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Abstract The minimum mean squared error (MMSE)
criterion is a popular criterion for devising best predictors.
In case of linear predictors, it has the advantage that no fur-
ther distributional assumptions need to be made, other then
about the first- and second-order moments. In the spatial
and Earth sciences, it is the best linear unbiased predictor
(BLUP) that is used most often. Despite the fact that in this
case only the first- and second-order moments need to be
known, one often still makes statements about the complete
distribution, in particular when statistical testing is involved.
For such cases, one can do better than the BLUP, as shown in
Teunissen (J Geod. doi: 10.1007/s00190-007-0140-6, 2006),
and thus devise predictors that have a smaller MMSE than
the BLUP. Hence, these predictors are to be preferred over
the BLUP, if one really values the MMSE-criterion. In the
present contribution, we will show, however, that the BLUP
has another optimality property than the MMSE-property,
provided that the distribution is Gaussian. It will be shown
that in the Gaussian case, the prediction error of the BLUP
has the highest possible probability of all linear unbiased
predictors of being bounded in the weighted squared norm
sense. This is a stronger property than the often advertised
MMSE-property of the BLUP.
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1 Introduction

We speak of prediction if a function of an observable random
vector y ∈ Rm is used to ‘guess’ the outcome of another
random, but unobservable, vector y0 ∈ Rm0 . If the func-
tion is given as G, then G(y) is said to be the predictor of
y0. If G(y) is a predictor of y0, then e0 = y0 − G(y) is
its prediction error. When predicting spatially and/or tem-
poral varying variates on the basis of observations of these
variates at some locations in space and/or instances in time,
one often uses the minimization of the mean squared pre-
diction error as the criterion for optimal prediction. If G(y)

is the predictor, then E ||y0 − G(y)||2 is its mean squared
error (MSE). Note, since both y0 and y are random, that
the expectation E , or mean, is taken with respect to their
joint probability density function (PDF), fy0 y(y0, y). Thus,
E ||y0 −G(y)||2 = ∫ ∫ ||y0 −G(y)||2 fy0 y(y0, y)dy0dy. The
predictor that succeeds in minimizing this mean squared pre-
diction error is referred to as the best predictor. Important
examples of such best prediction methods are least-squares
collocation, universal Kriging, Wiener filtering, or recursive
Kalman filtering (e.g., Moritz 1980; Cressie 1991; Kailath
1981). Under the correct conditions, all of these methods can
be viewed as particular representations of the method of best
linear unbiased prediction (BLUP). The BLUP achieves its
minimum mean squared error (MMSE) within the class of
linear unbiased predictors.

In Teunissen (2006), it has been shown, however, that for
the same linear model on which the BLUP is based, meaning-
ful predictors can be devised that have smaller mean squared
prediction errors than the BLUP. Hence, if one really values
the property of obtaining the smallest possible MSE, these
predictors are to be preferred over the BLUP.

No distributional assumptions, other then about the first-
and second-order moments, need to be made to establish the
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MMSE-property of the BLUP. The MMSE-property implies
that one can expect the squared-norm of the prediction error
vector of the BLUP to be smaller on the average than the
squared-norm of the prediction error vector of any other lin-
ear unbiased predictor. This is a nice property and often the
best achievable in the absence of any further distributional
information. The MMSE-property does, however, not reveal
information about the frequency with which one can expect
repeated outcomes of the prediction error to be close to zero.

To be able to compute such a probability, one would need
information about the complete distribution. In the ideal case,
one would then like to be in a position to select the predictor
that has the highest possible probability of a bounded pre-
diction error. In the present contribution, we will show that
the BLUP is such a predictor in the Gaussian case. That is,
the Gaussian BLUP has the highest possible probability of
bounding the prediction error of all linear unbiased predic-
tors. This is a stronger property than the MMSE-property of
the BLUP.

This contribution is organised as follows. In Sect. 2, we
introduce the linear model on which our prediction analysis is
based. We also give a useful, but unconventional, representa-
tion of the class of linear unbiased predictors. This represen-
tation provides for an efficient derivation of the BLUP and
its minimum error variance property in Sect. 3. In Sect. 4,
we introduce an origin-centred ellipsoid of arbitrary shape
and size, and show that its probability content based on the
error PDF of the BLUP is the largest possible within the class
of linear unbiased predictors. In Sect. 5, we show by means
of examples the general applicability of the linear model on
which the BLUP is based. Hence, the Gaussian predictors
used in each of these applications also have the largest pos-
sible probability of bounding the prediction error.

In Sect. 6, we consider the maximum probability of
bounded prediction error for other best predictors. In Sect. 7,
we show that, with respect to the linear model used, estima-
tion can be seen to be a special case of prediction. Hence,
the best linear unbiased estimator (BLUE) can be seen to
be a special case of the BLUP. As a consequence, the maxi-
mum probability of bounded prediction error, now becomes a
maximum probability of bounded estimation error for the
BLUE. This is clearly a stronger property than the
minimum variance property as described by the well-known
Gauss–Markov theorem.

