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Abstract

Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the
acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double
strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper
sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene
defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to
elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably
express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued
and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the
corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while
no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells
and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase
mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous
study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive
chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for
ESCO2 in the maintenance of genome stability.
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Introduction

Roberts syndrome (RBS) is a rare autosomal recessive disease

characterized by growth retardation and congenital abnormalities.

RBS patients typically have limb malformations involving symmetric

reduction in the number of digits, and the length or presence of bones

in the arms and legs, but the severity of these abnormalities is quite

variable, even within families [1]. Survival is generally poor, as most

cases of RBS end in spontaneous abortion, still-birth, or neonatal

death. Cells from RBS patients show specific cytogenetic character-

istics, mainly consisting of metaphase chromosomes displaying

repulsion at heterochromatin regions or centromere splitting leading

to a railroad-track appearance of chromosomes. RBS is caused by

mutations in ESCO2 [2]. ESCO2 is one of the two human orthologs

of the Saccharomyces cerevisiae protein Eco1/Ctf7, a putative acetyl-

transferase required for the establishment of sister chromatid

cohesion during S phase [3,4]. In addition, Eco1 is important to

maintain sister chromatid cohesion after the introduction of double

strand breaks in G2/M phase of the cell cycle [5–7], suggesting that

the establishment of cohesion is also essential for postreplicative repair

of double strand breaks.

EBV-immortalized lymphoblastoid cell lines from Roberts

syndrome patients have previously been claimed to be hypersen-

sitive to the growth-inhibiting effect of mitomycin C (MMC) and

gamma irradiation [8,9]. However, these studies were not entirely

conclusive since isogenic control cell lines were not available or not

included. Gordillo et al showed that a lymphoblastoid cell line from

a patient homozygous for the missense mutation W539G in the

acetyltransferase domain of ESCO2 was as sensitive to MMC as

lymphoblasts from RBS patients lacking ESCO2 mRNA and

protein due to nonsense or frameshift mutations [8], indicating

that the ESCO2 acetyltransferase domain is important for its

function. This missense mutation reduced the acetyltransferase

activity of ESCO2 in vitro, which suggests that it is actually

pathogenic. Nevertheless, to explore the function of the human

ESCO2 protein, there is a need for functionally corrected cell lines

from Roberts syndrome patients.

In this study we investigate ESCO2-deficient immortalized skin

fibroblasts from a Roberts syndrome patient in comparison to

isogenic ESCO2 complemented cell lines to document the cellular

phenotype of ESCO2-deficient cells. Cells lacking functional
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ESCO2 appeared to be characterized by a chromatid cohesion

defect and by hypersensitivity to the DNA-damaging agents

mitomycin C, camptothecin, and etoposide.

Results

Immortal fibroblasts from a Roberts syndrome patient
are functionally complemented by epitope-tagged
ESCO2
To be able to study the role of ESCO2 in sister chromatid

cohesion and DNA damage response, SV40 immortalized,

ESCO2-deficient fibroblasts from a Roberts syndrome patient

(VU1199-F SV40) were stably transfected with cDNA constructs

encoding either V5- or GFP-tagged ESCO2 protein. As a negative

control, a patient-derived mutation in the acetyltransferase

domain of GFP-ESCO2 was generated (GFP-ESCO2 (W539G)).

Upon neomycin selection, several clones were obtained, which

expressed the V5-ESCO2 or GFP-ESCO2 proteins at levels much

higher than endogenous ESCO2 in wild type fibroblasts

(Figure 1A). As expected from their molecular weights GFP-

ESCO2 ran more slowly in the SDS-PAGE gel than V5-ESCO2;

Western blotting with a GFP-specific antibody was used to

demonstrate that the GFP signal was exclusively derived from the

GFP-ESCO2 fusion protein, since no uncoupled GFP molecules

were detected (Figure 1A).

Both wild type and mutant ESCO2 proteins localized in the

nucleus, where ESCO2 is supposed to perform its function, but the

expression levels seemed to vary between cells (Figure 1B). Since

overexpression and/or the V5 or GFP tags may interfere with the

activity of ectopically expressed proteins, we tested functional

complementation by cytogenetic analysis. Metaphase spreads

revealed a strong reduction in the number of railroad chromo-

Figure 1. Functional complementation of Roberts syndrome fibroblasts by epitope tagged ESCO2. Stable VU1199-F SV40 cell lines
expressing V5- or GFP-tagged ESCO2 were obtained by transfection and neomycin selection. (A) Whole cell extracts were analyzed for ESCO2 or GFP
expression by Western blotting with an ESCO2- or GFP-specific antibody. Tubulin served as a loading control. The VU1199-F SV40 cell line stably
transfected with a GFP construct served as a control for cells expressing GFP protein only. (B) Nuclear localization of V5-ESCO2, GFP-ESCO2 and GFP-
ESCO2 (W539G) in the stably transfected VU1199-F SV40 fibroblasts. Cells were fixed with 4% methanol-free formaldehyde solution and the V5-ESCO2
expressing cell line was probed with an anti-V5 antibody. Nuclei were stained with ToPro3. (C) Railroad chromosomes in RBS immortal fibroblasts and
complemented cell lines. Fifty metaphases per cell line were scored for the presence of railroad chromosomes, from coded slides; the percentage of
metaphases containing one or more railroad chromosome was calculated.
doi:10.1371/journal.pone.0006936.g001
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somes in cell lines stably transfected with wild type ESCO2

(Figure 1C), demonstrating that the V5- and GFP-tagged ESCO2

proteins are indeed functional, in spite of their relatively high

expression levels. The occurrence of railroad chromosomes was

not corrected by GFP alone nor by the mutant ESCO2 protein

(Figure 1C). Given the relatively normal subcellular distribution of

the mutant ESCO2 protein compared to the ectopically expressed

wild type protein, our data indicate that the pathogenic character

of missense mutation W539G is not due to mislocalization or

instability of ESCO2, but most likely through its effect on the

acetyltransferase activity of the protein.

