Annales de l'institut Fourier

Yves Félix
 The center of a graded connected Lie algebra is a nice ideal

Annales de l'institut Fourier, tome 46, no 1 (1996), p. 263-278

http://www.numdam.org/item?id=AIF_1996__46_1_263_0
© Annales de l'institut Fourier, 1996, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CENTER OF A GRADED CONNECTED LIE ALGEBRA IS A NICE IDEAL

by Yves FÉLIX

In this text graded vector spaces and graded Lie algebras are always defined over the field $\mathbb{Q} ; \mathbb{L}(V)$ denotes the free graded Lie algebra on the graded connected vector space V. The notation $L \coprod L^{\prime}$ means the free product of L and L^{\prime} in the category of graded Lie algebras, $U L$ denotes the enveloping algebra of the Lie algebra L and $(U L)_{+}$denotes the canonical augmentation ideal of $U L$. The operator s is the usual suspension operator in the category of graded vector spaces, $(s V)_{n}=V_{n-1}$.

Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and α be a cycle of degree n in $\mathbb{L}(V)$. An important problem in differential homological algebra consists to compute the homology of the differential graded Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q} x), d), d(x)=\alpha$, and in particular the kernel and the cokernel of the induced map

$$
\varphi_{\alpha}: A=H(\mathbb{L}(V), d) \longrightarrow B=H(\mathbb{L}(V \oplus \mathbb{Q} x), d) .
$$

Clearly the homology of $(\mathbb{L}(V \oplus \mathbb{Q} x), d)$ and the map φ_{α} depend only on the class a of α, so that we can write φ_{a} instead of φ_{α}.

Definitions.

(i) An element a in the Lie algebra A is nice if the kernel of the map φ_{a} is the ideal generated by a.
(ii) An ideal I in the Lie algebra A is nice if, for every element a into I, the kernel of the $\operatorname{map} \varphi_{a}$ is contained in I.

Our first result reads

[^0] Math. classification: 55P62-17B70.

Theorem 1. - Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_{n}. If n is even and a is in the center, then
(1) the element a is nice,
(2) There is a split short exact sequence of graded Lie algebras:

$$
0 \rightarrow \mathbb{L}(W) \rightarrow B \rightarrow A /(a) \rightarrow 0
$$

with W a graded vector space isomorphic to $s^{n+1} A /(a)_{+}$.
In the case n is odd, the Whitehead bracket $[a, a]$ is zero since a is in the center, and thus the triple Whitehead bracket $\langle a, a, a\rangle$ is well defined. We first remark that $\langle a, a, a\rangle$ belongs also to the center. More generally

Proposition 1. - The Whitehead triple bracket $\langle\alpha, \beta, \gamma\rangle$ of three elements in the center belongs also to the center.

Theorem 2. - Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_{n}. If n is odd, a belongs to the center and $\langle a, a, a\rangle=0$, then
(1) the element a is nice,
(2) B contains an ideal isomorphic to $\mathbb{L}(W)$ with $W=s^{n+1} A /(a)_{+}$,
(3) the Lie algebra B admits a filtration such that the graded associated Lie algebra G is an extension

$$
0 \rightarrow \mathbb{L}(W) \amalg K \rightarrow G \rightarrow A /(a) \rightarrow 0,
$$

with $K=\mathbb{L}(\alpha, \beta) /([\alpha, \beta],[\alpha, \alpha]),|\alpha|=2 n+1,|\beta|=3 n+2$.

Theorem 3. - Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_{n}. If n is odd, a belongs to the center and $<a, a, a>\neq 0$, then
(1) the image of φ_{a} is $A /(a,<a, a, a>)$,
(2) B contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$
W=s^{n+1}(A /(a,<a, a, a>))_{+},
$$

(3) the Lie algebra B admits a filtration such that the graded associated Lie algebra G is an extension

$$
0 \rightarrow \mathbb{L}(W) \amalg(\gamma, \rho) \rightarrow G \rightarrow A /(a,<a, a, a>) \rightarrow 0,
$$

with (γ, ρ) an abelian Lie algebra on 2 generators γ and $\rho ;|\rho|=2 n+1$ and $|\gamma|=4 n+2$.

Corollary 1. - When the element a is in the center, then the kernel of φ_{a} is always contained in the center and its dimension is at most two. In particular the center is a nice ideal.

Corollary 2. - If $\operatorname{dim} A$ is at least 3 and if a is in the center, then B contains a free Lie algebra on at least 2 generators.
In all cases, B contains a free Lie algebra $\mathbb{L}(W)$ with W isomorphic to $(A /(a,<a, a, a>))_{+}$.

From those results on differential graded Lie algebras we deduce corresponding results for the rational homotopy Lie algebras of spaces.

Let X denote a finite type simply connected CW complex and Y the space obtained by attaching a cell to X along an element u in $\pi_{n+1}(X)$.

$$
Y=X \bigcup_{u} e^{n+2}
$$

The graded vector space $L_{X}=\pi_{*}(\Omega X) \otimes \mathbb{Q}$ together with the Whitehead product is then a graded Lie algebra. Moreover by the Milnor-Moore theorem the Hurewicz map induces an isomorphism of Hopf algebras $U \pi_{*}(\Omega X) \otimes \mathbb{Q} \xrightarrow{\cong} H_{*}(\Omega X ; \mathbb{Q})$.

Now some notations : we denote by Σ the isomorphism $\pi_{n}(\Omega X) \rightarrow$ $\pi_{n+1}(X)$ and we put $a=\Sigma^{-1}(u)$. For sake of simplicity, an element in $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ and its image in $H_{*}(\Omega X ; \mathbb{Q})$ will be denoted by the same letter.