2 Linear unbiased prediction

Consider the linear model

[
y
y0

]

=
[

A
A0

]

x +
[

e
e0

]

(1)

in which x ∈ Rn is a nonrandom unknown parameter vector
and [eT , eT

0 ]T ∈ Rm+m0 is a random vector, with expectation
and dispersion given as

E

[
e
e0

]

=
[

0
0

]

and

D

[
e
e0

]

= D

[
y
y0

]

=
[

Qyy Qyy0

Qy0 y Qy0 y0

]

(2)

respectively. The matrices A and A0 of order m × n and
m0 × n, respectively, are assumed known and matrix A is
assumed to be of full column rank. The dispersion matrix is
also assumed known.

It is our goal to predict y0 on the basis of y. Let G(y) =
L0 y + l0 be a linear predictor of y0. Then G(y) is said to be a
linear unbiased predictor of y0 if E(G(y)) = E(y0) for all x .
Hence, L0 E(y) + l0 = E(y0) and thus L0 Ax + l0 = A0x
should hold for all x . This shows that G(y) is a linear unbi-
ased predictor of y0, if and only if L0 A = A0 and l0 = 0.
This result can now be used to give a representation of lin-
ear unbiased predictors that will turn out to be useful in our
analysis of the best linear unbiased predictor.

Linear unbiased predictors Let G(y) be a linear unbiased
predictor (LUP) of y0. Then an m0 ×(m −n) matrix H exists
such that

G(y) = A0 x̂ + Ht (3)

where x̂ = (AT Q−1
yy A)−1 AT Q−1

yy y, t = BT y, and B is an
m × (m −n) basis matrix of which the columns span the null
space of AT .

Proof The sought for representation follows from solving the
matrix equation L0 A = A0 or its transposed form AT LT

0 =
AT

0 . The general solution of this transposed form is given by
the sum of its homogeneous solution and a particular solu-
tion. Since B H T is the general solution of the homogeneous
equation AT LT

0 = 0 and Q−1
yy A(AT Q−1

yy A)−1 AT
0 is a par-

ticular solution, the general solution for L0 follows as L0 =
A0(AT Q−1

yy A)−1 AT Q−1
yy + H BT . Substitution of this solu-

tion into G(y) = L0 y + l0 gives, with l0 = 0, the result Eq.
(3). ��
In Eq. (3), we recognize x̂ as the BLUE of x and t = BT y as
the redundancy vector of misclosures. The vector (x̂ T , t T )T

stands in a one-to-one relation with the data vector y. We
have
[

x̂
t

]

=
[

(AT Q−1
yy A)−1 AT Q−1

yy
BT

]

y ⇔

y =
[

A, Qyy B(BT Qyy B)−1
] [

x̂
t

]

(4)

Note that E(t) = 0 and that x̂ and t are uncorrelated. The
(m − n)-vector t is identically zero in the absence of redun-
dancy (the full rank matrix A will then be a square matrix
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with m = n). Thus in the absence of redundancy, only a
single LUP exists, namely G(y) = A0 x̂ = A0 A−1 y. Hence,
it is the presence of redundancy (m > n) that gives us the
freedom to select a best predictor from the class of linear
unbiased predictors.

3 Best linear unbiased prediction

Let Ĝ(y) be the best linear unbiased predictor (BLUP) of y0.
Then Ĝ(y) is the solution of the minimization problem

E ||y0 − Ĝ(y)||2 = min
G∈LU P

E ||y0 − G(y)||2 (5)

Note that the minimization of the MSE is restricted to the
class of LUPs. This is not needed per se. In Teunissen (2006),
it has been shown that one can determine meaningful best pre-
dictors in classes of predictors that are larger than the class of
linear unbiased predictors. Such predictors are however non-
linear. Hence, the restriction to unbiased predictors is needed
if one wants to work with a linear predictor. The following
will make this clear.

With G(y) = L0 y + l0, ȳ0 = E(y0) = A0x and ȳ =
E(y) = Ax , we have E ||y0 − G(y)||2 = E ||(y0 − ȳ0) −
L0(y − ȳ) + ((A0 − L0 A)x − l0)||2, from which it follows
that

E ||y0 − G(y)||2 = E ||(y0 − ȳ0) − L0(y − ȳ)||2
+||(A0 − L0 A)x − l0||2

= trace
(

Qy0 y0 − 2L0 Qy0 y + L0 Qyy LT
0

)

+||(A0 − L0 A)x − l0||2 (6)

In order to minimize the MSE, we would need to minimize
this objective function as function of the matrix L0 and the
vector l0. Note, however, that the unknown parameter vector
x is part of the objective function. Hence, the minimizer of
the objective function would then depend on the unknown
x and would therefore not result in a useable predictor. This
problem does not occur if the second term on the right-hand
side of Eq. (6) is absent, which is the case when one restricts
the minimization to the class of LUPs.