These stable cell lines can now serve as isogenic controls for the

characterization of the cellular phenotype of RBS fibroblasts and

can be used to study the function of ESCO2 and its

acetyltransferase domain in more detail.

ESCO2 is regulated during the cell cycle by proteasomal
degradation
A striking intercellular variation in ESCO2 protein expression

was observed during long-term culture (Figure 1B), which

suggested a cell cycle-dependent regulation of ESCO2. To test

this possibility, we synchronized V5-ESCO2-expressing RBS cells

with the replication inhibitor aphidicolin and followed ESCO2

expression after release from this cell cycle block (Figure 2A). At

three hours post-treatment, when many cells were in S phase

(Figure 2B), ESCO2 levels were high, while nine hours after

Figure 2. Ectopic ESCO2 expression during the cell cycle. VU1199-F SV40 cells stably expressing V5-ESCO2 were synchronized by a double
aphidicolin block and mitotic shake-off and samples were analyzed for (A) ESCO2 expression on Western blot and (B) DNA content by flow cytometry.
(C) Cell cycle distribution related to GFP-ESCO2 expression was measured by flow cytometry in VU1199-F SV40 cells stably expressing wild type or
mutant GFP-ESCO2. Cells were fixed in 70% ethanol and DNA was stained with ToPro3. Asterisk indicates a protein detected by the ESCO2 antibody
which is supposed to represent a degradation product of ESCO2.
doi:10.1371/journal.pone.0006936.g002

Function of ESCO2

PLoS ONE | www.plosone.org 3 September 2009 | Volume 4 | Issue 9 | e6936



release most cells were in G2/M phase and ESCO2 expression

was barely detectable. Also in M phase cells obtained by mitotic

shake-off V5-ESCO2 expression was very low. Flow cytometery of

RBS cells expressing either wild type or mutant GFP-ESCO2,

again showed a high ESCO2 expression in S phase cells, although

the mutant appeared to be less stable (Figure 2C). Furthermore,

time-lapse movies demonstrated a cell cycle regulated expression

of GFP-ESCO2, with a very strong accumulation in the nucleoli in

both untreated cells (Supplementary Video S1) and cells treated

with the replication inhibitor hydroxyurea (Supplementary Video

S2). Although so far we have not observed any other ectopically

expressed protein to accumulate in the nucleolus, including GFP,

we can not rule out that overexpression of tagged ESCO2

underlies its nucleolar localization, since our ESCO2 antibody is

unable to detect endogenous ESCO2 protein by immunofluore-

sence. These data show that, despite of the CMV promoter-driven

expression of ESCO2, protein levels vary during the cell cycle,

possibly by posttranslational modification.

The Western blot of synchronized V5-ESCO2 expressing cells

(Figure 2A) revealed an ESCO2 protein with faster mobility (lanes 3

and 8, asterisks), which suggests proteolysis. One possible way to vary

ESCO2 protein levels during the cell cycle is by regulated protein

degradation through the proteasome. To explore this possibility,

GFP-ESCO2 transfected RBS cells were treated with the proteaso-

mal inhibitorsMG-132 and bortezomib. Immunofluorescence clearly

showed enhanced nuclear and nucleolar staining of wild type and

mutant ESCO2 upon proteasome inhibitor treatment (Figure 3A). In

addition, as indicated by Western blotting, the proteasome inhibitors

increased the total level of wild type and mutant GFP-ESCO2 as well

as that of V5-ESCO2 (Figure 3B). These data indicate that ectopic

ESCO2 levels are regulated by proteasomal degradation, which is

independent of its acetyltransferase activity.

Endogenous ESCO2 levels in U2OS cells also varied during the

cell cycle with very low levels in M and early G1 phase cells

compared to G1/S or G2 phase cells (Figure 3C). The production of

ESCO2 preceded that of cyclin B1, which starts to rise during G2

phase and this is in agreement with a role for ESCO2 in S phase.

ESCO2 is down-regulated in mitotic cells characterized by heavily

phosphorylated APC3/cdc27, and this precedes a decrease in

securin levels. Securin is a known target of the Anaphase-Promoting

Complex/Cyclosome (APC/C), which is involved in the degrada-

tion of proteins during mitosis and these data suggest that ESCO2

and securin are regulated in different manners. Indeed, we did not

observe stabilization of ESCO2 levels in mitotic extracts of cells

treated with siRNA targeting APC/C subunits (data not shown).

However, proteasome inhibitor MG-132 stabilized ESCO2 levels in

mitotic cells (Figure 3D), indicating that also endogenous ESCO2

levels are regulated by proteasomal degradation. Proteasome

inhibitors did not detectably affect ESCO2 levels in unsynchronized

U2OS cells (Figure 3D) or wild type fibroblasts (Figure 3E).

In summary, our data indicate that both endogenous and

ectopically expressed ESCO2 levels are regulated during the cell

cycle by APC-independent proteasomal degradation.

