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Pregnancy represents a unique immunological state in which the mother adapts

to tolerate the semi-allogenic conceptus; yet, the cellular dynamics in the maternal

circulation are poorly understood. Using exon-level expression profiling of up to six

longitudinal whole blood samples from 49 pregnant women, we undertook a systems

biology analysis of the cellular transcriptome dynamics and its correlation with the

plasma proteome. We found that: (1) chromosome 14 was the most enriched in

transcripts differentially expressed throughout normal pregnancy; (2) the strongest

expression changes followed three distinct longitudinal patterns, with genes related

to host immune response (e.g., MMP8, DEFA1B, DEFA4, and LTF ) showing a steady

increase in expression from 10 to 40 weeks of gestation; (3) multiple biological processes

and pathways related to immunity and inflammation were modulated during gestation;

(4) genes changing with gestation were among those specific to T cells, B cells,

CD71+ erythroid cells, natural killer cells, and endothelial cells, as defined based on

the GNF Gene Expression Atlas; (5) the average expression of mRNA signatures of

T cells, B cells, and erythroid cells followed unique patterns during gestation; (6) the

correlation between mRNA and protein abundance was higher for mRNAs that were

differentially expressed throughout gestation than for those that were not, and significant

mRNA-protein correlations were observed for genes part of the T-cell signature. In

summary, unique changes in immune-related genes were discovered by longitudinally

assessing the cellular transcriptome in the maternal circulation throughout normal

pregnancy, and positive correlations were noted between the cellular transcriptome and

plasma proteome for specific genes/proteins. These findings provide insights into the

immunobiology of normal pregnancy.
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INTRODUCTION

Pregnancy represents a unique immunological state in which
the immune system of the mother undergoes adaptations that
allow her to tolerate the semi-allogenic conceptus (1–3). Indeed,
pregnancy is divided into three different immunological stages
based on cytokine profiles (4). Pioneer studies indicated that,
while the innate immune system is upregulated to protect the
mother against infection and the fetus from rejection (5, 6), the
adaptive immune response toward paternal/fetal antigens seems
to be selectively suppressed [i.e., driven toward a T-helper (Th)2-
like phenotype] (7–11). Specifically, the cellular components of
the innate immune system in the maternal systemic circulation
are activated as evidenced by increased numbers of monocytes
and granulocytes (12, 13). Such innate immune cells display an
activated phenotype, comparable to that observed in women with
sepsis (13), and exhibit enhanced functionality (phagocytosis,
respiratory burst activity, and cytokine production) (14–18).
The humoral components of the innate immune system are
also boosted during pregnancy (5). For example, complement
components and acute phase proteins are increased in the
circulation of pregnant women (19–24). In contrast to the innate
immune system, the cellular (e.g., T cells and B cells) and humoral
(e.g., antibodies) components of the adaptive immune system in
the maternal circulation during normal pregnancy have received
less attention.

The systemic intravascular inflammatory response during
normal pregnancy is especially activated in women who
experience the physiological process of labor at term (18, 25) and
in those who undergo pregnancy complications such as preterm
labor (18, 26, 27), preterm premature rupture of membranes
(28), and preeclampsia (13, 17, 29–32). Therefore, the systemic
immune response reflects both physiological and pathological
processes, and the early detection of these changes may lead to
the discovery of non-invasive biomarkers for obstetrical disease.

Herein, for the first time, we aimed to provide a roadmap of
the modulations in the cellular transcriptome in maternal
circulation during normal pregnancy. In addition, we
assessed whether gestational mRNA changes of the cellular
transcriptome correlate to those of the plasma proteome during
normal pregnancy.

MATERIALS AND METHODS

Study Design
We conducted a prospective longitudinal study that enrolled
women attending the Center for Advanced Obstetrical
Care and Research of the Perinatology Research Branch,
NICHD/NIH/DHHS; the Detroit Medical Center, and Wayne
State University School of Medicine. Based on this cohort, we
designed a retrospective study that included 49 women with
normal pregnancy who delivered at term and had 4–6 blood
samples collected throughout gestation [median number of
samples = 5, interquartile range (IQR) = 5–6] (n = 282). Blood
samples were collected at the time of a prenatal visit, scheduled
at 4-week intervals from the first or early second trimester until
delivery in the following gestational age intervals: 8-<16, 16-<24,

24-<28, 28-<32, 32-<37, and >37 weeks. All patients provided
written informed consent and the use of biological specimens,
as well as clinical and ultrasound data, for research purposes
were approved by the Institutional Review Boards of Wayne
State University and NICHD. All experiments were performed
in accordance with relevant guidelines and regulations.

RNA Extraction
RNA was isolated from PAXgene R© Blood RNA collection
tubes (BD Biosciences, San Jose, CA; Catalog #762165), as
described in the PAXgene R© Blood miRNA Kit Handbook.
Purified RNA was quantified by UV spectrophotometry using
the DropSense96 R© Microplate Spectrophotometer (Trinean,
Gentbrugge, Belgium), and quality was assessed by microfluidics
using the RNA ScreenTape on the Agilent 2200 TapeStation
(Agilent Technologies, Wilmington, DE, USA).

Microarray Analysis
RNA was processed and hybridized to GeneChipTM Human
Transcriptome Arrays 2.0 (P/N 902162) according to the
Affymetrix GeneChipTM WT Pico Reagent Kit Users Guide (P/N
703262 Rev. 1) as follows: Biotinylated cDNA were prepared
from 20–50 ng total RNA. Labeled cDNA were hybridized to the
arrays in a GeneChipTM Hybridization Oven 640 by rotating at 60
rpm, 45◦C for 16 h. Arrays were then washed and stained in the
Affymetrix Fluidics Station 450 and scanned using the Affymetrix
3000 7G GeneChipTM Scanner with Autoloader. Raw intensity
data were generated from array images using the Affymetrix
AGCC software.

Data Analysis
Preprocessing
Affymetrix Human Transcriptome Arrays CEL files were
preprocessed using Robust Multi-array Average (RMA) (33)
implemented in the oligo package (34) and annotation from
the hta20sttranscriptcluster.db package of Bioconductor (35).
Since samples were profiled in several batches as a part of a
larger study, correction for potential batch effects was performed
using the removeBatchEffect function of the limma package in
Bioconductor. After batch effect correction, data from the sample
collected at the time of labor from the 21 women who had
spontaneous term labor were removed to avoid confounding
gestational age-related changes with those due to the onset of
labor at term. The final analysis set of 261 transcriptomes was
used in downstream analyses described below.

Expression Calling
Transcript clusters (typically one or two per unique gene) were
deemed present in a given sample if one of its probesets (targeting
a specific exon) was expressed above background (p-value for
expression above background pDBAG <0.05) determined using
the TranscriptomeAnalysis Console (version 4.0) (ThermoFisher
Scientific). Genes were retained if deemed present in>25% of the
261 samples.

Differential Expression
Expression profiles were visually inspected to determine
consistency of the data in sequential samples collected from
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the same woman. One of 261 samples consistently had the
lowest value for a large fraction of the genes and was deemed
as outlier and removed from further analysis. Linear mixed-
effects models (36) were then used to fit log2 gene expression
data as a function of gestational age (continuous) and included
cubic polynomial terms of gestational age as fixed effects and
a random intercept term for each woman. Significance p-values
for the association of gene expression and gestational age were
determined using likelihood ratio tests between a model with and
without gestational age terms. A False Discovery Rate adjusted
p-value (q-value) <0.1 and a fold change (FC) of >1.25 were
required for significance. Fold change was determined as the ratio
of the highest vs. lowest average expression from 10 to 40 weeks
of gestation. Linear mixed-effects models were fit using the lmer
function, while the likelihood ratio tests were performed using
the anova function available in the lme4 R package (36).

