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ABSTRACT
The basis functions for the fractional Fourier transform are
chirp signals where a precise relationship between the frac-
tional parameter and the chirp angle can be established.
The recently introduced centered discrete fractional Fourier
transform, based on the Grünbaum commuting matrix, has
basis functions that have a sigmoidal instantaneous fre-
quency and produces a transform that is approximately an
impulse for discrete chirps. However, no such precise rela-
tion between the fractional parameter and the chirp rate of
the basis functions exists in the discrete case. In this pa-
per, we study the relationship between the chirp rate and
the fractional parameter in the discrete case and specifi-
cally look at two approximate expressions that relate the
chirp rate and the angle for which one obtains a impulse–
like transform. We study the efficacy of these estimates by
applying them to the analysis of monocomponent and two
component chirp signals.

1. INTRODUCTION

The basis functions of the kernel of the continuousfrac-
tional Fourier transform(FRFT) are chirp signals, where a
closed-form expression relating the angle of the transform
and the chirp rate of the signal whose transform is a delta
function exists. For most of the discrete versions of the
fractional transform [1, 2, 3], however, this is not the case
because these transforms are derived from the eigenvalue–
eigenvector decomposition of some version of thediscrete
Fourier transform(DFT), and there is no closed form for
the elements of the resulting matrices. A discrete FRFT that
is based on a centered version of the DFT (CDFRFT) was
considered in [5, 6] and its properties were studied in [6].
Specifically it was shown that the basis functions of the CD-
FRFT contained both amplitude and frequency modulation
and that theinstantaneous frequency(IF) of the basis func-
tions are sigmoidal. However, for the discrete case, there
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Fig. 1. Concentrating a chirp: CDFRFT withα = 102◦

compared with the CDFT of the signal (dotted lines).

exists no exact relation between the chirp rate of a signal
and the angle of the transform. In this paper, we first demon-
strate that the CDFRFT has the capability of concentrating
the energy of a linear chirp in a few transform coefficients
for a specific angle. We then present two approximate em-
pirical expressions relating the chirp rate to the angle that
produces an impulse-like transform and evaluate the effi-
cacy of these expressions by applying them to the analysis
of monocomponent and two component chirp signals.

2. THE CENTERED DFRFT

We define the CDFRFT for parameterα as

Aa = VT Λ2α/π VT
H , (1)

whereVT is the matrix of orthogonal eigenvectors obtained
from the Gr̈unbaum [5] commuting matrixT. The eigenvec-
tors are in descending order with respect to its correspond-
ing eigenvalue inT, that is, the first column ofVT corre-
sponds to the eigenvector with larger eigenvalue.Λ2α/π is
diagonal with elementsλk = e−jkα, 0 ≤ k ≤ N − 1. With



this substitution the definition becomes:

Aα =
N−1∑

k=0

e−jαkvkvH
k . (2)

This definition assigns the eigenvectors via the ordering of
the eigenvalues ofT and assigns the eigenvector withm
sign changes to the eigenvalueλm = e−jmα and this is
the same correspondence between the continuous FRFT and
Hermite–Gauss functions. It is specifically instructive to ob-
serve that the basis functions of the CDFRFT, i.e., the rows
of the CDFRFT matrix for any givenα are not complex lin-
ear chirps with constant amplitude and chirp rate. This frac-
tional transform becomes identity forα = 0◦, where the ba-
sis functions are shifted delta functions. Forα = 90◦ it be-
comes the CDFT, whose basis functions are complex expo-
nentials of constant frequency and amplitude [1]. Fig. 2(a)
describes this transformation for a particular basis vector for
angles from zero to 180◦. It has also been shown in [6] that
the instantaneous frequency of the basis functions for inter-
mediate angles is sigmoidal rather than linear as described
in Fig. 2(b) forα = 5◦. The frequency goes from−π to
π in all rows and the transition is very sharp. As the an-
gle increases, the changes in frequency are much smaller
as it shown in Fig. 2(c) forα = 85◦ where the slope of the
curves is very small and the frequency of each row is almost
constant.

