of cells (relative to bulk BCR sequencing). Finally, we observed disproportionate 461 

distribution in clonotype size, whether considering expanded or all clonotypes, and increased BCR 462 

mutation between male and female patients, with greater levels of both in females compared with 463 

males (Fig. 4J, Extended Data 7B). These differences in clonal expansion of B cells are consistent 464 

with previous reports of worse outcomes in COVID-19 in males45,46. 465 
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We summarise the immunological cellular and molecular profiles observed in our study 466 

highlighting known and new discoveries as well as the distinguishing features of asymptomatic 467 

and milder disease from severe and critical disease (Fig. 5). Future longitudinal studies may enable 468 

us to distinguish if the distinct responses in asymptomatic and milder disease prevent progression 469 

to severe phenotypes.  470 

 471 

Discussion 472 

Our cross-sectional multi-omics peripheral blood mononuclear cell survey of ~130 COVID-19 473 

patients and controls across three UK centres revealed several new insights into COVID-19 474 

pathogenesis. Firstly, peripheral blood monocytes and DCs exhibit an interferon response to 475 

infection and replenish peripheral tissue mononuclear phagocytes such as alveolar macrophages. 476 

Secondly, the initial peripheral tissue inflammation and systemic response to COVID-19 is 477 

accompanied by altered haematopoiesis that is mirrored in the peripheral circulation evidenced by 478 

megakaryocyte-primed gene expression in the earliest CD34+CD38- HSPCs, exaggerated 479 

megakaryopoiesis and platelet activation. CD1QA/B/C+CD16+ monocytes co-express 480 

receptor:ligands predicted to interact with platelets, supporting their intertwined role in tissue 481 

thrombosis reported in COVID-19. 482 

 483 

We reveal a balance in protective versus immunopathogenic adaptive immune responses in 484 

COVID-19 patients. In patients with less severe disease, we found enrichment of circulating Tfh 485 

cells, which were previously shown to also be involved in SARS-CoV-2 infection47,48 and Th1 486 

cells, which could also confer anti-viral protection49,50. Our findings suggest that an imbalance in 487 

CD8 T cell differentiation, including the overexpansion of CD8 effector T cells which likely 488 

include antigen-specific short-lived effector cells, could lead to uncontrolled inflammation and 489 

immunopathology. Whether the reduced proportion of clonally expanded CD8 effector memory T 490 

cells could lead to impaired memory responses in patients with more severe disease remains an 491 

open question to be further investigated. 492 

 493 

Similarly, in B cells, expansion of plasmablasts and plasma cells is less evident in critical than in 494 

moderate and severe patients. This response is paralleled by the Tfh profile in COVID-19 patients 495 

and is consistent with post-mortem observations showing a lack of GCs in lymph nodes and spleen 496 
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in patients with fatal COVID-19 and a decrease in Tfh48. We observe a diminished IFN-ɑ response 497 

in critical and severe patients’ B cell compartments, further emphasising a critical role of these 498 

responses in outcomes, as previously reported in COVID-19 patients with anti-type I IFN 499 

antibodies51. The presence of common BCRs in samples from one geographical region could 500 

reflect local differences in viral strain, with increasing awareness of how viral mutations may 501 

influence outcomes, as has been shown to be clinically important for viral transmission with the 502 

B.1.1.7 strain52,53. 503 

 504 

Our cross-sectional study demonstrates valuable new insights from multi-omics profiling of 505 

peripheral blood as a window to understand peripheral tissue inflammation, as well as bone 506 

marrow and systemic responses to acute COVID-19 infection. Our large datasets and web portal 507 

provide a foundational resource on COVID-19 for the research and clinical communities. 508 

 509 
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M.M., W.S., N.K., S.vD., V.K., N.H., R.L., K.P., E.D. analysed the data. M.H., B.G., S.T., J.M., 553 

M.R.C., M.Z.N., K.M., G.R., Z.K.T., K.B., M.M., W.S., N.K., R.A.B., E.S., L.J., S.W., J.S.S. 554 

interpreted the data. J.S.S. performed flow cytometry. E.S. performed multiplex cytokine analysis. 555 

M.H., B.G., S.T., M.R.C., J.M., E.S., G.R., R.B., L.J., B.O., M.M., K.B., N.K., W.S., M.Z.N. wrote 556 

the manuscript. N.M., LC.S.G., S.W., K.F.B., F.M., C.W., J.M.C., H.W.K., S.H., E.L., K.B.M., 557 
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K.S., edited the manuscript. Z.K.T., H.W.K. developed software (dandelion). J.McG., D.H. 558 

developed the web portal. 559 

 560 

Data and materials availability 561 

The dataset from our study can be explored interactively through a web portal: 562 

https://covid19cellatlas.org. The data object, as a h5ad file, can also be downloaded from the portal 563 

page. The processed data is available to download from Array Express using accession number E-564 

MTAB-10026. 565 

 566 

Code availability 567 

All data analysis scripts are available on https://github.com/scCOVID-19/COVIDPBMC  568 
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Figure Legends 742 

 743 

Figure 1: Single cell multi-omic analysis of COVID-19 patients’ PBMC 744 

A. Overview of the participants included and the samples and data collected. IV-LPS, intravenous 745 

lipopolysaccharide; PBMC, peripheral blood mononuclear cells. B. UMAP visualisation of all 746 

850,100 cells sequenced. Leiden clusters based on 5’ gene expression shown and coloured by cell 747 

type. DC, dendritic cell; HSPC, haematopoietic stem and progenitor cell; lymph, lymphocyte; 748 

MAIT, mucosal-associated invariant T cell; mono, monocyte; pDC, plasmacytoid dendritic cell; 749 

Prolif., proliferating; RBC, red blood cell; NK, natural killer cell. C. Bar plot of the proportion of 750 

cell types shown in B. separated by condition and COVID-19 severity status. Hypothesis testing 751 

was performed using quasi-likelihood F-test comparing healthy controls to cases for linear trends 752 

across disease severity groups (healthy > asymptomatic > mild > moderate > severe > critical). 753 

Differentially abundant cell types were determined using a 10% false discovery rate (FDR) and 754 

marked (*). D. Enrichment of interferon response of each cell state separated by severity. IFN 755 

response was calculated using a published gene list (GO: 0034340) E. UMAP computed using 756 

batch-corrected mean staining intensities of 188 antibodies for 4241 hyperspheres. Each 757 

hypersphere represents an area in the 188-dimensional space and is colored by significant (spatial 758 

FDR < 0.05) severity associated changes in abundance of cells within that space. 759 

 760 

Figure 2: Myeloid and progenitor cells 761 

A. Dot plots of gene expression (left; blue) and surface protein (right; red) expression for myeloid 762 

populations where the colour is scaled by mean expression and the dot size is proportional to the 763 

percent of the population expressing the gene/protein, respectively.  B. Bar plot of the proportion 764 

of myeloid populations separated by condition and severity status from the Ncl and Sanger/UCL 765 

site. Hypothesis testing was performed using quasi-likelihood F-test comparing healthy controls 766 

to cases. Differentially abundant cell types were determined using a 10% false discovery rate 767 

(FDR) and marked (*). C. Partition based graph abstraction (PAGA) representing connectivity 768 

between clusters defined in A for healthy (top left) and COVID-19 (bottom left) monocytes and 769 

BAL macrophages. Expression of IL6 (top right) and TNF (bottom right) in each cluster along the 770 

predicted path for COVID-19 monocytes. D. Expression of differentially expressed cytokines 771 

between CD83+CD14+ monocytes and BAL macrophages shown by cells ordered by pseudotime 772 
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calculated for COVID-19 monocytes and BAL macrophages from C. E. Expression of DC-derived 773 

T cell polarising cytokines in peripheral blood DC2 and mature BAL DCs. F. Heat map displaying 774 

gene set enrichment scores for Type 1/3 IFN-response, TNF-response and JAK-STAT signatures 775 

in the myeloid populations found in COVID-19 PBMCs. G. Heat map of CellPhoneDB predicted 776 

ligand:receptor interactions between platelets and monocyte subsets. H. Violin plots showing 777 

significantly differentially expressed markers of platelet activation proteins between healthy and 778 

