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THE CENTRAL LIMIT THEOREM FOR RANDOM MOTIONS
OF d-DIMENSIONAL EUCLIDEAN SPACE!
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Instituto Politécnico Nacional, México

Let g1, g2, - - - be random elements of the Euclidean group of motions
of d-dimensional Euclidean space Ré¢ (d = 1), that are independent and
identically distributed. The product g; -+ g, is represented in the form
t(n)r(n), where #(n) is a translation and r(n) is a rotation. In this paper it
is shown that under natural conditions r(n) and n—3##(n) jointly converge
weakly as n— oo to the product distribution of the Haar measure on a
certain closed subgroup of the rotations group, and a normal distribution
on R4, with mean zero and covariance matrix ¢2I (I is the identity matrix),
and the value of ¢2 is identified.

1. Introduction and results. The purpose of this work is to obtain a limiting
distribution for the product of » independent and identically distributed random
rigid motions of Euclidean space, as n — oo (a rigid motion of Euclidean space
is a linear transformation of the space which preserves the distance between
points, and the group of all these transformations is called the Euclidean group).
Such a result is given by V. N. Tutubalin in his paper [6], for Euclidean spaces
of dimensions two and three, but without fully identifying the limiting distri-
bution. Here we present a central limit theorem which holds for Euclidean
spaces of all dimensions, and completely determine the limiting distribution;
moreover, our conditions are weaker than those of [6].

Let & be the Euclidean group of motions of d-dimensional Euclidean space
R? (d = 1), 7 the subgroup of & of all parallel translations (isomorphic to R?),
and .22 the subgroup of ¥ of all rotations about the origin (both proper and
improper). We use leftward application of group elements on R?, and denote
xg the image of x € R* under g ¢ &. It is well known that each element ge &
may be written as g = #(g)r(g), where #(g) e .7 and r(g) € &2; and with this
representation, if g, = #,r,, i = 1, .. ., n, are elements of &, the product g(n) =

1

g, - -+ g, is expressed as g(n) = #(n)r(n), where

rny=r ---r

n

H(n) = i ti(rg - ris)™,

with r, = the identity element (see [6]). We represent the points x e R? and

and
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604 LUIS G. GOROSTIZA

te€ .7 by column-vectors denoted X and T respectively, and the elements r ¢ &2
by orthogonal matrices of order d denoted R, by the rule that to the point x7
corresponds the vector R'X. Consequently the group elements r(n) and #(n) are
respectively represented by the matrix .
R(n) =R, --- R

and the vector

T(n) = 2% Ry -+ R, T,
with R, = I, the identity matrix.

Let (Q, &, P) be a probability space on which is defined a sequence g, = 1,r,,
i=1,2,..., of random elements of ¥/, that are independent and identically
distributed. We seek to obtain a limiting distribution of the product g(n) =
g, - -+ g, Or equivalently (see [5]), an asymptotic expression of the n-fold con-
volution of the distribution of g, with itself, as n — co. By virtue of the above
representations we need only to obtain a limiting joint distribution of R(n) and
T(n) as n — oo.

For R(n) the following is clear by a known theorem (see [5]). Let S, denote
the support of the distribution of R, in the orthogonal group O(d), viz. the set
{xe O(d): P[R,e U] > 0 for all open sets U containing x}, and G(S,) the closed
subgroup of O(d) generated by S,. The matrix R(n) converges weakly as n — oo
if and only if S, is not contained in any (nontrivial) coset of any proper closed normal
subgroup of G(S,), and when the weak limit exists it is the Haar distribution on G(S,).
Indeed, R(n) converges weakly to M if and only if R(n)~! converges weakly to
M-, and M has the Haar distribution on G(S,) if and only if so does M~*.

