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Abstract: Computationally, when we solve for the stationary probabilities for a countable-

state Markov chain, the transition probability matrix of the Markov chain has to be truncated,

in some way, into a finite matrix. Different augmentation methods might be valid such that

the stationary probability distribution for the truncated Markov chain approaches that for the

countable Markov chain as the truncation size gets large. In this paper, we prove that the censored

(watched) Markov chain provides the best approximation in the sense that for a given truncation

size the sum of errors is the minimum and show, by examples, that the method of augmenting

the last column only is not always the best.
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1 Introduction

Approximating a countable-state Markov chain by using finite-state Markov chains is an

interesting and often a challenging topic, which has attracted many researchers’ atten-

tion. Computationally, when we solve for the stationary distribution, when it exists, of a

countable-state Markov chain, the transition probability matrix of the Markov chain has

to be truncated in some way into a finite matrix as a first step. We then compute the sta-

tionary distribution of this finite-state Markov chain as an approximation to that of the

countable-state one. We expect that as the truncation level (or size) increases to infinity,

the solution for the finite Markov chain would converge to that of the countable-state

Markov chain. While for many application problems the justification of the convergence

could be made by the physical meanings of the finite- and the countable-state Markov

chains, it is not always easy to formally justify this claim.

The study of approximating the stationary probabilities of an infinite Markov chain

by using finite Markov chains was initiated by Seneta [12] in 1967. Many up-to-date

results were obtained by him and several collaborators. Most of their results are included

in a paper by Gibson and Seneta [3]. Other references could be found therein and/or in

another paper [4] published in the same year by the same authors. Other researchers, in-

cluding Wolf [14], used some different approaches from that of Seneta et al.. For instance,

Heyman provided a probabilistic treatment of the problem in [7]. Later on, Grassmann

and Heyman [6] justified the convergence for infinite-state Markov chains with repeating

rows. All the above results are for approximating stationary distributions. Regarding

more general issues of approximating a countable-state Markov chain, see the book by

Freedman [2].

In this paper we are interested in only approximating stationary distributions of in-

finite Markov chains. Let P be the transition probability matrix of an infinite Markov

chain which has a unique stationary distribution, and let Pnw be the northwest corner of

P . Notice that Pnw is a sub-stochastic matrix. The procedure to make Pnw stochastic

by adding appropriate values to its entries is called augmentation. Whether or not the

stationary probabilities of the augmented Markov chain converge to that of the original

Markov chain as the size of the northwest corner matrix goes to infinity is not the cen-

tral topic in this paper. We are interested in determining which augmentation method

provides the best approximation when the convergence has been established. Numerical
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evidence often shows that the method to augment the last column only often provides the

best approximation. Gibson and Seneta seem to believe such a conclusion after numeri-

cally comparing five different augmentation methods for the imbedded Markov chain at

the service completion epochs of the M/M/1 queue. Based on available analytic results,

it is unknown which augmentation method is the best in the sense that the sum of abso-

lute errors is the minimum. Also, no comparison has been made between the method by

watching the Markov chain only when it is in a state belonging to the northwest corner

and other augmentation methods. Our main contributions here are: a) to analytically

show that for any given truncation level the censored Markov chain gives the best ap-

proximation in the sense that the sum of the absolute errors is the minimum; and b) to

show, by examples, that the method of augmenting the last column only is not always

the best.

2 The censored Markov chain

Censored Markov chains, also called watched Markov chains, were first considered by

Lévy [9, 10, 11]. Since then, censored Markov chains have been found very useful in

different aspects of study of Markov chains. The censoring operation or technique was

used by Kemeny, Snell and Knapp [8] to prove that every recurrent Markov chain has a

positive-valued regular measure unique up to multiplication by a scalar. It was also intro-

duced as a new technique to do approximations by Williams [13]. Recently, Grassmann

and Heyman [5, 6] used this technique to deal with the block elimination for transition

probability matrices of infinite Markov chains. Freedman used this operation to approxi-

mate countable Markov chains for the limiting behavior and also for more general issues.

Results were presented in his book [2]. In this section, after giving the definition, we

provide some basic properties of censored Markov chains. They are used to show that the

censoring is the best method to approximate an infinite Markov chain in the sense that

the error sum of the stationary probabilities is the minimum for any given truncation

level. In general, there is no easy way to compute the transition probability matrix of

the censored Markov chain from that of the original Markov chain, as commented by

Freedman (page 20 in [2]).

Since we are only interested in approximating the stationary probabilities of Markov

chains, we will not distinguish between the Markov chain itself and its transition prob-
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ability matrix. Let P be a countable-state Markov chain with the state space S =

{0, 1, 2, . . . . . .}. Let E be a subset of S. Let PE be the stochastic process whose nth

transition is the nth time of the Markov chain P being in the set E. In other words,

the sample paths of process PE are obtained from the sample paths of P by omitting all

parts in Ec, where Ec is the complement of E. Therefore, PE is the process obtained

by watching P only when in E, or by censoring P from Ec. A rigorous definition of

the censored process can be found on page 14 of [2]. The following lemma is essentially

Lemma 6-6 in [8]. The result in Lemma 2 is also stated in Grassmann and Heyman [5].