COVID-19. I. UMAP representation of HSPCs (top) and gene expression markers used to annotate 779 

clusters (below). MK, Megakaryocyte J. Bar chart of the proportion of progenitors by severity 780 

status. MK, Megakaryocyte. K. Bar charts displaying enrichment of a megakaryocyte signature 781 

found in CD34-CD38- (left) and CD34+CD38+ HSPCs (right), separated by severity. MK, 782 

megakaryocyte. 783 

 784 

Figure 3: T lymphocytes 785 

A. UMAP visualisation of T cells. Semi-supervised annotation of Louvain clusters based on gene 786 

expression shown and coloured by cell type. CM, central memory; EM, effector memory; TE, 787 

terminal effector; Th, T helper; Tfh, T follicular helper. Inset panels show the 2-dimensional kernel 788 

density estimates of select T cell types in UMAP space. B. Dot plots of gene expression (top; blue) 789 

and surface protein (bottom; red) expression for populations shown in A. where the colour is scaled 790 

by mean expression and the dot size is proportional to the percent of the population expressing the 791 

gene/protein, respectively. C. Dot plots of gene expression of cytokine genes for populations 792 

shown in A. where the colour is scaled by mean expression and the dot size is proportional to the 793 

percent of the population expressing the gene/protein, respectively. D. Box plots of cell type 794 

proportions that are differentially abundant between healthy donors and COVID-19 cases. Boxes 795 

denote interquartile range (IQR) with the median shown as horizontal bars. Whiskers extend to 796 

1.5x the IQR; outliers are shown as individual points. E. Box plots of the proportion of cell types 797 

shown in A. separated by severity status. Only cell types showing trends of changes with respect 798 

to severity status are shown here. Boxes denote interquartile range (IQR) with the median shown 799 

as horizontal bars. Whiskers extend to 1.5x the IQR; outliers are shown as individual points. F. 800 

Bar plots showing the frequency of clonal T cells by severity. Expanded clones denote TCR 801 

clonotypes observed more than once. Stars in key indicate significance after multiple testing 802 

correction (Logistic regression; *P < 0.05, **P < 0.01, ***P < 0.001). G. Box plots of the 803 
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proportion of clonally expanded effector memory CD8 T cells (left), effector CD8 T cells (middle), 804 

and the ratio of effector CD8 T cells to effector memory CD8 T cells (right). Boxes denote 805 

interquartile range (IQR) with the median shown as horizontal bars. Whiskers extend to 1.5x the 806 

IQR; outliers are shown as individual points. 807 

 808 

Figure 4: B lymphocytes 809 

A. UMAP visualisation of 74,019 cells in the B cell lineage and coloured by cell type identified 810 

from clustering on the  gene expression data. B. Dot plots of gene expression (top; blue) and 811 

surface protein (bottom; red) expression for populations shown in A. where the colour is scaled by 812 

mean expression and the dot size is proportional to the percent of the population expressing the 813 

gene/protein, respectively. C. Bar plot of the mean proportion of cell types shown in A. separated 814 

by severity status. Stars in key indicate significance (Kruskal-Wallis; *P < 0.05, **P < 0.01, ***P 815 

< 0.001), arrows represent if proportional change is up or down and colour represents COVID-19 816 

severity state. D. Bar plot showing the mean proportion of plasmablast and plasma cells expressing 817 

IgA, IgD, IgE, IgG or IgM, based on V(D)J information, separated by severity status. E. Co-818 

ordinated changes between Tfh and B cells assessed by differential correlation analysis (empirical 819 

P ≤ 0.05). Shown is the Pearson correlation (+/- bootstrap standard error) between Tfh proportions 820 

and plasmablast or plasma cell (combined) according to disease severity (only significant trends 821 

are shown). F. GSEA of pathways from MSigDB hallmark signatures in naive B cells, switched 822 

memory B cells and plasmablast for asymptomatic/symptomatic COVID versus healthy. Size of 823 

circles indicate (absolute) normalised enrichment score (NES) and colours indicate the severity 824 

status. Pathways were considered statistically significant if P < 0.05 and FDR < 0.25 (denoted by 825 

coloured dots outside the middle grey zone). EMT, Epithelial-mesenchymal transition. G. Dot 826 

plots representing the expression of genes coding for TNF signalling molecules, activating and 827 

inhibitory BCR signaling molecules in naive B cells, switched memory B cells and plasmablast 828 

separated by severity status in the rows. Size of circles indicate percent of cells expressing the gene 829 

and increasing colour gradient from blue to white to red corresponds to increasing mean expression 830 

value (scaled from zero to one across status per gene). H. Scatter plot of clonotype size by node 831 

closeness centrality gini indices. Each dot represents the gini indices of an individual coloured by 832 

severity status. Gini indices were computed for all clonotypes on the x-axis and for clonotypes 833 

with > 1 cell on the y-axis (see methods for details). Marginal histograms indicate the distribution 834 
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of samples in a given severity status along the axes. I. BCR overlap incidence plot. Nodes in the 835 

inner ring represent individual donors/patients, coloured by severity status, and edges indicate if 836 

at least 1 clonotype is shared between two individuals (at least 1 cell in each individual displays 837 

an identical combination of heavy and light chain V- and J- gene usage with allowance for somatic 838 

hypermutation at the CDR3 junctional region). Nodes in the outer ring indicate the site from which 839 

samples were collected (solid grey: Cambridge; grey outline: Sanger; unmarked: Newcastle) J. 840 

Clonotype size (left panel) and node closeness centrality gini indices (right panel) separated by 841 

gender. Statistical tests were performed with non-parametric Mann-Whitney U test between the 842 

gender groups within each severity status and were considered statistically significant if 843 

Benjamini-Hochberg corrected P < 0.05 (denoted by *; n.s. denotes not significant). Colour of 844 

asterisks indicates which gender group displays a higher mean gini index (yellow: female; grey: 845 

male). 846 

 847 

Figure 5: Integrated framework of mononuclear cell immune response in blood 848 

Schematic illustration of study highlights. Created with Biorender.com. BCR, B cell receptor; EM, 849 

effector memory; TE, terminal effector; Tfh, T follicular helper; Th, T helper; T reg, regulatory T 850 

cell 851 

 852 

Extended Data 1 853 

A. Scatter plot displaying the total number of gene counts per sample from each site. B. UMAPs 854 

from Fig. 1B coloured by site. C. Boxplot of kBET results calculated both before and after batch 855 

correction with Harmony for each cluster in Fig. 1B kBET statistic calculating using patient ID as 856 

the batch factor. D. Dot plots of 5’ gene expression (top; blue) and surface protein (bottom; red) 857 

expression for populations shown in Fig. 1A where the colour is scaled by mean expression and 858 

the dot size is proportional to the percent of the population expressing the gene/protein, 859 

respectively. E. Tile plot showing percentage concordance between COVID-19 PBMC annotation 860 

(y-axis) and Azimuth annotation (x-axis) (https://satijalab.org/azimuth/). 861 

 862 

Extended Data 2 863 

A. Volcano plots showing results of differential abundance testing. Hypothesis testing was 864 

performed using quasi-likelihood F-test comparing healthy controls to cases for linear trends 865 
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across disease severity groups (healthy > asymptomatic > mild > moderate > severe > critical). 866 

Differentially abundant cell types were determined using a 10% false discovery rate (FDR) and 867 

marked (*). Hypothesis testing was performed using quasi-likelihood F-test comparing healthy 868 

controls to cases. Differentially abundant cell types were determined using a 10% false discovery 869 

rate (FDR). B. Box and whisker plots showing blood counts for Newcastle data grouped by 870 

severity status. Dotted lines and green area mark the normal ranges for each. Kruskal-Wallis with 871 

Dunn’s post hoc; *P < 0.05, **P < 0.01. C. Forest plot showing the standard deviation of each 872 

clinical/technical factor estimated by the Poisson generalised linear mixed model. The error bars 873 

show the standard error estimated from the Fisher information matrix (see Supplementary Note 874 

1 for more details). SD, standard deviation. D. Box plots displaying the duration of COVID-19 875 

symptoms from the onset grouped by severity status. E. Volcano plots showing results of 876 

differential abundance testing according to time since symptom onset. Differentially abundant 877 

(FDR 10%) points are shown in red and labelled by cell type as in Figure 1A. F. Correlated log 878 

fold-changes of cell type abundance changes as a function of symptom duration with (x-axis) and 879 

without critically ill patients (y-axis). G. Heat map displaying fold change over healthy (left) and 880 

dot plot of gene expression where the colour is scaled by mean expression and the dot size is 881 

proportional to the percent of the population expressing the gene (right) for genes associated with 882 

COVID-19 identified in a recent GWAS study25,26 for the cell populations in Fig. 1B. H. Heat map 883 

displaying normalised values of cytokine, chemokine and growth factors in serum of patients with 884 

COVID-19. 885 

 886 

Extended Data 3 887 

A. Dot plots of gene expression of C1 complement components for cells in Fig. 1B where the 888 

colour is scaled by mean expression and the dot size is proportional to the percent of the population 889 

expressing the gene. B. Dot plots of gene expression of a recently published BAL dataset 890 

(accession number GSE14592629) for genes in Fig. 2A where the colour is scaled by mean 891 

expression and the dot size is proportional to the percent of the population expressing the gene. C. 892 