In order to obtain a limit theorem for 7(n) we introduce the following defini-
tion. We say that a random matrix 4 of order d is irreducible if P[AV Z V] < 1
for all nontrivial subspaces V' of R?, for d > 2, and if A is not almost surely
nonnegative, for d = 1. By requiring the R, to be irreducible we prevent the
T(n) from being all restricted to a proper subspace of R¢, for d > 2, and from
having all the same direction, for 4 = 1, thus avoiding degenerate limits for
T(n) (at least for these causes). This definition has the property that if 4 is an
irreducible random contractive matrix then the matrix / — EA is invertible (see

Lemma 1).
In the following, a prime denotes matrix transposition, tr stands for matrix
trace, and we use the vector norm ||x|| = (2%, x*)}, with x = (x, - - -, x,)'.

The main result is the central limit theorem for 7(n).
THEOREM. If

(i) E||T|] < oo, and
(ii) R, is irreducible,

then the vector n~tT(n) converges weakly as n — co to the normal distribution with
mean zero and covariance matrix a*l, where

0* = dYE||T,||* + 2tr [(I — ER)™ET, E(T,'R)]} -
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REeMaRks. (1) This theorem is independent of whether R(n) converges or not;
for example, in R?, if r, is the rotation by =/2, then R, is irreducible, and hence
the theorem holds, but R(n) does not converge.

(2) It is easily seen that if M is a random orthogonal matrix independent of
T(n) then n=*MT(n) has the same weak limit as n~#T(n) (the theorem in [6] is of
this form).

(3) Note that E(T/'R,) is EOg, and E||T,||* = E||Og,||*, where O is the origin
of R?.

Finally, under the conditions of the theorem, when R(n) converges weakly, R(n)
and n=*T(n) jointly converge weakly as n — oo to the product distribution of the Haar
measure on G(S,) and the normal distribution N on R® with mean zero and covariance
matrix ¢*I, and hence, even if R(n) does not converge, the image xg(n) of x € R* under
9(n) is approximately distributed as ntN for large n.

In [6] the central limit theorem for T(n) is proved for d = 2 and d = 3, with
the assumptions .22 = the group of all proper rotations about the origin, and
G(S,) = the group of all proper matrices. This condition on G(S,) is much
stronger than our assumption of irreducibility of R;; e.g., in the two-dimensional
example in [6] the rotation r;, which is given by the angle @, = +«, each with
probability }, the constant « is required to be incommensurable with respect to
the length of the unit circle, whereas our condition is that « be different from
0 or 7. Also, the parameter ¢* is not identified. The proof in [6] employs group
representation theoretic methods special for R? and R®. Our approach is different,
and has also been used to establish a central limit theorem related to a problem
of another kind (see [2] and [3]).

REemARrK. If we consider the sequence of random functions {n~*T([nt]), t = 0}
([ ]denotes integral part), under the assumption that E||T,|*** < co for some
v > 0 it is possible to show that it is tight (by using the full strength of Lemma
3) and has asymptotically stationary and independent increments, and thence to
conclude that it converges weakly as n — oo (in the function space D[0, o0)?) to
a d-dimentional Brownian motion process with variance parameter g2.

2. The proof. We use the matrix norm ||4|| = sup {||4x||: ||x|| = 1}, and the
following basic inequalities for the conditional expectation E[ | <#] with respect
to a Borel field <% (which hold almost surely): for a random vector X in R? and
for a random matrix A of order d

IE[X| ]| = a*E[||X]||=#]  and  ||[E[4]|Z]|| < d*E[||4]|| ] -
These are a consequence of the elementary inequalities
(D) = i x] = (i x)t
We will repeatedly employ the basic inequalities, and elementary properties
of matrices, norms and (conditional) expectation, without stating them in detail.

[ ]stands for the integral part of a real number, and when a real number appears
where an integer should obviously be it is interpreted as its integral part.
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First we prove the property of irreducible random contractive matrices men-
tioned in the Introduction.

LemMma 1. If A is an irreducible random contractive matrix then the matrix I —
EA is invertible.

