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THE CENTRAL LIMIT THEOREM FOR LOCAL LINEAR
STATISTICS IN CLASSICAL COMPACT GROUPS AND

RELATED COMBINATORIAL IDENTITIES1

By Alexander Soshnikov

California Institute of Technology and University of California, Davis

We discuss the CLT for the global and local linear statistics of random
matrices from classical compact groups. The main parts of our proofs are
certain combinatorial identities, much in the spirit of works by M. Kac and
H. Spohn.

1. Introduction. Let M be a unitary matrix chosen at random with
respect to the Haar measure on the unitary group U�n�. We denote the eigen-
values of M by �exp�i · θj��nj=1, where −π ≤ θ1� θ2� 	 	 	 � θn < π. The joint
distribution of the eigenvalues (called the Weyl measure) is absolutely con-
tinuous with respect to the Lebegue measure

∏n
j=1 dθj on the n-dimensional

tori, and its density is given by

PU�n��θ1� 	 	 	 � θn� =
1

�2π�n · n!
∏

1≤j<k≤n
	 exp�i · θj� − exp�i · θk�	2(1.1)

(see [36]). Throughout the paper we will be interested in the global and local
linear statistics

Sn�f� =
n∑
j=1
f�θj��(1.2)

Sn
(
g�Ln·�

) = n∑
j=1
g�Ln · θj��(1.3)

Ln → ∞� Ln
n

→ 0	

The optimal conditions on f�g for our purposes are

∞∑
k=−∞

	f̂�k�	2 · 	k	 <∞�(1.4) ∫ ∞

−∞
	ĝ�t�	2 · 	t	dt <∞�(1.5)

Received October 1999; revised March 2000.
1Supported in part by a Euler stipend from the German Mathematical Society.
AMS 1991 subject classifications. Primary 60F05; secondary 60B15.
Key words and phrases. Central limit theorem, random matrices, compact groups and Kac-

Spitzer combinatorial lemma.

1353



1354 A. SOSHNIKOV

where

f�x� =
∞∑

k=−∞
f̂�k�eikx�

g�x� = 1√
2π

∫ ∞

−∞
ĝ�t�eitx dt	

However, in order to simplify the exposition we will always assume that f
has a continuous derivative on a unit circle �f ∈ C1�S1�� and g is a Schwartz
function �g ∈ J��1��.
Let us denote by En the mathematical expectation with respect to Haar

measure. We start with the formulation of the result which is essentially due
to C. Andréief [2]; for a modern day reference see [35] (and also [14]).

Proposition.

En exp
(
tSn�f�

) = det
(
Id+ �etf − 1�Kn

) = det
(
Id+ �etf − 1�Qn

)
�(1.6)

where �etf− 1� is a multiplication operator and Kn�Qn� L2�S1� → L2�S1� are
the integral operators with the kernels

Kn�x�y� =
1
2π

sin
(�n/2��x− y�)

sin
(�x− y�/2) �(1.7)

Qn�x�y� =
n−1∑
j=0

1√
2π
eijx

1√
2π
e−ijy	(1.8)

Remark 1. Kn�Qn are unitary equivalent and are the operators of a finite
rank. In particular, Qn is just a projection operator on the first n harmonic
functions of the unit circle.
One of the ingredients of the proof of the proposition is the following chain

of equalities:

pU�n��θ1� 	 	 	 � θn�=
1
n!

�2π�−n det(exp�i · �j− 1� · θk�
)
1≤j� k≤n

· det(exp�−i · �j− 1� · θk�
)
1≤j� k≤n

= 1
n!

det
(
Qn�θj� θk�

)
1≤j� k≤n

= 1
n!

det
(
Kn�θj� θk�

)
1≤j� k≤n	

(1.9)

Remark 1 allows us to rewrite the Fredholm determinants in (1.6) as the
Toeplitz determinant with the symbol exp�t · f�·��:

En exp
(
t
n∑
j=1
f�θj�

)
=Dn−1

(
exp�t · f�)

=det
(
1
2π

∫ 2π

0
exp�tf�x�� exp�i�j− k�x�dx

)
1≤j� k≤n

	

(1.10)
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The asymptotics of (1.10) for large n is given by the strong Szegö limit
theorem,

Dn−1
(
exp�t · f�) = exp

(
tnf̂�0� + 1

2
t2

+∞∑
−∞

	k		f̂�k�	2 + ō�1�
)
	(1.11)

(See [34] and [22, 17, 11, 15, 16, 37, 38, 25, 5, 19, 7, 8, 26, 31, 39] for further
developments.)
In probabilistic terms (1.11) claims that ESn�f� = �n/2π� ∫ π−π f�θ�dθ +

ō�1� (actually the remainder term is zero), and the centralized random vari-
able

∑n
j=1 f�θj� −En

∑n
j=1 f�θj� converges in distribution to the normal law

N�0�∑∞
−∞ 	k		f̂�k�	2� (see [13, 19, 20, 21, 12].

Our first goal is to establish a similar result for the local linear statistics.

