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ABSTRACT CDFRFT of x[n]=e/* 005°n” o, alpha=102°

The basis functions for the fractional Fourier transform are
chirp signals where a precise relationship between the frac-
tional parameter and the chirp angle can be established.
The recently introduced centered discrete fractional Fourier
transform, based on the Grbaum commuting matrix, has
basis functions that have a sigmoidal instantaneous fre-
quency and produces a transform that is approximately an
impulse for discrete chirps. However, no such precise rela-
tion between the fractional parameter and the chirp rate of
the basis functions exists in the discrete case. In this pa-
per, we study the relationship between the chirp rate and
the fractional parameter in the discrete case and specifi-
cally look at two approximate expressions that relate the Fig. 1. Concentrating a chirp: CDFRFT with = 102°
chirp rate and the angle for which one obtains a impulse—compared with the CDFT of the signal (dotted lines).
like transform. We study the efficacy of these estimates by
applying them to the analysis of monocomponent and two
component chirp signals.
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exists no exact relation between the chirp rate of a signal
and the angle of the transform. In this paper, we first demon-
1. INTRODUCTION strate that the CDFRFT has the capability of concentrating
the energy of a linear chirp in a few transform coefficients
for a specific angle. We then present two approximate em-
pirical expressions relating the chirp rate to the angle that
produces an impulse-like transform and evaluate the effi-
cacy of these expressions by applying them to the analysis
of monocomponent and two component chirp signals.

The basis functions of the kernel of the continudtes-

tional Fourier transform(FRFT) are chirp signals, where a

closed-form expression relating the angle of the transform

and the chirp rate of the signal whose transform is a delta

function exists. For most of the discrete versions of the

fractional transform [1, 2, 3], however, this is not the case

because these transforms are derived from the eigenvalue—

eigenvector decomposition of some version of digcrete 2. THE CENTERED DFRFT

Fourier transform(DFT), and there is no closed form for

the elements of the resulting matrices. A discrete FRFT thatWe define the CDFRFT for parameteas

is based on a centered version of the DFT (CDFRFT) was

considered in [5, 6] and its properties were studied in [6]. A, =V A2/ Vi, Q)

Specifically it was shown that the basis functions of the CD-

FRFT contained both amplitude and frequency modulation whereV  is the matrix of orthogonal eigenvectors obtained

and that theénstantaneous frequendiF) of the basis func-  from the Giinbaum [5] commuting matriX. The eigenvec-

tions are sigmoidal. However, for the discrete case, theretors are in descending order with respect to its correspond-
T This author is also with: Universidad Aarioma Metropolitana Az- Ing elgenvalue inl', that is, the first column oV'r corre-

capotzalco, Departamento de Eléctica, Mexico, DF 02200, NEXICO, sponds to t_he eigenvector With larger eigenvalAé‘_l/’T_ is
Tel: +52 55 5318-9034 diagonal with elements;, = e=7%® 0 < k < N — 1. With
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thls substltutlon the deflnltlon becomes 0,5RELATION BETWEEN CHIRI‘:’ RATE A‘ND ALPHA FOR N= 128

- Computed ‘
0.4 — mtan(alpha-1v2)/128

N-1
e Iy v (2)
k=0

0.3r
0.2r

0.1r

This definition assigns the eigenvectors via the ordering of

the eigenvalues o' and assigns the eigenvector with

sign changes to the eigenvaldg, = ¢~7™ and this is

the same correspondence between the continuous FRFT and 031

Hermite—Gauss functions. Itis specifically instructive to ob- -o4r]

serve that the basis functions of the CDFRFT, i.e., the rows 0% 05 1 15 2 25 s

of the CDFRFT matrix for any givea are not complex lin- ALenA

ear chirps with constant amplitude and chirp rate. This frac-

tional transform becomes identity far= 0°, where the ba-

sis functions are shifted delta functions. ko 90° it be-

comes the CDFT, whose basis functions are complex expo-

nentials of constant frequency and amplitude [1]. Fig. 2(a)

describes this transformation for a particular basis vector for wherewy,, is the k-th element ofp-th eigenvector . Multi-

angles from zero to 180 It has also been shown in [6] that ~ Plying A, by the signalz[n] we obtain the transform:

the instantaneous frequency of the basis functions for inter- N1

mediate angles is sigmoidal rather than linear as described a

in Fig. 2(b) forae = 5°. The frequency goes from to Xalk] Z Z Okptnpe @)