Proo¥r. This is obvious for d = 1. For d > 2, if I — EA is singular there
is a nonzero vector x such that EAx = x, which implies that 4x = x almost
surely, because the point EAx is an average of points that lie in the convex set
{z: ]|z]] = ||x||]} and hence can be x only if A fixes x with probability one; but
then the subspace spanned by x is almost surely invariant under A.

We will first prove the theorem under the assumption that E||T,||*** < oo for

some v > 0.
LEMMA 2. There is a constant K such that
E”Zlf:jﬂ Ry--- Ri—l Ti”r = (KE”T1||2(k —j))r/2
foreach 0 < j < k and each 0 < y < 2.
COROLLARY 1. There is constant K such that
EHn—} Zgzﬁn+l Ro te Ri—l TiHr é (K(a - AB))H2
foreach0 < f<aand0 <y <2 andallnz=1/(a — p).
Corollary 1 follows directly from Lemma 2.

Proor oF LEMMA 2. Since E|| ||” < (E|| ||*)"7, it suffices to prove the lemma
for y = 2. After direct computaion, involving the assumption that (R;, T}),

= 1,2, ..., are independent and identically distributed, we have
E”Z¢ ;+1 o Ri—l TiHZ
= (k — DE|T,|

+ 2 Nk FVE((Ry - Ry_ TRy - -+ R, 23421, (ER)''ET)) .
By Lemma 1 we can write
Skzi (BRY = (I — (ER)=5)(I — ER)™,
and hence, using norm inequalities and the fact that ||ER|| £ 1, we obtain
E| 2t R RO TP = (k= DENTPQA + 4d¥|[(I — ER)7]) -

LEMMA 3. There is a constant K such that

P[max,,i1ckciarsin [[n% 3t i Ry - Ry, Ti|| = e] < Kott+/%e=>

foreacha = 0,¢ > 0and 6 > 0, and all n = max {07, ce™?}, where ¢ is a positive
constant (here we assume v < 2, as we certainly may do).

COROLLARY 2.

1 (a+d)n
lim; , 07" lim sup, o, §p)-s piaton 5 . S | byatom RO

i=an+1
R, T)|PdP =0
foralla = 0and e > 0.
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ProoF or CoroLLARY 2. It follows from the identity (see [1] page 223)

$tiin—s ngatom Ry Ry—qT;l12¢] [[n=% Setvm Ry - - R, \T*dP

i=an+1 i=an+1
= P[|[n=} Flictom Ry - - R, Tj|| = ¢]
+ S;.; P[Hn_% Zl:}tfb)fl RO e Ri_l T1” Z l%] dt

and Lemma 3.

PROOF OF LEMMA 3. We have (see [1] page 88, for the second inequality)

PMax ., .i<icinisn [[n=% 3k i Ry v - R\ T = ¢]
(a) § P[maxlék§rm+l ””_% 5:1 Ro e Ri—l Ti“ % 5]
é P[maxl§k§6n+l min {”n_% fic:l RO e Ri—l TiH’

It Tt Ry - R T} = ¢4] + PImax, <o [|T4]] = ntefd].
For the last term in (a) we have

Plmax,gcpnin [|T0] 2 niefd] < 1 — (1 — P[||T,|| = n'eja]yr+

< L —[1 — (niefd)=—E||T,

2+v]6%+1 s

the last inequality holding, by Chebyshev’s inequality, for all sufficiently large
values of ne?. Using the inequality 1 — (I — x)* < axfor 0 < x < landa > 1,
it follows that