Theorem 1. Let g ∈ J��1�, Ln → +∞, Ln/n → 0. Then En
∑n
j=1 g�Ln ·

θj� = �n/2π·Ln�
∫∞
−∞ g�x�dx, and the centralized random variable

∑n
j=1�g�Ln·

θj�−E
∑n
j=1 g�Lnθj� converges in distribution to the normal lawN�0� �1/2π�×∫ +∞

−∞ 	ĝ�t�	2	t	dt�.
We give a combinatorial proof which holds both in the local and global

cases. In some sense our approach is close to the heuristic arguments in [18].
We start with a lemma.

Lemma 1. Let Cl�n�f� be the lth cumulant of Sn�f�. Then for l = 1,
Cl�n�f� = f̂�0�n and for l > 1,∣∣∣∣Cl�n�f� − ∑

k1+···+kl=0
f̂�k1� · · · · · f̂�kl�

l∑
m=1

�−1�m−1

m

× ∑
l1+···+lm=l�
l1≥1� 			� lm≥1

l!
l1! · · · · · lm!

(
n− max

(
0�

l1∑
i=1
ki�

l1+l2∑
i=1
ki� 	 	 	 �

l1+···+lm−1∑
i=1

ki

)
(1.12)

−max
(
0�

l1∑
i=1

�−ki��
l1+l2∑
i=1

�−ki�� 	 	 	 �
l1+···+lm−1∑
i−1

�−ki�
))∣∣∣∣

≤ constl
∑

k1+···+kl=0
	k1	+···+	kl	>n

	k1		f̂�k1�	 · · · · · 	f̂�kl�		

Remark 2. One can see that for sufficiently smooth f the r.h.s. of (1.12)
goes to zero as n→ ∞.

Remark 3. An analogous result to Lemma 1 was established in [33] for
the determinantal random point field with the sine kernel (see also Remark 4
below).
The proof of Lemma 1 will be given in Section 2. At this moment we observe

that it implies the following lemma.
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Lemma 2. The limit of Cl�n�f�, l > 1 exists as n → ∞ and is equal to∑
k1+···+kl=0 f̂�k1� · · · · · f̂�kl� · �G�k1� 	 	 	 � kl�+G�−k1� 	 	 	 �−kl��, where G is the

piecewise linear continuous function defined by

G�k1� 	 	 	 � kl� �=
∑
σ∈Sl

l∑
m=1

�−1�m
m

∑
l1+···+lm=l�
l1≥1� 			� lm≥1

1
l1! · · · · · lm!

×max
(
0�

l1∑
i=1
kσ�i��

l1+l2∑
i=1
kσ�i�� 	 	 	 �

l1+···+lm−1∑
i=1

kσ�i�

)
	

(1.13)

Proof. After opening the brackets in (1.12) we observe that the coefficient
in front of n is equal to

l∑
m=1

∑
l1+···+lm=l�
l1≥1� i=1� 			�m

�−1�m−1

m

l!
l1! · · · lm!

=
{
1� l = 1,
0� l > 1.

(1.14)

Indeed, the generating function of these coefficients is equal to

log
(
1+ �ez − 1�) = z	 ✷

Now the CLT for
∑n
j=1 f�θj� follows from

Main combinatorial lemma. Let k1� 	 	 	 � kl be arbitrary real numbers
such that their sum equals zero. Let G�k1� 	 	 	 � kl� be defined as in (1.13). Then

G�k1� 	 	 	 � kl� =
{ 	k1	 = 	k2	� if l = 2,
0� if l > 2.

We will prove the lemma in Section 3.

Remark 4. A similar combinatorial lemma was stated by Spohn in [33].
He studied a time-dependent motion of a system of infinite number of particles
governed by the equations

dλj�t� =
∑
i�=j

1
λi − λj

dt+ dbj�t��

where �bj�t��+∞
j=−∞-independent standard Brownian motions, and the initial

distribution of particles is given by determinantal random point field with the
sine kernel sinπ�x−y�/π�x−y�. However, no correct proof of the combinatorial
result was given there. For completeness we give a proof of Spohn’s lemma
independently from the proof of our main combinatorial lemma in Section 3.
Assuming the combinatorial part is done, we can quickly finish the proof of

Theorem 1. The formula for the mathematical expectation is trivial. Rewriting
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(1.12) for the higher cumulants of
∑n
j=1 g�Ln · θj� we see that the limit of the

lth cumulant is given by

�2π�−1/2
∫
ĝ�t1� · · · · · ĝ�tl�

(
G�t1� 	 	 	 � tl� +G�−t1� 	 	 	 �−tl�

)
dt1 · · ·dtl�

where the integral is over the hyperplane t1 + · · · + tl = 0.
Theorem 1 is proved. ✷

Remark 5. Our method also gives an elementary combinatorial proof of
the Szegö theorem (1.11) for f ∈ C1�S1� and sufficiently small complex t. It
is different from the one suggested by Kac [22] where the Taylor expansion of
Dn�1− tg� as a function of t was calculated and then a so-called Kac–Spitzer
combinatorial lemma was employed to confirm (1.11).