Gene Ontology and Pathway Analysis
Gene ontology and pathway analysis was conducted using
a hypergeometric test on Gene Ontology (GO) (37) and
Developmental FunctionaL Annotation at Tufts (DFLAT)
databases (38), as well as on Curated Gene Sets (C2) collection
from the Molecular Signatures Database (MSigDB) database
(39). In addition, enrichment tests were performed for tissue
specificity and chromosomal locations of genes. Tissue-specific
genes were defined as those with median expression 30 times
higher in a given tissue than the median expression of all
other tissues documented in the Gene Atlas (40) as previously
described (41).

Unless otherwise stated, all enrichment analyses were based
on a hypergeometric test and accounted for multiple testing
with q < 0.05 being considered a significant result. In all
enrichment analyses, the background gene list was defined
as the compendium of genes deemed present in >25% of
the samples.

TABLE 1 | Demographic characteristics of the women included in the study.

Characteristics Median (IQR) or % (n)

Age (years) 25 (21–28)

Prepregnant BMI (kg/m2) 25.8 (22.5–30.9)

Nulliparity (%) 32.7% (16)

Race (%)

African American 91.8% (45)

White 4.1% (2)

Other 4.1% (2)

Gestational age at delivery (weeks) 39.3 (38.6–39.9)

Route of delivery

Vaginal delivery 53.1%(26)

Cesarean delivery 46.9% (23)

Birth weight (grams) 3,285 (3,050–3,495)

Continuous data are presented as median [Interquartile Range (IQR)] and categorical data

as percentage (number). BMI, body mass index.

Changes in Cell-Type Specific mRNA Signatures With

Gestational Age
In this analysis, we tested whether previously reported cell-type
specific mRNA signatures derived by single-cell RNA-Seq studies
of placenta tissues (42) were modulated with advancing gestation
in normal pregnancy. The 13 cell types identified by Tsang
et al. (42) were: B cells, T cells, monocytes, cytotrophoblasts,
syncytiotrophoblast, decidual cells, dendritic cells, endothelial
cells, erythrocytes, Hofbauer cells, stromal cells, vascular smooth
muscle cell, and extravillous trophoblasts. The mRNA signatures
for these cell types were first quantified in each patient sample
by averaging expression data over genes part of each signature.
Before averaging, the data for each gene was first standardized
by subtracting the mean and dividing by standard deviation of
expression across term samples (>37 weeks). Cell-type specific
expression averages were then fit as a function of gestational
age using linear mixed-effects models, as described above for the
analysis of data of individual genes.

Assessment of mRNA Protein Correlations
Maternal plasma abundance of 1,125 proteins in 71 samples
collected from 16 of the women included in the current study
were obtained from the S1 File of Erez et al. (43). The correlation
between each mRNA and corresponding protein pair was
assessed by fitting linear mixed-effects models with the response
being the protein abundance and the predictor being the mRNA
expression. These models included a random intercept term to
account for the repeated observations from the same subject. The
meaning of the mRNA coefficient in this model is change in log2
protein abundance for one unit change in log2 gene expression.
The significance of the protein—mRNA correlation was assessed
by the t-score for the regression line slope, and false discovery rate
adjustment of resulting p-values was performed across all mRNA-
protein pairs that were tested. A q-value <0.1 was considered a
significant result.

RESULTS

Longitudinal Patterns of the Cellular
Transcriptome Throughout Normal
Pregnancy
The mRNA profiles of longitudinal maternal blood samples
were determined at exon level resolution by microarrays. The
characteristics of the study population are shown in Table 1.
A total of 26,458 protein-coding mRNA transcript clusters
were expressed above background levels in at least 25% of the
samples, as were 5,706 non-coding RNA transcript clusters.
Analysis of longitudinal expression patterns identified 614
transcript clusters (510 coding and 104 non-coding) with
significant expression modulation during gestation (q < 0.1
and minimum fold change of 1.25) (Supplementary File 1,
Supplementary Figure 1). Significant transcripts were found on
all chromosomes; yet, more differentially expressed transcripts
than expected were observed on chromosome 14 (51/614
transcript clusters, odds ratio = 3.5, p < 0.0001; Figure 1),
with 28/51 differentially expressed genes on this chromosome
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FIGURE 1 | Chromosomal location of genes modulated throughout normal pregnancy. The outer circle represents the different chromosomes while the inner

histograms show the number of differentially expressed genes binned by the genomic location within each chromosome. Chromosome 14 was the most enriched in

differentially expressed genes throughout normal pregnancy (gray rectangle).

being annotated to immune processes. Chromosome 14 includes
genes of critical importance for immunity (44); therefore, these
data show that pregnancy has a strong effect on the maternal
immune system.

To define clusters of expression trajectories during gestation,
we focused on 112 of the 614 significant transcript clusters that
changed more than 1.5-fold from 10 to 40 weeks of gestation.
Three distinct clusters of expression modulation emerged: genes
that (1) steadily increased throughout gestation (89 genes;
Figure 2, red cluster), (2) steadily decreased throughout gestation
(12 genes; Figure 2, green cluster), and (3) decreased prior to
mid-gestation followed by an increase (11 genes; Figure 2, blue
cluster). These results indicate that the expression of the most
highly modulated genes increases with advancing gestational age.

Of note, the 19 mRNA transcript clusters (corresponding to
16 unique genes) that changed more than 2-fold in expression
during pregnancy all increased from 10 to 40 weeks of gestation
(Figure 3, gray lines correspond to individual pregnancies and
blue lines show the average expression). The expression of
these 16 genes increased from early to late pregnancy and
tended to plateau near term, with the exception of 2 genes

(interferon-induced protein 27 and 44-like) (Figure 3). Several
of these most highly modulated genes are related to host
immune response (e.g., MMP8, DEFA1B, and DEFA4) (45, 46),
again emphasizing the immune response adaptations during
normal pregnancy.

Biological Processes, Pathways, and
Immune Cell Signatures Associated With
Advancing Gestation in Normal Pregnancy
Weperformed gene ontology enrichment analysis to interpret the
changes in gene expression occurring throughout gestation. We
identified 157 biological processes modulated during gestation,
which included cellular and humoral immunity, defense response,
response to external biotic stimulus (e.g., bacteria and viruses),
regulation of lipid storage, interleukin-1beta production and
secretion, and erythrocyte development, among others (Table 2).
An additional 134 biological processes altered during gestation
were found when querying the Developmental FunctionaL
Annotation at Tufts (DFLAT) database, such as stress response,
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FIGURE 2 | Clustering of average gene expression profiles throughout normal pregnancy. Average profiles of genes that change throughout normal pregnancy and

have a fold change >1.5 were clustered using hierarchical clustering. The distance metric used in the clustering was 1-Pearson correlation. Three clusters were

identified: Cluster 1 (red, 89 genes), Cluster 2 (green, 12 genes), and Cluster 3 (blue, 11 genes). Note that, in this figure, the average gene expression profiles vs.

gestational age were reset so that their value is 0 at 10 weeks of gestation.

immune system development, cytokine response, and regulation of
angiogenesis (Table 3).