Plmax,c, ;.. ||T,]| = niejd] < 4T rre 01 2(9n 4 1)
for all sufficiently large values of n<?, and hence there is a constant K, such that
(b) Plmax, ;00 [| Tl = ntejd] < K o1t/
for all n = max {91, c==?}, where ¢ is a positive constant.
Forany 0 </ < j<k <dn+ 1 we have
PlIn Xicsis Ry -+ Ry Ty| = ¢/4, ||n~t Zicin R R T = ¢/4]
(©) = PllIn™* T R -+ R T = ¢f8,
1778 Bheiir Ry o Ry Tl = ¢fd] + P[||Ty|| = nie)8] .
Using independence, Chebyshev’s inequality and Lemma 2 on the first term on

the right of (c) (note that 1 -+ v/2 = 2), we see that there are constants K, and
K, such that

Pllln=t 2L R - R, Tl = ¢/8, ||nt 2h=in Ry R T = ¢/4]
(d) = (B(ne) ) K] — 1 — D)1 mde) Kk )
< (ne) o (Ky(k — iy
By Chebyshev’s inequality there is a constant K, such that
(¢) PIT\| = nte/8] < K (nte)=2~.
It follows from (c), (d) and (e) that there is a constant K, such that
Plln 200 Ry - - Ry, \Ty|| = /4, ||n~} 2= Ry Ry, Tl = ¢/4]
<n§5)—2—v((k - i)K5)1+u/2

A IV
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for all ¢ > 0 and all n, and therefore by Theorem 12.1 of [1] there is a constant
K, such that for all ¢ > 0 and all n

(f) P[max1§k§5n+1 min {”n_% Zk o 1,—1 ‘LH
lln=# 202 Ry - - - Ry ,II} = ¢/4]
é (nis)—z v(KG(an + 1))1+V/2 é K7 51+v/25—2—u s

the last inequality holding for all » > ¢~ and some constant K;.

The lemma is established by (a), (b) and (f).

In the following lemmas %, will denote the Borel field generated by R,_,,
T,,1<i< an, foran > l,andﬂ'a”_{¢,§2}f0r0§an<l

LemMa 4.

lim sup, ., E||E[n~* Zi<tn Ry - - R, T, | F L0l =0

forall « = 0 and 6 > 0.

We omit the proof of Lemma 4 because we will give that of Lemma 7, which

runs along the same lines but involves additional material.
For the proof of Lemma 7 we need the following result.

LEMMA 5. If R, R,, - - - are independent and identically distributed irreducible
random orthogonal matrices of order d, and S is a random symmetric matrix of order
d, then

n 1Y E[R,--- R;S(R, -+ R)'|S]— (a7 tr S)I everywhere
as n — oo, and if E||S||> < oo for given p > 0, then
Elln S5, E[R, -« RS(R, -+ R)'|S] — (d tr S)I||P -0
asn— oco.

PrOOF. Proving the first statement for each point of Q is the same as proving

it for S constant. Let
o(n) =t T3, E(R, -+ RS(R, -+ RyY) .
{¢(n)} is uniformly bounded, hence every subsequence has a convergent sub-
sequence, and therefore it suffices to show that each convergent subsequence has
the limit (@~ tr S)/; so let us assume that for a subsequence {n,} of {n}, ¢(n,) —> M
as k — co. We can write
o(n) =n* Y1, E(RER, --- R;S(R, - -+ R))R/) + n'E(R,SR,")
= E(R,p(n)R) — n'E(R; - -+ R,y S(Ry - -+ R,.,)") + n7E(R,SRY) ;

hence ¢(n,) — M as k — oo implies that the matrix M is symmetric and satisfies
the equation M = E(R, MR/’), and therefore it follows from Lemma 6 that M =
ml for some constant m; but m = d='tr M = d-'lim,_ tr o(n,) = d~* tr S.

The second statement follows from the first by the dominated convergence
theorem, since

In™* 3o E[R, - - - RS(R, - -+ R [S][]” < (@*]|S]])” -
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LEMMA 6. If R is an irreducible random orthogonal matrix of order d and S is a
random symmetric matrix of order d satisfying the equation E[RSR’|S] = S almost
surely, then S = (d=* tr S)I almost surely.