Remark 6. Results similar to Theorem 1 have been established for other
random matrix models in [33, 21, 34, 4, 3, 28, 29, 9].
The rest of this paper is organized as follows. We prove Lemma 1 in Section 2

and the main combinatorial lemma in Section 3. The results analogous to
Theorem 1 for orthogonal and symplectic groups are established in Section 4.

2. Proof of Lemma 1. We start with calculating the moments of Sn�f�.
Recall that the k-point correlation function of the eigenvalues of a random
unitary matrix is given by

ρn�k�θ1� 	 	 	 � θk�=
n!

�n− k�!
∫
Tn−k
pU�n��θ1� 	 	 	 � θn�dθk+1 · · ·dθn

=det
(
Kn�θi� θj�

)
1≤i� j≤k = det

(
Qn�θi� θj�

)
1≤i� j≤k	

(2.1)

The Nth moment of Sn�f� is equal to

En

( n∑
i1=1
f�θi1� · · · · ·

n∑
iN=1
f�θiN�

)
�

where the indices i1� 	 	 	 � iN range independently from 1 to n, and in particular
can coincide. We need a definition.

Definition 1. A partition of a setB is an unordered collection of nonempty
disjoint subsets � = �M1� 	 	 	 �Mr�, r = 1�2� 	 	 	, of B such that the union of
the elements of the partition is the whole B.

Let � = �M1� 	 	 	 �Mr� be a partition of the set �1�2� 	 	 	 �N� into subsets
determined by coinciding indices among i1� 	 	 	 � iN� M1 = {

j
�1�
1 � 	 	 	 � j

�1�
s1

}
� 	 	 	,

Mr =
{
j
�r�
1 � 	 	 	 � j

�r�
sr

}
�
⋃r
i=1Mi = �1�2� 	 	 	 �N�� si = 	Mi	� i = 1� 	 	 	 � r. Then

En
(
Sn�f�

)N = ∑
over all

partitions �

En
∑

l1 �=l2 �=···�=lr
fs1�θl1� · · · · · fsr�θlr�	(2.2)
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Let us consider a typical term in (2.2) corresponding to a partition � :

En
∑

l1 �=···�=lr
fs1�θl1� · · · · · fsr�θlr�

=
∫
Tr
fs1�x1� · · · · · fsr�xr� · ρn� r�x1� · · · � xr�dx1 · · ·dxr	

(2.3)

By definition of the determinant and (2.1),

ρn� r�x1� 	 	 	 � xr� =
∑
σ∈Sr

�−1�σ
r∏
i=1
Qn�xi� xσ�i��	

Writing the permutation σ ∈ Sr as a product of cyclic permutations we have
ρn� r�x1� 	 	 	 � xr�

= ∑
over partitions
� of �1� 			� r�

(
q∏
α=1

(�−1�pα−1 ∑
over all cyclic

permutations of Kα

pα∏
j=1
Qn�xt�α�j � xσ�t�α�j ��

))
�(2.4)

where �1� 	 	 	 � r� = ⋃q
1Kα, Kα =

{
t
�α�
1 � 	 	 	 � t

�α�
pα

}
, α = 1� 	 	 	 � q, pα = 	Kα	.

Substituting (2.4) into (2.3) we arrive at the expression that has the follow-
ing form: ∑

over partitions
�=�M1� 			�Mr� of �1� 			�N�

∑
over partitions

� =�K1� 			�Kq� of �1� 			� r�

· · · 	

To interchange the order of summation we construct a new partition � =
�P1� 	 	 	 �Pq� of �1�2� 	 	 	 �N� as follows: Pi =

⋃
j∈Ki Mj, i = 1� 	 	 	 � q. Then

�Mj�j∈Ki gives a partition of Pi that we denote by �i. We have

En�Sn�f��N

= ∑
over partitions

�=�P1� 			�Pq� of �1� 			�N�

×
(
q∏
i=1

( ∑
over partitions

�i of Pi��i=�Pi�1� 			�Pi� ti�

∫
Tti
f	Pi�1	�x1� · · · · · f	Pi� ti 	�xti��−1�ti−1

× ∑
over cyclic

permutations σ∈Sti

ti∏
j=1
Qn�xj� xσ�j��dx1 · · ·dxti

))
	

(2.5)

We recall that the moments are expressed in terms of cumulants as

mN = ∑
over partitions
�=�P1� 			�Pk�

C	P1	 · · · · ·C	Pk		
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Comparing the last formula with (2.5) we arrive at

Cl�n�f�=
∑

partitions
�=�R1� 			�Rm� of �1� 			� l�

∫
Tm
f	R1	�x1� · · · · · f	Rm	�xm�

× �−1�m−1 ∑
cyclic permutations

σ∈Sn

m∏
j=1
Qn�xj� xσ�j��dx1 · · ·dxm

=
l∑
m=1

∑
over ordered collections
�l1� 			� lm��

∑m
1 li=l� li≥1

�−1�m−1 l!
l1! · · · lm!