Lemma 1 Let P be the transition probability matrix of an arbitrary Markov chain par-

titioned according to subsets E and Ec:

P =
E

Ec

E Ec





T U

D Q



 . (1)

Then, the censored process is a Markov chain and its transition probability matrix is given

by

PE = T + UQ̂D (2)

with Q̂ =
∑∞

k=0 Qk.

Lemma 2 If the Markov chain P is irreducible, then so is the censored Markov chain.

If P is ergodic with stationary probabilities {πk}, then the stationary probabilities {πE
k }

of the censored Markov chain are given by

πE
k =

πk
∑

i∈E πi
, k ∈ E. (3)

Equation (2) usually gives us little help in computing PE from P . Only for some

special cases can PE be explicitly determined. This means that only for some simple

cases can UQ̂D be explicitly determined. One of such cases is given in Example 1. The

entries of UQ̂D are taboo probabilities with the taboo set E (see I.9 of Chung [1]), i.e., the

(i, j)th entry of UQ̂D is the probability, starting from the state i, of ever going to state

j under the restriction that none of the states in the taboo set E is visited in-between.

Example 1: Let E = {0, 1, . . . , K}. If P = (pij)i,j∈S is an upper Hessenberg matrix

(pij = 0 whenever i > j + 1), then the censoring operation is the same as that of the last
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column augmented only. This case includes the imbedded Markov chain of the M/G/1

queue as a special case. This result is also asserted by Gibson and Seneta (the last

sentence of section 5) [3].

3 The best augmentation

While augmenting the last column might be the best operation for many cases, it is not

difficult to construct examples where the augmentation of the last column only is not the

best. By using the results in Section 2, we show that the censored Markov chain does

best in the sense that it gives the smallest truncation error.

In the rest of the paper, for the censored Markov chain we always use E = {0, 1, 2, . . . , K}.

Let us consider an ergodic countable-state Markov chain P and let P (K) be the finite

Markov chain with the states in {0, 1, 2, . . .K}, which is obtained by some method of

augmenting the northwest corner Pnw of the transition probability matrix P . Denote the

stationary probabilities for P and P (K) by πk and π
(K)
k respectively. Define the l1 norm of

the errors of stationary probabilities between the countable Markov chain and the finite

Markov chain by

l1(K,∞) =
K
∑

k=0

|π
(K)
k − πk| +

∞
∑

k=K+1

πk. (4)

The following result will be used often in the comparison of different augmentation meth-

ods later in the paper.

Theorem 1 The error sum of the stationary probabilities between the countable Markov

chain and the augmented Markov chain is given by

l1(K,∞) = 2

(

1 −
K
∑

k=0

πk

)

+ 2
K
∑

k=0

πk>π
(K)
k

(

πk − π
(K)
k

)

(5)

= 2
K
∑

k=0

π
(K)
k

>πk

(

π
(K)
k − πk

)

. (6)

The proof is straight forward. Now we immediately have some corollaries.

Corollary 1 For a given truncation level K, the l1 norm l1(K,∞) of the errors is the

same and the minimum for all augmentation methods such that π
(K)
k ≥ πk for all k =
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0, 1, . . . , K. In this case, the minimum error sum is

l1(K,∞) = 2

(

1 −
K
∑

k=0

πk

)

. (7)

The proof is directly from (5) or (6).

Corollary 2 The censoring is an augmentation method such that the error sum l1(K,∞)

is the minimum.

The proof is from Lemma 2 and Corollary 2.

Corollary 3 For an ergodic Markov chain whose transition probability matrix is upper

Hessenberg, the method of only augmenting the last column kept in the northwest corner

is such that the error sum l1(K,∞) is the minimum.

In fact, in this case, the censoring operation and augmenting the last column only re-

sult the same transition probability matrix P (K) as we have already remarked in Example

1 in Section 2.

In Section 5 of [3], the imbedded Markov chain at the service completion epochs for

the M/M/1 queue was used for studying which augmentation method is the best. Based

on numerical comparisons among the error sums for five different augmentation methods,

Gibson and Seneta concluded that for a fixed transition probability matrix P and a fixed

truncation level K, the method of augmenting the last column only provides the best

approximation to the stationary probabilities πk of the countable Markov chain in the

sense that the l1 norm is the minimum. Even though the conclusion is true for this

specific example (a special case of Corollary 3), it is not the case in general. In fact, it

is not so difficult to provide an explicit expression for estimating the error sum for this

special example. Gibson and Seneta seemed to believe that this conclusion should also

be true in more general cases and remarked that further plausible arguments as to why

the method to augment the last column only should be the “best” augmentation may be

provided on account of P being stochastically monotone. Some arguments were provided

in another paper [4] of theirs, but it does not lead to the conclusion that the last column

augmented is the best approximation in the sense of l1 norm. What they proved is that
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if P is stochastically monotone, then for any j = 0, 1, . . .K,