Recall that the Quillen minimal model of the space X ([5], [9], [1]) is a differential graded Lie algebra $(\mathbb{L}(V), d)$, unique up to isomorphism, and equiped with natural isomorphisms
(i) $\quad V \cong s^{-1} H_{*}(X ; \mathbb{Q})$,
(ii) $\quad \theta_{X}: H(\mathbb{L}(V), d) \cong L_{X}$.

The differential d is an algebrization of the attaching map. More precisely, denote by α a cycle in $(\mathbb{L}(V), d)$ with $\theta_{X}([\alpha])=a$, then the differential graded Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q} x), d), d(x)=\alpha$ is a Quillen model of Y and the injection

$$
(\mathbb{L}(V), d) \longrightarrow(\mathbb{L}(V \oplus \mathbb{Q} x), d)
$$

is a Quillen model for the topological injection i of X into Y. In particular φ_{a} is the induced map $L_{X} \rightarrow L_{Y}$.

The injection $i: X \rightarrow Y$ induces a sequence of Hopf algebra morphisms

$$
H_{*}(\Omega X ; \mathbb{Q}) \xrightarrow{f} H_{*}(\Omega X ; \mathbb{Q}) /(a) \xrightarrow{g} H_{*}(\Omega Y ; \mathbb{Q})
$$

The attachment is called inert if $g \circ f$ is surjective (this is equivalent to the surjectivity of g), and is called nice if g is injective ([7]). Clearly the attachment is nice if the element a is a nice element in L_{X}.

The structure of the Lie algebra $L_{X}=\pi_{*}(\Omega X) \otimes \mathbb{Q}$, for X a space with finite Lusternik-Schnirelmann, has been at the origin of a lot of recent works (cf. [3], [2], [4]). In particular the radical of L_{X} (union of all solvable ideals) is finite dimensional and each ideal of the form $I_{1} \times \cdots I_{r}$ satisfies $r \leqslant$ LS cat X.

We deduce from Theorems 1,2 and 3 above the following results concerning attachment of a cell along an element in the center.

Theorem 4. - If n is even and a is in the center, then
(1) the attachment is nice,
(2) there is a split short exact sequence of graded Lie algebras :

$$
0 \rightarrow \mathbb{L}(W) \rightarrow L_{Y} \rightarrow L_{X} /(a) \rightarrow 0
$$

with W a graded vector space isomorphic to $s^{n+1}\left(H_{*}(\Omega X ; \mathbb{Q}) /(a)\right)_{+}$. The splitting is given by the natural map $L_{X} \rightarrow L_{Y}$.

Theorem 5. - If n is odd, a belongs to the center and $\langle a, a, a\rangle=0$, then
(1) the attachment is nice,
(2) L_{Y} contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$
W=s^{n+1}\left(H_{*}(\Omega X ; \mathbb{Q}) /(a)\right)_{+},
$$

(3) the Lie algebra L_{Y} admits a filtration such that the graded associated Lie algebra G is an extension

$$
0 \rightarrow \mathbb{L}(W) \amalg K \rightarrow G \rightarrow L_{X} /(a) \rightarrow 0
$$

with $K=\mathbb{L}(\alpha, \beta) /([\alpha, \beta],[\alpha, \alpha]),|\alpha|=2 n+1,|\beta|=3 n+2$.

Example 1. - Let $X=P^{\infty}(\mathbb{C})$ and $u: S^{2} \rightarrow P^{\infty}(\mathbb{C})$ be the canonical injection. Then $Y=X / S^{2}$ and its rational cohomology is $\mathbb{Q}\left[x_{4}, y_{6}\right] /\left(x_{4}^{3}-y_{6}^{2}\right)$. In this case the Lie algebra L_{Y} is isomorphic to K and the graded vector space W is zero.

Example 2. - Let $X=P^{3}(\mathbb{C})$ and $u: S^{2} \rightarrow P^{3}(\mathbb{C})$ be the canonical injection. Then $Y=X / S^{2} \cong S^{4} \vee S^{6}$. In this case W is the graded vector space generated by the brackets $\mathrm{ad}^{n}\left(i_{6}\right)\left(i_{4}\right), n \geqslant 1$, where i_{4} and i_{6} denote the canonical injections of the spheres S^{4} and S^{6} into Y.

Theorem 6. - If n is odd, a belongs to the center and $<a, a, a\rangle \neq 0$, then
(1) the image of L_{X} in L_{Y} is $L_{X} /(a,<a, a, a>)$,
(2) L_{Y} contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$
W=s^{n+1}\left(H_{*}(\Omega X ; \mathbb{Q}) /(a,<a, a, a>)\right)_{+} .
$$

(3) the Lie algebra L_{Y} admits a filtration such that the graded associated Lie algebra G is an extension

$$
0 \rightarrow \mathbb{L}(W) \amalg(\gamma, \rho) \rightarrow G \rightarrow L_{X} /(a,<a, a, a>) \rightarrow 0,
$$

with (γ, ρ) an abelian Lie algebra on 2 generators γ and $\rho ;|\rho|=2 n+1$ and $|\gamma|=4 n+2$.

Corollary 1^{\prime}. - When the element a is in the center, then the kernel of the map $L_{X} \rightarrow L_{Y}$ is always contained in the center and its dimension is at most two.

Corollary 2^{\prime}. - If $\operatorname{dim} L_{X}$ is at least 3 and if a is in the center, then L_{Y} contains a free Lie algebra on at least 2 generators.