Enrichment analyses were then expanded to canonical
pathways and gene sets from the Molecular Signatures Database
(MSigDB), and 53 such pathways were found to be associated
with advancing gestation. These included the Reactome database
(47) pathways: immune system, adaptive immune system, cytokine
signaling in immune system, and immunoregulatory interactions
between a lymphoid cell and a non-lymphoid cell, as well as
the KEGG database (48) pathways: natural killer cell-mediated
cytotoxicity, antigen processing and presentation, and graft vs. host
disease (Table 4).

We then aimed at determining the origin of observed
transcriptional activity by using the GNF Gene Expression Atlas
to define genes predominantly expressed in specific human tissue
or cell types, as previously described (41). This analysis revealed
that gene sets specific to CD4+ and CD8+ T cells, CD71+
erythroid cells, CD105+ endothelial cells, and CD56+ NK
cells, among others, were over-represented among the mRNAs
that were modulated during gestation (q < 0.05) (Table 5). In

addition, genes reported to be specific to fetal organs (liver, lung,
and brain) and the placenta were also enriched among significant
genes (q < 0.05) (Table 5). These data show that maternal and
fetal cell-specific transcripts found in the maternal circulation are
being modulated with advancing gestation.

The average abundance of cell type-specific gene sets recently
defined using single-cell transcriptomics (42) were also analyzed
for systematic changes with gestational age at blood draw in our
cohort. This analysis revealed that expression of mRNAs specific
to three cell subtypes were dynamically altered throughout
normal pregnancy: (1) the T-cell-specific mRNA signature
decreased from the first to second trimester, followed by a
subsequent increase during the third trimester (Figure 4A);
(2) the B-cell-specific mRNA signature decreased steadily
throughout gestation (Figure 4B); and (3) the expression of genes
specific to nucleated erythroid cells (HBZ, ALAS2, and AHSP)
significantly increased as gestation progressed (Figure 4C). These
findings demonstrate, for the first time, that single-cell RNA-Seq-
derived signatures of erythroid cells change throughout normal
gestation in maternal whole blood, while trends found for T cells
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FIGURE 3 | Genes changing in expression >2-fold from 10 to 40 weeks of gestation. Gray lines represent log2 normalized gene expression in 4–6 samples for each

of the 49 women. Blue lines correspond to the average expression determined by a polynomial fit by linear mixed-effects models.

and B cells were similar to those reported in whole blood (49) and
by using cell-free RNA analysis (42).

Correlation Between the Cellular
Transcriptome and Plasma Proteome
Throughout Normal Pregnancy
Transcription does not always correlate with protein translation
(50, 51). Therefore, we investigated the correlation between the
mRNAs that were modulated throughout gestation and their

corresponding protein abundance. Maternal plasma abundance
of 1,125 proteins in 71 samples collected from 16 of the women

included in the current study was previously reported (43,

52). First, we assessed the mRNA-protein correlation for 53 of

the 614 transcript clusters that changed throughout gestation

and for which abundance data for the corresponding protein
were available. These correlations were compared to those of
1,011 mRNA-protein pairs that did not change with gestation.
The mRNA-protein correlations were significantly higher for
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TABLE 2 | Gene ontology biological processes enriched in genes differentially expressed with gestational age.

Biological process Count Size Odds ratio q

Immune system process 176 2,520 4.4 0.000

Immune response 128 1,580 4.6 0.000

Defense response 125 1,736 3.9 0.000

Regulation of immune system process 103 1,470 3.6 0.000

Innate immune response 85 1,063 4 0.000

Regulation of immune response 74 956 3.8 0.000

Immune effector process 61 740 3.9 0.000

Positive regulation of immune system process 65 886 3.5 0.000

Response to external biotic stimulus 63 845 3.5 0.000

Response to other organism 63 845 3.5 0.000

Defense response to other organism 47 515 4.3 0.000

Response to biotic stimulus 63 879 3.4 0.000

Positive regulation of immune response 49 639 3.5 0.000

Humoral immune response 24 178 6.4 0.000

Immune response-regulating signaling pathway 47 631 3.4 0.000

Immune response-activating signal transduction 38 459 3.8 0.000

Activation of immune response 40 510 3.6 0.000

Lymphocyte mediated immunity 25 217 5.3 0.000

Immune response-regulating cell surface receptor signaling pathway 39 499 3.5 0.000

Hemopoiesis 48 708 3.1 0.000

Immune response-activating cell surface receptor signaling pathway 30 315 4.3 0.000

Leukocyte mediated immunity 28 285 4.5 0.000

Adaptive immune response 30 332 4.1 0.000

Response to bacterium 37 481 3.5 0.000

Defense response to bacterium 23 211 5 0.000

Complement activation, classical pathway 10 43 12 0.000

Hemoglobin metabolic process 7 17 27.6 0.000

Defense response to virus 26 313 3.7 0.000

Regulation of viral genome replication 12 69 8.4 0.000

Response to virus 29 391 3.3 0.000

Complement activation 11 61 8.7 0.000

Phagocytosis 20 209 4.3 0.000

Fc-gamma receptor signaling pathway 13 90 6.7 0.000

Adaptive immune response based on somatic recombination of immune receptors built from

immunoglobulin superfamily domains

20 215 4.1 0.000

Immunoglobulin mediated immune response 14 112 5.7 0.000

B cell mediated immunity 14 115 5.5 0.000

Defense response to fungus 8 34 12.2 0.000

Immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 12 86 6.5 0.000

Fc-gamma receptor signaling pathway involved in phagocytosis 12 86 6.5 0.000

Humoral immune response mediated by circulating immunoglobulin 10 58 8.3 0.000

Cell killing 13 103 5.8 0.000

Fc receptor signaling pathway 26 364 3.1 0.000

Cellular defense response 10 59 8.1 0.000

Protoporphyrinogen IX metabolic process 5 10 39.3 0.000

Viral genome replication 12 89 6.2 0.000

Porphyrin-containing compound metabolic process 8 36 11.3 0.000

Modification of morphology or physiology of other organism 12 90 6.1 0.000

Antibacterial humoral response 9 48 9.1 0.000

(Continued)
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TABLE 2 | Continued

Biological process Count Size Odds ratio q

Receptor-mediated endocytosis 21 260 3.5 0.000

Fc receptor mediated stimulatory signaling pathway 12 92 6 0.000

Killing of cells of other organism 7 27 13.8 0.000

Disruption of cells of other organism 7 27 13.8 0.000

Type I interferon signaling pathway 11 78 6.5 0.000

Cellular response to type I interferon 11 78 6.5 0.000

Response to type I interferon 11 79 6.4 0.000

Antimicrobial humoral response 9 53 8.1 0.000

Regulation of symbiosis, encompassing mutualism through parasitism 18 213 3.7 0.000