1
m!
	

(2.6)

Observe that∫
Tm
fl1�x1� · · · · · flm�xm� ·m!

1
m
	
m∏
j=1
Qn�xj� xj+1�dx1 · · ·dxm

=
l∑
m=1

∑
�l1� 			� lm�� l1+···+lm=l�

li≥1� i=1� 			�m

×�−1�m−1

m

l!
l1! · · · · · lm!

∫
Tm
fl1�x1� · · · · · flm�xm�

×
m∏
j=1
Qn�xj� xj+1�dx1 · · ·dxm	

(2.7)

Since Qn�x�y� =
∑n−1
j=0 exp�−ij�x− y�� we can rewrite (2.6) as

Cl�n�f� =
l∑
m=1

∑
�l1� 			� lm��

l1+···+lm=l� li≥1

�−1�m−1

m

l!
l1! · · · lm!

×
n−1∑
s1=0

· · ·
n−1∑
sm=0
f̂l1�−sm + s1� · f̂l2�−s1 + s2� · · · · · f̂lm�−sm−1 + sm�	

Writing down the Fourier coefficients of the powers of f as the convolutions
of the Fourier coefficients of f,

f̂l1�−sm + s1� =
∑

�k1� 			� kl1 ��
k1+···+kl1=s1−sm

f̂�k1� · · · · · f̂�kl1��

f̂l2�−s1 + s2� =
∑

�kl1+1� 			� kl2 ��
kl1+1+···+kl2=s2−s1

f̂�kl1+1� · · · · · f̂�kl2�� 	 	 	 �
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f̂lm�−sm−1 + sm� =
∑

�klm−1+1� 			� klm ��
klm−1+1+···+klm=sm−sm−1

f̂�klm−1+1� · · · · · f̂�klm��

we obtain

Cl�n�f�=
∑

k1+···+kl=0
f̂�k1� · · · · · f̂�kl�

l∑
m=1

�−1�m−1

m

∑
�l1� 			� lm��

l1+···+lm=l� li≥1

× l!
l1! · · · lm!

· #
{
u� 0 ≤ u ≤ n− 1�0 ≤ u+

l1∑
1

ki ≤ n− 1� 	 	 	 �

0 ≤ u+
l1+···+lm−1∑

1

ki ≤ n− 1
}
	

(2.8)

The last factor in (2.8) is equal to

n−max
(
0�
l1∑
1

ki� 	 	 	 �
l1+···+lm−1∑

1

ki

)

−max
(
0�
l1∑
1

�−ki�� 	 	 	 �
l1+···+lm−1∑

1

�−ki�
)(2.9)

if the expression in (2.9) is nonnegative, or zero otherwise.
Lemma 1 is proved. ✷

3. Proof of the main combinatorial lemma. First we show that
G�k1� 	 	 	 � kl� is a linear combination of terms 	ki1+· · ·+kis 	. Then we compute
the coefficient in front of every such term and show it to be equal to zero.
Assume l > 2. Consider a partition� = �P1� 	 	 	 �Pm� of the set �1�2� 	 	 	 � l�.

Let us denote v1 = ∑
j∈P1
kj� 	 	 	 � vm = ∑

j∈Pm kj. The expression for G can be
transformed into

G�k1� 	 	 	 � kl�=
l∑
m=1

∑
�=�P1� 			�Pm�

�−1�m
m

∑
τ∈Sm

×max
(
0� vτ�1�� vτ�1� + vτ�2�� 	 	 	 � vτ�1�

+ vτ�2� + · · · + vτ�m−1�
)
	

(3.1)

In [27] Rudnick and Sarnak, following the ideas of [22] and [32] (see also
[6, 1]), used the following identity for the set of real numbers v1� 	 	 	 � vm with
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zero sum:
1
m

∑
τ∈Sm

max
(
0� vτ�1�� vτ�1� + vτ�2�� 	 	 	 � vτ�1� + vτ�2� + · · ·vτ�m−1�

)
= 1
4

∑
F⊂�1�			�m��
F�FC �=�

�	F	 − 1�!�m− 	F	 − 1�!
∣∣∣∣∑
l∈F
vl

∣∣∣∣	(3.2)

The last formula gives us

G�k1� 	 	 	 � kl�=
1
4

l∑
m=1

∑
�=�P1� 			�Pm�

∑
F⊂�1� 			�m��
F�FC �=�

�−1�	F	−1

× �	F	 − 1�!
∣∣∣∣ ∑
i∈⋃j∈F Pj ki

∣∣∣∣ · �−1��m−	F	−1� · �m− 	F	 − 1�!	
(3.3)

Let us denote by A the subset
⋃
j∈F Pj of �1�2� 	 	 	 � l�. Then �Pj�j∈F defines

a partition of A, and �Pj�j∈FC a partition of AC = �1�2� 	 	 	 � l� \A.
We change now the order of summation in (3.3): first we sum over all

nonempty subsets A of �1�2� 	 	 	 � l� and then over all partitions of A and AC:

G�k1� 	 	 	 � kl�=
1
4

∑
A⊂�1� 			� l��
A�AC �=�

( ∑
over partitions

�=�U1� 			�Ur� of A

�−1�	�	−1�	�	 − 1�!
)

×
( ∑

over partitions
�′ of AC

�−1�	�′ 	−1 · �	�′	 − 1�!
)∣∣∣∣∑
i∈A
ki

∣∣∣∣	
(3.4)

Finally we note that∑
�=�U1� 			�Ur�

�−1�	�	−1 · �	�	 − 1�!