Proor. The result is obvious for d = 1, so we assume d = 2. lIt suffices to
obtain the conclusion for each point of Q for which the condition holds; thus
we may suppose that S is a constant matrix satisfying the equation E(RSR’) = S.
There is an orthogonal matrix Q and a diagonal matrix L such that QSQ’ = L,
and therefore L satisfies E(BLB’) = L, where B = QRQ’, and it is easy to see
that B is an irreducible random orthogonal matrix. Denoting L = (/;4,,), where
(0;;) = I, and B = (b;;), we see that the numbers /; satisfy the equations /;4,; =
> L E(b,, b;,) and in particular, for j =i, [, = 3, [, Eb}, i =1, ...,d, and we
may suppose /;, < [, < --- £ I,. Assumingthat/l = ... = Iu <l Z=---Z
withu < dweobtainl, S¢_, . Eb?, = Y'¢_ [, EbY,i=1,.-., u, where we have
used };, Eb?, = 1; this clearly implies that Eb2, =0,i=1,..-,u,k=u+1,-..,d
and hence b,, = O almost surely i =1, --.,u, k =u + 1, ..., d, and therefore
the nontrivial subspace of points of R¢ whose ith coordinates are zero for i =
I, ..., u is almost surely invariant under B; but B is irreducible. Therefore
I, =1,i=1,...,d, for some constant /, and we conclude that this is the unique
solution to [;d,; = >3, [, E(b,, b;). We have shown that L = /I, and the lemma

13 ‘LJ

follows from this.

LEmMA 7.
lim sup, .., E||E[n~* Zi2tom Ry -+« R, T,
(”—i Ziim)ﬁ R, T) | F o] — 06l =0

forall a = 0 and § > 0.

Proor. First we note that

tr [(I — ER)™ET, E(Ty R,)] = tr E[R(I — ER)(ET,)T,'],

and hence

Let o* = d"YE||T\||* 4+ 2 tr E[R,(I — ER))"Y(ET))T']} .

F, = E[n™ Sin Ry -+ Ry Tnd DEm Ry - Ry Ty | 0.
Using our distribution assumptions and properties of conditional expectation,
and denoting b(n) = [(a + 6)n] — [an] — 1, we obtain, after long and tedious
but straightforward computations,

F, = E[R, - -+ Ro,{n™" 2% E(R, - - - RE(T\TY)(R; - - R))NRy - -+ R,,)' | F el
+ E[Ry -+ Ry, {n™ 23097 E(R, - - - R(E(T(ETY)(I — ER/)™'Ry))
+ E(R(I — ER)ET)TN(R, - -+ R)DRy - -+ Re)' | F al
+ Un—Vas

where

Up = n7E[R, - -+ Ro{Tanss Tenss + Tani ETY)I — (ER, ')”‘”’)(1 — ER/)7 Rl
+ Repa(l = (ER)" ™) — ER)HET) o} (Ro - - - Rep)' | F
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and
Vi = E[Rq -+ Rp,{n™ TG E(R, -+ R(Tosi(ETY)ERY) ™ (I — ER/) 'Ry,
+ Roa(ER) ™7 (1 — ER)ET)TL)(R, -+ R)Ry - -+ Re)' | ] -
(U, contains the terms having i or j equal to an + 1; the first term of F, is the
sum of the terms with i = j; the sum of the terms with i = j is equal to the fol-
lowing expression plus its transpose:
E[Ro e Ran{"_l Ziiﬁi’l‘fl E(Ra'n+l e Ri—l Ri Z;C:;i)ln (ERl)j_i_l(ETl)Ti’
X (Rn'rH—l te Ri—l)’)}(RO ctt Ran)’ l Lg‘an] ’
where the sum on j can be written as
S (BRI = (I — (ER) =) — ER)™;
the second term of F, is the sum of the terms with i = j having the factor
(I — ER))7!, plus its transpose, and V, is the sum of those having the factors
(ER,)'*+®=%([ — ER)~*, plus its transpose.)
Using properties of the norm and conditional expectation, we have
E||F, — da*l|]|
< dYn ' UMW E(R, - -+ RyE(T, TY)(R, - - - R))") — 0d'E||T,||*1}|