Protein activation cascade 11 84 6 0.000

Tetrapyrrole metabolic process 9 56 7.6 0.000

Response to fungus 8 47 8.1 0.000

Extrinsic apoptotic signaling pathway 18 229 3.4 0.000

Antigen receptor-mediated signaling pathway 14 147 4.2 0.000

Iron ion homeostasis 11 95 5.2 0.001

Porphyrin-containing compound biosynthetic process 6 25 12.4 0.001

Cytokine secretion 14 152 4 0.001

Positive regulation of leukocyte activation 19 265 3.1 0.001

Positive regulation of viral genome replication 6 27 11.2 0.001

Regulation of macrophage derived foam cell differentiation 6 28 10.7 0.001

Tetrapyrrole biosynthetic process 6 28 10.7 0.001

Regulation of response to reactive oxygen species 6 28 10.7 0.001

Regulation of response to oxidative stress 8 55 6.7 0.001

Regulation of viral process 15 188 3.5 0.001

Cytolysis 6 30 9.8 0.001

Negative regulation of multi-organism process 13 148 3.8 0.001

Natural killer cell mediated immunity 8 58 6.3 0.001

Negative regulation of extrinsic apoptotic signaling pathway 10 92 4.8 0.002

Macrophage derived foam cell differentiation 6 31 9.4 0.002

Regulation of bone resorption 6 31 9.4 0.002

Foam cell differentiation 6 31 9.4 0.002

T cell receptor signaling pathway 11 114 4.2 0.002

Regulation of viral life cycle 14 176 3.4 0.002

Transition metal ion homeostasis 12 135 3.9 0.002

Erythrocyte differentiation 10 99 4.4 0.003

Hydrogen peroxide catabolic process 5 23 10.9 0.003

Positive regulation of leukocyte mediated immunity 9 83 4.8 0.003

Positive regulation of lymphocyte mediated immunity 8 67 5.3 0.003

Regulation of cellular response to oxidative stress 7 51 6.3 0.003

Negative regulation of viral process 9 85 4.7 0.004

Regulation of bone remodeling 6 37 7.6 0.004

Myeloid cell development 7 52 6.1 0.004

Negative regulation of cysteine-type endopeptidase activity involved in apoptotic process 9 87 4.6 0.004

Erythrocyte homeostasis 10 106 4.1 0.004

Erythrocyte development 5 25 9.8 0.004

Regulation of lipid storage 6 39 7.1 0.005

Negative regulation of cysteine-type endopeptidase activity 9 90 4.4 0.005

Response to interferon-gamma 12 154 3.3 0.006

Antigen processing and presentation of exogenous peptide antigen via MHC class I,

TAP-dependent

8 74 4.8 0.006

Interaction with host 12 155 3.3 0.006

(Continued)
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TABLE 2 | Continued

Biological process Count Size Odds ratio q

Heme metabolic process 5 28 8.5 0.006

Respiratory burst 5 28 8.5 0.006

Regulation of extrinsic apoptotic signaling pathway 12 157 3.3 0.006

Interleukin-1 beta secretion 5 29 8.2 0.007

Antigen processing and presentation of exogenous peptide antigen via MHC class I 8 78 4.5 0.008

Hydrogen peroxide metabolic process 6 44 6.2 0.008

Negative regulation of viral genome replication 6 45 6 0.008

Leukocyte mediated cytotoxicity 8 81 4.3 0.009

Negative regulation of viral life cycle 8 82 4.3 0.010

Response to transition metal nanoparticle 10 123 3.5 0.010

Interaction with symbiont 6 47 5.7 0.010

Myeloid cell homeostasis 10 125 3.4 0.011

Interleukin-1 secretion 5 33 7 0.012

Bone resorption 6 49 5.5 0.012

Positive regulation of immune effector process 11 150 3.1 0.013

Negative regulation of signal transduction in absence of ligand 5 34 6.8 0.013

Negative regulation of extrinsic apoptotic signaling pathway in absence of ligand 5 34 6.8 0.013

Interferon-gamma-mediated signaling pathway 8 87 4 0.013

Interleukin-1 beta production 6 51 5.2 0.014

T cell costimulation 7 71 4.3 0.016

Nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway 6 53 5 0.016

Negative regulation of epithelial cell proliferation 9 112 3.4 0.016

Lymphocyte costimulation 7 72 4.2 0.017

Negative regulation of I-kappaB kinase/NF-kappaB signaling 6 54 4.9 0.018

Defense response to Gram-positive bacterium 7 73 4.2 0.018

Modification of morphology or physiology of other organism involved in symbiotic interaction 7 74 4.1 0.019

Cofactor biosynthetic process 10 139 3.1 0.020

Regulation of antigen receptor-mediated signaling pathway 5 39 5.8 0.021

Regulation of tissue remodeling 6 57 4.6 0.022

Lipid storage 6 60 4.4 0.026

Interleukin-1 production 6 60 4.4 0.026

Positive regulation of NF-kappaB transcription factor activity 9 123 3.1 0.026

Antigen processing and presentation of peptide antigen via MHC class I 8 101 3.4 0.026

Regulation of transforming growth factor beta receptor signaling pathway 8 102 3.3 0.028

Regulation of cellular response to transforming growth factor beta stimulus 8 102 3.3 0.028

Signal transduction in absence of ligand 7 81 3.7 0.028

Extrinsic apoptotic signaling pathway in absence of ligand 7 81 3.7 0.028

Regulation of lymphocyte mediated immunity 8 105 3.2 0.031

Positive regulation of cytokine secretion 7 84 3.6 0.032

Alpha-beta T cell activation 8 107 3.2 0.033

Positive regulation of adaptive immune response based on somatic recombination of immune

receptors built from immunoglobulin superfamily domains

6 66 3.9 0.036

Macrophage activation 5 48 4.6 0.039

Regulation of extrinsic apoptotic signaling pathway in absence of ligand 5 48 4.6 0.039

Natural killer cell activation 6 68 3.8 0.039

Protein K48-linked ubiquitination 5 49 4.5 0.040

Positive regulation of adaptive immune response 6 69 3.7 0.041

Cellular iron ion homeostasis 6 71 3.6 0.045

Cholesterol transport 6 71 3.6 0.045

Negative regulation of transforming growth factor beta receptor signaling pathway 6 71 3.6 0.045

Negative regulation of cellular response to transforming growth factor beta stimulus 6 71 3.6 0.045

(Continued)
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TABLE 2 | Continued

Biological process Count Size Odds ratio q

Regulation of cofactor metabolic process 5 51 4.3 0.045

Regulation of coenzyme metabolic process 5 51 4.3 0.045

Regulation of transcription factor import into nucleus 7 93 3.2 0.045

Sterol transport 6 72 3.6 0.046

Bone remodeling 6 72 3.6 0.046

Regulation of cytokine biosynthetic process 7 94 3.2 0.046

Transcription factor import into nucleus 7 94 3.2 0.046

Positive regulation of inflammatory response 7 94 3.2 0.046

Response to zinc ion 5 52 4.2 0.047

Count, number of differentially expressed genes annotated to the category; Size, Number of expressed genes assigned to the category. Odds ratio, Enrichment odds ratio by Fisher’s

exact (hypergeometric) test; q, false discovery rate adjusted p-value. Values displayed as 0.000 should be interpreted as <0.0005.

transcripts that changed throughout gestation compared to those
that did not (Wilcoxon test for comparing t-scores of the linear
regression slope obtained by linear mixed-effects models for
each mRNA-protein pair, p = 0.01) (Figure 5). Among the
53 transcripts that changed throughout gestation, BPI, IGHG1,
CXCL10, GNLY, and GZMA had a significant mRNA-protein
correlation as assessed by both linear mixed-effects models and
a naïve Spearman correlation test (q < 0.05 for both analyses)
(Figure 6). Notably, two of these genes (GNLY and GZMA)
were included in the T-cell-specific mRNA signature that was
modulated overall throughout gestation.