=
	A	∑
r=1

∑
�t1� 			� tr��∑r

i=1 ti=	A	� ti≥1

�−1�r−1�r− 1�! 	A	!
t1! · · · · · tr!

1
r!
�

the expression we already considered in (1.14). Indeed, there are exactly �	A	!/
t1! · · · · · tr!��1/r!� different partitions of A such that �t1� 	 	 	 � tr� = �	U1	� 	 	 	,
	Ur	�. By (1.14) if 	A	 ≥ 2 this sum is zero. If 	A	 = 1, then 	AC	 = l− 	A	 ≥ 2
and the second factor in (3.4) equals zero by the same argument. ✷

Now we turn to a combinatorial lemma first formulated in [33]. Let us
denote by α = �α1� 	 	 	 � αl�, β = �β1� 	 	 	 � βl� vectors with entries αj ∈ �0�1�.
We consider a lexicographic order on the set of such vectors: α < β iff αj ≤ βj,
j = 1� 	 	 	 � l and at least for one j0 αj0 < βj0 . Following [33] we call such
nonzero vectors branches and a set T of ordered branches T = �α�1�� 	 	 	 � α�m��,
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α�1� < α�2� < · · · < α�m�, 	T	 = m ≤ l, a tree. We denote by T�l� the set of
all trees formed by l-dimensional vectors (branches). A combinatorial sum in
question is

U�k1� 	 	 	 � kl� =
∑
T∈T�l�

�−1�	T	−1 ·max�0� α · k	α ∈ T�	(3.5)

Here we used the notation α · k =∑l
j=1 αj · kj. We call max�0� α · k	α ∈ T� the

maximum of the tree T. For a warm-up we prove the following.

Proposition 1.

U�k1� 	 	 	 � kl� +U�−k1� 	 	 	 �−kl� = G�k1� 	 	 	 � kl� kl+1�
+G�−k1� 	 	 	 �−kl�−kl+1��

where kl+1 = −k1 − k2 − · · · − kl.

Remark 7. Once the proposition is proved we see of course that U�k1� 	 	 	,
kl� +U�−k1� 	 	 	 �−kl� is zero for l ≥ 2.

Proof. In the above notations,

G�k1� 	 	 	 � kl� kl+1� =
∑

T∈T�l+1�
′ �−1�	T	−1

	T	 ·max�0� α · k′	α ∈ T��

where k′ = �k1� 	 	 	 � kl� kl+1�, and the sum
∑′ is over all trees T ∈ T�l +

1� such that the largest branch of T, α�	T	� is less than D = �1�1� 	 	 	 �1�.
Similarly, we can writeU�k1� 	 	 	 � kl� =

∑′′
T∈T�l+1��−1�	T	−1 ·max�0� α·k′	α ∈ T�,

where the sum
∑′′ is over the trees T ∈ T�l + 1� such that the �l + 1�th

coordinate of α�	T	� is zero. We define a “rotation” on the set of all trees such that
α�	T	� �= D�W��α�1�� α�2�� 	 	 	 � α�	T	��� = �α�2�−α�1�� α�3�−α�1�� 	 	 	 � α�	T	�−α�1��D−
α�1��. It is easy to see thatW rotates the spacings �α�1�� α�2� − α�1�� 	 	 	 � α�	T	� −
α�	T	−1��D− α�	T	�� of T. Since ∑l+1j=1 kj = 0, we observe that

max�0� α · k′	α ∈ T� +max�0� α · �−k′�	α ∈ T�
= max

(
0� α · k′	α ∈W�T�)+max

(
0� α · �−k′�	α ∈W�T�)	(3.6)

The last equality implies

U�k1� 	 	 	 � kl� +U�−k1� 	 	 	 �−kl�
= ∑
T∈T�l+1�

′′ �−1�	T	−1 · �max�0� α · k′	α ∈ T� +max�0� α · �−k′�	α ∈ T��

= ∑
T∈T�l+1�

′′ �−1�	T	−1 1
	T	

	T	−1∑
p=0

(
max�0� α · k′	α ∈Wp�T��

+max�0� α · �−k′�	α ∈Wp�T��)
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= ∑
T∈T�l+1�
α�	T	��=D

�−1�	T	−1
	T	 · (max�0� α · k′	α ∈ T� + �α · �−k′�	α ∈ T�)

= G�k1� 	 	 	 � kl+1� +G�−k1� 	 	 	 �−kl+1�	
Here we used that for any T′ with α�	T

′ 	� �= D there exists a unique T with
α
�	T	�
l+1 = 0 and 0 ≤ p < 	T	 such that T′ =Wp�T�. ✷

Proposition 2.