Example 3. - Let X be either $S^{2 n+1} \times K(\mathbb{Z}, 2 n)$ or else $P^{n}(\mathbb{C})$, then the attachment of a cell of dimension $2 n+2$ along a nonzero element generates only one new rational homotopy class of degree $2 n+3$. The space Y has in fact the rational homotopy type either of $S^{2 n+3} \times K(\mathbb{Z}, 2 n)$ or else of $P^{n+1}(\mathbb{C})$. These are rationally the only situations where L_{X} has dimension two and the attachment does not generate a free Lie algebra.

Example 4. - Let Z be a simply connected finite CW complex not rationally contractible. Then for $n \geqslant 1$ the rational homotopy Lie algebra
L_{Y} of $Y=S^{2 n+1} \times Z /\left(S^{2 n+1} \times\{*\}\right)$ contains a free Lie algebra on at least two generators. It is enough to see that Y is obtained by attaching a cell along the sphere $S^{2 n+1}$ in $X=S^{2 n+1} \times Z$.

In all cases, L_{Y} contains a free Lie algebra $\mathbb{L}(W)$ with W isomorphic to $\left(H_{*}(\Omega X) \otimes \mathbb{Q} /(a,<a, a, a>)\right)_{+}$. The elements of W have the following topological description.

Let β be an element of degree $r-1$ in $L_{X} /(a,<a, a, a>)$ and $b=\Sigma \beta$. The Whitehead bracket

$$
S^{n+r} \xrightarrow{\left[i_{n+1}, i_{r}\right]} S^{n+1} \vee S^{r} \xrightarrow{u \vee b} X,
$$

extends to D^{n+r+1} because the element a is in the center. On the other hand in Y the map u extends to D^{n+2}, this gives the commutative diagram

$$
\begin{array}{ccccc}
D^{n+r+1} & \longrightarrow & D^{n+2} \vee S^{r} & \longrightarrow & Y \\
\uparrow & & \uparrow & & \uparrow \\
S^{n+r} & \xrightarrow{\left[i_{n+1}, i_{r}\right]} & S^{n+1} \vee S^{r} & \xrightarrow{u \vee b} & X
\end{array}
$$

These two extensions of the Whitehead product to D^{r+n+1} define an element $\varphi(\beta)$ in $\pi_{r+n+1}(Y) \otimes \mathbb{Q}$. Now for every element $\alpha=\alpha_{1} \ldots \alpha_{n}$ in $H_{+}(\Omega X ; \mathbb{Q}) /(a,<a, a, a>)$, with α_{i} in L_{X}, we define

$$
\varphi(\alpha)=\left[\alpha_{n},\left[\alpha_{n-1}, \ldots,\left[\alpha_{2}, \varphi\left(\alpha_{1}\right)\right] \ldots\right]\right.
$$

This follows directly from the construction of W given in section 1.
Proposition 2. - When $\left\{\beta_{i}\right\}$ runs along a basis of $H_{+}(\Omega X ; \mathbb{Q}) /(a,<$ $a, a, a>)$, the elements $\left\{\Sigma^{-1} \varphi\left(\beta_{i}\right)\right\}$ form a basis of a sub free Lie algebra of L_{Y}.

Corollary 1 means that the center of L_{X} is a nice ideal. We conjecture:
Conjecture. - Let X be a simply connected finite type CW complex with finite Lusternik-Schnirelmann category, then the radical of L_{X} is a nice ideal.

We now prove this conjecture in a very particular case.
Theorem 7. - If the ideal I generated by a has dimension two and is contained in $\left(L_{X}\right)_{\text {even }}$, then the element a is nice and L_{Y} is an extension of a free Lie algebra $\mathbb{L}(W)$ by L_{X} with $W \supset s^{n}\left(U\left(L_{X} / I\right)_{+}\right)$.

Example 5. - Let X be the geometric realization of the commutative differential graded algebra $(\wedge(x, c, y, z, t), d)$ with $d(x)=d(c)=0, d(y)=$
$x c, d(z)=y c, d(t)=x y z,|x|=|c|=3,|y|=5,|z|=7$, and $|t|=14$. We denote by u the element of $\pi_{3}(X)$ satisfying $\langle u, x\rangle=1$ and $\langle u, c\rangle=0$. The ideal generated by $a=\Sigma^{-1} u$ has dimension three and is concentrated in even degrees, but the element a is not nice.

The rest of the paper is concerned with the proof of Theorems $1,2,3$ and 7.

1. Proof of Theorem 1.

Denote by $(\mathbb{L}(V), d)$ and $(\mathbb{L}(V \oplus \mathbb{Q} x), d)$ free differential graded connected Lie algebras, $d(x)=\alpha,[\alpha]=a$.

By putting V in gradation 0 and x in gradation 1 , we make ($\mathbb{L}(V \oplus$ $\mathbb{Q} x), d$) into a filtered differential graded algebra. The term $\left(E^{1}, d^{1}\right)$ of the associated spectral sequence has the form

$$
\left(E^{1}, d^{1}\right)=(A \coprod \mathbb{L}(x), d), \quad A=H_{*}(\mathbb{L}(V), d)=L_{X}, \quad d(x)=a
$$

The ideal I generated by x is the free Lie algebra on the elements $\left[x, \beta_{i}\right]$, with $\left\{\beta_{i}\right\}$ a graded basis of $U A$ and where by definition, we have

$$
\begin{aligned}
{[x, 1] } & =x \\
{\left[x, \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right] } & \left.=\left[\ldots\left[x, \alpha_{1}\right], \alpha_{2}\right], \ldots \alpha_{n}\right], \quad \alpha_{i} \in L_{X} .
\end{aligned}
$$