+ d¥||n7t YWV E(R, - - - R(E[T(ET,)(I — ER/)™'R/']

+ E[R(I — ER)™MET)TY)(R, --- R)))

— 0d7' 2 tr E[R(I — ER,)™ET)T/ || + E[|U,|| + E|[V.ll -
Since b(n)n~' — d, the first two terms converge to zero as n — oo by Lemma 5
(with S constant). Again by properties of the norm and conditional expectation,
it is clear that there is a constant K such that

E||\U,|| = Kn7'E[|Ty|[" ,

and hence E||U,|| — 0 as n — oco. Similarly,

E|[V.|l = K[[n7 2257 E(R, - -+ Ry y(ER)"™ (I — ER)™ET,)(R, - - - R; T},,)")]]
= K]]n_lE Z'Zi’(:nl)_l Rl tet Rb(m+1(1 - ERl)_l(ETl)(Rl te Ri Ti+1)'H ’

and hence there is a constant L such that
E||V,|| £ LE||n™* 22 'R, - -« R; T, »

and then E||V,|| — 0 as n — oo by Corollary 1.
The proof is complete.

Proor oF THEOREM. Corollaries 1 and 2 and Lemmas 4 and 7 imply the con-
ditions of Rosén’s theorem in [4], which follow by using the basic inequalities
and the fact that the norms in [4] and ours are equivalent. Therefore the con-
clusion of the theorem is obtained under the assumption that E||T,||** < oo for
some v > 0.
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To prove the theorem in general let 7,2 = T,e=?!'7ill; § > 0, and define
T(n) = X1 Ry --- R, T,
Clearly E||T,"’||*** < oo for v > 0, and hence by the special case of the theorem

already proved n~#T(n) converges weakly to N(d) as n — oo, where N(9) is the
normal distribution with mean zero and covariance matrix ¢%(9)/, with

0(8) = dE|| Ty} + 2 tr [(I — ER)™ET,VE(T,*"R,)]} .

By the dominated convergence theorem ¢?%(9) — o2 as 6 — 0, and therefore N(9)
converges weakly as 6 — 0 to the normal distribution with mean zero and co-
variance matrix ¢2/. The theorem will be established if we show

lim,_, lim sup, ., P[||n~tT(n) — n~tT®(n)|| = ¢] = 0
for each ¢ > 0 (see [1], Theorem 4.2). By Chebyshev’s inequality and Lemma
2 we have
P[||n=*T(n) — n=* T (m)]| Z ]
Pllln= Xy Ry - -+ Ry Tyl — 7?1l = ]
< KE||T(1 — e,

Il

whence the desired result follows by the dominated convergence theorem.

The joint convergence of R(n) and n~*T(n) can be proved by using the same
observation made by Tutubalin in [6] for his special case; that is, noticing that
for any fixed k the vector S(n, k) = n=t }}72-F R, - - - R,_; T; has the same weak
limit as n~#T(n), and that the conditional distribution of R(n) given fixed R,, - - -,
R,_, (and consequently given fixed S(n, k)) is close to the Haar distribution on
G(S,) for large k (because of the translation invariance of the Haar measure).

To obtain the asymptotic distribution of xg(n), note that every subsequence
of the sequence {R(n)(X + T(n))n~*} has a weakly convergent subsequence with
limit HN, where H is the Haar distribution on G(S,) and is independent of N;
but HN is distributed as N (see [1], Theorem 2.3).

Note. Lemmas 1 and 6, and a similar version of Lemma 5 appear originally
in [3], but are included here to make this paper self-contained.

Acknowledgment. I thank professor Charles J. Stone for his valuable remarks.
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