U�k1� 	 	 	 � kl� = 0 if l ≥ 2	(3.7)

We proceed by induction.
It is easy to check the case l = 2. Let us assume that the proposition

is true for some l ≥ 2. Consider U�k0� k1� 	 	 	 � kl�. Since U is a symmetric
function we may assume k0 ≤ k1 ≤ · · ·kl. The continuity of U implies that it
is enough to check (3.7) for nondegenerate vectors �k0� k1� 	 	 	 � kl�. Therefore
we may assume that the coordinates k1� 	 	 	 � kl are linearly independent over
the integers. Fix such k1� 	 	 	 � kl and consider U as a piecewise linear function
of y = k0,U�y�k� = U�y�k1� k2� 	 	 	 � kl�. Our first claim is thatU�y�k� is zero
for all negative y. To show this we write

U�y�k� = ∑
T∈T�l+1�

�−1�	T	−1 max�0� α · �y�k�	α ∈ T�

= ∑
T∈T�l+1��
α
�	T	�
1 =0

+ ∑
T∈T�l+1��

α
�	T	�
1 =1� α�	T	�−11 =0

+ ∑
T∈T�l+1��

α
�	T	�
1 =1� α�	T	−1�1 =1

	

We denote the three subsums by U1�U2�U3. The first subsum is equal to∑
T∈T�l�

�−1�	T	−1 ·max�0� α · k	α ∈ T��

the second ∑
T∈T�l�

�−1�	T	 ·max�0� α · k	α ∈ T� +max�0� y��

and by the induction assumptions both are zero. Now we split the third sub-
sum in two. Consider the smallest branch α ∈ T such that the first coordinate
of α is 1, denote this branch by α′ and denote the preceding (may be empty)
branch by α′′. We write U3 = U3�1 + U3�2, where in U3�1 the summation is

over T ∈ T�l+ 1�, such that α�	T	�1 = 1, α�	T	−1�1 = 1 and α′ − α′′ > �1�0� 	 	 	 �0�,
and in U3�2 the summation is over all other trees from U3. We establish
a one-to-one correspondence between the terms of U3�1 and U3�2: for any
tree T1 with α′ − α′′ > �1�0� 	 	 	 �0� we construct T2 = �α�1�� 	 	 	 � α′′� α′′ +
�1�0� 	 	 	 �0�� α′� 	 	 	 � α	T	�. Clearly, 	T2	 = 	T1	 + 1, therefore

�−1�	T1	−1 ·max�0� α · �y�k�	α ∈ T1� = −�−1�	T2	−1 ·max�0� α · �y�k�	α ∈ T2��
and U3�1 and U3�2 cancel each other.



1364 A. SOSHNIKOV

Now we assume that y is nonnegative and 0 ≤ y ≤ k1 < k2 < · · · < kl. As
we already noted U�y�k1� 	 	 	 � kl� is a piecewise linear continuous function.
We claim that it can change its slope only at y = 0. Indeed, U�y�k1� 	 	 	 � k8�
can change its slope only at the points of degeneracy of �y�k1� 	 	 	 � kl�, where
α0 ·y+α·k = α′0 ·y+α′0 ·k and the coordinates of �α0� α�, �α′0� α′� take values zero
and one. Because k is a nondegenerate vector we must have y+ α · k = α′ · k
(or α · k = y+ α′k�. Since the tree T contains both branches �1� α� and �0� α′�
only if α′ ≤ α, the only solution for nonnegative vector �y�k� must be y = 0,
α′ = α. We will finish the proof of the proposition if we show that U�y�k� = 0
for sufficiently small positive y. We again write U = U1 +U2 +U3 as before.
Then U1 = 0 by inductive assumption and U3 is zero for sufficiently small
y �U3�1 and U3�2 still cancel each other�. We can write the second subsum U2
as ∑

T∈T�l�
�−1�	T	 · (max�0� α · k	α ∈ T� + y)
= ∑
T∈T�l�

�−1�	T	 · (max�0� α · k	α ∈ T�)+ y ∑
T∈T�l�

�−1�	T	
(3.8)

(the last sum includes empty tree). The first term in (3.8) is zero by inductive
assumption and the second is also zero since∑

T∈T�l�
�−1�	T	 = ∑

l1+···+lm=l+1�
li≥1

�−1�m−1

m

�l+ 1�!
l1! · · · · · lm!