Since a is in the center, if $\beta_{i} \in(U A)_{+}$, then $d\left(\left[x, \beta_{i}\right]\right)=0$. Therefore the ideal J generated by $[x, x]$ and the $\left[x, \beta_{i}\right], \beta_{i} \in(U A)_{+}$is a subdifferential graded Lie algebra. The ideal J is in fact the free Lie algebra on $[x, x]$ and the elements $\left[x, \beta_{i}\right]$ and $\left[x,\left[x, \beta_{i}\right]\right]$, with $\left\{\beta_{i}\right\}$ a basis of $(U A)_{+}$. A simple computation shows that

$$
\begin{aligned}
& d[x, x]=2[a, x] \\
& d\left[x, \beta_{i}\right]=0 \\
& d\left[x,\left[x, \beta_{i}\right]\right]=-\left[x, \beta_{i} a\right] .
\end{aligned}
$$

This shows that $H(J, d)$ is isomorphic to the free graded Lie algebra $\mathbb{L}(W)$ where W is the vector space formed by the elements $\left[x, \beta_{i}\right]$ with $\beta_{i} \in(U A /(a))_{+}$.

The short exact sequence $0 \rightarrow J \rightarrow A \coprod \mathbb{L}(x) \rightarrow A \ominus(x) \rightarrow 0$ yields thus a short exact sequence in homology

$$
0 \rightarrow \mathbb{L}(W) \rightarrow H(A \coprod \mathbb{L}(x)) \rightarrow A /(a) \rightarrow 0
$$

This implies that the term E^{2} is generated in degrees 0 and 1 . The spectral sequence degenerates thus at the E^{2} level : $E^{2}=E^{\infty}$.

Denote now by $u_{\beta_{i}}$ a class in $H(\mathbb{L}(V \oplus \mathbb{Q} x), d)$ whose representative in $E_{1, *}^{\infty}$ is $\left[x, \beta_{i}\right]$. The Lie algebra generated by the $u_{\beta_{i}}$ admits a filtration such that the graded associated Lie algebra is free. This Lie algebra is therefore free, and its quotient is $A /(a)$. This proves the theorem.

2. Proof of Proposition 1.

The elements α, β and γ are represented by cycles x, y and z in $(\mathbb{L}(V), d)$. Since the elements α, β and γ are in the center, there exist elements a, b and c in $\mathbb{L}(V)$ such that

$$
d(a)=[x, y], \quad d(b)=[y, z], \quad d(c)=[z, x] .
$$

The triple Whitehead product is then represented by the element

$$
\omega=(-1)^{|z y|}[c, y]+(-1)^{|x y|}[b, x]+(-1)^{|x z|}[a, z]
$$

We will show that the class of ω is central, i.e. for every cycle t the bracket $[\omega, t]$ is a boundary. First of all, since α, β and γ are in the center there exists elements x_{1}, y_{1} and z_{1} such that

$$
d\left(x_{1}\right)=[x, t], \quad d\left(y_{1}\right)=[y, t], \quad d\left(z_{1}\right)=[z, t] .
$$

We now easily check that the three following elements α_{1}, α_{2} and α_{3} are cycles:

$$
\begin{aligned}
& \alpha_{1}=(-1)^{|t x|+|t|}[t, c]+(-1)^{|x z|+|x|+1+|z t|}\left[x, z_{1}\right]+(-1)^{|z t|+|z|}\left[z, x_{1}\right] \\
& \alpha_{2}=(-1)^{|t|+|t z|}[t, b]+(-1)^{|z|+|z y|+1+|y t|}\left[z, y_{1}\right]+(-1)^{|y|+|y t|}\left[y, z_{1}\right] \\
& \alpha_{3}=(-1)^{|t|+|t y|}[t, a]+(-1)^{|y|+|t y|+1+|x t|}\left[y, x_{1}\right]+(-1)^{|x|+|x t|}\left[x, y_{1}\right] .
\end{aligned}
$$

We deduce elements β_{1}, β_{2} and β_{3} satisfying

$$
d\left(\beta_{1}\right)=\left[\alpha_{1}, y\right], \quad d\left(\beta_{2}\right)=\left[\alpha_{2}, x\right], \quad d\left(\beta_{3}\right)=\left[\alpha_{3}, z\right] .
$$

Now we verify that $[\omega, t]$ is the boundary of

$$
\begin{aligned}
& (-1)^{|z y|+|c t|+|y c|+1}\left[y_{1}, c\right]+(-1)^{|y c|+|b t|+|b x|+1}\left[x_{1}, b\right] \\
& +(-1)^{|x z|+|a z|+|a t|+1}\left[z_{1}, a\right]+(-1)^{1+|t x|+|t y|+|x y|} \beta_{2} \\
& +(-1)^{1+|y z|+|t y|+|t z|} \beta_{1}+(-1)^{1+|t x|+|t z|+|x z|} \beta_{3} .
\end{aligned}
$$

3. Proof of Theorems 2 and 3.

We filter the Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q} x), d)$ by putting V in gradation 0 and x in gradation 1 . We obtain a spectral sequence $E_{*, *}^{r}$. We will first compute the term $\left(E_{*, *}^{1}, d^{1}\right)$ and its homology E^{2}. We will see that E^{2} is generated only in filtration degrees 0,1 and 2 . The differential d^{2} is thus defined by its value on $E_{2, *}^{2}$. Under the hypothesis of Theorem 2, we show that $d^{2}=0$ and that the spectral sequence collapses at the E^{2}-level. Under the hypothesis of Theorem 3, we show that the image of $d^{2}: E_{2, *}^{2} \rightarrow E_{0, *}^{2}$ has dimension 1 and that a basis is given by the class of the Whitehead bracket $\langle a, a, a\rangle$. We will compute explicitely the term $E_{*, *}^{3}$. This term is generated only in filtration degrees 0 and 1 , so that the spectral sequence collapses at the E^{3}-level in that case.