0 ≤
j
∑

k=0

(

ν
(K)
k − πk

)

≤
j
∑

k=0

(

π
(K)
k − πk

)

,

where πk, ν
(K)
k and π

(K)
k are stationary probabilities of the original Markov chain, the

finite Markov chain by augmenting the last column only, and the finite Markov chain

obtained by any augmentation method, respectively. This result only tells us that the

stationary probability vector of the finite Markov chain by augmenting the last column

only is the minimum in the stochastic monotone sense, or that any partial sum of the

errors of the stationary probabilities is the minimum for the last column augmentation

method. We provide an example (Example 4) in the following to show that the method

of augmenting the last column only is not the best in the sense of l1 norm even when

stochastic monotonicity is satisfied.

Example 2: In this example, we show that a) augmenting the last column is not al-

ways the best and b) augmenting the first column is not always the worst either. Consider

the imbedded Markov chain of the D/M/1 queue with unit interarrival times and service

rate µ. In this case, the traffic intensity is ρ = 1/µ. The stationary probabilities πk for

the infinite-state Markov chain depend on only σ, the unique solution of x = e−µ(1−x)

inside the unit circle. There is no explicit expression for the stationary probabilities π
(K)
k

for the finite Markov chain by augmenting the last column only. In order to provide

correct numerical values, we used different ways to compute both πk and π
(K)
k . When

K = 2, for various values of µ tested: 1.25 ≤ µ ≤ 2.32, we always have π
(2)
1 < π1, which

means that the method of augmenting the last column only is not the best method in the

sense of the l1 norm. In fact, when K ≥ 3, we have not found any value of µ such that

the l1 norm of the errors is the minimum for the method of augmenting the last column

only. Notice that the transition probability matrix of the D/M/1 queue is stochastically

monotone, therefore the method of augmenting the last column is the best method in the

sense of stochastic monotonicity. The D/M/1 queue can also be served as an example to

show that the method of augmenting the first column only is not always the worst. For

example, when µ is not so large, say µ ≤ 2, the method to augmenting the first column

only is better than that of uniformly augmenting the last row of Pnw.

Another reasonable criterion for comparing different augmentation methods is the l∞
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norm defined by

l∞(K,∞) = max

{

max
0≤k≤K

|π
(K)
k − πk|, max

k≥K+1
πk

}

. (8)

According to the definition, the l∞ norm only compares the maximal error of the station-

ary probabilities. When the l1 norm is the same for two different augmenting methods

it makes much sense to further compare their l∞ norms in order to decide which one is

better. We give the following example to show that the method of augmenting the last

column only is not always the best either.

Example 3: Consider the imbedded Markov chain at the arrival epochs for the

M/M/1 queue with the arrival rate λ and the service rate µ. Without loss of generality,

assume λ + µ = 1. It is not difficult to see that the stationary probabilities for the

censored Markov chain are given by

π
(K)
k =

(1 − ρ)ρk

∑K
i=0 πi

=
ρk(1 − ρ)

1 − ρK+1
, k = 0, 1, . . .K (9)

with ρ = λ/µ. Also, it is not difficult to solve the stationary equations directly to give

the following expressions of the stationary probabilities ν
(K)
k for the augmented Markov

chain by augmenting the last column only.

ν
(K)
0 =

1 − ρ

1 − ρK+2

ν
(K)
k = ν

(K)
0 ρk, k = 1, 2, . . . , K − 1

ν
(K)
K =

1

µ
ν

(K)
0 ρK .

Notice that ν
(K)
k > πk for all k = 0, 1, . . . , K. So, the l1 norms for the censored Markov

chain and the Markov chain by augmenting the last column only are the same and given

by

l1(K,∞) = 2

(

1 −
K
∑

k=0

πk

)

= 2ρK+1. (10)

For the censored Markov chain,

l∞(K,∞) = π
(K)
0 − π0 =

ρK+1(1 − ρ)

1 − ρK+1

and for the Markov chain by augmenting the last column only,

l∞(K,∞) = ν
(K)
K − πK =

ρK+1(1 − ρ)(1 + ρK+1)

1 − ρK+2
.
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The comparison of these two maximal error tells us that for this example the maximal

error of the stationary probabilities for the censored Markov chain is smaller than that

for the Markov chain by augmenting the last column only. Specifically,

l∞ for censored

l∞ for last column augmented
=

1 − ρK+2

1 − ρ2K+2
< 1.

As the final remark, we emphasize that even though the censoring operation provides

the minimum l1 truncation error, the censoring augmentation or the transition matrix of

the censored Markov chain is usually difficult to compute. Augmenting the last column

only is always applicable.
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