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The central mechanism underlying hypertension: a
review of the roles of sodium ions, epithelial sodium
channels, the renin–angiotensin–aldosterone system,
oxidative stress and endogenous digitalis in the brain

Hakuo Takahashi1, Masamichi Yoshika1, Yutaka Komiyama1 and Masato Nishimura1,2

The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and

parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like

immunoreactive materials were found 420 years ago in the hypothalamic nuclei. These factors appeared to localize to the

paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte

balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular

injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought

to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted

mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels

(ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a

high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or

increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous

system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow.

Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and

leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in

essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and

discusses the use of antihypertensive agents.
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INTRODUCTION

Epidemiological studies show that hypertension onset is strongly
associated with salt consumption:1–5 there is a close relationship
between average sodium salt intake and the incidence of hyperten-
sion,6,7 and restriction of sodium intake substantially decreases blood
pressure.8,9 When sodium salt is loaded, factors that inhibit Na+,
K+-ATPase activity increase in the circulating blood10 and in some
tissues.11 As inhibitors of Na+,K+-ATPase activity were identified as
digitalis glycosides, they are termed ‘endogenous digitalis-like factors’
(EDLFs).12–15 Despite extensive efforts over 40 years, the salt–EDLF–
hypertension cascade has been elucidated only recently. Interestingly,
there are several EDLFs in the circulating blood, even in subjects who
have never ingested any digitalis glycoside either as medicine or in
food containing digitalis-like substances.16–20 EDLFs include ouabain,

digoxin, marinobufagenin (MBG), marinobufotoxin (MBT), teloci-
nobufagin, proscillaridin A, bufalin and others. There are two types of
EDLFs: cardenolides derived from plants and bufadienolides derived
from toads. As these molecules contain a steroid nucleus and increase
cardiac and vascular contractility by inhibiting Na+,K+-ATPases in cell
membranes, they are called ‘cardiotonic steroids’ (CTSs).

Pharmacological evidence indicates that the circulating level of
CTSs may not be high enough to exert physiological effects21,22

because the main Na+,K+-ATPase subunit, the a1-subunit, is resistant
to ouabain. This apparent resistance was a major reason why CTSs
were not researched extensively in terms of possible pathophysiologi-
cal roles in cardiovascular disease. However, in recent years, EDLF has
emerged as a key player, at least locally in the brain, in the onset of
sodium-induced hypertension.23–25
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In terms of blood pressure regulation, both a central nervous system
(CNS) EDLF and the renin–angiotensin–aldosterone system (RAAS)
in the CNS are important.26,27 Current antihypertensive agents may
act at the sites responsible for blood pressure control in the CNS to
decrease sympathetic outflow.28 Regardless of whether the CNS is
involved in the genesis of hypertension in an individual patient, it is a
major determinant of the response to antihypertensive therapy once a
treatment strategy is adopted as commented by Esler.29 Sympathetic
and parasympathetic nervous system activity and/or vasopressin
release are the major mechanisms by which the CNS influences
blood pressure, although other minor mechanisms may also be
involved. When vasodilators are used, for example, the reactive
increase in plasma catecholamine helps limit the decrease in blood
pressure. Sympathetic activation may lead to a reactive increase in
plasma renin activity (PRA) and to sodium retention, which also
has an important role in limiting antihypertensive activity. Thus, the
CNS is constantly regulating blood pressure toward its set point, and
blood pressure is neither increased nor decreased unless the blood
pressure set point is changed by the CNS. Among antihypertensive
agents, the effectiveness of calcium channel blockers (CCBs) and
RAAS inhibitors could reflect their specific actions in the CNS,
which help reduce reactive vasopressor responses. In other words,
current antihypertensive agents must act by affecting central
hypertensive mechanisms and thus suppressing sympathetic outflow.
Treatment strategies that address the implications of the CNS response
are more likely to be effective than approaches that avoid or ignore
CNS involvement.

This review presents recent advances in our understanding of the
central mechanism of hypertension, including EDLF research. We also
discuss the implications of this central mechanism of action in terms
of the clinical treatment of hypertension.