3.1. Description of (E^{1}, d^{1}).

The term (E^{1}, d^{1}) has the form

$$
\left(E^{1}, d^{1}\right)=(A \coprod \mathbb{L}(x), d), \quad A=H_{*}(\mathbb{L}(V), d)=L_{X}, \quad d(x)=a
$$

We denote by I the ideal generated by x,

$$
I=\mathbb{L}\left(\left[x, \beta_{i}\right], \text { with }\left\{\beta_{i}\right\} \text { a basis of } U A\right),
$$

and by J the ideal of I generated by the $\left[x, \beta_{i}\right]$ with β_{i} in $(U A)_{+}$.

$$
J=\mathbb{L}\left(\left[x,\left[x, \cdots\left[x, \beta_{i}\right] \cdots\right], \text { with }\left\{\beta_{i}\right\} \text { a basis of }(U A)_{+}\right)\right.
$$

For sake of simplicity we introduce the notation

$$
\varphi_{1}(\beta)=[x, \beta], \quad \varphi_{n}(\beta)=\left[x, \varphi_{n-1}(\beta)\right], n \geqslant 2 .
$$

Lemma 1.
(1) $d\left(\varphi_{1}(\beta)\right)=0$ for $\beta \in(U A)_{+}$.
(2) $\left[a, \varphi_{n}(\beta)\right]={ }_{\left(J^{2}\right)} \quad-\varphi_{n}(a \beta), n \geqslant 1$.
(3) $d\left(\varphi_{n}(\beta)\right)={ }_{\left(J^{2}\right)} \quad-(n-1) \varphi_{n-1}(a \beta), n \geqslant 2$.

In the above formulas $=\left(J^{2}\right)$ means equality modulo decomposable elements in the Lie algebra J.

Proof.
(1) $d \varphi_{1}(\beta)=d[x, \beta]=[a, \beta]=0$.
(2) The Jacobi identity shows that $\left[a, \varphi_{1}(\beta)\right]=[a,[x, \beta]]=-[[x, a], \beta]$ $=-[x, a \beta]$. By induction we deduce $\left[a, \varphi_{n}(\beta)\right]={ }_{\left(J^{2}\right)}\left[x,\left[a, \varphi_{n-1}(\beta)\right]\right]=$ $-\varphi_{n}(a \beta)$.
(3) $\left.d \varphi_{n}(\beta)\right)=\left[a, \varphi_{n-1}(\beta)\right]+\left[x, d \varphi_{n-1}(\beta)\right]={ }_{\left(J^{2}\right)}-(n-1) \varphi_{n-1}(a \beta)$.

Lemma 2.

(1) $d \varphi_{1}(a)=0, d \varphi_{2}(a)=0$
(2) $d \varphi_{n}(a) \in \mathbb{L}\left(\varphi_{1}(a), \cdots \varphi_{n-2}(a)\right)$
(3) $d \varphi_{n}(a)+\alpha_{n}\left[\varphi_{1}(a), \varphi_{n-2}(a)\right]$ is a decomposable element in $\mathbb{L}\left(\varphi_{2}(a)\right.$, $\ldots, \varphi_{n-3}(a)$), for $n \geqslant 3$, with $\alpha_{3}=1$ and for $n \geqslant 4, \alpha_{n}=5+$ $\frac{(n+3)(n-4)}{2}$.

Proof. - We first check that $\left[a, \varphi_{1}(a)\right]=0$ and that

$$
\left[a, \varphi_{2}(a)\right]=-\left[\varphi_{1}(a), \varphi_{1}(a)\right] .
$$

Now, using Jacobi identity we find that

$$
\left[a, \varphi_{n}(a)\right]=-\sum_{p=1}^{n-1}\binom{n-1}{p}\left[\varphi_{p}(a), \varphi_{n-p}(a)\right]
$$

Using once again Jacobi identity we find

$$
\left[x,\left[\varphi_{n}(a), \varphi_{m}(a)\right]\right]=\left[\varphi_{n+1}(a), \varphi_{m}(a)\right]+\left[\varphi_{n}(a), \varphi_{m+1}(a)\right] .
$$

The derivation formula valid for $n \geqslant 2$

$$
d \varphi_{n+1}(a)=\left[a, \varphi_{n}(a)\right]+\left[x, d \varphi_{n}(a)\right]
$$

gives now point (3) of the lemma.

3.2. Computation of $E^{2}=H\left(E^{1}, d^{1}\right)$.

Lemma 3. - The homology $H\left(\mathbb{L}\left(\varphi_{n}(a), n \geqslant 1\right), d\right)$ is the quotient of the free Lie algebra $\mathbb{L}\left(\varphi_{1}(a), \varphi_{2}(a)\right)$ by the ideal generated by the relations $\left[\varphi_{1}(a), \varphi_{1}(a)\right]$ and $\left[\varphi_{1}(a), \varphi_{2}(a)\right]$.

Proof. - Since the differential d is purely quadratic, the graded Lie algebra $\left(\mathbb{L}\left(\varphi_{n}(a), n \geqslant 1\right), d\right)$ represents a formal space Z with rational cohomology $H^{*}(Z ; \mathbb{Q})$ isomorphic to the dual of the suspension of the graded vector space generated by the $\varphi_{n}(a), n \geqslant 1$.