Heatmap of differentially expressed genes between megakaryocyte, myeloid and erythroid 893 

progenitor clusters. MK, megakaryocyte; My, myeloid. D. Bar charts displaying enrichment of an 894 

erythroid signature (top) and a myeloid signature (bottom) found in CD34-CD38- (left) and 895 

CD34+CD38+ HSPCs (right), separated by severity. 896 
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 897 

Extended Data 4 898 

A.  UMAP visualisation of T cells separated by sources of donors. B. UMAP visualisation 899 

showing 2-dimensional kernel density estimates of each T cell type in UMAP space. C.-E. 900 

UMAP visualisation of T cells coloured by gender (C.), disease severity status (D.) and age (E.).  901 

 902 

Extended Data 5 903 

A. Box plots showing the proportion of cell types shown in Fig. 3A separated by severity status. 904 

B. Volcano plots showing results of differential abundance testing. Cell type abundance counts 905 

were modelled either comparing healthy vs. COVID-19 case, or as a function of disease severity. 906 

Hypothesis testing was performed using quasi-likelihood F-test comparing healthy controls to 907 

cases, or for either a linear or quadratic trend across disease severity groups (asymptomatic > mild 908 

> moderate > severe > critical). Differentially abundant cell types were determined using a 10% 909 

false discovery rate (FDR). C. Gene set enrichment (MSigDB Hallmark 2020) in each T cell type 910 

based on differential gene expression (DGE) analysis was performed across COVID-19 disease 911 

severity groups, ordered from healthy > asymptomatic > mild > moderate > severe > critical. 912 

Statistically significant DE genes were defined with FDR < 0.01. Significant enrichments were 913 

defined with 10% FDR. D. Bar plots showing percent (mean +/- SEM) of CD3+CD4+ (blue) and 914 

CD3+CD8+ (green) T cells expressing CD107a (left) and CD137 (right) in response to SARS-CoV-915 

2 S peptide stimulation. Significance determined using Kruskal-Wallis with Dunn’s post-hoc; *P 916 

< 0.05, **P < 0.01. E. Box plots showing clone size distribution for each T cell subset separated 917 

by severity status. F. Box plots slowing clonal diversity for each T cell subset separated by severity 918 

status. 919 

  920 

Extended Data 6 921 

A. Heatmap of mean gene set enrichment scores of (top) adult peripheral blood B cell signatures38 922 

and (bottom) Human cell atlas bone marrow B cell signatures54. Enrichment scores were calculated 923 

using scanpy’s tl.score_genes function, tabulated as the mean of each cell type. Row enrichment 924 

value is scaled from 0 to 1 and presented as an increasing gradient from purple, blue, green to 925 

yellow which corresponds to increasing mean enrichment score. B. (Top) Kruskal-Wallis test 926 

results with Benjamini-Hochberg false discovery correction for cell type proportion differences in 927 
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plasmablast and plasma cells between severity statuses. Significance is denoted by *P < 0.05; **P  928 

< 0.01; ***P < 0.001. (Bottom) Cell type abundance counts were modelled as a function of disease 929 

severity. Hypothesis testing was performed using quasi-likelihood F-test comparing asymptomatic 930 

to symptomatic covid, for either a linear or quadratic trend across disease severity groups 931 

(asymptomatic > mild > moderate > severe > critical). Differentially abundant cell types were 932 

determined using a 10% false discovery rate (FDR). C. GSEA of pathways from MSigDB v7.2 933 

hallmark signatures in immature B cells, non-switched memory B cells, `exhausted` B cells and 934 

plasma cells for asymptomatic/symptomatic COVID versus healthy. Size of circles indicate 935 

(absolute) normalised enrichment score (NES) and colours indicates the severity status. Pathways 936 

were considered statistically significant if P < 0.05 and FDR < 0.25 (denoted by coloured dots 937 

outside the middle grey zone). EMT, Epithelial-mesenchymal transition. D. Dot plots of TNF 938 

signalling molecules, activating and inhibitory BCR signaling molecules (5’ gene expression data) 939 

in immature B cells, non-switched memory B cells, `exhausted` B cells and plasma cells separated 940 

by severity status in the rows. Size of circles indicate percent of cells expressing the gene and 941 

increasing colour gradient from blue to white to red corresponds to increasing mean expression 942 

value (scaled from zero to one across status per gene).  943 

 944 

Extended Data 7 945 

A. Single-cell BCR network plots for each severity status coloured by heavy chain isotype class 946 

(IgM, IgD, IgA, IgE, or IgG). Each circle/node corresponds to a single B cell with a corresponding 947 

set of BCR(s). Each clonotype is presented as a minimally connected graph with edge widths 948 

scaled to 1/d+1 for edge weight d where d corresponds to the total (Levenshtein) edit distance of 949 

BCRs between two cells. Size of nodes is scaled according to increasing node closeness centrality 950 

scores i.e. nodes that are highly central to a clonotype network will be larger. B. (Left) Scatter plot 951 

of clonotype/cluster size by vertex size gini indices computed from contracted BCR networks 952 

(identical nodes are merged and counted). Each dot represents the gini indices of an individual 953 

coloured by severity status. Gini indices were computed for all clonotypes on both x- y-axes (see 954 

methods for details). Marginal histograms indicate the distribution of samples in a given severity 955 

status along the axes. (Right, top) Cluster/clonotype size (contracted network) gini indices 956 

separated by gender. (Right, bottom) Vertex size (contracted network) gini indices separated by 957 

gender. Statistical tests were performed with non-parametric Mann-Whitney U test between the 958 
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gender groups within each severity status and were considered statistically significant if 959 

Benjamini-Hochberg corrected P < 0.05 (denoted by *; n.s. denotes not significant). Colour of 960 

asterisks indicates which gender group display a higher mean gini index (yellow: female; grey: 961 

male).  962 

 963 

Extended Data 8 964 

A. UMAP visualisation of B cell lineage and coloured by clonotype size in the V(D)J data. Only 965 

expanded clonotypes are coloured (clonotype size > 2). B. Single-cell BCR network plots for each 966 

severity status coloured by assigned cell type. C. Single-cell BCR network plots for each severity 967 

status coloured by heavy chain isotype subclass (IgM, IgD, IgA1, IgA2, IgE, IgG1, IgG2, IgG3 or 968 

IgG4). Each circle/node corresponds to a single B cell with a corresponding set of BCR(s). Each 969 

clonotype is presented as a minimally connected graph with edge widths scaled to 1/d+1 for edge 970 

weight d where d corresponds to the total (Levenshtein) edit distance of BCRs between two cells. 971 

Size of nodes is scaled according to increasing node closeness centrality scores i.e. nodes that are 972 

highly central to a clonotype network will be larger.   973 
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Supplementary Information Guide 974 

 975 

Supplementary Table 1: Patient metadata. Status summary is based on the WHO COVID-19 976 

classification (WHO reference number: WHO/2019-nCoV/clinical/2020.5; 977 

https://www.who.int/publications/i/item/clinical-management-of-covid-19). NA, not applicable. 978 

Not-known listed where information was unavailable. O2, supplemental oxygen via nasal 979 

cannulae, face mask or non-rebreathe mask. NIV, non-invasive ventilation under continuous 980 

(CPAP) or bi-level (BiPAP) positive airways pressure. 981 

 982 

Supplementary Table 2: CITE-seq panel. List of Total-seq C antibodies, including clone and 983 

barcode. 984 

 985 

Supplementary Table 3: Clinical whole blood counts for Newcastle samples. Number of cells x 986 

109/L of blood. WBC, white blood cells. 987 

 988 

Supplementary Table 4: Concentration in pg/mL of 45 analytes measured in serum. <=0, below 989 

the limit of detection; * indicates anti-inflammatory cytokines.  990 

 991 

Supplementary Note 1: Further information detailing the poisson linear mixed model for cell type 992 

composition analysis. 993 

 994 

Supplementary Note 2: List of collaborators and their affiliations from the CITIID-NIHR 995 

COVID-19 BioResource. 996 

 997 

 998 

 999 

  1000 
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Methods 1001 

 1002 

Ethics and sample collection: 1003 

Newcastle: 1004 

Patients were consented under the Newcastle Biobank (REC 17/NE/0361, IRAS 233551) study 1005 

and ethical governance. For the COVID-19 positive samples and healthy controls, peripheral blood 1006 

was collected in EDTA tubes and serum separator tubes and processed within 4 h of collection.  1007 

 1008 

For the IV-LPS control samples: Ethical approval was granted by a REC (17/YH/0021).  Healthy 1009 

volunteers gave informed, written consent.  LPS was obtained from Clinical Center Reference 1010 