= 0	

Proposition 2 is proved. ✷

4. Orthogonal and symplectic groups. We start with the orthogonal
case. The eigenvalues of matrixM ∈ SO�2n� can be arranged in pairs:

exp�iθ1�� exp�−iθ1�� 	 	 	 � exp�iθn�� exp�−iθn�� 0 ≤ θ1� θ2� 	 	 	 � θn < π	
Consider the normalized Haar measure on SO�2n�. The probability distribu-
tion of the eigenvalues is defined by its density (see [36]):

PSO�2n��θ1� 	 	 	 � θn� = 2
(
1
2π

) ∏
1≤i<j≤n

�2 cos θi − 2 cos θj�2	(4.1)

The k-point correlation functions are given by (see [23, 30])

ρn�k�θ1� 	 	 	 � θk� = det
(
K+

2n−1�θi� θj�
)
1≤i� j≤n�(4.2)

where

K+
2n−1�x�y� =K2n−1�x�y� +K2n−1�x�−y�

= 1
2π

(
sin

(�2n− 1��x− y�/2)
sin

(�x− y�/2) + sin
(�2n− 1��x+ y�/2)
sin

(�x+ y�/2)
)
	

(4.3)
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In [13] and [20] Diaconis and Shahshahani and Johansson studied asymp-
totic properties of linear statistics

∑n
j=1 f�θj� where for simplicity we may

assume that f is a real even trigonometric polynomial, f�θ� = ∑m
k=1 ak�eikθ +

e−ikθ�� ak = f̂�k�, k = 1�2� 	 	 	 �m. As before we denote the linear statistics by
Sn�f�. Then Sn�f� = Trace�∑mk=1 akMk�. It was shown that

E2n exp
(
t
n∑
j=1
f�θj�

)

= exp
(
t
1
2

m∑
k=1

(
1+ �−1�k)f̂�k� + t2

2

m∑
k=1
kf̂�k�2 + ō�1�

)
�

(4.4)

which implies the convergence in distribution of
∑n
j=1 f�θj� to the normal law

N

(
1
2

m∑
k=1

(
1+ �−1�k)f̂�k�� m∑

k=1
k · f̂�k�2

)
	

[Actually (4.4) holds under much weaker conditions; it is enough to assume
f ∈ C1+α��0� π��, α > 0.]

Remark 8. Similarly to the unitary case (4.4) is equivalent to the large
n asymptotics result for some determinants, this time Hankel determinants
(see [19, 20]).
Our combinatorial approach allows proving the CLT for all f ∈ C1��0� π��

as well as studying the local linear statistics
∑n
j=1 g�Ln · �θj − θ��, 0 < θ < π.

In particular we establish the following.

Theorem 2. Let g be a smooth function with a compact support, Ln →
+∞�Ln/n → 0 and 0 < θ < π. Then E2n

∑n
j=1 g�Ln · �θj − θ�� = n/Ln ·

π,
∫∞
−∞ g�x�dx + ō�1� and the centralized random variable

∑n
j=1 g�Ln · �θj −

θ�� − E2n
∑n
j=1 g�Ln · �θj − θ�� converges in distribution to the normal law

N�0� �1/2π� ∫∞
−∞ 	ĝ�t�	2	t	dt�.

Remark 9. To modify the results of the Theorem 2 for the case θ = 0� π,
one has to consider instead the Fourier transform of the even part of g,
1/2g�x� + 1/2g�−x� and replace the integration over R1 by the integration
over the semiaxis.
Theorem 2 also holds (with obvious modifications) for SO�2n+1� and Sp�n�.
LetM ∈ SO�2n+1�. Then one of the eigenvalues ofM is 1 and the other 2n

eigenvalues can be arranged in pairs as before. The density of the eigenvalues
is equal to

PSO�2n+1��θ1� 	 	 	 � θn�

=
(
2
π

)2 ∏
1≤i<j≤n

�2 cos θi − 2 cos θj�2
n∏
i=1

sin2
(
θi
2

)
	

(4.5)
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The formula for the k-point correlation function is

ρn�k�θ1� 	 	 	 � θk� = det
(
K−

2n�θi� θj�
)
i� j=1� 			� k�(4.6)

where

K−
2n�x�y�=K2n�x�y� −K2n�x�−y�

= 1
2π

(
sin

(
n�x− y�)

sin
(�x− y�/2) − sin

(
n�x+ y�)

sin
(�x+ y�/2)

)
	

(4.7)

The analogue of (4.4) reads

E2n+1

(
exp

(
t
n∑
j=1
f�θj�

))

= exp
(
t
1
2

m∑
k=1

(−1+ �−1�k)f̂�k� + t2
2

m∑
k=1
kf̂�k�2 + 0̄�1�

)
	

(4.8)

In the symplectic case M ∈ Sp�n� the 2n eigenvalues again can be arranged
in pairs:

exp�i · θi�� exp�−i · θ1�� 	 	 	 � exp�i · θn�� exp�−i · θn�� 0 ≤ θ1� θ2� 	 	 	 � θn < π�

their density is equal to

PSp�n��θ1� 	 	 	 � θn�

=
(
2
π

)n ∏
1≤i<j≤n

�2 cos θi − 2 cos θj�2
n∏
i=1

sin2�θi�
(4.9)

and the formula for k-point correlation function is

ρn�k�θ1� 	 	 	 � θk� = det
(
K−

2n+1�θi� θj�
)
i� j=1� 			� k	(4.10)

The analogue of (4.4) reads

En

(
exp

(
t
n∑
j=1
f�θj�

))

= exp
(
−t1

2

m∑
k=1

(
1+ �−1�k)f̂�k� + t2

2

m∑
k=1
kf̂�k�2 + 0̄�1�

)
	

(4.11)

We will prove Theorem 2 for SO�2n�. The proofs for SO�2n+1� and Sp�n� are
almost identical.