DISCUSSION

Principal Findings of the Study
(1) Chromosome 14 was the most enriched in transcripts
differentially expressed throughout normal pregnancy (51/613
mRNA clusters). (2) Among the most differentially expressed
genes (q< 0.1, and fold change> 1.5), three distinct longitudinal
patterns were observed: (i) steady increase throughout gestation
(89 genes), (ii) steady decrease throughout gestation (12 genes),
or (iii) decrease prior to mid-gestation followed by an increase
(11 genes). (3) Sixteen genes, most of them related to host
immune response mediators (e.g., MMP8, DEFA1B, DEFA4,
LTF), displayed >2-fold change in expression and steadily
increased from 10 to 40 weeks of gestation. (4) Approximately
300 biological processes and 53 pathways, many of which were
related to immunity and inflammation, were enriched among
the differentially expressed genes (q < 0.05). (5) Genes changing
with gestation were among those specific to T cells, B cells,
CD71+ erythroid cells, natural killer cells, and endothelial cells,
as defined based on the GNF Gene Expression Atlas. (6) The
meta-gene expression of mRNA signatures for T cells, B cells,
and erythrocyte cells were significantly modulated throughout
gestation, each following a unique pattern (p < 0.05). (7)
The correlation between mRNA and protein abundance was
higher for mRNAs that were differentially expressed throughout
gestation than for those that were not (p = 0.01). (8) Significant
and positive mRNA-protein correlations (q < 0.05) were
observed for BPI, IGHG1, CXCL10, and two members of the

T-cell mRNA signature (GNLY, GZMA). The expression trends
and variability in expression of individual genes and meta-genes
in normal pregnancy (nomograms) derived herein will be the
basis for future studies aiming at developing biomarkers for
obstetrical disease.

Transcriptomic Changes During Pregnancy
Previous studies have investigated the cellular (53, 54) and cell-
free (55) transcriptome in the maternal circulation at different
time points during normal pregnancy using either 3-prime-end
biased microarrays or targeted approaches. The current study,
however, is the first to quantify at exon-level resolution the
cellular transcriptome during normal pregnancy in up to six
samples per pregnancy. More than one-half (54%, 277/514) of
the unique differentially expressed genes identified herein were
also among the 2,321 genes (q < 0.1) reported by Heng et al.
(54) to change from 17–23 to 27–33 weeks of gestation. Similarly,
47% (242/514) of the genes found in this study were among
the 3,830 genes reported by Al-Garawi et al. (53) as changing
from 10–18 to 30–38 weeks. The overlap between the genes
reported as differentially expressed in these two studies and those
identified herein is significant (Fisher’s exact test p < 0.0001 for
both). However, unlike in the two previous studies involving a
pair of samples from each woman, the availability of four to
six longitudinal samples per patient in this study enabled us to
capture more complex expression trajectories in the window of
10–40 weeks of gestation, and to identify distinct clusters of such
gene expression trajectories.

Compared to another recent study by Ngo et al. (55) that
involved more frequent sampling than used herein, our study
has the advantage of an unbiased assessment of the whole
cellular transcriptome as opposed to a targeted assessment
of genes that are placenta-, immune-, and fetal liver-specific.
Of note, among the 14 immune-specific cell-free mRNAs
selected by Ngo et al. (55) as best predictors of gestational
age at blood draw, 11 were also identified in our study,
with CEACAM8, DEFA4, LTF, and MMP8 being among those
with highest fold change. Although our results are somewhat
consistent with those reported by Ngo et al. (55), it should
be noted that cellular and cell-free transcripts can follow
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TABLE 3 | DFLAT biological processes enriched in genes differentially expressed with gestational age.

DFLAT biological process Count Size Odds ratio q

Response to stress 138 2,632 3.4 0.000

Homeostatic process 44 785 3.2 0.000

Response to cytokine 35 542 3.7 0.000

Immune system development 36 618 3.4 0.000

Cellular response to cytokine stimulus 31 492 3.6 0.000

Regulation of defense response 35 609 3.3 0.000

Hematopoietic or lymphoid organ development 34 590 3.3 0.000

Cytokine-mediated signaling pathway 27 404 3.8 0.000

Regulation of multi-organism process 25 403 3.5 0.000

Regulation of cytokine production 25 415 3.4 0.000

Myeloid cell differentiation 17 206 4.8 0.000

Endocytosis 20 297 3.8 0.000

Regulation of innate immune response 22 358 3.5 0.000

Homeostasis of number of cells 11 99 6.6 0.000

Cytokine production 9 64 8.6 0.000

Positive regulation of defense response 19 321 3.3 0.000

Fc-epsilon receptor signaling pathway 18 298 3.4 0.000

Regulation of defense response to virus 13 169 4.4 0.000

Regulation of response to biotic stimulus 14 201 4 0.000

Regulation of immune effector process 18 315 3.2 0.000

Apoptotic signaling pathway 16 261 3.5 0.000

Regulation of apoptotic signaling pathway 15 240 3.5 0.001

Response to transforming growth factor beta 11 137 4.6 0.001

Leukocyte migration 13 188 3.9 0.001

Positive regulation of innate immune response 16 271 3.3 0.001

Regulation of peptidase activity 16 273 3.3 0.001

Cell cycle arrest 10 117 4.9 0.001

Blood circulation 13 194 3.8 0.001

Circulatory system process 13 195 3.8 0.001

Negative regulation of apoptotic signaling pathway 10 122 4.7 0.001

Organic anion transport 15 260 3.2 0.001

Regulation of endopeptidase activity 15 263 3.2 0.001

Protein maturation 12 183 3.7 0.001

Secretion by cell 15 272 3.1 0.002

Cellular response to transforming growth factor beta stimulus 10 135 4.2 0.002

Regulation of hemopoiesis 11 162 3.8 0.002

Antigen processing and presentation of exogenous peptide antigen 11 165 3.8 0.002

Antigen processing and presentation of exogenous antigen 11 165 3.8 0.002

Transforming growth factor beta receptor signaling pathway 9 115 4.5 0.002

Pigment metabolic process 5 33 9.3 0.002

Inflammatory response 10 142 4 0.002

Protein polyubiquitination 11 169 3.7 0.002

Regulation of leukocyte activation 14 256 3.1 0.002

Positive regulation of lymphocyte activation 11 170 3.6 0.002

Regulation of carbohydrate metabolic process 8 94 4.9 0.002

Regulation of lymphocyte activation 13 227 3.2 0.002

Cellular response to interferon-gamma 8 96 4.8 0.003

Antigen processing and presentation of peptide antigen 11 175 3.5 0.003

Regulation of cysteine-type endopeptidase activity 11 175 3.5 0.003

Negative regulation of endopeptidase activity 10 150 3.8 0.003

(Continued)
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TABLE 3 | Continued