To understand the ability of the CDFRFT to concentrate
a chirp signal in a few transform coefficients, let us look
at the complex signalx[n] = ej0.005n2

, with 0 ≤ n ≤ 127,
that has a constant chirp rate. Trial and error determines that
α = 102◦ produces a good concentration in the transform.
Fig. 1 shows the result compared with the dotted lines that
are the CDFT (α = 90◦) of the same signal. We observe that
the transform withα = 102◦ produces a sharp peak whose
smallest and largest components occur at the frequencies of
0.6136 and 0.6627 with average frequency 0.645. From the
results of the example, we can observe that: (a) we can con-
centrate a linear chirp in a few transform coefficients with
the CDFRFT, (b) the concentration occurs close to the aver-
age frequency.

3. THE MULTI–ANGLE CDFRFT

Using the definition of the CDFRFT, we now develop a fast
algorithm for computing the multiple angle version of the
CDFRFT. The elements of the CDFRFT matrix can be ex-
pressed as

{Aα}kn =
N−1∑
p=0

vkpvnpe
−jpα, (3)
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Fig. 3. Relation between chirp rate and angle forN = 128.
The solid line corresponds to the approximation in Eq. (10)

wherevkp is thek-th element ofp-th eigenvector . Multi-
plying Aα by the signalx[n] we obtain the transform:

Xα[k] =
N−1∑
n=0

x[n]
N−1∑
p=0

vkpvnpe
−jpα, (4)

and after rearranging the two sums we obtain:

Xα[k] =
N−1∑
p=0

vkp

N−1∑
n=0

x[n]vnpe
−jpα. (5)

If we use a discrete set of angles given by

α = αr =
2πr

N
, r = 0, 1, . . . , N − 1, (6)

we obtain

Xr[k] =
N−1∑
p=0

vkp

N−1∑
n=0

x[n]vnpe
−j 2π

N pr. (7)

Definingzk[p] as

zk[p] = vkp

N−1∑
n=0

x[n]vnp, (8)

we observe that the transform can be expressed as the DFT
of zk[p], that is

Xk[r] =
N−1∑
p=0

zk[p]W pr
N , 0 ≤ r, k ≤ N − 1. (9)

Expressing the transform as a DFT allows us to use the reg-
ular FFT algorithm for computing the CDFRFT. The re-
sulting transformXk[r] containing the CDFRFT for these
discrete angles is called themulti–angle DFRFT (MA-
DFRFT).
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Fig. 2. (a) Transformation of one of the basis vectors (row) of the CDFRFT as the fractional angleα goes from 0◦ to 180◦.
(b) IF estimates for the rows of the CDFRFT matrix withN = 128 andα = 5◦ and (c) IF estimates forα = 85◦.

4. RELATING CHIRP RATE & ANGLE

The approach used here is to find the chirp rate of the signal
that results in the largest peak in the magnitude of the MA-
DFRFT for a the discrete set of angles defined before. We
first look at complex chirps with zero average frequency of
the form

x[n] = ejcr(n−N−1
2 )2 , 0 ≤ n ≤ N − 1,

wherecr is the chirp rate. After performing the computa-
tion for different sizes transform sizes, the results show that
the relation between the chirp ratecr and angleα can be
described approximately by the relation

cr = π
tan(α− π/2)

N
. (10)

This relation is not exact and has an error slightly larger than
10% for some angles. A plot of the results forN = 128 is
given in Fig. 3.

The other aspect of this approximation that we wish to
determine is how good the concentration of the chirp func-
tion for the values obtained before is. For this purpose we
computed the number of coefficients of the transformed sig-
nal that captured 50% of the total energy. The result of this
computation reveals that we only get good concentration of
the chirp signal in the interval of angles from 45◦ to 135◦,
and in this range, 50% of the energy is concentrated in at
most two coefficients. Outside the interval the number of
coefficients grows rapidly, as it can be seen in Fig. 4(a).

Let us now consider the case of chirp signals having an
average frequency different than zero, i.e.,

x[n] = ej(cr(n−(N−1)/2)2+ω0(n−(N−1)/2)), 0 ≤ n ≤ N−1.

whereω0 is the average frequency. The other point of in-
terest is where the maximum concentration occurs and is a

measure of how well the CDFRFT can localize the average
frequency of this chirp signal. In addition to the computa-
tion of the chirp rate and the number of coefficients needed
for capturing 50% of the energy, we also compute the co-
efficient at which the maximum value occurs. The results
show little difference in the relation of the chirp rate with
the angleα compared with the case of zero average fre-
quency. The number of coefficients that concentrate 50%
of the energy of the signal is also similar to the zero aver-
age frequency case, but as the average frequency increases,
the interval for which we concentrate the signal in two co-
efficients decreases slightly. Fig. 4(b) shows the case for
ω0 = 1.57. The error in the localization of the average fre-
quency, measured as the difference between the coefficient
of the average frequency and the coefficient at which the
peak occurs, shows that as the average frequency increases,
the error also increases. Fig. 4(c) shows this difference for
positive frequencies. The larger deviations correspond to
larger frequencies. This result is also affected by aliasing
and consequently we ignore combination of large chirp rate
and large average frequency.