Hypersensitivity of Roberts syndrome cells to various
DNA-damaging agents
Two previous studies have claimed that lymphoblastoid cells from

Roberts syndrome patients are unusually sensitive to growth

inhibition by the DNA cross-linking agent mitomycin C (MMC),

which interferes with DNA replication [8,9]. To exclude the influence

of differences in growth rate and possible heterogeneity of cell lines,

we used colony survival assays to determine the MMC sensitivity of

cell line VU1199-F SV40 and its isogenic control lines stably

expressing V5- or GFP-tagged ESCO2. RBS fibroblasts exposed to

increasing doses MMC showed reduced survival when compared to

the isogenic V5-ESCO2- or GFP-ESCO2-expressing RBS fibro-

blasts, as well as compared to non-isogenic wild type fibroblasts

(Figure 4A), confirming the MMC hypersensitivity of ESCO2-

deficient cell lines. However, relative to Fanconi anemia fibroblasts,

the sensitivity of RBS cells was less pronounced. In contrast to wild

type ESCO2, the ESCO2 acetyltransferase mutant was not able to

correct the MMC sensitivity of VU1199-F SV40, indicating that the

ESCO2 acetyltransferase domain is essential for cellular tolerance to

MMC and that ESCO2 may play a role in DNA cross-link repair.

MMC is very effective in blocking DNA replication forks by

covalently connecting the two complementary DNA strands, but

many other agents are able to interfere with DNA replication. To

further document the impact of ESCO2 deficiency on the cellular

DNA damage response we tested several additional agents with

different mechanisms of action, including camptothecin, etopo-

side, aphidicolin, hydroxyurea, X-rays and UV-C.

The topoisomerase I inhibitor camptothecin creates single-

stranded DNA breaks by fixing the topoisomerase I-DNA cleavage

intermediate on the DNA [10]. RBS fibroblasts showed a

hypersensitivity to camptothecin when compared to their

complemented counterparts or wild type fibroblasts (Figure 4B),

whereas expression of the ESCO2 acetyltransferase mutant failed

to rescue this hypersensitive phenotype.

DNA replication can also be disrupted by the topoismerase II

inhibitor etoposide, which stabilizes a topoisomerase II-DNA

complex and prevents religation of the DNA after the enzyme has

generated a double strand break [11]. Also for this agent, colony

survival assays revealed a hypersensitive phenotype in RBS

fibroblasts, which was completely rescued by ectopic expression

of V5-ESCO2 when compared to VU1199-F SV40 cells or

fibroblasts expressing the ESCO2 acetyltransferase mutant

(Figure 4C). Interestingly, in this particular instance the GFP-

ESCO2 protein appeared as inactive as the acetyltransferase

mutant, suggesting that the GFP-tag may interfere with the ability

of ESCO2 to assist in the handling of etoposide-induced DNA

damage. Although these data suggest a role for ESCO2 in the

response to replication fork stalling, we did not find an increased

sensitivity to the more general replication inhibitors aphidicolin or

hydroxyurea, which inhibit replicative polymerase alpha or

deplete the dNTP pool by inhibiting ribonucleotide reductase,

respectively (Figure 4D and 4E). This indicates that ESCO2 is

specifically involved in a response to DNA-damaging agents that

physically block DNA replication forks.

To test whether cells from Roberts syndrome patients have a

more general DNA repair defect we created double strand breaks by

exposing the cell lines to several doses of X-rays. Colony survival

assays showed no marked difference in X-ray sensitivity between

RBS fibroblasts and the corrected cell lines. Similar results were

found after UV treatment (Figure 4F and 4G). The lack of ionizing

irradiation sensitivity may be explained by the fact that the exposure

time is short and that only cells in a specific phase of the cell cycle

are X-ray sensitive. Recently, it has been shown that, despite a lack

of X-ray sensitivity in clonogenic survival, cells from Cornelia de

Lange syndrome patients, another cohesinopathy, show a 2–4-fold

increase in X-ray induced chromosomal aberrations than control

cells when irradiated in the G2 phase of the cell cycle [12].

However, both immortal fibroblasts (Table 1) and primary

fibroblasts (Table 2) from RBS patients do not show this increased

sensitivity for G2-induced chromosomal aberrations. Together with

the hypersensitivity to DNA-damaging agents that block DNA

replication and the highly regulated protein expression levels, these

data suggest a role for ESCO2 in genomic maintenance during the

S phase of the cell cycle.

Function of ESCO2
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Figure 3. ESCO2 levels are regulated by proteasomal degradation. (A) Fluoresence microscopy showing stabilization of ESCO2 protein by
proteasome inhibitors in VU1199-F SV40 cells stably expressing wild type or mutant ESCO2. Cells were treated for 6 h with 50 mM MG-132 or 100 nM
bortezomib and fixed with 100% cold methanol. Nuclei were stained with DAPI. (B) Ectopic ESCO2 is stabilized by proteasome inhibitors as shown by
Western blotting. Cell lines were exposed to proteasome inhibitors for 6 h with 50 mM MG-132 or 100 nM bortezomib and analyzed for ESCO2
expression by Western blotting. Tubulin was used as loading control. (C) Endogenous ESCO2 levels in synchronized U2OS cells. Cells were arrested in
G1/S phase by a thymidine block and released for 9 h to obtain cells in G2 phase. Mitotic cells were harvested by treatment with nocodazole followed
by mitotic shake-off. These cells were released for 90 min to obtain early G1 phase cells. Cell lysates were analyzed for ESCO2, securin, cyclin B1 and
APC expression by Western blotting. Asterisk indicates an aspecific band considered as loading control. (D) Proteasome inhibitor MG-132 stabilizes
ESCO2 levels in M phase cells. U2OS cells were cultured for 4 h in the presence of 5 mM MG-132 before M phase cells were isolated. APC3
phosphorylation is shown as a control for mitotic cells. Asterisk indicates an aspecific band as loading control. (E) ESCO2 levels in unsynchronized wild
type fibroblasts treated with proteasome inhibitors. LN9SV was treated for 6 h with 50 mM MG-132 or 1 mM bortezomib.
doi:10.1371/journal.pone.0006936.g003
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Normal Rad51 focus formation and sister chromatid
exchange in RBS cells
The repair of DNA damage in S and G2 phase often involves

homologous recombination and it is conceivable that cohesion

between sister chromatids is essential for this process. A key protein

in homologous recombination repair is Rad51, which localizes in

nuclear foci after DNA damage is induced. To investigate the role of

ESCO2 in the relocalization of Rad51, the formation of Rad51 foci

was studied in RBS cells. As shown in Figure 5A, RBS cells were

capable of forming Rad51 foci in response to X-ray irradiation or

MMC treatment with kinetics comparable to wild type fibroblasts,

which indicates that ESCO2 is not directly involved in the

homologous recombination process.