Endotoxin (Lots 94332B1 donated by National Institute of Health, Bethesda, Maryland, USA) and 1011 

injected intravenously as a bolus dose of 2 ng/kg.  Blood samples were taken prior to IV LPS 1012 

administration (baseline) and at 90 min, and 10 h post challenge. Venous blood was drawn from 1013 

an 18g venous cannula and was collected into EDTA and serum separator tubes. Only samples 1014 

from 90 min and 10 h were analysed in this study.  1015 

 1016 

Cambridge: 1017 

Study participants were recruited between 31/3/2020 and 20/7/2020 from patients attending 1018 

Addenbrooke’s Hospital with a suspected or nucleic acid amplification test (NAAT) confirmed 1019 

diagnosis of COVID-19 (including point of care testing (Collier et al., 2020; Mlcochova et al., 1020 

2020)), patients admitted to Royal Papworth Hospital NHS Foundation Trust or Cambridge and 1021 

Peterborough Foundation Trust with a confirmed diagnosis of COVID-19, together with Health 1022 

Care Workers identified through staff screening as PCR positive for SARS-CoV-2 (Rivett et al., 1023 

2020). Controls were recruited among hospital staff attending Addenbrooke’s serology screening 1024 

programme, and selected to cover the whole age spectrum of COVID-19 positive study 1025 

participants, across both genders. Only controls with negative serology results (45 out of 47) were 1026 

subsequently included in the study. Recruitment of inpatients at Addenbrooke’s Hospital and 1027 

Health Care Workers was undertaken by the NIHR Cambridge Clinical Research Facility outreach 1028 

team and the NIHR BioResource research nurse team. Ethical approval was obtained from the East 1029 

of England – Cambridge Central Research Ethics Committee (“NIHR BioResource” REC ref 1030 

17/EE/0025, and “Genetic variation AND Altered Leukocyte Function in health and disease - 1031 
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GANDALF” REC ref 08/H0308/176). All participants provided informed consent. Each 1032 

participant provided 27 mL of peripheral venous blood collected into a 9 mL sodium citrate tube. 1033 

 1034 

UCL/Sanger: 1035 

Subjects 18 years and older were included from two large hospital sites in London, United 1036 

Kingdom, namely University College London Hospitals NHS Foundation Trust and Royal Free 1037 

London NHS Foundation Trust during the height of the pandemic in the United Kingdom (April 1038 

to July 2020). Ethical approval was given through the Living Airway Biobank, administered 1039 

through UCL Great Ormond Street Institute of Child Health (REC reference: 19/NW/0171, IRAS 1040 

project ID 261511), as well as by the local R&D departments at both hospitals. At daily virtual 1041 

COVID-19 co-ordination meetings suitable patients were chosen from a list of newly diagnosed 1042 

and admitted patients within the preceding 24 h (based on a positive nasopharyngeal swab for 1043 

SARS-CoV-2). Patients with typical clinical and radiological COVID-19 features but with a 1044 

negative screening test for SARS-CoV-2 were excluded. Other excluding criteria included active 1045 

haematological malignancy or cancer, known immunodeficiencies, sepsis from any cause and 1046 

blood transfusion within 4 weeks. Maximal severity of COVID-19 was determined retrospectively 1047 

by determining the presence of symptoms, the need of oxygen supplementation and the level of 1048 

respiratory support. Peripheral blood sampling was performed prior to inclusion to any 1049 

pharmacological interventional trials.  1050 

 1051 

Samples were collected and transferred to a Category Level 3 facility at University College London 1052 

and processed within 2 h of sample collection. Peripheral blood was centrifuged after adding Ficoll 1053 

Paque Plus and PBMCs, serum and neutrophils separated, collected and frozen for later processing.  1054 

 1055 

Clinical status assignment 1056 

Clinical metadata was collected at the point of sample collection, including current oxygen 1057 

requirements and location. This was used to assign disease severity status. Patients based on a 1058 

ward and not requiring oxygen were defined as “Mild”. Patients outside of an intensive care unit 1059 

(ICU) environment requiring oxygen were defined as “Moderate”. All patients on ICU and/or 1060 

requiring non-invasive ventilation were defined as “Severe”. Patients requiring intubation and 1061 
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ventilation were defined as “Critical”. There were no patients in ICU that did not require 1062 

supplemental oxygen. 1063 

 1064 

PBMC isolation and dead cell removal: 1065 

Newcastle: 1066 

PBMCs were isolated from blood samples using Lymphoprep (StemCell Technologies) density 1067 

gradient centrifugation as per manufacturer’s instructions. Single cell suspensions were then 1068 

washed with Dulbecco’s phosphate buffered saline (PBS) (Sigma) and frozen in 5-10 million cell 1069 

aliquots in 90% (v/v) heat inactivated fetal calf serum (FCS) (Gibco) 10% (v/v) DMSO (Sigma 1070 

Aldrich). On the day of the experiment the cells were thawed for 1 min, transferred to Wash buffer 1071 

(PBS supplemented with 2% (v/v) FCS and 2 mM EDTA), and centrifuged at 500 g for 5 min. 1072 

Resuspended cells were passed through a 30 μm filter and counted prior to live cell MACS 1073 

enrichment with the Dead cell removal kit (Miltenyi Biotech) as per manufacturer’s instructions. 1074 

Cell pellets were resuspended in microbeads and incubated at room temperature for 15 min. Each 1075 

stained sample was passed through an LS column (Miltenyi Biotec) and rinsed with Binding buffer 1076 

(Miltenyi Biotec) before centrifugation. Cell pellets were resuspended in Wash buffer and counted 1077 

for CITE-seq antibody staining.  1078 

 1079 

Cambridge: 1080 

Peripheral blood mononuclear cells (PBMCs) were isolated using Leucosep tubes (Greiner Bio-1081 

One) with Histopaque 1077 (Sigma) by centrifugation at 800 g for 15 min at room temperature. 1082 

PBMCs at the interface were collected, rinsed twice with autoMACS running buffer (Miltenyi 1083 

Biotech) and cryopreserved in FBS with 10% DMSO. All samples were processed within 4 h of 1084 

collection. Purified PBMCs were thawed at 37°C, transferred to a 50 mL tube and 10 volumes of 1085 

pre-warmed thawing media (IMDM (Gibco 12440-053) with 50% (v/v) FCS (not heat inactivated;  1086 

Panbiotech P40-37500) and 0.1 mg/mL DNaseI (Worthington LS002139)) were added slowly and 1087 

dropwise, followed by centrifugation at 500 g for 5 min. The pellet was resuspended in 1 mL of 1088 

FACS buffer (PBS (Sigma D8537)  with 3% (v/v) heat-inactivated FCS) and viability of each 1089 

sample was assessed by counting in an improved Neubauer chamber using Trypan blue. Pools of 1090 

4 samples were generated by combining 0.5 million live cells per individual (2 million live cells 1091 

total). The pools were washed twice in FACS buffer (10 mL and 2 mL, respectively) followed by 1092 
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centrifugation for 5 min at 500 g. The pellet was then resuspended in 35 μL of FACS buffer and 1093 

the viability of each pool was assessed. 1094 

 1095 

UCL/Sanger: 1096 

Peripheral whole blood was collected in EDTA tubes and processed fresh via Ficoll-Paque Plus 1097 

separation (GE healthcare,17144002). The blood was first diluted with 5 mL 2 mM EDTA-PBS 1098 

(Invitrogen, 1555785-038), before 10-20 mL of diluted blood was carefully layered onto 15 mL of 1099 

Ficoll in a 50 mL falcon tube. If the sample volume was less than 5 mL, blood was diluted with an 1100 

equal volume of EDTA-PBS and layered onto 3 mL Ficoll. The sample was centrifuged at 800 g 1101 

for 20 min at room temperature. The plasma layer was carefully removed and the peripheral blood 1102 

mononuclear cell (PBMC) layer collected using sterile Pasteur pipette. The PBMC layer was 1103 

washed with 3 volumes of EDTA-PBS by centrifugation at 500 g for 10 min. The pellet was 1104 

suspended in EDTA-PBS and centrifuged again at 300 g for 5 min. The PBMC pellet was collected 1105 

and the cell number and viability assessed using Trypan blue. Cell freezing medium (90% FBS, 1106 

10% DMSO) was added dropwise to PBMCs slowly on ice and the mixture cryopreserved at -1107 

80°C until further full sample processing. 1108 

 1109 

Total-seq C antibody staining and 10x Chromium loading 1110 

Newcastle: 1111 

200,000 cells from each donor were stained with Human TruStain FcX™ Fc Blocking Reagent 1112 

(Biolegend 422302) for 10 min at room temperature. The cells were then stained with the custom 1113 

panel Total-seq C (Biolegend 99813; see Supplementary Table 2) for 30 min at 4°C. Cells were 1114 

then washed twice with PBS supplemented with 2% (v/v) FCS and 2 mM EDTA (Sigma) before 1115 

resuspending in PBS and counting. 20,000-30,000 cells per sample were loaded onto the 10x 1116 