SODIUM AND HYPERTENSION

Historically, humans in the Stone Age who lived inland on continents
consumed minimal amounts of sodium salt in their diets. Until
recently, Yanomamo Indians in the Brazilian Amazon region lived
like Stone Age people, and their 24-h urinary excretion of sodium was
0.9 mmol (0.53 g of NaCl).30 Notably, the amount of sodium they
consumed was roughly one-twentieth of that consumed by people
living in developed countries,31 suggesting that many humans today
consume about 20 times more sodium salt than the minimum
requirement. The average blood pressure of the Yanomamo Indians
was 96.0/60.6 mm Hg and did not increase with ageing.32 In addition,
no hypertension was observed in this community, in contrast to other
modern communities. In the Stone Age, the average life span was
approximately 30 years. During this time, traits that worked to
increase blood pressure with increasing stress would be favorable for
survival: people who could easily elevate their blood pressure to
provide sufficient blood to skeletal muscles and major organs would
have a survival advantage when attacked by enemies or wild animals.
Atherosclerosis, which is the greatest public health concern in modern
society, would have no impact on Stone Age society, as there were few,
if any, elderly people. Thus, the ability to easily increase blood pressure
is a trait that might have conferred a survival advantage until modern
times (Figure 1).

Sodium is the most essential mineral in mammalian physiology. In
particular, ingestion of high amounts of sodium salt may be required
to keep blood pressure high. As sodium intake is limited in natural
foods, a physiological mechanism to prevent sodium loss into urine
would have been established early in human evolution. The most
powerful mechanism is the RAAS,33–35 which is maximally activated

in people with a minimal sodium intake. In addition, sodium is
reabsorbed via the activated sympathetic nervous system, and reab-
sorption is specifically controlled by renal nerves.36–38 Insulin, which
increases in metabolic syndrome (obesity) and in the initial stages of
type 2 diabetes, also acts to retain sodium by suppressing sodium loss
into urine via renal tubules.39–41 Obese people who are metabolically
resistant to insulin are not resistant to renal tubular reabsorption of
sodium by insulin.42 Although prevention of sodium loss may once
have conferred a selective advantage, ingestion of excessive amounts of
sodium now results in chronic hypertension, a major cause of
atherosclerosis in modern society. Current efforts focus on preventing
hypertension, and this historical perspective indicates that life style
modification, and especially a diet that includes a minimum level of
sodium salt, is very important for treating hypertension in the clinical
setting.43,44

In contrast to sodium, potassium was abundant in the fresh foods
that made up the Stone Age diet. There are few physiological
mechanisms that control potassium retention, and potassium loss in
urine is dependent on urine volume.45–47 In modern times, diets have
shifted drastically from fresh to processed foods, reducing potassium
intake.48 As potassium supplementation leads to natriuresis,49 potas-
sium deficiency may aggravate sodium overloading. Results of the
Dietary Approaches to Stop Hypertension trial50 showed clearly that
changes in diet, including both sodium restriction and potassium
supplementation, are important for lowering of blood pressure.51

Epidemiological studies worldwide suggest that the optimal daily
intake of sodium salt (NaCl) is 6–7 g,52 roughly half of the current
average intake of salt. However, because humans have lived with
sodium deficiency for a long time, we have developed a powerful salt
appetite.53 This innate desire for salty foods makes it very hard to
drastically reduce sodium intake. In fact, when sodium salt is reduced
in foods, older people in particular lose their appetites. Ideally, therapy
to control hypertension would control pressor mechanisms induced
by excess sodium intake even when a significant amount of sodium
was consumed. Thus, ‘hypertension and sodium’ has been a major
target of hypertension research for a long time,54–56 and there is
increasing attention on endogenous digitalis as a key player in the
hypertension–salt relationship.
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Figure 1 Humans have lived with a minimal intake of sodium for several

million years. Accordingly, they have developed highly regulated

physiological system mechanisms to retain sodium and maintain blood
pressure at an appropriate level. The diet of humans has changed drastically

and rapidly in recent years, with increased consumption of processed foods

with high levels of sodium. Excessive dietary sodium may have adverse

effects that lead to elevated blood pressure. A full color version of this figure

is available at the Hypertension Research journal online.
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THE ROLE OF ENDOGENOUS DIGITALIS IN HYPERTENSION