A fraction of homologous recombination events results in cross-

over recombination between sister chromatids, which can be

visualized by differential staining of sister chromatids during DNA

replication, so-called sister chromatid exchanges (SCEs). When

using this method to analyze the number of sister chromatid

exchanges in RBS cells no marked abnormalities in spontaneous

or MMC-induced SCEs were found (Figure 5B). This confirmed

the notion that ESCO2 is not essential for homologous

recombination.

Figure 4. Survival of RBS and stably transfected fibroblasts after treatment with various DNA-damaging agents. Data are averages of
at least 2 or 3 independent experiments; error bars represent standard error of the mean. VU1199-F SV40 cell line, V5-ESCO2-transfected VU1199-F
SV40, GFP-ESCO2-transfected VU1199-F SV40, GFP-ESCO2 mutant (W539G)-transfected VU1199-F SV40 and wild type fibroblasts LN9SV (figures A to
E) or VH10 SV40 (figures F and G) were grown for 10–12 days after treatment with X-rays or UV-C irradiation, or after continuous exposure to the
indicated DNA-damaging agents. (A) Clonogenic survival after continuous MMC exposure. SV40-immortalized fibroblasts of a Fanconi anemia patient
(EUFA1341, FA-N) are shown as a hypersensitive control (open circles). Clonogenic survival after continuous exposure to (B) camptothecin, (C)
etoposide, (D) aphidicolin, (E) hydroxyurea. Clonogenic survival after (F) X-ray or (G) UV-C exposure.
doi:10.1371/journal.pone.0006936.g004

Table 1. X ray-induced chromosomal aberrations in SV40-immortalized human fibroblasts irradiated in the G2 phase of the cell cycle.

Cell line X-ray dose (Gy) Breaks/cell Interchanges/cell Total breaks/cell* Induced breaks/cell**

VH10 SV40 (wt) 0 0.35 0 0.35 0

0.25 0.60 0.02 0.64 0.29

0.50 1.18 0.09 1.35 1.00

VU1199-F SV40 (RBS) 0 0.50 0.04 0.58 0

0.25 0.90 0.04 0.98 0.40

0.50 1.53 0.14 1.81*** 1.23

*Frequency of total breaks estimated by counting one chromatid interchange as two breaks.
**Induced break frequency is estimated by subtracting values obtained in control from those obtained after irradiating cells.
***One multi-aberrant cell was found among 100 cells analyzed.
doi:10.1371/journal.pone.0006936.t001
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Increased Chk1 phosphorylation in RBS cells
Stalled replication forks activate the DNA damage kinase ATR.

A downstream target of ATR is Chk1, which is phosphorylated

upon replication fork stalling. Western blotting of whole cell

extracts revealed that RBS fibroblasts have increased levels of

phosphorylated Chk1 as compared to functionally corrected RBS

fibroblasts and wild type fiboblasts (Figure 6). In addition, the

induction of Chk1 phosphorylation by MMC, camptothecin and

HU appears to be less pronounced in RBS cells. These results

suggest the occurrence of excessive levels of replication-coupled

DNA damage in RBS fibroblasts.

Discussion

Roberts syndrome is a rare autosomal recessive multisystem

developmental disorder that is caused by mutations in ESCO2 [2].

Clinical features are highly variable and have been described in

great detail [1], but little is known about the cellular characteristics

in RBS. Cell lines from RBS patients can be used to explore the

role of ESCO2 in more detail. Here we demonstrate that ESCO2-

deficient fibroblasts have defects in sister chromatid cohesion and

show sensitivity to several DNA-damaging agents. These defects

can be corrected by ectopic expression of wild type ESCO2, but

not by a patient-derived ESCO2 acetyltransferease mutant

(W539G), indicating a direct role for the acetyltransferase activity

of ESCO2 in sister chromatid cohesion and the DNA damage

response.

Establishment of sister chromatid cohesion during S phase of

the cell cycle is required for faithful chromosome segregation in M

phase. Studies in yeast have revealed that cohesion is mediated by

the cohesin proteins Smc1, Smc3, Scc1 and Scc3 [13], which are

loaded onto the chromatin by a complex of Scc2 and Scc4 before

DNA replication starts [14]. The acetyltransferase Eco1/Ctf7, the

yeast ortholog of ESCO2, is essential for the establishment of sister

chromatid cohesion during S phase in a process that is closely

linked to DNA replication [15,16]. In addition, it was shown that,

Table 2. X-ray induced chromosomal aberrations in primary human fibroblasts irradiated in G2 phase of the cell cycle.