The rational cup product in $H^{*}(Z ; \mathbb{Q})$ is given by the dual of the differential. This means that $H^{*}(Z ; \mathbb{Q})$ is generated by elements u_{1} and u_{2} defined by $\left\langle u_{i}, s \varphi_{j}(a)\right\rangle=1$ if $i=j$ and 0 otherwise. The description of $d\left(\varphi_{5}(a)\right)$ yields the relation $u_{1}^{3}=\frac{9}{8} u_{2}^{2}$. Now since the Poincaré series of $H^{*}(Z ; \mathbb{Q})$ and $\mathbb{Q}\left[u_{1}, u_{2}\right] /\left(u_{1}^{3}-\frac{9}{8} u_{2}^{2}\right)$ are both equal to $\frac{1}{1-t^{n+1}}-t^{n+1}$, there is no other relation. Therefore

$$
H^{*}(Z ; \mathbb{Q}) \cong \mathbb{Q}\left[u_{1}, u_{2}\right] /\left(u_{1}^{3}-\frac{9}{8} u_{2}^{2}\right)
$$

The Lie algebra $H\left(\mathbb{L}\left(\varphi_{n}(a), n \geqslant 1\right), d\right)$ is thus isomorphic to the rational homotopy Lie algebra L_{Z}; its dimension is three and a basis is given by the elements $\varphi_{1}(a), \varphi_{2}(a)$ and $\left[\varphi_{2}(a), \varphi_{2}(a)\right]$. This implies the result.

The differential ideal J is thus the free product of two differential ideals

$$
\begin{aligned}
J=\mathbb{L}\left(\left(\varphi_{n}(a)\right), n \geqslant 1\right) \quad \coprod \quad \mathbb{L}\left(\left(\varphi_{n}\left(\beta_{i}\right), \varphi_{n}\left(a \beta_{i}\right), n \geqslant 1\right.\right. \\
\text { with } \left.\left\{\beta_{i}\right\} \text { a basis of }(U A / a)_{+}\right) .
\end{aligned}
$$

Each factor is stable for the differential. Therefore

$$
H(J)=\frac{\mathbb{L}\left(\varphi_{1}(a), \varphi_{2}(a)\right)}{\left(\left[\varphi_{1}(a), \varphi_{1}(a)\right],\left[\varphi_{1}(a), \varphi_{2}(a)\right]\right)} \quad \coprod \quad \mathbb{L}\left(\left(\varphi_{1}\left(\beta_{i}\right)\right)\right.
$$

$$
\text { with } \left.\left\{\beta_{i}\right\} \text { a basis of }(U A / a)_{+}\right)
$$

The short exact sequence of Lie algebras

$$
0 \rightarrow J \rightarrow A \coprod \mathbb{L}(x) \rightarrow A \oplus \mathbb{Q} x \rightarrow 0
$$

closes the description of the term E^{2} of the spectral sequence
Corollary. - The term E^{2} satisfies $E_{0, *}^{2}=A /(a)$, and $E_{+, *}^{2}=$ $H(J)$. In particular E^{2} is generated in filtration degrees 0,1 and 2.

3.3. Description of the differential d^{2}.

Recall that a is in the center. The element $[\alpha, \alpha]$ is thus a boundary : there exists some element b with $d(b)=[\alpha, \alpha]$. Then the element $[b, \alpha]$ is also a cycle and its homology class is the triple Whitehead bracket $\langle a, a, a\rangle$.

Lemma 4. - Denote by $\left[\varphi_{2}(\alpha)\right]$ the class of $\varphi_{2}(\alpha)$ in the E^{2}-term of the spectral sequence. We then have

$$
d^{2}\left(\left[\varphi_{2}(a)\right]\right)=-\frac{3}{2}\langle[\alpha, b]\rangle
$$

where $\langle--\rangle$ means the class of a cycle in the E^{2} term.
Proof. - We easily verify that in the differential Lie algebra ($\mathbb{L}(V \oplus$ $\mathbb{Q} x), d)$, we have

$$
d\left(\varphi_{2}(\alpha)-\frac{3}{2}[x, b]\right)=-\frac{3}{2}[\alpha, b] .
$$

Since $[x, b]$ is in filtration degree 1 , and $[\alpha, b]$ in filtration degree 0 , this gives the result by definition of the differential d^{2}.

3.4. End of the proof of Theorem 2.

If $\langle[b, \alpha]\rangle=0$, then $d^{2}=0$, the spectral sequence degenerates at the E^{2} level and Theorem 2 is proved.

3.5. Computation of the term $E_{*, *}^{3}$.

Henceforth, we suppose $\langle[b, \alpha]\rangle \neq 0$. A simple computation using Jacobi identity gives the following identity.

Lemma 5. - $d^{2}\left(\left[\varphi_{2}(a), \varphi_{2}(a)\right]\right)=3\left[\varphi_{1}(a), \varphi_{1}(\langle[\alpha, b]\rangle)\right]$.
Let $\left\{\beta_{i}\right\}, i \in I$, denote a basis of $(U A / a)_{+}$such that $\langle[\alpha, b]\rangle=$ $\beta_{i_{0}}$ for some index i_{0}. The elements $\varphi_{1}(a)$ and $\left[\varphi_{2}(a), \varphi_{2}(a)\right]$ together with the elements $\varphi_{1}\left(\beta_{i}\right)$ generate an ideal M in the graded Lie algebra $E_{+, *}^{2}$. The Lie algebra M is generated by the elements $\varphi_{1}\left(\beta_{i}\right)$, $\left[\varphi_{2}(a), \varphi_{1}\left(\beta_{i}\right)\right],\left[\varphi_{2}(a), \varphi_{2}(a)\right]$ and $\varphi_{1}(a)$ and satisfies the two relations $\left[\varphi_{1}(a), \varphi_{1}(a)\right]=0$ and $\left[\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right]=0$. Denote by N the graded

Lie algebra
$N=\mathbb{L}\left(\varphi_{1}\left(\beta_{i}\right),\left[\varphi_{2}(a), \varphi_{1}\left(\beta_{i}\right)\right]\right) \quad \coprod \frac{\mathbb{L}\left(\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right)}{\left(\left[\varphi_{1}(a), \varphi_{1}(a)\right],\left[\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right]\right)}$.
Since M and N have the same Poincaré series they coincide. Therefore as a Lie algebra, M can be written
$M=\mathbb{L}\left(\varphi_{1}\left(\beta_{i}\right),\left[\varphi_{2}(a), \varphi_{1}\left(\beta_{i}\right)\right]\right) \coprod \frac{\mathbb{L}\left(\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right)}{\left(\left[\varphi_{1}(a), \varphi_{1}(a)\right],\left[\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right]\right)}$.