To determine the BLUP, we make use of the representation
of Eq. (3). We have

E ||y0 − G(y)||2 = E ||y0 − A0 x̂ − Ht ||2
= E ||(y0 − A0 x̂ − Qy0t Q−1

t t t) − (H − Qy0t Q−1
t t )t ||2

= E ||y0 − A0 x̂ − Qy0t Q−1
t t t ||2 + E ||(H −Qy0t Q−1

t t )t ||2
(7)

since t is uncorrelated with x̂ and uncorrelated with y0 −
Qy0t Q−1

t t t . From the last equation it follows that the MSE is
minimized, if matrix H is chosen as H = Qy0t Q−1

t t . We are
now in the position to determine the BLUP of y0.

Best linear unbiased predictor Let ŷ0 = Ĝ(y) be the best
linear unbiased predictor (BLUP) of y0. Then

ŷ0 = A0 x̂ + Qy0t Q−1
t t t

= A0 x̂ + Qy0 y Q−1
yy (y − Ax̂) (8)

Proof Substitution of H = Qy0t Q−1
t t into Eq. (3) gives the

first expression of Eq. (8). To determine the second expres-
sion of Eq. (8) from its first, we note that Qy0t Q−1

t t t =
Qy0 y B(BT Qyy B)−1 BT y. With the use of the projector iden-
tity Qyy B(BT Qyy B)−1 BT = Im−A(AT Q−1

yy A)−1 AT Q−1
yy ,

we obtain Qy0t Q−1
t t t = Qy0 y Q−1

yy (y − Ax̂), which proves
the second expression of Eq. (8). ��
The first expression of Eq. (8) explictly shows the LUP struc-
ture (cf. Eq. 3). In the second expression of Eq. (8), the BLUP
has been written in terms of y and x̂ .

The BLUP is the MMSE predictor in the class of LUPs.
Hence, it has the smallest mean squared prediction error
within this class. The BLUP is, however, also the predictor
that has the smallest error variance of all LUPs. The BLUP
is therefore sometimes also referred to as the minimum error
variance linear unbiased predictor.

To compare the error variance of the BLUP with that of
an arbitrary LUP, we first express the LUP prediction error,
e0 = y0 − A0 x̂ − Ht , in the BLUP prediction error. This
gives e0 = ê0 − (H − Qy0t Q−1

t t )t . Application of the vari-
ance propagation law, noting that ê0 and t are uncorrelated,
gives

Qe0e0 = Qê0 ê0 + (H − Qy0t Q−1
t t )Qtt (H − Qy0t Q−1

t t )T (9)

Equation (9) shows by how much the error variance of an
arbitrary LUP differs from the error variance of the BLUP.
Since the second term on the right-hand side of Eq. (9) is
positive semidefinite, we have f T Qê0 ê0 f ≤ f T Qe0e0 f for
any f ∈ Rm0 . Thus, the error variances of LUPs are never
smaller than the error variance of the BLUP. We summa-
rize this minimum error variance property of the BLUP as
follows.
Minimum error variance Let ê0 = y0 − ŷ0 and e0 =
y0 − G(y) be the prediction error of the BLUP and of an
arbitrary LUP, respectively. Then

Qê0 ê0 ≤ Qe0e0 (10)

Now let us for the moment reflect on the properties of the
BLUP.

1. We know that the BLUP has a zero-mean prediction error,
E(ê0) = 0. This implies that we can expect the predic-
tion error to be zero on average.

2. We know that the BLUP has the smallest possible mean
squared prediction error of all LUPs, E ||ê0||2 ≤ E ||e0||2.
This implies that we can expect the squared-norm of the
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prediction error vector of the BLUP to be smaller on the
average than the squared-norm of the prediction error
vector of any other LUP.

3. We know that the variance of any linear function of the
prediction error vector of the BLUP is never larger than
the variance of the same function of the prediction error
vector of any other LUP, f T Qê0 ê0 f ≤ f T Qe0e0 f .

The above properties are all nice properties indeed. They
do not, however, tell us anything about the frequency with
which one can expect repeated outcomes of the prediction
error ê0 to be close to zero. That is, they do not allow us to
determine the probability that the prediction error is close
to zero. In order to determine such probability, we need the
complete PDF of ê0. In the absence of any information other
than the first two moments of the prediction error, the best
one can do, if one wants to make a probabilistic statement,
is to make use of the Chebyshev inequality (e.g. Stark and
Wood 1986; Casella and Berger 1990; Teunissen et al. 2005).
In our case, however, we would need a multivariate version
of this inequality.