Cell line X-ray dose (Gy) Breaks/cell Interchanges/cell Total breaks/cell* Induced breaks/cell**

VH10 (wt) 0 0.01 0 0.01 0

0.1 0.10 0 0.10 0.09

0.25 0.20 0 0.20 0.19

VU1174-F (RBS) 0 0.02 0 0.02 0

0.1 0.10 0 0.10 0.08

0.25 0.24 0 0.24 0.22

*Frequency of total breaks estimated by counting one chromatid interchange as two breaks.
**Induced break frequency is estimated by subtracting values obtained in control from those obtained after irradiating cells.
doi:10.1371/journal.pone.0006936.t002

Figure 5. Formation of Rad51 foci and sister chromatid exchanges in RBS cells. (A) Rad51 foci in normal and RBS cells, as determined 6 and
24 h after treatment with X-ray (12Gy) or MMC treatment (7 mM for 1 h). The percentages of cells containing more than five nuclear foci were
determined. Data are the means of at least three experiments; error bars represent the standard error of the mean. (B) SCE induction in RBS cells after
MMC treatment. Wild type (LN9SV), RBS (VU1199-F SV40) and RBS cells expressing V5-ESCO2, GFP-ESCO2 or GFP-ESCO2 (W539G) were either mock-
treated or treated by continuous exposure to 50 nM MMC. Numbers of SCEs were counted and normalized against the number of chromosomes
scored.
doi:10.1371/journal.pone.0006936.g005
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as a response to double strand breaks in G2/M phase, genome-

wide cohesion is established by a replication-independent

reactivation of Eco1 [6,7]. This process depends on Mec1, the

yeast ortholog of DNA damage kinase ATR, but also requires

Scc2 [6,7], which loads the cohesin complex in G2/M phase

irrespective of DNA damage [15]. Recently, Smc3 was reported as

the first in vivo substrate of Eco1 [17–19]. However, siRNA

knockdown experiments in HeLa cells showed that not ESCO2,

but ESCO1, another Eco1 ortholog, is the acetyltransferase

required for SMC3 acetylation in human cells [19]. Mcd1/Scc1

has been proposed as an Eco1 substrate for damage-induced

cohesion establishment in G2/M phase after Mdc1/Scc1

phosphorylation by Chk1, a downstream effector of Mec1 [20],

but it is unclear whether this is mediated by ESCO1 or ESCO2.

Both ESCO1 and ESCO2 are essential for sister chromatid

cohesion, and they are not functionally redundant [21], but only

mutations in ESCO2 have so far been found in RBS patients

[2,8,22]. The homology between the ESCO1 and ESCO2

protein is remarkably restricted to the zinc finger and

acetyltransferase domain. The similarity between ESCO1 and

ESCO2 reaches 77% (59% homology) within this C-terminal

domain, while no significant homology can be detected outside of

this region [21]. Although both proteins have acetyltransferase

activity, the diversity of their N-terminal domains suggests that

they may perform distinct functions in the establishment of sister

chromatid cohesion. This idea is supported by the differences in

protein expression patterns seen throughout the cell cycle [21].

ESCO1 is present during the entire cell cycle, while ESCO2

expression is high during S phase and disappears in G2/M phase.

This may imply that ESCO1 is involved in the establishment of

sister chromatid cohesion in S, G2 and M phase, whereas

ESCO2 may have a specific function in the establishment of sister

chromatid cohesion during S phase. In our stable cell lines,

ectopic ESCO2 protein levels also varied during the cell cycle,

with high expression during S phase. Since in these cells ESCO2

mRNA expression is not under the control of its normal

promoter, but driven by the CMV promoter, it is very likely

that ESCO2 protein levels are regulated by posttranslational

modification. The protective effect of proteasome inhibitors on

ESCO2 levels strongly suggests that proteasomal degradation is

indeed involved in this process.

We have used our stable cell lines to confirm that ESCO2

deficiency leads to cohesion defects and in addition demonstrated

that this sensitizes cells for MMC, camptothecin and etoposide.

These DNA-damaging agents interfere with DNA replication by

covalently linking bases on opposite DNA strands (MMC) or by

creating complex single strand (camptothecin) or double strand

(etoposide) breaks. This indicates that ESCO2 functions in the

repair process at the stalled replication fork. The lack of sensitivity

to the replication inhibitors hydroxyurea and aphidicolin suggests

that it is not the inhibition of DNA replication, but the replication-

blocking DNA damage per se which causes a problem that RBS

cells are less well able to handle.

ESCO2 seems to have a minor role in the repair of UV-C and

X-ray induced DNA damage; however, this result could be

misleading due to the fact that only cells in a specific phase of the

cell cycle may be sensitive to these agents and that relatively few

sensitive cells are hit if exposure is only of short duration such as

with UV- and X-irradiation. To further investigate this we

looked at X-ray induced chromosomal aberrations in cells

irradiated in the G2 phase of the cell cycle. In Cornelia de

Lange syndrome cells, which have a defect in cohesin loader

SCC2, G2 cells show an increase in irradiation-induced

chromosomal aberrations [12] as expected from the involvement

of Scc2 in damage-induced cohesin loading in the G2 phase of

yeast cells [6,7]. In contrast, ESCO2-deficient cells do not show

significantly more chromosomal damage in cells irradiated in the

G2 phase of the cell cycle. This again underlines the S phase-

restricted role for ESCO2 and suggests that ESCO1 may be the

Eco1 ortholog that plays a role in damage-induced cohesion

establishment during G2 phase. The lack of X-ray sensitivity in

our fibroblasts is in conflict with previous data in lymphoblasts

[9]. The discrepancy could be due to differences between cell

types, but phenotypic heterogeneity in the lymphoblastoid cell

lines could also explain this dissimilarity, since isogenic controls

were not used in the lymphoblast study.

During S and G2 phase homologous recombination is the

preferred pathway for double strand break repair and the

formation of sister chromatid exchanges (SCEs) or the appearance

of Rad51 foci after DNA damage can both serve as indicators for

intact homologous recombination repair. SCEs reflect sites of

homologous recombination that are associated with crossing-over

between sister chromatids [23], while Rad51, a central player in

homologous recombination, shows a punctuated nuclear localiza-

tion at sites where homologous recombination takes place [24,25].