DFLAT biological process Count Size Odds ratio q

Cellular transition metal ion homeostasis 7 78 5.2 0.004

Protein homooligomerization 9 127 4 0.004

Negative regulation of cytokine production 10 154 3.7 0.004

Negative regulation of peptidase activity 10 155 3.6 0.004

Protein secretion 6 58 6 0.004

Tumor necrosis factor-mediated signaling pathway 9 131 3.9 0.004

Response to tumor necrosis factor 11 187 3.3 0.004

Positive regulation of sequence-specific DNA binding transcription factor activity 11 188 3.3 0.005

Antigen processing and presentation 11 190 3.2 0.005

Regulation of lymphocyte proliferation 8 109 4.2 0.005

Regulation of cysteine-type endopeptidase activity involved in apoptotic process 10 163 3.4 0.005

Cell redox homeostasis 5 42 7.1 0.005

Regulation of mononuclear cell proliferation 8 110 4.1 0.005

Positive regulation of cell activation 11 193 3.2 0.005

Positive regulation of protein serine/threonine kinase activity 11 195 3.1 0.006

Regulation of cellular carbohydrate metabolic process 7 87 4.6 0.006

Positive regulation of T cell activation 9 140 3.6 0.006

Regulation of leukocyte proliferation 8 114 4 0.006

Positive regulation of hemopoiesis 7 89 4.5 0.007

Regulation of leukocyte differentiation 8 115 3.9 0.007

Protein processing 10 171 3.3 0.007

Positive regulation of leukocyte cell-cell adhesion 9 143 3.5 0.007

Cellular response to tumor necrosis factor 10 172 3.2 0.007

Leukocyte activation involved in immune response 7 91 4.4 0.007

Positive regulation of homotypic cell-cell adhesion 9 144 3.5 0.007

Cell activation involved in immune response 7 93 4.3 0.008

Regulation of intrinsic apoptotic signaling pathway 7 96 4.1 0.009

Regulation of T cell activation 10 180 3.1 0.009

positive regulation of lymphocyte proliferation 6 74 4.6 0.010

Reactive oxygen species metabolic process 6 74 4.6 0.010

Positive regulation of peptidyl-serine phosphorylation 5 52 5.6 0.011

Positive regulation of mononuclear cell proliferation 6 75 4.6 0.011

Regulation of epithelial cell proliferation 9 157 3.2 0.011

Male gonad development 7 101 3.9 0.011

Development of primary male sexual characteristics 7 101 3.9 0.011

Positive regulation of leukocyte proliferation 6 77 4.4 0.012

Retina homeostasis 5 54 5.3 0.012

Transmembrane receptor protein serine/threonine kinase signaling pathway 9 162 3.1 0.013

Positive regulation of cell-cell adhesion 9 163 3.1 0.014

Myotube differentiation 5 56 5.1 0.014

Regulation of interleukin-8 production 5 56 5.1 0.014

Positive regulation of cell cycle arrest 6 83 4.1 0.016

Negative regulation of intrinsic apoptotic signaling pathway 5 59 4.8 0.017

Positive regulation of transmembrane transport 6 84 4 0.017

Positive regulation of defense response to virus by host 7 112 3.5 0.017

Plasma membrane organization 8 142 3.1 0.018

Regulation of nucleocytoplasmic transport 8 143 3.1 0.019

Response to molecule of bacterial origin 7 114 3.4 0.019

Positive regulation of stress-activated MAPK cascade 6 87 3.9 0.019

Positive regulation of MAP kinase activity 8 144 3.1 0.019

(Continued)
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TABLE 3 | Continued

DFLAT biological process Count Size Odds ratio q

Regulation of angiogenesis 8 145 3.1 0.019

Negative regulation of establishment of protein localization 8 145 3.1 0.019

Positive regulation of stress-activated protein kinase signaling cascade 6 88 3.8 0.020

Stimulatory C-type lectin receptor signaling pathway 7 116 3.4 0.020

Regulation of lymphocyte differentiation 5 63 4.5 0.020

Innate immune response activating cell surface receptor signaling pathway 7 117 3.3 0.020

Intrinsic apoptotic signaling pathway 7 117 3.3 0.020

Positive regulation of apoptotic signaling pathway 7 117 3.3 0.020

Organic hydroxy compound transport 6 90 3.7 0.021

Notch signaling pathway 6 91 3.7 0.022

Regulation of defense response to virus by host 7 120 3.2 0.022

Response to reactive oxygen species 6 94 3.6 0.025

Xenophagy 6 95 3.5 0.026

Male sex differentiation 7 124 3.1 0.026

Establishment of protein localization to plasma membrane 5 69 4.1 0.027

Positive regulation of leukocyte differentiation 5 69 4.1 0.027

Lymphocyte activation involved in immune response 5 71 4 0.029

Mitochondrial membrane organization 5 71 4 0.029

Regulation of peptidyl-serine phosphorylation 5 71 4 0.029

Response to UV 6 99 3.4 0.030

Negative regulation of cellular protein localization 6 102 3.3 0.033

Organic acid transmembrane transport 5 75 3.7 0.035

Regulation of cell cycle arrest 6 104 3.2 0.035

Activation of cysteine-type endopeptidase activity involved in apoptotic process 5 76 3.7 0.036

Positive regulation of binding 5 77 3.6 0.038

Regulation of T cell proliferation 5 78 3.6 0.040

Positive regulation of ion transmembrane transport 5 79 3.5 0.041

Negative regulation of transmembrane receptor protein serine/threonine kinase signaling

pathway

5 80 3.5 0.043

Platelet degranulation 5 81 3.4 0.044

Activation of cysteine-type endopeptidase activity 5 82 3.4 0.046

Negative regulation of cytoplasmic transport 5 82 3.4 0.046

Tissue homeostasis 5 83 3.4 0.048

Amino acid transport 5 83 3.4 0.048

Localization within membrane 5 83 3.4 0.048

DFLAT, Developmental FunctionaL Annotation at Tufts (DFLAT) database. Table are the same columns as in the legend of Table 2.

different patterns in similar physiological and pathological
processes (56).

Correlations Between the Cellular
Transcriptome and the Plasma Proteome
Throughout Normal Pregnancy
The finding that the maternal transcriptome features
inflammation-related processes and pathways that are being
activated in preparation for labor at term is in agreement
with our previous studies in gestational tissues [cervix (57),
myometrium (58), membranes (59)] and a similar longitudinal
study of the maternal plasma proteome (52). In addition

to finding several common biological processes that are
modulated in both the maternal plasma proteome and cellular
transcriptome (such as defense response, defense response
to bacterium, defense response to fungus, regulation of bone
resorption, leukocyte migration) we assessed, for the first time,
the extent of the agreement in whole blood mRNA and protein
changes with gestation in the same set of samples. Although the
correlations between mRNA and protein expression reported
in the literature are notoriously poor, recent studies showed
that mRNA-protein correlation is higher for mRNAs that are
differentially expressed in a given condition than for those
that are not (51). Our finding that the correlation of mRNA-
protein pairs is higher for transcripts changing with gestation
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TABLE 4 | MSigDB canonical pathways enriched in genes differentially expressed with gestational age.