Multivariate Chebyshev inequality Let e0 be the prediction
error of an arbitrary LUP. Then, for any matrix W ≥ 0 and
any r ∈ R, we have the inequality

P(||e0||2W ≥ r2) ≤ trace(W Qe0e0)

r2 (11)

with the squared weighted norm ||.||2W = (.)T W (.).

Proof Let fe0(α) be the PDF of e0. Then E ||e0||2W = ∫
Rm0

||α||2W fe0(α)dα = ∫
||α||2W ≤r2 ||α||2W fe0(α)dα + ∫

||α||2W ≥r2

||α||2W fe0(α)dα ≥ ∫
||α||2W ≥r2 ||α||2W fe0(α)dα ≥ r2

∫
||α||2W ≥r2

fe0(α)dα = r2 P(||e0||2W ≥ r2). Furthermore, we have
E ||e0||2W = E(eT

0 W e0) = E(trace(W e0eT
0 )) = trace

(W Qe0e0), since E(e0) = 0. From this and the inequality
E ||e0||2W ≥ r2 P(||e0||2W ≥ r2), the stated result follows. ��

This result states that the probability that the prediction error
of any LUP resides outside the origin-centred ellipsoid
||e0||2W = r2 is bounded from above by trace(W Qe0e0)/r2.
Hence, the probability that the prediction error resides out-
side the ellipsoid, will become more tightly bounded when
the precision of the prediction error improves. With reference
to Eq. (10), this implies that the upperbound for the BLUP
will be smaller than the corresponding upperbound for any
other LUP. From this, one may not conclude, however, that
the probability that the prediction error resides outside the
ellipsoid is smaller for the BLUP than for any other LUP.
Ideally, however, one would like to be in a position to be able
to make such an optimality statement. In the next section, we
will show when this is the case.

4 Optimality of the BLUP in the Gaussian case

So far, we only made use of the first- and second-order
moments of the random vectors y and y0. That is, no fur-
ther distributional assumptions were made about these ran-
dom vectors. This implies that the two optimality properties
of the BLUP, the MMSE property and the minimum error
variance property, both hold true irrespective of the distribu-
tions of y and y0. This, of course, is a nice result, which
is also often stressed in the literature (e.g. Arnold 1981;
Bar-Shalom and Li 1993; Koch 1987; Myers and Milton
1991; Rao and Toutenburg 1995; Stapleton 1995; Stark and
Wood 1986; Sengupya and Jammalamadaka 2003). How-
ever, if one really values the mentioned two properties, why
not aim for predictors that have these two properties in a class
larger than the class of LUPs? After all, such predictors, when
they exist, will have a smaller mean squared prediction error
and a smaller error variance than the BLUP. In Teunissen
(2006), it has been shown that such predictors of y0 indeed
exist. They are found in the class of equivariant predictors
and in the class of integer equivariant predictors.

Does the result of Teunissen (2006) make the BLUP obso-
lete? The answer must be yes if one prefers predictors with
smaller mean squared prediction errors and smaller error
variances. However, as the present section will show, the
BLUP has another optimality property and one which is
stronger than the above-mentioned two. This stronger opti-
mality property holds true in case the joint distribution of y
and y0 is Gaussian.

Let ê0 be the prediction error of the BLUP and let e0 be the
prediction error of an arbitrary LUP. If y and y0 of the linear
model of Eqs. (1) and (2) are Gaussian distributed, then so
are the zero-mean random vectors ê0 and e0. We have ê0 ∼
N(0, Qê0 ê0) and e0 ∼ N(0, Qe0e0), with Qê0 ê0 ≤ Qe0e0 .
Now let us first transform the two prediction errors, ê0 and e0,
as û = Fê0 and v = Fe0, respectively, in which F is an arbi-
trary, but invertible, m0 × m0 matrix. Then û ∼ N(0, Qûû =
F Qê0 ê0 FT ) and v ∼ N(0, Qvv = F Qe0e0 FT ), with Qûû ≤
Qvv . If we define the random vector u = Q1/2

ûû Q−1/2
vv v, then

u has a distribution that is identical to that of û (note: the
square-root matrix notation M1/2 denotes a matrix satisfying
M = M1/2 M1/2; thus M−1/2 M M−1/2 = I ). We therefore
have the probabilistic equality

P(||û||2 ≤ r2) = P(||u||2 ≤ r2) (12)

The probability that û resides in an origin-centred hyper-
sphere with radius r is thus equal to the probability that u
resides in the same hypersphere. The squared norm of u can
be expressed in the squared norm of v as

||u||2 = ||Q1/2
ûû Q−1/2

vv v||2
= ||v||2 + vT Q−1/2

vv (Qûû − Qvv)Q−1/2
vv v (13)
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Note that ||u||2 ≤ ||v||2, since Qûû ≤ Qvv . Substitution of
the last expression of Eq. (13) into Eq. (12) gives

P(||û||2 ≤ r2) = P(||v||2 + vT Q−1/2
vv

× (Qûû − Qvv)Q−1/2
vv v≤r2)

≥ P(||v||2 ≤ r2) (14)

Since û = Fê0 and v = Fe0, we may write the squared
norms of û and v, as weighted squared norms of ê0 and e0:
||û||2 = ||ê0||2W and ||v||2 = ||e0||2W , with W = FT F . We
may therefore express the probabilistic relation of Eq. (14)
directly in terms of the prediction errors. We therefore have
the following optimality result for the BLUP.