RBS cells were able to form SCEs at similar levels as corrected

Figure 6. Chk-1 phosphorylation status in RBS cells. VU1199-F SV40 fibroblasts, VU1199-F corrected with V5-ESCO2 and wild type fibroblasts
LN9SV were left untreated or exposed to MMC, camptothecin (CPT) or hydroxyurea (HU) for 24 h and whole cell extracts were obtained to investigate
the phosphorylation of Chk-1. Vinculin and Chk-1 served as loading controls.
doi:10.1371/journal.pone.0006936.g006
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control cells. Also, Rad51 foci after DNA damage were formed to

similar extents in RBS and control cells. These results suggest that

the establishment of sister chromatid cohesion by ESCO2 is not

essential for homologous recombination in general. Our data do

not exclude a role for ESCO2 in regional or site-specific regulation

of the homologous recombination process. We detected a strong

accumulation of ESCO2 in the nucleolus upon replication fork

stalling, which may indicate a role for ESCO2 at repetitive

sequences like rDNA. This may not be reflected in an overall

decrease in SCEs or Rad51 foci, but may become critical when

replication is disturbed by DNA-damaging agents. Of note here is

that RBS fibroblasts were less sensitive to MMC than fibroblasts

from a PALB2 deficient Fanconi anemia patient, which has a

more general defect in crosslink repair and shows a disturbance in

the formation of Rad51 foci [26]. Regional or site-specificity of

ESCO2’s role during S phase may also explain the apparent

hyper-phosphorylation of Chk1 in untreated RBS cells.

Based upon our results and previously published studies a model

can be put forward, in which ESCO2 is essential for the cohesion

establishment at the replication fork through acetylation of

substrates that remain to be identified. Acetylation of SMC3 by

ESCO1 is also important in this process, but how this modification

relates to ESCO2-mediated acetylation remains to be established.

In the G2 phase cohesion loading by SCC2 and SMC3 acetylation

through ESCO1 may be involved in a replication-independent

process of cohesion establishment. The identification of ESCO1 as

an ATM/ATR substrate [27] and the requirement of the yeast

ATR ortholog Mec1 for cohesion establishment in G2/M phase

[6,7] strengthen this hypothesis.

Together our results indicate that ESCO2 is an important

acetyltransferase involved the establishment of sister chromatid

cohesion and the maintenance of genomic stability during S phase.

RBS fibroblasts overexpressing wild type ESCO2 and ESCO2

mutants as described in this paper are important tools to further

explore the role of ESCO2 in these processes.

Materials and Methods

Ethics statement
The research on patient material was carried out after approval

by the Institutional Review board of the VU Medical Center that

adhered to local ethical standards, and was initiated only after the

relevant informed consents had been obtained [2].

Cell culture
Primary skin fibroblasts from a two-months old male Roberts

syndrome patient homozygous for the mutation 877_878 delAG in

exon 4 (reported in [2]) were immortalized by transfection with a

plasmid encoding the SV40 large-T antigen. Several weeks after

transfection colonies of transformed cells appeared, which were

mixed and further propagated. The transformed cells have been in

continuous culture for over 60 passages and were therefore

considered immortal. This immortalized RBS cell line (VU1199-F

SV40), primary RBS fibroblasts (VU1174-F), an immortalized

fibroblast cell line from a Fanconi anemia (complementation

group N) patient with a PALB2 defect (EUFA1341-F SV40) and

wild type cell lines (LN9SV and VH10 SV40) were cultured in

Ham’s F10 medium (Gibco, Paisley, UK) supplemented with 10%

fetal bovine serum (FBS, Hyclone, Logan, USA). Stable cell lines

were generated by transfection of PvuI linearized expression vector

pIRESneo containing cDNAs encoding GFP, V5- or GFP-tagged

wild type ESCO2, or a GFP-tagged ESCO2 acetyltransferase

mutant (W539G). These stable cell lines were cultured in complete

medium containing G418 at 150 mg/ml (Calbiochem, Notting-

ham, UK). Human osteosarcoma (U2OS) cells were cultured in

DMEM supplemented with 8% fetal calf serum, penicillin

(100 U/ml) and streptomycin (100 mg/ml).

Plasmid constructs
Full-length ESCO2 cDNA was PCR-amplified from wild type

lymphoblasts with a forward cDNA primer containing an XhoI

restriction site and a reverse primer containing a BamHI restriction

site. The PCR fragment was subcloned in pBluescript SK-

(Stratagene, La Jolla, USA) and the sequence was verified. A

Kozak sequence and V5-tag were added to the 59 end of the

construct by PCR and subcloned into the pBluescript construct

using the XhoI site and an internal HindIII site. The PCR product

was again sequenced to check the integrity of the construct. The

cDNA was then subcloned in the XhoI and BamHI restriction sites

of mammalian expression vector pCEP4 (Clontech, Mountain

View, USA) and finally transferred to mammalian expression

vector pIRESneo3 (Clontech) using NotI and BamHI.

To generate a cDNA construct encoding GFP-ESCO2, full-

length ESCO2 cDNA was PCR amplified from the pIRES-

neo3+V5-ESCO2 vector with a forward cDNA primer containing

an XhoI restriction site and a reverse primer containing a BamHI

restriction site. The PCR fragment was subcloned into pEGFP-C1

(Clontech) to create a GFP-ESCO2 fusion construct. The GFP-

ESCO2 cDNA was subcloned to pIRESneo3 using NheI and

BamHI, after which the sequence was verified.