7 in all rows and the transition is very sharp. As the an-

gle increases, the changes in frequency are much smalleand after rearranging the two sums we obtain:

as it shown in Fig. 2(c) forv = 85° where the slope of the N1

curves is very small and the frequency of each row is almost —jpa

constant. Z Ukp Z nJunpe ™7
To understand the ability of the CDFRFT to concentrate

a chirp signal in a few transform coefficients, let us look If we use a discrete set of angles given by

at the complex signat[n] = i%-0057" with 0 < n < 127,

that has a constant chirp rate. Trial and error determines that o= oy =

« = 102° produces a good concentration in the transform.

Fig. 1 shows the result compared with the dotted lines thatwe obtain

are the CDFT4 = 90°) of the same signal. We observe that N—

the transform witho = 102° produces a sharp peak whose

smallest and largest components occur at the frequencies of

0.6136 and 0.6627 with average frequency 0.645. From the

results of the example, we can observe that: (a) we can conDefining z; [p] as

centrate a linear chirp in a few transform coefficients with

the CDFRFT, (b) the concentration occurs close to the aver-

age frequency.
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Fig. 3. Relation between chirp rate and angle for= 128.
The solid line corresponds to the approximation in Eq. (10)

n=0
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z[p] = vkp z[n]vnyp, (8

we observe that the transform can be expressed as the DFT

3. THE MULTI-ANGLE CDFRFT of zi,[p], thatis
N-1
Using the definition of the CDFRFT, we now develop a fast Xy[r] = zZelpWR, 0<r k<N —1. 9)
algorithm for computing the multiple angle version of the p=0
CDFRFT. The elements of the CDFRFT matrix can be ex- )
pressed as Expressing the transform as a DFT allows us to use the reg-

ular FFT algorithm for computing the CDFRFT. The re-
sulting transformX[r] containing the CDFRFT for these
— —jpa iscrete angles is calle ulti-angle -
{Ao}, UkpUnp 7 A3) discret les i lled theulti le DFRFT (MA

= DFRFT).

164



ROWT5, NEL28 Ne12, g5 NeL2, angeeB500

37 T
A doha
3 b
A e VY 4
st ASAAANAN 1 ™ S N AAAAAN A s 110 r
BAADALLLS ™ ot NSNSt {6
S S 0 0 PN PSPPI I
P P i G|
B WLV /o
APPSR G o
et A ASAPNAAA A L st AP 360
3k
) 0 i 8 0

1®
b il L 60 80 10 v

v (a) index (b) index (C)

frequency
= —

J Bl
L

Fig. 2. (a) Transformation of one of the basis vectors (row) of the CDFRFT as the fractionalcaggkes from 0 to 180,
(b) IF estimates for the rows of the CDFRFT matrix with= 128 anda = 5° and (c) IF estimates fax = 85°.

4. RELATING CHIRP RATE & ANGLE measure of how well the CDFRFT can localize the average
frequency of this chirp signal. In addition to the computa-
The approach used here is to find the chirp rate of the signakion of the chirp rate and the number of coefficients needed
that results in the largest peak in the magnitude of the MA- for capturing 50% of the energy, we also compute the co-
DFRFT for a the discrete set of angles defined before. Weefficient at which the maximum value occurs. The results
first look at complex chirps with zero average frequency of show little difference in the relation of the chirp rate with
the form the anglea compared with the case of zero average fre-
guency. The number of coefficients that concentrate 50%
of the energy of the signal is also similar to the zero aver-
age frequency case, but as the average frequency increases,
the interval for which we concentrate the signal in two co-
efficients decreases slightly. Fig. 4(b) shows the case for
wg = 1.57. The error in the localization of the average fre-
guency, measured as the difference between the coefficient
tan(a — 7/2) of the average frequency and the coefficient at which the
Cr=T—HxN (10) peak occurs, shows that as the average frequency increases,
the error also increases. Fig. 4(c) shows this difference for
This relation is not exact and has an error slightlylarge_:rthan positive frequencies. The larger deviations correspond to
10% for some angles. A plot of the results f§r= 128 s |arger frequencies. This result is also affected by aliasing

given in Fig. 3. _ o . and consequently we ignore combination of large chirp rate
The other aspect of this approximation that we wish t0 gnq |arge average frequency.