Theorem (BLUP’s maximum probability of bounded
prediction error): Let y and y0 have a joint Gaussian distri-
bution with first- and second-order moments as given in Eqs.
(1) and (2). Further, let ŷ0 be the BLUP of y0 and let G(y)

be any LUP of y0. Then

P(||y0 − ŷ0||2W ≤ r2) ≥ P(||y0 − G(y)||2W ≤ r2) (15)

for any W > 0 and any r ∈ R.

This result states that in the Gaussian case, given an origin-
centred ellipsoid of arbitrary size and shape, the prediction
error of the BLUP has of all LUP errors, the highest probabil-
ity of residing in this ellipsoid. In practical terms this implies
that in case of a repeated experiment, one can expect an ori-
gin-centred ellipsoid of arbitrary shape and size, to catch
more of the BLUP error-scatter than of any other LUP error-
scatter. Hence, the above result is a much stronger property,
than the first- and second-order moment-based BLUP prop-
erties of minimum error variance or minimum mean squared
prediction error.

A closer look at the derivation on which the above theorem
is based, reveals that the result of the theorem can even be
strenghtened. The only place where the assumption of Gaus-
sianity is needed in the derivation is in the proof of Eq. (12).
Thus a strengthening of the theorem is realized, if we are
able to show that this same probabilistic equality can also
hold true for other distributions. Assume therefore that the
PDF’s of û and v are given as

fû(α) = h(αT Q−1
ûû α)√|detQûû | and fv(α) = h(αT Q−1

vv α)√|detQvv| (16)

for some function h : R+
0 	→ R. Then it follows from

an application of the PDF transformation rule, that u =
Q1/2

ûû Q−1/2
vv v has the same distribution as û. Hence, the prob-

abilistic equality of Eq. (12) holds true for all distributions
of the type given in Eq. (16). Note that the choice h(x) =
(2π)−m0/2 exp(−x/2) leads to the Gaussian distribution.
Also note that PDFs of the above type are elliptically con-
toured, i.e. their contour surfaces are ellipsoids, just like
in case of the Gaussian distribution. Thus the result of the

theorem can be strengthened by stating that it holds true for
all elliptically contoured distributions.

From the above theorem we conclude that the BLUP is
the preferred predictor in the Gaussian (or elliptically con-
toured) case, even with the knowledge that other predictors
exist that outperform the BLUP as far as their error variance
or mean squared prediction error is concerned.

At this point it is also worthwhile to make the follow-
ing remark. The above shown maximum probability property
should not be confused with the approach of maximizing the
differential probability (i.e. density), which is implicit in the
principle of maximum likelihood and which has been used by
Gauss in his first justification of the method of least-squares
(Gauss 1809; Waterhouse 1990). This, despite the fact that
terms as ‘maximum probability’ and ‘most probable’ are still
used in this context. In particular, the maximum probabil-
ity property of the BLUP should not be confused with the
property of the maximum likelihood solution of the poster-
ior probability density function, which unfortunately is often
referred to as the maximum a posteriori probability (MAP)
solution. The principle of the MAP is not to maximize the
probability, but rather, just like the likelihood principle, to
maximize a likelihood function, which in case of random
parameters is equivalent to maximizing a conditional den-
sity, i.e. the derivative of probability. We therefore agree with
Scharf (1991) that it would be better to give the MAP a differ-
ent name. This could be the maximum likelihood predictor
(MLP) or, as proposed by Scharf (ibid), the maximum a pos-
teriori likelihood solution, though the acronym MAL might
not please some readers.

5 Some applications

The results obtained so far are based on the linear model
as described by Eqs. (1) and (2). The representation of this
model, although suited for the derivation and analysis of the
BLUP, is probably not in a form that directly appeals to con-
crete applications. We will therefore show, by means of some
important examples, the wide range of prediction problems
that can be covered with this model. Since the Gaussian
assumption is often made in these applications, the proba-
bilistic optimality property of Eq. (15) holds true for their
best predictors as well.