The patient-derived missense mutation W539G was generated

by PCR using a forward cDNA primer covering the internal PstI

restriction site in ESCO2 in which the mutation was introduced

and a reverse primer containing a BamHI restriction site. The PstI-

BamHI fragment from wild type ESCO2 in pBluescript SK- was

replaced by this PCR fragment and the construct was sequenced.

An internal EcoRI restiction site and the BamHI restriction site

were used to replace the wild type sequence in pIRESneo3 GFP-

ESCO2 by the mutant sequence.

A pIRESneo plasmid containing GFP was generated by

subcloning cDNA encoding GFP from pEGFP-C1 into pIRESneo

by the use of BamHI and NheI restriction sites.

A construct for the purification of a GST-ESCO2 fusion protein

was generated in the prokaryotic expression vector pGEX-KG. A

cDNA fragment encoding ESCO2 amino acids 216 to 359 was

obtained by PCR on ESCO2 cDNA using primers with BamHI

and EcoRI restriction sites. This fragment was subcloned in the

BamHI and EcoRI sites of pGEX-KG.

Generation of ESCO2 antiserum
A His-tagged ESCO2 fusion protein representing amino acids

217 to 359 was obtained from MorphoSys (Martinsried, Germany)

and used to immunize guinea pigs. GST-ESCO2217–359 was

expressed in E. coli and purified as described [28]. The purified

GST-ESCO2 fusion protein was immobilized on an AminoLink

Plus column (Pierce, Rockford, USA) according to the manufac-

turer’s instructions. This column was used to affinity-purify the

ESCO2 antiserum, as described [29].

Synchronization of cells
For synchronization experiments, VU1199-F+V5-ESCO2 cells

were treated with a double aphidicolin block. Cells were seeded,

treated with 10 mM aphidicolin (Sigma, St. Louis, USA) for 16 h,

followed by an 8 h release period after which they were treated

with 10 mM aphidicolin for another 16 h. For release, aphidicolin

was washed away and cells were cultured in normal medium.

Synchronized cells were isolated by cell scraping at different time

points. Mitotic cells were obtained by mitotic shake-off after
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treatment with 100 ng/ml nocodazole (Sigma) for 18 h. Cells were

divided for Western blot analysis and flow cytometry. Cell cycle

profiles were obtained by permeabilization in buffer containing

100 mM Tris-HCL (pH 7.5), 150 mM NaCl, 0.5 mM MgCl2,

1 mM CaCl2, 0.2% BSA and 0.1% NP-40, followed by staining of

DNA with 0.1 mg/ml Hoechst 33258 (Sigma). DNA content was

measured with a Partec PAS flow cytometer (Görlitz, Germany)

and analyzed with Flowmax software (Partec). VU1199-F + GFP-

ESCO2 cells were analyzed on a BD FACScalibur (BD

Biosciences, San Jose, USA) for GFP expression and DNA content

after fixation in 70% ethanol and DNA staining with 1 mM

ToPro3 (Invitrogen).

U2OS cells were used to analyze the levels of endogenous

ESCO2 at different phases of the cell cycle. Cells were

synchronized at the G1 to S phase transition with thymidine

(2.5 mM for 24 h) and in G2 phase by releasing the cells from the

G1/S block for 9 hours. Addition of the spindle poison nocodazole

(250 ng/ml for 12 h), after release from the thymidine block,

arrested cells in mitosis. Subsequently, mitotic cells were collected

by mitotic shake off, of which half were allowed to leave mitosis by

washing away the nocodazole and replating the cells in fresh

medium for 90 minutes, allowing cell division and entry into early

G1 phase. The synchronized cells were lysed in ELB buffer

(50 mM HEPES (pH 7.5), 50 mM NaCl, 0.3% NP-40, 5 mM

EDTA, 6% glycerol, 10 mM b-glycerophosphate, 5 mM NaF,

1 mM Na2VO3, and protease inhibitor cocktail (Roche)).

Proteasome inhibition
ESCO2 expression levels upon proteasome inhibition were

measured 6 h after incubation with either 50 mMMG-132 (Sigma)

or 100 nM bortezomib (VUmc pharmacy). Cells were fixed with

100% methanol and nuclei were stained for 15 min with 1 mg/ml

DAPI for fluorescence microscopy, or scraped in PBS, resus-

pended in sample buffer (10% glycerol, 60 mM Tris-HCL pH 6.8,

2% SDS, 0.002% bromophenol blue) and sonicated for analysis on

Western blot.

Western blot analysis
Whole-cell extracts were prepared in lysis buffer (50 mM Tris

(pH 7.4), 150 mM NaCl, and 1% Triton X-100 supplemented

with protease and phosphatase inhibitors). To examine the Chk1

phosphorylation status, cells were treated for 24 h with 100 nM

MMC (Kyowa Hakko Kogyo Co., Tokyo, Japan), 5 nM

camptothecin (Sigma), or 1 mM hydroxyurea (Sigma). Cells were

scraped on ice in lysis buffer and sonicated. Proteins were

separated on 8%–16% Tris-glycine gradient gels (Invitrogen,

Eugene, USA) and transferred to Immobilon-P membrane

(Millipore, Billerica, MA). Membranes were blocked with 5%

dry milk in TBST (10 mM Tris HCL pH 7.5, 150 mM NaCl,

0.05% Tween-20) and probed with the purified guinea pig

antiserum against ESCO2217–359 (1:1000), rabbit-anti GFP

(Clontech, 1:100), rabbit-anti phospho-Chk1 (S317) (1:500, Bethyl

laboratories, Montgomery, USA), mouse-anti Chk1 (1:500, Santa

Cruz Biotechnology, Santa Cruz, USA), mouse-anti vinculin

(1:1000, Santa Cruz Biotechnology), mouse-anti tubulin (1:20,000,

Abcam, Cambridge, UK), rabbit anti-Securin (1:200, Zymed, San

Francisco, USA ), mouse anti-cyclin B1 (GNS1, 1:200, Santa Cruz

Biotechnology) or mouse anti-APC3/Cdc27 (1:1000, BD Trans-

duction Laboratories, San Jose, USA)). After washing with TBST,

the membranes were incubated with peroxidase-conjugated goat

immunoglobulins (DAKO, Glostrup, Denmark). Proteins were

visualized with the ECL Western blotting detection system

(Amersham Biosciences, Piscataway, USA).