From the results in previous sections, we see that for al-
pha between 45◦ to 135◦ we obtain better concentration of
signal energy when analyzing linear chirps. For this inter-
val, we have found empirically that the relation between the
angle of the transform and the chirp rate can be approxi-
mated better if we add a linear term to Eq.(10) and the cor-
responding error is reduced to less than 2% :

cr = 2
tan(α− π/2)

N
+ 1.41

(α− π/2)
N

. (11)

This relation is useful for determining the chirp rate from
the angle at which we have more concentration, particularly
when we the MA-CDFRFT algorithm described before is
used.
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Fig. 4. (a) Number of coefficients capturing 50% of chirp signal energy as a function ofα with w0 = 0, (b) with w0 = 1.57,
(c) number of coefficients of error in the localization of the average frequency with respect toα.

5. EXAMPLES: CHIRP RATE ESTIMATION

Our goal in this section, is to study the utility of the two
approximate expressions relating the chirp rate to the trans-
form angle. The first example pertains to the application of
the MA-DFRFT to a single linear chirp signal:

x[n] = ej(0.005(n− 127
2 )2), 0 ≤ n ≤ 127

Fig. 5(a) shows the complex chirp signal, Fig. 5(b) describes
the magnitude of the MA-DFRFT of this signal. Specifi-
cally we observe that we actually have two maxima because
the CDFRFT atα+π is reversed version of the CDFRFT at
α. The location of the maximum is atr = 36 which corre-
sponds to an angleα = 2π 36

128 = 1.7671. Upon application
of Eq. (10) the corresponding chirp rate estimate is 0.0049,
while application of Eq. (11) yields a chirp rate of 0.0053.
Fig. 5(c) is the slice of the MA-DFRFT at this particular
angle, where the magnitude of the MA-DFRFT is a maxi-
mum. Adding another chirp component with zero average
frequency at a different chirp rate yields a two-component
chirp signal. The MA-DFRFT and the approximate rela-
tions are applied to estimate the two chirp rates associated
with the two-component chirp signal. The second chirp
component has a negative chirp rate of 0.007. For this case
the maxima occur atr = 36 andr = 27 and the correspond-
ing chirp rates from application of Eq. (10) are 0.0049 and -
0.0062. The corresponding chirp rates obtained via Eq. (11)
are 0.0053 and -0.0066. The chirp signal, its MA-DFRFT
and its slice at the angle where the magnitude of the MA-
DFRFT is a maximum are shown in Fig. (5). In both cases,
we can see that the MA-DFRFT is able to concentrate chirp
signals into a few coefficients and that Eq. (10) and Eq. (11)
can be used to estimate the chirp rate(s) of the signal.

6. CONCLUSION

In this paper, we have studied the capability of the centered
DFRFT obtained from the Grünbaum commuting matrix to
concentrate a chirp signal in a few transform coefficients.
We presented an FFT based algorithm for computing the
multi-angle version of the CDFRFT. We then furnished two
empirical relations that related the chirp rate and the angle
that produced a impulse-like transform. We evaluated the
efficacy of these expressions by applying these relations to
the analysis of single and two component chirps signals and
demonstrated that the CDFRFT and its multi-angle version
are powerful time-frequency tools for the analysis of both
monocomponent and multicomponent chirp signals.
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Fig. 5. Monocomponent chirp: (a) chirp signal with a chirp rate, (b) magnitude of the corresponding MA-DFRFT, and (c)
slices of the MA-DFRFT atr = 36.
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Fig. 6. Two component chirp: (a) composite signal, (b) magnitude of the corresponding MA-DFRFT, and (c) slices of the
MA-DFRFT atr = 36 andr = 27.