5.1 Prediction of a random vector with unknown mean

Many applications can be described as observing a random
vector x ′, with unknown mean x , in the presence of additive
noise e. The goal is then to predict x ′ on the basis of the
vector of observables y. In the linear case, the model can
be described as y = Ax ′ + e. We assume that the variance
matrix Qx ′x ′ of x ′ is known and that e is a zero-mean random
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172 P. J. G. Teunissen

vector, uncorrelated with x ′, with known variance matrix
Qee. To set the stage for predicting x ′, we set in Eqs. (1)
and (2), e → A(x ′ − x) + e, y0 → x ′, A0 → I , and e0 →
x ′ − x . With these settings, we have Qy0 y → Qx ′x ′ AT and
Qyy → AQx ′x ′ AT +Qee. The BLUP of x ′ follows then, from
Eq. (8), as

x̂ ′ = x̂ + Qx ′x ′ AT (AQx ′x ′ AT + Qee)
−1(y − Ax̂) (17)

This representation of x̂ ′ is known as the variance-form.
Using the well-known matrix inversion lemma, the corre-
sponding information-form follows as

x̂ ′ = x̂ + (Q−1
x ′x ′ + AT Q−1

ee A)−1 AT Q−1
ee (y − Ax̂) (18)

The solution x̂ ′ is referred to as the batch solution. Under cer-
tain conditions on A, Qx ′x ′ and Qee (e.g. Teunissen 2001),
one can also formulate a recursive solution, which ultimately
leads to the well-known Kalman filter. Hence, if the state vec-
tors and the observables on which the Kalman filter is based,
are Gaussian-distributed, the Kalman filtered state will not
only have the often advertised MMSE property (e.g. Kailath
1981; Sorenson 1985; Bar-Shalom and Li 1993), but also the
maximum probability property of Eq. (15). The Gaussian
assumption is often made in Kalman filtering, in particular
in case of model validation for the detection and identifica-
tion of model misspecifications.

5.2 The trend-signal-noise model of collocation

The so-called trend-signal-noise model of collocation is
another special case of the model in Eqs. (1) and (2). It
has found wide-spread application in the spatial and Earth
sciences (e.g. Moritz 1973, 1980; Rummel 1976;
Dermanis 1980; Sanso 1986; Journel and Huijbregts 1991;
Cressie 1991; Wackernagel 1995). In this model, the observ-
able vector y is written as a sum of three terms, y = Ax+s+n,
with Ax a deterministic trend, with an unknown parame-
ter vector x , s a zero-mean random signal vector, and n a
zero-mean random noise vector. Often one can extend the
trend-signal-noise model so as to hold true for an unob-
servable vector y0 = A0x + s0 + n0, in which s0 and n0

are uncorrelated zero-mean random vectors, and n0 is also
uncorrelated with n. For instance, y0 could be a functional
of the same type as y, but evaluated at a different location
in space or at a different instant in time. To set the stage
for predicting y0, s0 and n0, we set in Eqs. (1) and (2),
e → s + n, y0 → (yT

0 , sT
0 , nT

0 )T , A0 → (AT
0 , 0, 0)T , and

e0 → (
(s0 + n0)

T , sT
0 , nT

0

)T
. With these settings, we obtain

from Eq. (8), the BLUP of (yT
0 , sT

0 , nT
0 )T as

ŷ0 = A0 x̂ + Qs0s(Qss + Qnn)
−1(y − Ax̂)

ŝ0 = Qs0s(Qss + Qnn)
−1(y − Ax̂)

n̂0 = 0

with x̂ = (
AT (Qss + Qnn)

−1 A
)−1

AT (Qss + Qnn)
−1 y.

These are the well-known results of least-squares collocation
(e.g. Moritz 1980), or universal Kriging (e.g. Wackernagel
1995).

5.3 Predicting error components

We give two examples in which the prediction of error com-
ponents is of interest. Let e in y = Ax + e be given as
e = Eε, with matrix E known and where ε is a zero-mean
random vector with variance matrix Qεε . As an application
of this formulation, the entries of ε can be thought of as being
the individual error components that contribute to the overall
error vector e. This model is known as the so-called mixed
model and it often forms the basis for variance component
estimation (e.g., Rao and Kleffe 1988).

To set the stage for predicting ε, we set in Eqs. (1) and
(2), e → Eε, y0 → ε, A0 → 0, and e0 → ε. With these
settings, we obtain from an application of Eq. (8), the BLUP
of ε as

ε̂ = Qεε ET (E Qεε ET )−1(y − Ax̂) (19)

with x̂ = (AT (E Qεε ET )−1 A)−1 AT (E Qεε ET )−1 y. Note
that for the special case E = I , the BLUP of e is obtained as
y − Ax̂ .

As another application, one may consider the case where
derived observables, instead of the original observables, are
used to formulate the linear model. In many applications not
the original data vector y is used to set up the observation
equations, but rather linear functions of y. In case of Global
Navigation Satellite Systems, for instance, the double-differ-
ence carrier-phase observations are often used, rather than the
undifferenced carrier-phase observations (e.g. Teunissen and
Kleusberg 1998; Misra and Enge 2006). In the case of lev-
elling, the observed height difference of a levelling line is
often used, rather than the individual readings (e.g., Kahmen
and Faig 1987).