Chromium controller using Chromium NextGEM Single Cell V(D)J Reagent kits v1.1 with 1117 

Feature Barcoding technology for Cell Surface Protein (10x Genomics) according to the 1118 

manufacturer’s protocol. 1119 

 1120 

Cambridge: 1121 

Half a million viable cells were resuspended in 25 μL of FACS buffer and incubated with 2.5 μL 1122 

of Human TruStain FcX™ Fc Blocking Reagent (BioLegend 422302) for 10 min at 4°C. The 1123 
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TotalSeq-C™ antibody cocktail (BioLegend 99813; see Supplementary Table 2) was centrifuged 1124 

at 14,000 g at 4°C for 1 min, resuspended in 52 μL of FACS buffer, incubated at room temperature 1125 

for 5 min and centrifuged at 14,000 g at 4°C for 10 min. 25 μL were subsequently added to each 1126 

sample pool and incubated for 30 min at 4°C in the dark. Pools were washed 3 times with 27 1127 

volumes (1.4 mL) of FACS buffer, followed by centrifugation at 500 g for 5 min. The pellet was 1128 

resuspended in 62.5 µL of 1 x PBS + 0.04% BSA (Ambion, #AM2616), filtered through a 40 μm 1129 

cell strainer (Flowmi, H13680-0040) and viable cells of each sample pool were counted in an 1130 

improved Neubauer chamber using Trypan blue. 50,000 live cells (up to a maximum of 60,000 1131 

total cells) for each pool were processed using Single Cell V(D)J 5’ version 1.1 (1000020) together 1132 

with Single Cell 5’ Feature Barcode library kit (1000080), Single Cell V(D)J Enrichment Kit, 1133 

Human B Cells (1000016) and Single Cell V(D)J Enrichment Kit, Human T Cells (1000005) (10x 1134 

Genomics) according to the manufacturer’s protocols. 1135 

 1136 

UCL/Sanger: 1137 

Frozen PBMC samples were thawed quickly in a water bath at 37°C. Warm RPMI1640 medium 1138 

(20-30 mL) containing 10% FBS was added slowly to the cells before centrifuging at 300 g for 5 1139 

min, the pellet was then washed with 5 mL RPMI1640-FBS and centrifuged again (300 g for 5 1140 

min). The PBMC pellet was collected and cell number and viability determined using Trypan blue. 1141 

PBMCs from four different donors were then pooled together at equal numbers (1.25x105 PBMCs 1142 

from each donor) to make up 5.0x105 cells in total. The remaining cells were used for DNA 1143 

extraction (Qiagen, 69504). The pooled PBMCs were stained with TotalSeq-C antibodies 1144 

(Biolegend, 99814) according to manufacturer’s instructions. After incubating with 0.5 vial of 1145 

TotalSeq-C for 30 min at 4°C, PBMCs were washed three times by centrifugation at 500 g for 5 1146 

min at 4°C. PBMCs were counted again and processed immediately for 10x 5’ single cell capture 1147 

(Chromium Next GEM Single Cell V(D)J Reagent Kit v1.1 with Feature Barcoding technology 1148 

for cell Surface Protein-Rev D protocol). Two lanes of 25,000 cells were loaded per pool on a 10x 1149 

chip.  1150 

 1151 

 1152 

 1153 

 1154 
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Library preparation and sequencing 1155 

Newcastle and UCL/Sanger: 1156 

Gene expression, TCR enriched and BCR enriched libraries were prepared for each sample 1157 

according to the manufacturer’s protocol (10x Genomics). Cell surface protein libraries were 1158 

subjected to double the manufacturer’s recommended primer concentration and 7-8 amplification 1159 

cycles during the sample index PCR to reduce the likelihood of daisy chains forming. Libraries 1160 

were pooled per patient using the following ratio 6:2:1:1 for gene expression, cell surface 1161 

protein, TCR enriched and BCR enriched libraries. All libraries were sequenced using a 1162 

NovaSeq 6000 (Illumina) to achieve a minimum of 50,000 paired end reads per cell for gene 1163 

expression and 20,000 paired end reads per cell for cell surface protein, TCR enriched and BCR 1164 

enriched. 1165 

 1166 

Cambridge: 1167 

The samples were subjected to 12 cycles of cDNA amplification and 8 cycles for the cell surface 1168 

protein library construction. Following this, the libraries were processed according to the 1169 

manufacturer's protocol. Libraries were pooled per sample using a ratio 9:2.4:1:0.6 for gene 1170 

expression, cell surface, TCR enriched and BCR enriched libraries. Samples were sequenced using 1171 

a NovaSeq 6000 (Illumina), using S1 flowcells. 1172 

  1173 

Alignment and quantification 1174 

Droplet libraries were processed using Cellranger v4.0. Reads were aligned to the GRCh38 human 1175 

genome concatenated to the SARS-Cov-2 genome (NCBI SARS-CoV-2 isolate Wuhan-Hu-1) 1176 

using STAR55 and unique molecular identifiers (UMIs) deduplicated. CITE-seq UMIs were 1177 

counted for GEX and ADT libraries simultaneously to generate feature X droplet UMI count 1178 

matrices. 1179 

 1180 

Doublet identification 1181 

Newcastle: 1182 

Scrublet (v0.2.1) was applied to each sample to generate a doublet score. These formed a bimodal 1183 

distribution so the tool’s automatic threshold was applied. 1184 

 1185 
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Cambridge: 1186 

Non-empty droplets were called within each multiplexed pool of donors using the emptyDrops 1187 

function implemented in the Bioconductor package DropletUtils, using a UMI threshold of 100 1188 

and FDR of 1%. The probability of being a doublet was estimated for each cell per sample (that is 1189 

one 10x lane) using the “doubletCells” function in scran based on highly variable genes (HVGs). 1190 

Next, we used “cluster_walktrap” on the SNN-Graph that was computed on HVGs to form highly 1191 

resolved clusters per sample. Per-sample clusters with either a median doublet score greater than 1192 

the median + 2.5 x MAD or clusters containing more than the median + 2.5 MAD genotype 1193 

doublets were tagged as doublets. This was followed by a second round of highly-resolved 1194 

clustering across the whole data set, in which again cells belonging to clusters with a high 1195 

proportion (> 60%) of cells previously labelled as doublets were also defined as doublets. 1196 

 1197 

UCL/Sanger: 1198 

For pooled donor CITE-seq samples, the donor ID of each cell was determined by genotype-based 1199 

demultiplexing using souporcell version 256. Souporcell analyses were performed with 1200 

‘skip_remap’ enabled and a set of known donor genotypes given under the ‘common_variants’ 1201 

parameter. The donor ID of each souporcell genotype cluster was annotated by comparing each 1202 

souporcell genotype to the set of known genotypes. Droplets that contained more than one 1203 

genotype according to souporcell were flagged as ‘ground-truth’ doublets for heterotypic doublet 1204 

identification. Ground-truth doublets were used by DoubletFinder 2.0.357 to empirically determine 1205 

an optimal ‘pK’ value for doublet detection. DoubletFinder analysis was performed on each 1206 

sample separately using 10 principal components, a ‘pN’ value of 0.25, and the ‘nExp’ parameter 1207 

estimated from the fraction of ground-truth doublets and the number of pooled donors. 1208 

 1209 

CITE-seq background signal removal 1210 

Background antibody- and non-specific staining was subtracted from ADT counts in each data set 1211 

from the 3 data acquisition sites separately. ADT counts for each protein were first normalised 1212 

using counts per million (CPM) and log transformed, with a +1 pseudocount. To estimate the 1213 

background signal for each protein, a 2-component gaussian mixture model (GMM), implemented 1214 

in the mclust R package function Mclust, was fit across the droplets with a total UMI count > 10 1215 

and < 100 from each experimental sample separately. The mean of the first GMM component for 1216 
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each protein was then subtracted from the log CPM from the QC-passed droplets in the respective 1217 

experimental sample. 1218 

 1219 

Quality control, normalisation, embedding and clustering 1220 

Combined raw data from the three centres was filtered to remove those that expressed fewer than 1221 

200 genes and >10% mitochondrial reads. Data was normalised (scanpy: normalize_total), log+1 1222 

corrected (scanpy: log1p) and highly variable genes identified using the Seurat vst algorithm 1223 

(scanpy: highly_variable_genes). Harmony was used to adjust principal components by sample ID 1224 

and used to generate the neighbourhood graph and embedded using UMAP. Clustering was 1225 

performed using the Leiden algorithm with an initial resolution of 3. For initial clustering, 1226 

differentially expressed genes were calculated using Wilcoxon rank-sum test. 1227 