Immunofluorescence microscopy
To examine the cellular localization of the ESCO2 protein, cells

were grown on sterile chamber slides (Nunc, Roskilde, Denmark).

Cells were fixed with 4% methanol-free formaldehyde solution

(Thermo Scientific, Waltham, USA). V5-ESCO2 expressing cells

were blocked with 10% FBS in phosphate-buffered saline (PBS),

incubated for 1 h at RT with an anti-V5 monoclonal antibody

(1:200, Invitrogen) followed by washing and incubation with

AF488-labeled secondary anti-mouse antibody (1:2000, Invitro-

gen) in the dark. All cell lines were incubated with ToPro3 for

nuclear staining (1 mM, Invitrogen). After washing with PBS, the

chamber slides were mounted on cover slides with Vectashield

mounting medium (Vector Laboratories, Burlingame, USA). Cells

were examined using a Confocal Laser Scanning Microscope (Carl

Zeiss). To examine Rad51 foci formation, fibroblasts were grown

on sterile glass slides, resulting in sub-confluent cells at the time of

fixation. Cells were either mock-treated or treated with MMC

(7 mM for 1 h) or X-ray irradiation (5 or 12 Gy) and stained as

described before [12].

Time-lapse fluorescence microscopy
Stable VU1199-F SV40 GFP-ESCO2 cells were plated on

35 mm glass-bottom culture dishes (Willco-dish, Amsterdam, The

Netherlands) and transferred to a heated culture chamber (37uC,

5% CO2) on a Zeiss Axiovert 200M microscope, equipped with a

0.55 numeric aperture condenser and a 40X Plan-Neo DIC

objective (N.A. 1.3). A Photometrics Coolsnap HQ CCD camera

(Scientific, Tucson, USA) with a GFP/DsRed dual band pass filter

set (Chroma Technology Corp. Rockingham, USA) was used to

visualize specific fluorescence. Images were processed using

MetaMorph software (Universal Imaging, Downington, USA).

To arrest cells in S phase, cells were treated with 1 mM

hydroxyurea.

Railroad chromosomes and SCEs in metaphase spreads
Cells were grown to ,80% confluence. After 40 minutes

demecolcin treatment (200 ng/ml, Sigma), cells were harvested,

incubated with 0.075 M KCl for 20 minutes at room temperature,

and fixed with 75% methanol, 25% acetic acid. Cells were

dropped on a slide, air-dried, and stained for 5 minutes in a 4%

Giemsa solution (Merck). For each culture, 50 metaphases were

scored for the presence railroad chromosomes, from coded slides.

The percentage of metaphases with $1 railroad chromosome was

determined. For SCEs, cells were either mock-treated or treated

with 50 nM MMC and 5-bromodeoxyuridine (BrdU, 1 mg/ml,

Sigma) was added to the medium for 72 h. For fast-growing

LN9SV cells, BrdU was added to the medium forty-eight hours

prior to fixation. During this culture period, incorporation of

BrdU into replicating cells allows for the identification of second-

division metaphases showing differentially stained chromatids.

Cells were fixed and dropped on glass slides, as described above.

UV-irradiation followed by Giemsa staining was used to visualize

SCEs. The frequency of SCEs was calculated by dividing the

number of sister chromatid exchanges observed by the number of

chromosomes scored.

Assessment of G2-radiosensitivity
For G2 chromosome aberration analysis, exponentially growing

immortalized fibroblasts (VH10 SV40 or VU1199-F SV40) and

primary fibroblasts were irradiated with doses of 0, 0.1, 0.25 and 0.5

Gy. Following irradiation colcemid was added to the cultures, and

cells were fixed after three hours, as described [12]. Preparations

were made and stained with 2% aqueous Giemsa-solution and air-
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dried. For each dose, 50–150 metaphases were examined for

chromosomal damage. The induced break frequency was calculated

by subtracting values obtained in untreated cells from values

obtained in radiation-treated cells.

Clonogenic survival and growth inhibition assays
Exponentially growing cells were trypsinized and 500–2000 cells

were plated in 9-cm dishes, in duplicate, and irradiated or exposed

continuously to different doses of MMC, camptothecin, etoposide

(Sigma), aphidicolin, or hydroxyurea in complete medium. After

10–12 days, the colonies were fixed with 75% methanol, 25%

acetic acid, dried, and stained with 10% Giemsa solution, after

which colonies were counted. In all experiments, wild type

immortalized fibroblasts (LN9SV and VH10 SV40) were treated

in an identical manner to serve as controls.

Supporting Information

Video S1 GFP-ESCO2 expression increases during S phase in

living cells. GFP-ESCO2 expression in GFP-ESCO2 corrected

VU1199-F cells were followed through the cell cycle (time in

hours:minutes)

Found at: doi:10.1371/journal.pone.0006936.s001 (5.58 MB AVI)

Video S2 GFP-ESCO2 expression increases during S phase in

living cells. GFP-ESCO2 expression in GFP-ESCO2 corrected

VU1199-F cells were followed through the cell cycle treated with

1 mM hydroxyurea (Time in hours:minutes).

Found at: doi:10.1371/journal.pone.0006936.s002 (9.66 MB AVI)
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