Proof of Theorem 2. The arguments from Section 1 imply that it is
enough to prove the following.
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Lemma 3. Let Cl�n�f� be the lth cumulant of
∑n
j=1 f�θj�, l ≥ 2. Then∣∣∣∣Cl�n�f� − ∑

k1+···+kl=0
f̂�k1� · · · · · f̂�kl�

+ 1
2

(
G�k1� 	 	 	 � kl� +G�−k1� 	 	 	 �−kl�

)∣∣∣∣
≤ constl

∑
k1+···+kl=0

	k1	+···+	kl	>n

	k1		f̂�k1�	 · · · · · 	f̂�kl�	(4.12)

+ const′l
∑

	k1	+···+	kl	>n
	f̂�k1�	 · · · · · 	f̂�kl�		

We start with the formula (2.6) which holds for general determinantal ran-
dom point fields:

Cl�n�f� =
l∑
m=1

∑
l1+···+lm=l�
li≥1

�−1�m l!
l1! · · · · · lm!

1
m

∫
�0� π�m

fl1�x1� · · · · · flm�xm�

×
m∏
j=1

�K2n−1
(
xj� xj+1� +K2n−1�xj�−xj+1�

)
dx1 · · ·dxm

(we always assume xm+1 = x1)

=
l∑
m=1

∑
l1+···+lm=l
li≥1

�−1�m 1
m

l!
l1! · · · · · lm!

× ∑
ε1=±1

∑
ε2=±1

· · · ∑
εm=±1

∫
�0� π�m

fl1�x1� · · · · · flm�xm�

×
m∏
j=1
K2n−1�xj� εj · xj+1�dx1 · · · · · dxm	

(4.13)

Each term in the last sum with
∏m
i=1 εi = 1 is equal to∫

∏m
i=1 εi−1·�0� π�

fl1�x1� · · · · · flm�xm�
m∏
j=1
K2n−1�xj� xj+1�

m∏
i=1
d�εi−1 · xi�

= 1
2m

∫
�0�2π�m

fl1�x1� · · · · · flm�xm�
m∏
j=1
K2n−1�xj� xj+1�dx1 · · · · · dxm

[we use the fact that f�x� is even]. Combining these terms together we obtain
the same expression as for 1

2 · Cl�2n−1�
∑2n−1
j=1 f�θj�� in the case of U�2n − 1�,
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which gives vanishing contribution if l > 2. Finally we claim that the contri-
bution from the terms with

∏m
i=1 εi = −1 can be bounded from above by

const′l
∑

	k1	+···+	kl	>n
	f̂�k1�	 · · · · · 	f̂�kl�		

Indeed, the integral∫
�0� π�m

fl1�x1� · · · · · flm�xm�
m∏
j=1

(
1
2π

n∑
sj=−n

exp
(
isj�xj − εj · xj+1�

))
dx1 · · ·dxm

can be rewritten as

1
2m

n∑
s1=−n

· · ·
n∑

sm=−n
f̂l1�s1 − εm · sm� · f̂l2�s2 − ε1 · s1� · · · · · f̂lm�sm − εm−1 · sm−1�	

Consider the Euclidian basis �ej�mj=1 in �m and define fj = ej − εj−1ej−1,
ε0 = εm. The vectors �fj�mj=1 form a basis in �m iff

∏m
j=1 εj = −1. Then for

any m-tuple �t1� 	 	 	 � tm� there exists the only m-tuple �s1� 	 	 	 � sm� such that

tj = sj − εj−1 · sj−1, j = 1� 	 	 	 �m. We write f̂lj�tj� =
∑
f̂�kl1+···+lj−1+1� · · · · ·

f̂�kl1+···+lj�, where the sum is over ki such that
∑l1+···+lj
l1+···+lj−1+1 ki = tj. When we

plug this into (4.13) we obtain a linear combination of

f̂�k1� · · · · · f̂�km�	(4.14)

It is easy to see that for 	k1	+· · ·+	km	 ≤ n the coefficient with the term (4.14)
is equal to

1
2m

l∑
m=1

∑
l1+···+lm=l�
li≥1

�−1�m 1
m

l!
l1! · · · · · lm!

= 0	

For 	k1	+· · ·+	km	 > n the coefficient is bounded from above by some constant.
This finishes the proof of Lemma 3. ✷

Similar to Section 1 we obtain the proof of Theorem 2 by applying the lemma
to
∑n
j=1 g�Ln · �θj − θ��.
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