 1228 

Cluster differential abundance testing 1229 

Numbers of cells of each cell subtype were quantified in each patient and control sample (donors) 1230 

to compute a cell type X donor counts matrix. Cell type abundance counts were modelled as a 1231 

function of either disease severity or days from symptom onset, adjusting for age, gender and 1232 

batch, in a NB GLM, implemented in the Bioconductor package edgeR. Counts were normalised 1233 

in the model using the (log) of the total numbers of all cells captured for each donor. Hypothesis 1234 

testing was performed using quasi-likelihood F-test for either a linear or quadratic trend across 1235 

disease severity groups (asymptomatic > mild > moderate > severe > critical), or comparing 1236 

healthy controls to SARS-CoV-2 infected donors (healthy vs. all asymptomatic, mild, moderate, 1237 

severe & critical). Differentially abundant cell types were determined using a 10% false discovery 1238 

rate (FDR). Due to compositional differences across sites, when analysing differential abundance 1239 

of myeloid populations (figure 2), only samples from Ncl and UCL/Sanger were included. 1240 

 1241 

Relative importance of metadata on cell type composition 1242 

The number of cells for each sample (N=110 samples in total with complete metadata) and cell 1243 

type (18 different cell types in total) combination was modelled with a generalised linear mixed 1244 

model with a Poisson outcome. The 5 clinical factors (COVID-19 swab result, age, sex, disease 1245 

severity at day 0 and days from onset) and the 2 technical factors (patient and sequencing centre) 1246 

were fitted as random effects to overcome the collinearlity among the factors. The effect of each 1247 
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clinical/technical factor on cell type composition was estimated by the interaction term with the 1248 

cell type (see Supplementary Note 1 for detail). The likelihood ratio test was performed to assess 1249 

the statistical significance of each factor on cell type abundance by removing one interaction term 1250 

from the full model at a time. The number of factors was used to adjust multiple testing with the 1251 

Bonferroni approach. The ‘glmer’ function in the lme4 package implemented on R was used to fit 1252 

the model. The standard error of variance parameter for each factor was estimated using the 1253 

numDeriv package. 1254 

 1255 

Cydar Analysis 1256 

We utilized cydar to identify changes in cell composition across the different severity groups based 1257 

on the protein data alone. First, the background-corrected protein counts from the three different 1258 

sites were integrated using the ‘fastMNN’ method (k = 20, d = 50, cos.norm = TRUE) in scran58. 1259 

The batch-corrected counts for 188 proteins (4 rat/mouse antibody isotypes were removed) were 1260 

then used to construct hyperspheres using the ‘countCells’ function (downsample = 8) with the 1261 

tolerance parameter chosen so that each hypersphere has at least 20 cells which was estimated 1262 

using the ‘neighborDistances’ function. To assess whether the abundance of cells in each 1263 

hypersphere are associated with disease status, hypersphere counts were analyzed using the quasi-1264 

likelihood (QL) method in edgeR. After filtering out hyperspheres with an average count per 1265 

sample below 5 we fitted a mean-dependent trend to the NB dispersion estimates. The trended 1266 

dispersion for each hypersphere was used to fit a NB GLM using the log-transformed total number 1267 

of cells as the offset for each sample and blocking for sex, age and batch.  The QL F-test was used 1268 

to compute P values for each hypersphere which were corrected for multiple testing using the 1269 

spatial FDR method in cydar.  1270 

 1271 

Comparisons of PBMC annotation using the Azimuth tool 1272 

The final annotation of PBMCs was compared to a published PBMC annotation using the Azimuth 1273 

tool (http://azimuth.satijalab.org/app/azimuth). Because of size restrictions of 100,000 cells, our 1274 

data was subsampled to 10% of the total cells. After running the algorithm, results with a prediction 1275 

score < 0.5 were removed (5.8% of total removed). For each cluster in the COVID-19 PBMC data, 1276 

the percentage of cells mapped to each cluster in the Azimuth annotation was calculated.  1277 

 1278 
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Interferon, TNF and JAK-STAT response scoring 1279 

A list of genes related to response to type I interferons was obtained from the GSEA Molecular 1280 

Signatures Database (MSigDB) (GO: 0034340). Enrichment of the interferon score was measured 1281 

using the tl.score_genes tool in scanpy which subtracts the average expression of all genes in the 1282 

dataset from the average expression of the genes in this list. The scores were averaged across 1283 

clusters and clinical status and expressed as a fold-change over the interferon score in the 1284 

equivalent healthy cluster. 1285 

 1286 

kBET analysis 1287 

The kBET59 algorithm (https://github.com/theislab/kBET) was run for each cluster defined in Fig. 1288 

1 using the Uniform manifold and projection (UMAP) coordinates generated from Harmony-1289 

adjusted principal components, and the sample number as the batch factor. The same procedure 1290 

was then performed using the same annotation but using the UMAP coordinates generated from 1291 

non-Harmony-adjusted principal components. The resultant rejection rates were averaged across 1292 

clusters and compared using a Wilcoxon paired signed rank test. 1293 

 1294 

Bronchoalveolar lavage data analysis 1295 

ScRNAseq data from BAL was obtained from GEO (accession number GSE14592629). Raw data 1296 

was analysed using the same pipeline as PBMC data, specifically using the same quality control 1297 

cut-offs (min of 200 genes and <10% mitochondrial reads/cell) and batch-corrected using 1298 

Harmony by donor ID. To gain greater resolution of mononuclear phagocytes the DC and 1299 

macrophages were analysed with further rounds of sub-clustering to identify DC1, DC2 and 1300 

mature DC. 1301 

 1302 

PAGA analysis of blood monocytes and BAL macrophages 1303 

Annotated raw expression datasets of BAL macrophages and COVID-19 PBMCs were merged 1304 

and data log-normalised and scaled as for the original datasets. The top 3000 highly variable genes 1305 

were chosen using the Seurat “vst” method and used for downstream analysis. Principal 1306 

components were batch corrected by donor and used to build a neighborhood graph. The PAGA 1307 

tool in scanpy (tl.paga) was used to generate the abstracted graph between clusters. 1308 

 1309 
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CellphoneDB 1310 

CellphoneDB60 was used to assess putative interactions between monocytes (CD14_mono, 1311 

CD83_CD14_mono, C1_CD16_mono, CD16_mono, Prolif_mono) and platelets. The tool was run 1312 

for 100 iterations and an expression threshold of 0.25 (limiting the analysis to genes expressed by 1313 

25% of cells). For downstream analysis we focused on interactions between platelets and any 1314 

monocyte subset. 1315 

 1316 

HPSC commitment scoring 1317 

HPSCs were subsetted from the data and Leiden clusters generated using the same pipeline and 1318 

parameters as for the whole PBMC dataset. Differentially expressed genes between the HSPC 1319 

clusters that showed evidence of lineage commitment (MK, Erythroid and Myeloid) were 1320 

calculated using FindAllMarkers tool in Seurat (with thresholds of genes expressed by 25% of 1321 

cells and with a log fold-change of 0.25) and genes with an adjusted p-value cut-off of 0.05 were 1322 

used to generate gene signatures for each. Enrichment of these signatures in the CD38 negative 1323 

and CD38 positive HSPC clusters were calculated using the tl.score_genes in scanpy. The average 1324 

expression of these enrichment scores in the CD38 negative and CD38 positive HSPC clusters was 1325 

calculated and normalised to their expression in healthy patients. 1326 

 1327 

Multiplex cytokine analysis 1328 

Serum was obtained from peripheral blood in red topped serum Vacutainers®️ (BD, 367815) and 1329 

allowed to clot for at least 30 min before centrifugation (800 g for 10 min) to separate the serum. 1330 

After collection, serum was frozen at -80°C and thawed on ice on the day of experiment. The assay 1331 

was carried out using the Cytokine/Chemokine/Growth Factor 45-Plex Human ProcartaPlex™ 1332 

Panel 1 kit (Invitrogen, EPX450-12171-901), utilising the Luminex xMAP technology and 1333 

according to the manufacturer’s protocol. Each sample was run in duplicate. The values of each 1334 

analyte were detected using the MAGPIX® system and analysed using the ProcartaPlex Analyst 1335 

version 1.0 Software (ThermoFisher Scientific).  1336 

 1337 

Re-stimulation of PBMC with SARS-Cov-2 peptide S 1338 

Purified PMBC were thawed at 37°C, transferred into a 15 mL tube with 10 mL pre-warmed 1339 

complete culture media RPMI-1640 medium (Sigma Aldrich, R0883) supplemented with 10% 1340 
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(v/v) FCS (Gibco, 10270-106), 1% (v/v) Penicillin/Streptomycin (100 U/mL and 100 μg/mL 1341 

respectively; Sigma Aldrich, P0781) and 1% (v/v) L-Glutamine (2 mM; Sigma Aldrich, G7513), 1342 

referred as RPMI10, followed by centrifugation at 500 g for 5 min. Cell pellet was resuspended in 1343 