determine is how good the concentration of the chirp func-
tion for the values obtained before is. For this purpose we
computed the number of coefficients of the transformed sig-
nal that captured 50% of the total energy. The result of this
computation reveals that we only get good concentration of
the chirp signal in the interval of angles from°4f® 135,
and in this range, 50% of the energy is concentrated in at
most two coefficients. Outside the interval the number of
coefficients grows rapidly, as it can be seen in Fig. 4(a).

Let us now consider the case of chirp signals having an L=
average frequency different than zero, i.e., N

zn] = o= g <n< N -1,

wherec, is the chirp rate. After performing the computa-
tion for different sizes transform sizes, the results show that
the relation between the chirp ratge and anglex can be
described approximately by the relation

From the results in previous sections, we see that for al-
pha between 45to 135 we obtain better concentration of
signal energy when analyzing linear chirps. For this inter-
val, we have found empirically that the relation between the
angle of the transform and the chirp rate can be approxi-
mated better if we add a linear term to Eq.(10) and the cor-
responding error is reduced to less than 2% :

_ptmle )y @1 gy

z[n] = iler(n=(N=1)/2)*+wo(n=(N-1)/2) < p < N—1. This relation is useful for determining the chirp rate from

the angle at which we have more concentration, particularly
wherewy is the average frequency. The other point of in- when we the MA-CDFRFT algorithm described before is
terest is where the maximum concentration occurs and is aused.
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Fig. 4. (a) Number of coefficients capturing 50% of chirp signal energy as a functiorwdth wy = 0, (b) withwy = 1.57,
(c) number of coefficients of error in the localization of the average frequency with respect to

5. EXAMPLES: CHIRP RATE ESTIMATION 6. CONCLUSION

In this paper, we have studied the capability of the centered
Our goal in this section, is to study the utility of the two DFRFT obtained from the Gnbaum commuting matrix to
approximate expressions relating the chirp rate to the trans-concentrate a chirp signal in a few transform coefficients.
form angle. The first example pertains to the application of We presented an FFT based algorithm for computing the
the MA-DFRFT to a single linear chirp signal: multi-angle version of the CDFRFT. We then furnished two
empirical relations that related the chirp rate and the angle
; 1272 that produced a impulse-like transform. We evaluated the
z[n] = &/(O0050 =50 0 <n <127 efficacy of these expressions by applying these relations to
the analysis of single and two component chirps signals and
demonstrated that the CDFRFT and its multi-angle version
are powerful time-frequency tools for the analysis of both
monocomponent and multicomponent chirp signals.

Fig. 5(a) shows the complex chirp signal, Fig. 5(b) describes
the magnitude of the MA-DFRFT of this signal. Specifi-
cally we observe that we actually have two maxima because
the CDFRFT atv+ 7 is reversed version of the CDFRFT at
a. The location of the maximum is at= 36 which corre-
sponds to an angle = 2#% = 1.7671. Upon application [1] B.Santhanam and J. H. McClellan, "The Discrete Rotational
of Eq. (10) the corresponding chirp rate estimate is 0.0049, Fourier Transform,”IEEE Trans. Sig. ProcessMVol. 44,
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Fig. 5. Monocomponent chirp: (a) chirp signal with a chirp rate, (b) magnitude of the corresponding MA-DFRFT, and (c)
slices of the MA-DFRFT at = 36.
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Fig. 6. Two component chirp: (a) composite signal, (b) magnitude of the corresponding MA-DFRFT, and (c) slices of the
MA-DFRFT atr = 36 andr = 27.
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