The use of derived observables is often done with the pur-
pose of reducing the number of unknowns by eliminating the
so-called nuisance parameters. As a result, the linear model
takes the form DT y = Ax+DT e, with e the error component
of the original data vector and where DT y is the vector of
derived observables. Although one works in this set up with
the derived vector of observables DT y, one often still has the
need to recover the error component of the original data vec-
tor y. If we use the settings y → DT y, e → DT e, y0 → e,
A0 → 0, and e0 → e, in the linear model defined in Eqs. (1)
and (2), we have Qy0 y → Qee D and Qyy → DT Qee D.
Hence, with these settings, we obtain from Eq. (8), the BLUP
of e as

ê = Qee D(DT Qee D)−1(DT y − Ax̂) (20)
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with x̂ = (AT (DT Qee D)−1 A)−1 AT (DT Qee D)−1 DT y.
Note that the linear model with derived observables reduces
to the linear model of condition equations when A = 0.

6 Best prediction

So far, we have based our analysis on the linear model as
defined by Eqs. (1) and (2). The reason for choosing this lin-
ear model as starting point, is due to our belief that this model
covers by far the most relevant geodetic applications. This
model is characterized by the fact that the unknown means
of y and y0 are linked by means of a known relationship.
Let us now, however, consider the case where no assump-
tions are made about the functional relationship between y
and y0. Furthermore, let us assume that the MMSE-criterion
is applied for an unspecified class of predictors �. We now
define the best predictor Ĝ(y) of y0, as the predictor that sat-
isfies E ||y0 − Ĝ(y)||2W = minG∈� E ||y0 −G(y)||2W , for any

W ≥ 0. Thus for W = f f T , we have, with ê0 = y0 − Ĝ(y)

and e0 = y0 − G(y), that E( f T ê0êT
0 f ) ≤ E( f T e0eT

0 f ) for
any f ∈ Rm0 . Hence, if Ĝ(y) is unbiased (i.e. E(ê0) = 0),
then Qê0 ê0 ≤ Qe0e0 , for any unbiased predictor G ∈ �. This
shows, with reference to Eq. (15), that the best predictor of
class �, when unbiased and Gaussian distributed, will also
have the maximum probability property.

Let us now consider the most relaxed class of predictors.
It can be shown, if no restrictions are put on the class of
predictors �, that the best predictor is given by the con-
ditional mean, Ĝ(y) = E(y0|y) (e.g. Bar-Shalom and Li
1993; Teunissen 2006). This predictor is unbiased and, in the
Gaussian case, it is given, with ȳ0 = E(y0) and ȳ = E(y), as

Ĝ(y) = ȳ0 + Qy0 y Q−1
yy (y − ȳ) (21)

The conclusion is that the probability that the error of this best
Gaussian predictor resides inside an origin-centred ellipsoid
is largest of all unbiased Gaussian predictors. Note that the
Gaussian best predictor of Eq. (21) has the same structure as
the BLUP. However, it requires, in contrast to the BLUP, that
the two means, ȳ0 and ȳ, are known.

7 Estimation as special case of prediction

Recall that we speak of prediction if a function of an observ-
able random vector y is used to ‘guess’ the outcome of
another random, but unobservable, vector y0. We speak of
estimation, however, if a function of y is used to ‘guess’ the
value of a deterministic, but unknown, parameter vector x ,
or a function thereof. We will now show that, with respect to
the linear model of Eqs. (1) and (2), estimation can be seen
to be a special case of prediction.

Let us assume that e0 in Eq. (1) is identically zero. The
joint PDF of y0 and y is then given as fy0 y(y0, y) =

δ(y0 − A0x) fy(y), in which fy(y) is the PDF of y and δ(τ ) is
the Dirac impulse function (with the properties:

∫
δ(τ )dτ =

1 and
∫

g(τ )δ(τ − v)dτ = g(v)). The MSE of a predic-
tor G(y) of y0 becomes then E ||y0 − G(y)||2 = ∫ ∫ ||y0 −
G(y)||2 fy0 y(y0, y)dy0dy = ∫ ||A0x − G(y)||2 fy(y)dy =
E ||A0x − G(y)||2, which is the MSE of G(y) as estimator
of A0x . Hence, if e0 is identically zero, minimizing the mean
squared prediction error is the same as minimizing the mean
squared estimation error.

The consequence of the above equivalence is that the
BLUP-result given in Eq. (8) can be seen as a generaliza-
tion of the Gauss–Markov theorem of best linear unbiased
estimation (BLUE). Indeed, if e0 is identically zero, then
Qy0t = 0, Qy0 y = 0 and Eq. (8) reduces to ŷ0 = A0 x̂ ,
which is the expression for the BLUE of E(y0) = A0x . The
BLUE-property of ŷ0 = A0 x̂ is a consequence of the min-
imum error variance property of the BLUP. The minimum
error variance of ê0 = y0 − ŷ0 becomes, since e0 is iden-
tically zero and therefore y0 = A0x is now nonrandom, a
minimum variance of ŷ0.