MSIGDB gene set name Count Size Odds ratio q

Reactome immune system 61 877 4.2 0.000

Reactome adaptive immune system 38 510 4.4 0.000

Reactome immunoregulatory interactions between a lymphoid and a non-lymphoid cell 12 63 12.5 0.000

KEGG graft vs. host disease 10 39 18.2 0.000

KEGG natural killer cell mediated cytotoxicity 16 127 7.7 0.000

KEGG antigen processing and presentation 13 79 10.4 0.000

Reactome interferon signaling 16 149 6.4 0.000

BIOCARTA AHSP pathway 6 13 45 0.000

KEGG hematopoietic cell lineage 12 87 8.5 0.000

Reactome interferon gamma signaling 10 61 10.3 0.000

Reactome interferon alpha beta signaling 9 57 9.9 0.000

Reactome cytokine signaling in immune system 18 257 4 0.000

Reactome metabolism of porphyrins 5 14 29.1 0.000

Biocarta TOB1 pathway 5 19 18.7 0.000

PID HIF1 TF Pathway 8 66 7.3 0.001

Reactome Class I MHC mediated antigen processing presentation 15 234 3.6 0.001

KEGG allograft rejection 6 37 10.1 0.001

PID HDAC CLASS III pathway 5 25 13.1 0.001

PID SMAD2 3NUCLEAR Pathway 8 81 5.8 0.002

KEGG ABC transporters 6 44 8.3 0.002

PID IL4 2 pathway 7 63 6.6 0.002

PID IL12 2 pathway 7 63 6.6 0.002

Reactome L1CAM interactions 8 84 5.5 0.002

PID TNF pathway 6 46 7.9 0.002

KEGG asthma 5 30 10.5 0.002

KEGG autoimmune thyroid disease 6 47 7.7 0.002

KEGG porphyrin and chlorophyll metabolism 5 32 9.7 0.003

PID IL12 STAT4 pathway 5 33 9.3 0.003

Reactome antigen processing cross presentation 7 73 5.6 0.003

Reactome transcriptional activity of SMAD2 SMAD3 SMAD4 heterotrimer 5 36 8.4 0.004

Reactome signaling by TGF beta receptor complex 6 59 5.9 0.006

PID CD8 TCR downstream pathway 6 60 5.8 0.006

PID FCER1 pathway 6 61 5.7 0.006

KEGG T cell receptor signaling pathway 8 108 4.2 0.006

Reactome costimulation by the CD28 family 6 62 5.6 0.007

KEGG type I diabetes mellitus 5 43 6.9 0.007

Reactome nucleotide binding domain leucine rich repeat containing receptor NLR signaling pathways 5 44 6.7 0.008

Reactome apoptosis 9 144 3.5 0.009

Reactome signaling by the B cell receptor BCR 8 121 3.7 0.010

KEGG B cell receptor signaling pathway 6 75 4.6 0.013

KEGG amyotrophic lateral sclerosis ALS 5 53 5.5 0.013

PID MYC ACTIV pathway 6 77 4.4 0.014

KEGG ubiquitin mediated proteolysis 8 133 3.4 0.015

KEGG apoptosis 6 86 3.9 0.019

KEGG pancreatic cancer 5 70 4 0.031

KEGG viral myocarditis 5 70 4 0.031

Reactome metabolism of nucleotides 5 72 3.9 0.033

KEGG chronic myeloid leukemia 5 73 3.8 0.034

Reactome signaling by EGFR in cancer 6 103 3.2 0.036

Reactome signaling by SCF kit 5 75 3.7 0.036

PID p73 pathway 5 79 3.5 0.040

Reactome response to elevated platelet cytosolic Ca2 5 80 3.5 0.040

Reactome cell surface interactions at the vascular wall 5 83 3.4 0.044

MSigDB, Molecular Signatures Database. Table columns as in legend of Table 2.
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TABLE 5 | Tissue or cell type-specific gene sets enriched in genes differentially

expressed with gestational age.

Tissue/cell type Count Size Odds

ratio

q

CD71+ early erythroid cells 80 198 40.4 0.000

Bone marrow 45 102 44.2 0.000

CD105+ endothelial cells 34 142 17.3 0.000

CD56+ NK cells 33 279 7.3 0.000

CD8+ T cells 28 215 8.1 0.000

CD4+ T cells 27 207 8.1 0.000

Fetal liver 22 129 11.1 0.000

Tonsil 17 91 12.3 0.000

CD19+ B cells (neg. sel.) 23 217 6.4 0.000

BDCA4+ dentritic cells 25 269 5.5 0.000

Trachea 12 74 10.2 0.000

Whole blood 24 322 4.3 0.000

Burkitt’s lymphoma cells (Daudi) 13 103 7.7 0.000

CD34+ cells 14 157 5.2 0.000

Salivary gland 8 51 9.8 0.000

HL-60 promyelocytic leukemia cells 8 58 8.4 0.000

721-B-lymphoblasts 18 299 3.4 0.000

CD33+ myeloid cells 19 335 3.2 0.000

Lymph node 8 64 7.5 0.000

Thymus 9 85 6.2 0.000

Bronchial epithelial cells 11 141 4.5 0.000

Colorectal adenocarcinoma 8 83 5.6 0.000

Burkitt’s lymphoma cells (Raji) 9 110 4.7 0.001

Colon 10 138 4.1 0.001

CD14+ monocytes 15 285 2.9 0.001

Pancreatic islet 8 117 3.9 0.004

Fetal lung 7 111 3.5 0.011

Prostate 7 114 3.4 0.013

K-562 chronic myelogenous leukemia cells 4 42 5.5 0.016

Fetal brain 9 186 2.7 0.018

Placenta 10 233 2.4 0.026

Ovary 3 29 6 0.032

Small intestine 7 142 2.7 0.034

Gene sets are defined based on average expression in a given tissue/cell type >30 time

the median expression across all other biotypes cataloged in the GNF Gene Expression

Atlas (see Methods). Table columns are the same as in the legend of Table 2.

than those who do not is therefore consistent with previous
observations (51).

T Cells in the Maternal Circulation During
Normal Pregnancy
Maternal T cells are implicated in the physiological processes
occurring throughout gestation (60–63). Effector and activated
T cells are found at the maternal-fetal interface before (64–70)
and during (71–73) spontaneous labor at term, and these cells
are associated with the timing of term parturition (74). Effector
T cells are also found in the maternal blood prior to Shah et al.
(75) and during (76) labor at term. In the current study, we
demonstrated that the T-cell-specific mRNA expression in the

maternal circulation was decreased prior to mid-gestation but
upregulated from mid-gestation until term. Moreover, for two
of 19 genes of this signature, there was a significant correlation
between cellular mRNA and plasma proteomic profiles; this is
consistent with recent cytomic and proteomic studies in the
maternal circulation (77, 78). In addition, we recently showed
the same u-shaped pattern of expression for the T-cell mRNA
signature during gestation in a smaller set of patients profiled
with RNA-Seq and qRT-PCR platforms (49). Together, these
findings illustrate the importance of maternal T cells during
normal pregnancy.

Alteration of systemic T-cell populations has also been
implicated in preterm parturition (79–81), especially since
aberrant activation of these cells can induce the onset of preterm
labor (82, 83). On the other hand, the absence of T cells in a
mouse model caused an increased susceptibility to endotoxin-
induced preterm birth, which was reversed by adoptive transfer
of CD4+ T cells (84). From a histopathological standpoint, T
cells are detected in placental lesions related tomaternal anti-fetal
rejection such as villitis of unknown etiology (85–87), chronic
chorioamnionitis (88), and chronic deciduitis (89), which have
also been linked to the onset of term and preterm labor (88, 90–
94). The chronic nature (95, 96) of these lesions has led our group
to propose them as indicators of maternal anti-fetal rejection,
which can lead to preterm labor or even fetal death (86, 90, 93,
94, 97–100). Future studies are needed to establish whether the
early detection of T-cell alterations in the maternal circulation
may identify pregnancies at risk for obstetrical disease such as
preterm labor/birth and fetal death.