The equation

$$
d^{2}\left[\varphi_{2}(a), \varphi_{1}\left(\beta_{i}\right)\right]=\frac{3}{2} \varphi_{1}\left(\beta_{i}[a, b]\right)
$$

shows that the Lie algebra M decomposes into the free product of three differential graded Lie algebras, the first one being acyclic :
$M=\mathbb{L}\left(\varphi_{1}\left(\beta_{i} \cdot\langle[\alpha, b]\rangle\right),\left[\varphi_{2}(a), \varphi_{1}\left(\beta_{i}\right)\right], i \in I\right) \coprod \mathbb{L}\left(\varphi_{1}\left(\beta_{i}\right), i \in I \backslash\left\{i_{0}\right\}\right) \coprod K$,

$$
K=\mathbb{L}\left(\varphi_{1}(\langle[\alpha, b]\rangle) \coprod \frac{\mathbb{L}\left(\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right)}{\left(\left[\left[\varphi_{2}(a), \varphi_{2}(a)\right], \varphi_{1}(a)\right],\left[\varphi_{1}(a), \varphi_{1}(a)\right]\right)}\right.
$$

We thus have

$$
H(M)=\mathbb{L}\left(\varphi_{1}\left(\beta_{i}\right), i \in I \backslash\left\{i_{0}\right\}\right) \coprod H(K)
$$

To compute the homology of K we put $t=\varphi_{1}\langle[\alpha, b]\rangle, y=\varphi_{1}(a)$ and $z=\left[\varphi_{2}(a), \varphi_{2}(a)\right]$.

Lemma 6. - Let $(\mathcal{L}, d)=(\mathbb{L}(y, z, t) /([y, z],[y, y]), d)$ be a differential graded Lie algebra with t and z in $\mathcal{L}_{\text {even }}, y$ in $\mathcal{L}_{\text {odd }}$, and where the differential d is defined by $d(t)=d(y)=0$ and $d(z)=[t, y]$. Then $H(\mathcal{L}, d)$ is a \mathbb{Q}-vector space of dimension two generated by the classes of t and y.

Proof. - Denote by R the ideal generated by t. As a Lie algebra R is the free Lie algebra generated by $t, w=[t, y]$, the elements $u_{n}=a d^{n}(z)(t)$, for $n \geqslant 1$ and the elements $w_{n}=a d^{n}(z)[t, y]$, for $n \geqslant 1$.

Using the Jacobi identity, we get the following sequence of identities:

$$
\left\{\begin{array}{l}
d(t)=0 \\
d(w)=0 \\
d\left(u_{1}\right)=[t, w] \\
d\left(u_{2}\right)=2\left[u_{1}, w\right]-\left[w_{1}, t\right] \\
\ldots \\
d\left(u_{n}\right)=n\left[u_{n-1}, w\right], \quad \text { modulo } \mathbb{L}\left(u_{1}, \ldots u_{n-2}, t, w_{i}\right) \\
d\left(w_{1}\right)=-[w, w] \\
d\left(w_{2}\right)=-3\left[w_{1}, w\right] \\
\cdots \\
d\left(w_{n}\right)=-(n+1)\left[w_{n-1}, w\right], \quad \operatorname{modulo} \mathbb{L}\left(w_{1}, \ldots w_{n-2}\right)
\end{array}\right.
$$

This shows that the cohomology of the cochain algebra on R is $\mathbb{Q}\left[w^{v}\right] \otimes \wedge\left(t^{v}\right)$, with w^{v} and $t^{v} 1$-cochains satisfying $\left\langle w^{v}, w\right\rangle=1$ and $\left\langle t^{v}, t\right\rangle=1$. The interpretation of $H(R, d)$ as the dual of the vector space of indecomposable elements of the Sullivan minimal model of $\mathcal{C}^{*}(R)$ shows that $H(R, d) \cong \mathbb{Q} w \oplus \mathbb{Q} t$.

The examination of the short exact sequence of differential complexes

$$
0 \rightarrow(R, d) \rightarrow(\mathcal{L}, d) \rightarrow(\mathbb{Q} y \oplus \mathbb{Q} z, 0) \rightarrow 0
$$

shows that $H(\mathcal{L}, d) \cong \mathbb{Q} t \oplus \mathbb{Q} y$.
This shows that $H(M)$ is isomorphic to the free product of $\mathbb{L}\left(\varphi_{1}\left(\beta_{i}\right), i \in\right.$ $I \backslash\left\{i_{0}\right\}$) with the abelian Lie algebra on the two elements $\varphi_{1}(a)$ and $\varphi_{1}(\langle[\alpha, b]\rangle)$.

3.6. End of the proof of Theorem 3.

From the short exact sequence of chain complexes

$$
0 \rightarrow M \rightarrow E^{2} \rightarrow E_{0, *}^{2} \oplus \varphi_{2}(a) \mathbb{Q} \rightarrow 0
$$

we deduce the isomorphism of graded vector spaces

$$
E^{3}=H\left(E^{2}, d^{2}\right) \cong H(M) \oplus A /(a,\langle[\alpha, b]\rangle)
$$

Since E^{3} is generated by elements in gradation 0 and 1 , the spectral sequence degenerates at the term $E^{3}, E^{3}=E^{\infty}$. This closes the proof of Theorem 3.