The fact that the BLUE is a special case of the BLUP,
implies that we have a similar maximum probability prop-
erty for the BLUE as the one given in Eq. (15) for the BLUP.

Corollary (BLUE’s maximum probability of bounded
error): Let y have a Gaussian distribution with first- and
second-order moments as given in Eqs. (1) and (2). Further,
let ŷ0 = A0 x̂ be the BLUE of y0 = A0x and let G(y) be any
linear unbiased estimator (LUE) of y0. Then

P(||y0 − ŷ0||2W ≤ r2) ≥ P(||y0 − G(y)||2W ≤ r2) (22)

for any W > 0 and any r ∈ R.

This result states that in the Gaussian case, given an y0-cen-
tred ellipsoid of arbitrary size and shape, the BLUE of y0 has
of all LUEs of y0, the highest probability of residing in this
ellipsoid. This is, of course, again a much stronger property
than the minimum variance property of the BLUE. Note, as
in case of the BLUP, that the above result can also be shown
to hold true for elliptically contoured distributions.

8 Summary and conclusions

The MMSE criterion is a popular criterion for devising best
predictors. Since one can minimize the MSE over different
classes of functions, there are different predictors that one
can call ‘best’. In the theory of the linear model, it is the
BLUP which is most often used, although sometimes under
different names. In the spatial and Earth science disciplines,
for instance, the BLUP is also known as least-squares col-
location or universal Kriging. The BLUP is the predictor
that minimizes the MSE within the class of linear unbiased
predictors (LUP).
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In Teunissen (2006) it was shown that for the linear model
other predictors exist that outperform the BLUP in the MMSE
sense. Examples are the best equivariant predictor (BEP) and
the best integer equivariant predictor (BIEP). The BIEP, for
instance, minimizes the MSE within the class of integer equi-
variant predictors. Since the class of LUPs is a subset of
the class of integer equivariant predictors, the MMSE of the
BIEP is never larger than that of the BLUP. An advantage of
the BLUP over the BIEP is that it only requires information
about the first and second order moments of the distribution,
whereas the complete distribution is needed for the BIEP. In
the theory of the linear model, however, the distributional
assumptions are often not restricted to the first and second
order moments. More often than not, the complete distri-
bution is assumed known (except for the scale, which is of
no consequence for computing the prediction), for instance,
to be able to apply hypothesis testing for model validation
purposes. Hence, if one really values the MMSE-property in
this case, one should know that the BLUP is not the ‘best’
predictor.

Does this mean that the BLUP can always be outper-
formed by other ‘best’ predictors? If one restricts attention
to the MMSE-property, the answer must be yes. However,
as we have shown in the present contribution, the BLUP has
also another optimality property which is different from its
MMSE-property. It was shown, for the linear model with
Gaussian (or elliptically contoured) distribution, that, given
an origin-centred ellipsoid of arbitrary size and shape, the
prediction error of the BLUP has of all LUP errors, the high-
est probability of residing in this ellipsoid. Thus in this case,
the BLUP has of all LUPs the highest probability of having
its prediction error bounded in an ellipsoidal sense. This is
a much stronger property than the MMSE-property, since it
is expressed directly in terms of the probability, rather then
only in the first and second order moments of the predictor.

The maximum probability property of the BLUP should
not be confused with the property of the maximum likelihood
solution of the posterior probability density function, which
unfortunately is often referred to as the maximum a posteri-
ori probability (MAP) solution. The principle of the MAP is
not to maximize the probability, but rather, just like the like-
lihood principle, to maximize a likelihood function, which
in case of random parameters is equivalent to maximizing a
conditional density, i.e. the derivative of probability.

It was shown that also the BLUE has a maximum prob-
ability property of bounded error. Based on the recognition
that the BLUE can be seen as a special case of the BLUP,
we obtained as a corollary that the Gaussian (or elliptically
contoured) estimation error of the BLUE has, of all LUEs,
the highest probability of residing in an arbitrary, but origin-
centred ellipsoid. From the maximum probability property of
the BLUP and the BLUE, we therefore draw the conclusion
that in case of a linear model with Gaussian (or elliptically

contoured) distribution, the BLUP and BLUE are the
preferred predictor and estimator, respectively, rather than
their competitors having a smaller MSE. This also implies
that in case of dealings with such models, the motivation for
using the BLUP or the BLUE should not entirely be based
anymore on their MMSE-property, as is done in the current
literature, but also on their maximum probability property of
bounded error.

Acknowledgments The author thanks Prof. Fernando Sanso for point-
ing out that the proof of the theorem admits the generalization as given
by Eq. (16) and he thanks an anonymous reviewer for the reference to
existing, albeit different, usage of the term maximal probability.
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