500 μL RPMI10 with added DNAse (1 μg/mL, Merck, 10104159001), divided into 5 wells of 1344 

round bottom 96-well plate and left to rest at 37°C for an hour. Cells were stimulated with SARS-1345 

CoV-2 PepTivator peptide S for pan-HLA (2 μg/mL, Miltenyi Biotech, 136-126-700) and 1346 

PMA/Ionomycin as a control (2 μL/mL, Cell Activation cocktail, Biolegend, 423301), and 1347 

incubated at 37°C for 2 h. Negative controls were left untreated. Brefeldin A (2 μg/mL, GolgiPlug, 1348 

BD Bioscience, 555029) and anti-CD107a-BB700 antibody (1:50, clone H4A3, BD Bioscience, 1349 

566558) was added for additional 4 h into all conditions. Cells were stained for detection of 1350 

activation induced markers and intracellular cytokines 6 h after stimulation and subjected to flow 1351 

cytometry.  1352 

 1353 

Flow Cytometry of stimulated cells 1354 

PBMC stimulated for 6 h with the SARS-Cov-2 peptide were washed with PBS, and cell surface 1355 

stained for 1 h at room temperature: anti-CD14-FITC (1:50, clone M5E2, BD Biosciences, 1356 

555397), anti-CD19-FITC (1:50, clone 4G7, BD Biosciences, 345776), anti-CD137-Pe-Dazzle594 1357 

(1:50, clone 4B4-1, Biolegend, 309826), anti-CCR7-PE-Cy7 (1:50, clone G043H7, Biolegend, 1358 

353226), anti-CD45RO-APC-H7 (1:50, clone UCHL1, BD Biosciences, 561137), anti-CD28-1359 

BV480 (1:50, clone CD28.2, BD Biosciences, 566110), anti-CD4-BV785 (1:100, clone SK3, 1360 

Biolegend, 344642), anti-CD3-BUV395 (1:50, clone UCHT1, BD Biosciences, 563546), anti-1361 

CD8-BUV496 (1:100, clone RPA-T8, BD Biosciences, 564804), anti-CD25-BUV737 (1:100, 1362 

clone 2A3, BD Biosciences, 612806) and viability dye Zombie Yellow (1:200, Biolegend, 1363 

423104). Cells were washed with PBS 2% (v/v) FCS, fixed with 4% (w/v) paraformaldehyde 1364 

(ThermoFisher Scientific, 28908) and kept at 4°C overnight. Subsequently, cells were washed with 1365 

PBS, permeabilized with Perm/Wash buffer (BD Biosciences, 554723) according manufacturer’s 1366 

instruction, and stained with intracellular antibodies for 1 h on ice:  anti-IL10-PE (1:10, clone 1367 

JES3-19F1, BD Biosciences, 559330), anti-IFN-APC (1:25, Miltenyi Biotec, 130-090-762), anti-1368 

TNF-AF700 (1:50, clone MAb11, Biolegend, 502928), anti-IL2-BV421 (1:100, clone 5344.111, 1369 

BD Biosciences, 562914), anti-CD154-BV605 (1:50, clone 24-31, Biolegend, 310826). Cells were 1370 
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washed, transferred to flow cytometry 5 mL tubes, and acquired on Symphony A5 flow cytometer 1371 

(BD Biosciences). Data were analysed by FlowJo V10 (BD Biosciences).  1372 

 1373 

GSEA analysis 1374 

Pre-ranked gene set analysis (prGSEA) on MSigDB v7.2 Hallmark genesets61 was performed 1375 

using pre-ranked gene lists with fgsea62 in R. Genes were pre-ranked according to signed -log10 P-1376 

values for all prGSEA procedures. For B cells, generation of rank gene list was performed using 1377 

Wilcoxon rank sum test (via tl.rank_genes_groups in scanpy) with each Day 0 COVID statuses 1378 

(asymptomatic to symptomatic critical) as the “tests” versus Day 0 Healthy samples as 1379 

“reference/control”. 1380 

 1381 

T cell clustering, annotation and visualisation 1382 

Droplets labelled as T cells (“CD4”, “CD8”, “Treg”, “MAIT”, “gdT”) were subset from those in 1383 

Fig. 1B and re-clustered using a set of HVGs calculated within each batch, the union of which 1384 

were used to estimate the first 50 principal components across cells using the irbla R package. 1385 

Batch effects were removed across the first 30 PCs using the fastMNN58 implementation in the 1386 

Bioconductor package batchelor (k=50). A k-nearest neighbour graph (k=20) was computed 1387 

across these 30 batch-integrated PCs using the buildKNNGraph function implemented in the 1388 

Bioconductor package scran, which was then used to group cells into connected communities 1389 

using Louvain63 clustering implemented in the R package igraph. Clusters that displayed mixed 1390 

profiles of T and other lymphoid lineages, i.e. CD19, CD20 and immunoglobulin genes, were 1391 

classed as doublets and removed from down-stream analyses. Clusters indicative of NK cells 1392 

(CD3-CD56+) were subsequently annotated as such and removed from T cell analyses. Remaining 1393 

clusters were annotated using a combination of canonical protein & mRNA (italicised) markers 1394 

for major αβ T cells (CD4, CD8, CCR7, CD45RA, CD45RO, CD62L, CD27, CD38, CD44, 1395 

CXCR5, CD40LG CCR7, FOXP3, IKZF2), γδT cells (Vγ9, Vγ2, TRGV9, TRDV2) and invariant 1396 

T cells; MAIT (Vα24-Jα18, TRAV1.2), NKT (CD3, CD16, CD56, NCAM1, NCR1, FCGR3A). 1397 

Polarized CD4+ T cell annotations were refined using the combination of transcription factor genes 1398 

and expressed cytokines for the respective helper T cell types: Th1 (IFNG, TBX21, TNFA), Th2 1399 

(GATA3, IL4, IL5), Th17 (RORC, IL17A, IL17F, IL21). Where clusters appeared heterogeneous in 1400 

their expression of T cell lineage markers, single cell annotations were refined based on the co-1401 
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expression of specific marker gene and protein pairs. Dot plots to visualise marker protein and 1402 

mRNA expression across clusters were generated using the R package ggplot2. UMAP64 was used 1403 

to project all single T cells into a 2D space (k=31) using the first 30 batch-integrated PCs as input 1404 

using the R package umap.  1405 

 1406 

T cell differential gene expression analysis 1407 

Differential gene expression (DGE) analysis was performed across COVID-19 disease severity 1408 

groups, ordered from healthy > asymptomatic > mild > moderate > severe > critical. Donor 1409 

pseudo-bulk samples were first created by aggregating gene counts for each annotated T cell type, 1410 

within each donor, where there were at least 20 cells of that type. Genes with fewer than 3 counts 1411 

in any given pseudo-bulk, or fewer than 5 counts in total across donor pseudo-bulk samples, were 1412 

removed prior to analysis. DGE testing was performed using a negative binomial generalized 1413 

linear model (NB GLM) implemented in the Bioconductor package edgeR65,66. Statistically 1414 

significant DE genes were defined with FDR < 0.1. Functional annotation enrichment was 1415 

performed using the Bioconductor package enrichR67. Up- and down-regulated DE genes in each 1416 

T cell type were used as input, testing separately against the MSigDB Hallmark 2020 and 1417 

Transcription Factor Protein-Protein Interactions gene sets. Significant enrichments were defined 1418 

with 1% FDR. 1419 

 1420 

T cell receptor analysis 1421 

Single-cell TCRs were computed from the TCR-seq data using Cellranger v4.0.0. The unfiltered 1422 

output of reconstructed TCR contigs across all 3 sites (Newcastle, Cambridge, UCL) were 1423 

combined prior to filtering using: 1) full length CDR3, 2) droplet barcode matched a T cell droplet, 1424 

3) productive CDR3 spanning V+J genes. Chain-specific TCR clones were defined for each 1425 

observed α and β chain by first concatenating the V, J and identical CDR3 nucleotide sequences. 1426 

For each single T cell, these chains were then combined to form a single clonotype, removing cells 1427 

that contained: 1) > 2 β chains and > 2 α chains, 2) a single α or a single β chain only. T cells with 1428 

exactly 2 β chains and 1 α chain, or those with exactly 2 α chains and 1 β chain were retained. TCR 1429 

clonotypes were counted within each donor sample, and expanded clones were defined where > 1 1430 

cell was assigned to the TCR clonotype. 1431 

 1432 
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The proportion of expanded clones as a function of a linear trend across disease severity groups 1433 

was modelled using logistic regression, adjusted for age, gender and batch. A separate model was 1434 

run for each T cell subtype which contained at least 5 cells assigned to the expanded TCR 1435 

clonotypes. Linear trend p-values were corrected for multiple testing using the Benjamini & 1436 