4. Proof of Theorem 7.

We suppose that the ideal generated by a is composed of a and $b=[a, c]$. We choose an ordered basis $\left\{u_{i}\right\}, i=1, \ldots$ of L_{X} with $u_{1}=c$, $u_{2}=a$ and $u_{3}=b$. We consider the set of monomials of $U L_{X}$ of the form $\beta_{i}=u_{i_{1}} u_{i_{2}} \ldots u_{i_{n}}$ with $i_{n} \leqslant i_{n-1} \leqslant \ldots \leqslant i_{2} \leqslant i_{1}$ and $i_{j} \neq i_{j+1}$ when the degree of u_{j} is odd. This set of monomials forms a basis of $U L_{X}$.

The ideal generated by x in $L_{X} \coprod \mathbb{L}(x)$ is then the free Lie algebra on the elements $\left[x, \beta_{i}\right]$. For sake of simplicity, we denote $x^{\prime}=[x, c]$.

In particular the ideal J generated by the elements $[x, x],\left[x^{\prime}, x^{\prime}\right]$ and the $\left[x, \beta_{i}\right]$ for $\beta_{i} \notin\{1, c\}$ is a differential sub Lie algebra that is a free Lie algebra on two types of elements:

First type: $\quad[x, x],\left[x, x^{\prime}\right],\left[x^{\prime}, x^{\prime}\right],\left[x^{\prime},\left[x, x^{\prime}\right]\right],\left[x^{\prime},[x, x]\right]$
Second type: $\quad\left[x, \beta_{i}\right],\left[x,\left[x, \beta_{i}\right]\right],\left[x^{\prime},\left[x, \beta_{i}\right]\right],\left[x^{\prime},\left[x,\left[x, \beta_{i}\right]\right]\right], \quad \beta_{i} \neq 1, c$.
We have

$$
\begin{aligned}
& d([x, x])=-2[x, a] \\
& d\left(\left[x^{\prime}, x^{\prime}\right]\right)=-2[x, c b] \\
& d\left(\left[x, x^{\prime}\right]\right)=-[x, c a]-[x, b] \\
& d\left(\left[x^{\prime},[x, x]\right]\right)=-2[x,[x, b]]+2\left[x^{\prime},[x, a]\right] \\
& d\left(\left[x, \beta_{i}\right]\right)=0 \\
& d\left(\left[x,\left[x, \beta_{i}\right]\right]\right)=-\left[x, \beta_{i} a\right] \\
& d\left(\left[x^{\prime},\left[x, \beta_{i}\right]\right]\right)=-\left[x, \beta_{i} b\right] \\
& d\left(\left[x^{\prime},\left[x,\left[x, \beta_{i}\right]\right]\right]\right)=-\left[x,\left[x, \beta_{i} b\right]\right]+\left[x^{\prime},\left[x, \beta_{i} a\right]\right] \text { modulo decomposable }
\end{aligned}
$$ elements.

Looking at the linear part of the differential we see directly that $H(J)$ is isomorphic to the free Lie algebra on the element $[x, c a]$ and the elements $\left[x, \beta_{i}\right]$ with β_{i} a non empty word in the variables u_{j} different of a and b.

Example 6. - Let X be the total space of the fibration with fibre S^{7} and base $S^{3} \times S^{5}$ whose Sullivan minimal model is $(\wedge(x, y, z), d)$, $d(x)=d(y)=0, d(z)=x y,|x|=3,|y|=5$ and $|z|=7$. If we attach a cell along the sphere S^{3} we obtain the space $Y=\left(S^{5} \times S^{10}\right) \vee S^{12}$.

BIBLIOGRAPHY

[1] H.J. BAUES and J.-M. LEMAIRE, Minimal models in homotopy theory, Math. Ann., 225 (1977), 219-242.
[2] Y. FÉliX, S. HALPERIN, C. JACOBSSON, C. LÖFWALL and J.-C. ThOMAS, The radical of the homotopy Lie algebra, Amer. Journal of Math., 110 (1988), 301-322.
[3] Y. FÉLiX, S. HALPERIN, J.-M. LEMAIRE and J.-C. Thomas, Mod p loop space homology, Inventiones Math., 95 (1989), 247-262.
[4] Y. FÉLiX, S. HALPERIN and J.-C. THOMAS, Elliptic spaces II, Enseignement Mathématique, 39 (1993), 25-32.
[5] S. HALPERIN, Lectures on minimal models, Mémoire de la Société Mathématique de France 9/10 (1983).
[6] S. HALPERIN and J.-M. LEMAIRE, Suites inertes dans les algèbres de Lie graduées («Autopsie d'un meurtre II»), Math. Scand., 61 (1987), 39-67.
[7] K. HESS and J.-M. LEmAIRE, Nice and lazy cell attachments, Prépublication Nice, 1995.
[8] J.-M. LEMAIRE, «Autopsie d'un meurtre» dans l'homologie d'une algèbre de chaînes, Ann. Scient. Ecole Norm. Sup., 11 (1978), 93-100.
[9] D. QuILLEN, Rational homotopy theory, Annals of Math., 90 (1969), 205-295.

Manuscrit reçu le 3 avril 1995, accepté le 6 septembre 1995.

Yves FÉLIX,
Institut de Mathématique
2, Chemin du Cyclotron 1348 Louvain-La-Neuve (Belgique).
felix@agel.ucl.ac.be

[^0]: Key words: Differential graded Lie algebra - Inerty - Rational homotopy theory.