B Cells in the Maternal Circulation During
Normal Pregnancy
Several studies have suggested a role for B cells in the
maintenance and success of pregnancy (101–106). Circulating
CD5+ (B1) B cells were shown to decrease during pregnancy,
only returning to normal levels after parturition (107). This
finding was later shown to occur in mice, where a decreased
influx of newly generated B cells to the blood and spleen
was observed while mature B cells were increased in uterine-
draining lymph nodes (108). An expansion of marginal zone B
cells also ensued (108, 109), which was proposed to participate
in the production of protective antibodies during pregnancy
(109, 110). Accordingly, maternal serum antibody concentrations
increased concomitantly with B-cell population changes (109),
possibly as a result of the anti-inflammatory microenvironment
maintained at the maternal-fetal interface throughout most of
pregnancy (111). Such antibody production has been considered
the primary contribution of B cells to maternal-fetal tolerance
during pregnancy (101).

Interleukin-10-producing regulatory B cells (Bregs) have also
been described as important players during pregnancy (112, 113).
Such adaptive immune cells increased in normal pregnancy in
an hCG-dependent manner (113, 114) and suppressed effector
T-cell cytokine production (113). Trophoblast cells facilitated
the conversion of IL10-deficient B cells into IL10-expressing B
cells (114), which is in line with a previous report showing that
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FIGURE 4 | Meta-gene expression of specific cell types differentially regulated throughout normal pregnancy. The average expression of genes defined as specific for

(A) T cell, (B) B cell, and (C) erythroid cell populations by Tsang et al. (42) are shown as a function of gestation. Blue lines correspond to the average expression

estimated by linear mixed-effects models. The fold change in expression from 10 to 40 weeks was 1.2 for T cells and B cells and 1.6 for erythroid cells (all, p < 0.001).

the adoptive transfer of Bregs restored maternal-fetal tolerance
(112). Indeed, pregnant women treated with the B-cell-depleting
treatment rituximab had a higher occurrence of pregnancy loss
(115), although further investigation of this phenomenon is
warranted (116).

In the current study, we showed that the B-cell-specific
mRNA signature moderately decreased throughout pregnancy.
Our observations correspond to a previous report indicating that
the majority of maternal peripheral B-cell subsets are reduced
in late gestation compared to the non-pregnant state (117),
whereas Bregs are upregulated (117). The combined effects of
such dynamic changes on the overall circulating B-cell mRNA
signature are therefore minimal, as we have demonstrated here.
Taken together, these findings suggest that, while total maternal
peripheral B cells are mostly maintained, subset-specific changes
occur throughout pregnancy.

Erythroid Cells in the Maternal Circulation
During Normal Pregnancy
A constant bi-directional trafficking of maternal and fetal cells
occurs during normal pregnancy (118–124). Indeed, cell-free
fetal DNA is present in the maternal circulation throughout
normal pregnancy (125–132) and its levels increased from mid
to late gestation (128, 133–140). Increased concentrations of
cell-free fetal DNA or numbers of fetal cells in the maternal
circulation (fetal microchimerism) have been linked to pregnancy
complications such as preterm labor (141–145), preeclampsia
(146–150), and intrauterine growth restriction (149, 151, 152).
In addition, sequencing cell-free fetal DNA in the maternal
circulation may serve for non-invasive prenatal testing (153).
Therefore, determining the impact that fetal cells and their
released products (e.g., cell-free fetal DNA)may have onmaternal
health is critical, given that such cells can remain in the maternal
circulation for decades (153, 154).

Fetal nucleated erythroid cells have been detected in the
maternal blood (121, 155, 156) where they may be a source of
cell-free fetal DNA (155). Previous reports showed that neonatal

FIGURE 5 | Distribution of mRNA-protein correlation t-scores. The correlation

between mRNA and protein abundance was assessed by linear mixed-effects

models using data collected from 71 samples provided by 16 women. The

distribution of t-scores for the linear correlation slope is shown for 51 mRNAs

differentially expressed with gestation and 1011 mRNAs that were not

differentially expressed.

CD71+ erythroid cells have immunomodulatory functions on
cord blood leukocytes (157–159), and that their direct contact
with maternal peripheral immune cells increases the secretion
of pro-inflammatory mediators by such cells (159). Therefore,
it is likely that the trafficking of CD71+ erythroid cells from
the fetus into the mother directly affects maternal immune
responses (159). Nucleated erythroid cells have also been
described in the placenta, where their presence is correlated
with the number of such cells in the cord blood (160),
and these cells also display immunomodulatory properties
in vitro (161).
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FIGURE 6 | Correlation between cellular transcriptome and maternal plasma proteome throughout normal pregnancy. Aptamer-based protein abundance

measurements are plotted against mRNA expression. R: naïve Spearman correlation coefficient; p: likelihood ratio test p-value from linear mixed-effects models

assessing the linear correlation accounting for repeated measurements from the same subjects.

Herein, we showed that the erythroid cell-specific mRNA
signature was upregulated throughout gestation in the maternal
circulation. This finding is in line with previous reports showing
that fetal microchimerism increases during pregnancy (162, 163).
In addition, a recent study showed that CD71+ erythroid cells
are increased in the maternal circulation throughout gestation,
peaking during the third trimester and falling to baseline levels
after delivery (164). Together, these findings illustrate that
erythroid cells, most likely of fetal origin, are present in the
maternal circulation and their transcriptome is modulated as
gestation progresses. These data provide a possible mechanism
whereby the developing fetus can modulate maternal immunity.

CONCLUSION

We have reported herein a detailed characterization of the
longitudinal maternal whole blood transcriptomic changes

in normal pregnancy. We have shown that these changes
are genome-wide, yet we found that chromosome 14 was
particularly enriched in genes modulated with advancing
gestation. There was a significant overlap in expression changes
described herein with those previously reported in whole
blood analyses based on only two time points, while some
of the most strongly modulated mRNAs identified herein
were also previously reported as the best predictors of
gestational age in cell-free RNA analyses of maternal blood.
Our systems biology approach to the interpretation of these
expression changes in the maternal cellular transcriptome
during pregnancy revealed significant longitudinal patterns
of expression for immune-related gene sets, such as those
specific to T cells, B cells, and erythroid cells. Moreover,
for the first time, we demonstrated positive correlations
between the cellular transcriptome and plasma proteome for
specific genes, including those expressed by T cells. The
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expression trajectories of protein coding and non-coding
transcripts in normal pregnancy described herein may serve as
references and hence enable the discovery of biomarkers for
obstetrical disease.
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Supplementary Figure 1 | Longitudinal gene expression profiles of genes

associated with gestational age. Each figure shows data for one of the 614

transcript clusters associated with gestational age. The y-axis represents the log2
normalized gene expression, while the x-axis represents gestational age (weeks).

Each line corresponds to one patient and each dot to one sample. The thick blue

line represents the linear mixed effects model fit. The title in each plot, represents

the transcript cluster identifier, gene symbol, gene name, p-value, and fold change.
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