Hochberg procedure68. 1437 

 1438 

The TE:EM ratio was calculated within each donor, using the number of observed expanded 1439 

clonotypes. The TE:EM ratio change across COVID-19 severity was tested using a robust linear 1440 

model implemented in the R package robustbase, regressing TE:EM ratio on disease severity as 1441 

an ordered linear variable (asymptomatic > mild > moderate > severe > critical), adjusted for age, 1442 

gender and batch. Statistical significance was defined based on the linear trend across disease 1443 

severity (p ≤ 0.01). 1444 

 1445 

Differential correlation analysis 1446 

Changes in the correlations between PBMC cell types were computed using a differential 1447 

correlation analysis, implemented in the R package DCARS69. Cell type proportions were 1448 

computed by normalizing the counts of each cell type within each donor by the total number of 1449 

cells captured for that donor sample. Donor samples were ranked according to their disease 1450 

severity (healthy > asymptomatic > mild > moderate > severe > critical). Differential correlation 1451 

analysis was then performed between CD4.Tfh vs all B cell types. Statistically significant 1452 

differentially correlated cell types were defined with empirical p-value ≤ 0.05, estimated from 1453 

10,000 permutations. 1454 

 1455 

BCR V(D)J analysis 1456 

Single-cell V(D)J data from the 5’ Chromium 10x kit were initially processed with cellranger-vdj 1457 

(4.0.0). BCR contigs contained in filtered_contigs.fasta and filtered_contig_annotations.csv from 1458 

all three sites were then pre-processed using immcantion inspired preprocessing pipeline70 1459 

implemented in the dandelion python package; dandelion is a novel single cell BCR-seq analysis 1460 

package for 10x Chromium 5' data. All steps outlined below are performed using dandelion 1461 

v0.0.26 and is available at https://github.com/zktuong/dandelion. 1462 

  1463 
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BCR preprocessing 1464 

Individual BCR contigs were re-annotated with igblastn v1.1.15 using the IMGT reference 1465 

database (date downloaded: 30-June-2020)71 by calling changeo’s AssignGenes.py script and re-1466 

annotated contigs in blast format were parsed into the Adaptive Immune Receptor Repertoire 1467 

(AIRR) standards 1.3 format with changeo’s MakeDB.py script. Amino acid sequence alignment 1468 

information not present in the output from blast format were retrieved from re-annotation with 1469 

igblastn in airr format. Heavy chain V-gene alleles were corrected for individual genotypes with 1470 

TIgGER72 (v1.0.0) using a modified tigger-genotype.R script from immcantation suite. Germline 1471 

sequences were reconstructed based on the genotype corrected V-gene assignments using 1472 

changeo’s (v1.0.1) CreateGermines.py script; contigs which fail germline sequence reconstruction 1473 

were removed from further analysis. Constant genes were re-annotated using blastn (v2.10.0+) 1474 

with CH1 regions of constant gene sequences from IMGT followed by pairwise alignment against 1475 

curated sequences to correct assignment errors due to insufficient length of constant regions.  1476 

 1477 

BCR filtering 1478 

Contigs assigned to cells that passed quality control on the transcriptome data were retained for 1479 

further quality control assessment, which includes checks for: i) contigs with mismatched locus, 1480 

V-, J- and constant gene assignments were removed from the analysis; ii) cell barcodes with 1481 

multiple heavy chain contigs were flagged for filtering. Exceptions to this would be when a) the 1482 

multiple heavy chain contigs were assessed to have identical V(D)J sequences but assigned as 1483 

different contigs belonging to the same cell by cellranger-vdj, b) when there is a clear dominance 1484 

(assessed by difference in UMI count) by a particular contig, and c) if and when there is presence 1485 

of one IgM and one IgD contig assigned to a single cell barcode. In the first two cases, the contig 1486 

with the highest UMI count is retained; iii) cell barcodes with multiple light chain contigs were 1487 

flagged for filtering; iv) in situations where cell barcodes are matched with only light chain contigs, 1488 

the contigs would be dropped from the V(D)J data but transcriptome barcode will be retained. 1489 

  1490 

B cell clone/clonotype definition 1491 

BCRs were grouped into clones/clonotypes based on the following sequential criterion that applies 1492 

to both heavy chain and light chain contigs – i) identical V- and J- gene usage, ii) identical 1493 

junctional CDR3 amino acid length, and iii) at least 85% amino acid sequence similarity at the 1494 
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CDR3 junction (based on hamming distance). Light chain pairing is performed using the same 1495 

criterion within each heavy chain clone. Only samples collected at day 0 of the study were analyzed 1496 

from this step onwards and clones/clonotypes were called across the entire dataset; the sample 1497 

from one of the donors who was subsequently found to have a B cell malignancy was separated 1498 

from the analysis and processed independently.   1499 

 1500 

B cell clone/clonotype network 1501 

Single-cell BCR networks were constructed using adjacency matrices computed from pairwise 1502 

Levenshtein distance of the full amino acid sequence alignment for BCR(s) contained in every pair 1503 

of cells within each disease severity cohort. Construction of the Levenshtein distance matrices 1504 

were performed separately for heavy chain and light chain contigs and the sum of the total edit 1505 

distance across all layers/matrices was used as the final adjacency matrix. To construct the BCR 1506 

neighborhood graph, a minimum spanning tree was constructed on the adjacency matrix for each 1507 

clone/clonotype, creating a simple graph with edges indicating the shortest edit distance between 1508 

a B cell and its nearest neighbor. Cells with identical BCRs i.e. cells with a total pairwise edit 1509 

distance of zero are then connected to the graph to recover edges trimmed off during the minimum 1510 

spanning tree construction step. Fruchterman-reingold graph layout was generated using a 1511 

modified method to prevent singletons from flying out to infinity in networkx (v2.5). Visualisation 1512 

of the resulting single-cell BCR network is achieved via transferring the graph to relevant anndata 1513 

slots, allowing for access to plotting tools in scanpy. 1514 

  1515 

The use of the BCR network properties for computing gini indices was inspired from bulk BCR-1516 

seq network analysis methods where distribution of clone sizes and vertex sizes (sum of identical 1517 

BCR reads) in BCR clone networks were used to infer the relationships between BCR clonality, 1518 

somatic hypermutation and diversity73. However, there are challenges with native implementation 1519 

of this approach for single-cell data. Firstly, to enable calculation of network-based clone/cluster 1520 

and vertex/node size distribution, BCR networks needed to be reduced such that nodes/cells with 1521 

identical BCRs had to be merged and counted; this required the re-construction of BCR networks 1522 

per sample and discarding single-cell level information. Furthermore, the process of node 1523 

contraction and counting of merging events requires significant computation time and resource. 1524 

Secondly, this approach is dependent on sufficient coverage of the BCR repertoire, as the BCRs 1525 
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from the number of cells sampled (post-QC) may not necessarily recapitulate the entire repertoire, 1526 

which may under- or over-represent merged counts for gini index calculation. We propose the use 1527 

of node closeness centrality computed on each expanded clone (clone size > 1) as an alternative 1528 

metric to emulate the statistics to adapt to the single-cell nature of the data; closeness centrality 1529 

defines how close and central each node is with respect to other nodes in the graph and therefore 1530 

cells with identical BCRs will have high closeness centrality scores, due to the way the BCR 1531 

network is constructed in dandelion. Thus, we can quickly calculate if cells across clones, and/or 1532 

samples overall, in the entire graph display proportionately/disproportionately high or low 1533 

closeness centrality scores. One caveat to the current implementation is that it is only meaningful 1534 

if there are clonotypes with at least two cells as scores will only be computed for non-singleton 1535 

components of the graph. Gini indices are computed using skbio.diversity.alpha.gini_index (scikit-1536 

bio v0.5.6) with the trapezoids method after clone definition and network generation. Summary 1537 

visualisation was performed using plotting tools in seaborn (v0.11.0). 1538 

  1539 

Definition of BCR convergence across patients 1540 

BCR overlap was determined by collapsing sharing incidence of V- and J- gene usage and CDR3 1541 

amino acid sequences, in both heavy and light chains, between individuals into a binarized format 1542 

(1 or 0). The information is turned into an adjacency matrix where an edge is created between two 1543 

individuals if there is at least one clonotype (at least 1 cell from each individual displays an 1544 

identical combination of heavy and light chain V- and J- gene usage with allowance for somatic 1545 

hypermutation at the CDR3 junctional region) that is similar between the two individuals. 1546 

Visualisation is achieved using the CircosPlot function from nxviz package (v0.6.2). 1547 
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