Is third factor endogenous digitalis?
Continuous administration of mineralocorticoids leads to sodium
retention, which in turn leads to natriuresis when the sodium level
exceeds a threshold.57,58 This phenomenon is known as ‘mineralo-
corticoid escape.’ The two major causes of natriuresis are increased
glomerular filtration rate and decreased aldosterone levels, but
neither is involved in mineralocorticoid escape. The factor involved
in this phenomenon is thus referred to as ‘the third factor’,59 and the
most likely candidate for this third factor is an EDLF: suppression
of renal tubular Na+,K+-ATPase activity markedly increases sodium
excretion,60,61 and EDLFs suppress this enzyme. Supporting this, a
Na+,K+-ATPase inhibitor is increased in the circulation and
tissue Na+,K+-ATPase activity is suppressed when animals are fed
high-sodium diets.10,11 An extensive search for the third factor began a
few decades ago. Of note, pigs treated with subcutaneous administra-
tion of deoxycorticosterone acetate plus 1% sodium chloride
as drinking water develop antinatriuresis in the initial 2 days; at
this point, digitalis-like Na+,K+-ATPase inhibitory activity increases
at least 30-fold compared with baseline and natriuresis occurs
(Figure 2).62

Endogenous digoxin was first explored as an EDLF
Digoxin is used clinically as a CTS to treat arrhythmia and cardiac
failure.63 As administration of excessive doses of digoxin leads to
serious arrhythmias, the circulating levels of immunoreactive digoxin
are monitored during digoxin therapy. Even when digoxin has not
been given to patients, digoxin-like immunoreactivity (DLI) is some-
times detected in the plasma,64,65 possibly due to an EDLF that cross-
reacts with the anti-digoxin antibody. In fact, DLI is higher in
deoxycorticosterone acetate–salt hypertensive rats than in control
rats,66 and circulating DLI increases with sodium loading in rats.67

In humans, urinary DLI correlates with blood pressure and with
urinary sodium.68 In 2000, our group identified circulating DLI as
digoxin using liquid chromatography and mass spectrometry.69

Ouabain is another candidate for an EDLF
A hydrophilic digitalis, ouabain, has also been considered a potential
EDLF.70–72 Hamlyn et al.73 isolated ouabain or its isomer from a very
large volume of human serum in 1991. Our group used liquid
chromatography and mass spectrometry69 and nuclear magnetic
resonance74 to demonstrate that there is ouabain in circulating
human blood and in the culture supernatant of PC-12 cells. Although
there are very low concentrations of digoxin and ouabain in circulat-
ing blood in rodents and humans,75 their physiological roles are
unclear because the Na+,K+-ATPase in rodents is resistant to these
digitalis glycosides.76 However, a low dose of ouabain induces hyper-
tension in rats,77 probably because suppression of Na+,K+-ATPase
activity increases contraction of vascular smooth muscle and myo-
cardium more or less. The a2-isoform is thought to be targeted by
ouabain.78 Another explanation is that a low concentration of ouabain
increases renal tubular Na+,K+-ATPase activity to augment sodium
reabsorption, similar to aldosterone.79 This is not in accordance with
the working hypothesis that endogenous digitalis is released and
causes natriuresis to restore the sodium balance in response to
excessive sodium accumulation.80 Molecules considered to act as
EDLFs show exclusively hypertensive effects,81,82 but the underlying
mechanisms of action seems complex. For example, nanomolar levels
of ouabain increase the synthesis and release of angiotensin II (Ang II)
from the endothelium of the tail vascular beds of spontaneously
hypertensive rats,83 but also increase nitric oxide release from

endothelial cells.84 Ang II and nitric oxide have opposing effect on
vascular smooth muscle as known well.

The Milan hypertensive rat strain is the ideal animal model
for endogenous ouabain-induced hypertension
The Milan hypertensive rat has a point mutation in a gene that
encodes adducin,85 which leads to the stimulation of Na+,K+-ATPase
activity. As a result, renal tubular reabsorption of sodium increases,
and sodium retention results in hypertension.86 In this animal model,
plasma levels of ouabain-like immunoreactivity (OLI) are elevated,87

which is the principal cause of hypertension. PST2238 is an analogue
of digitoxin to block the action of ouabain, which lowers blood
pressure in the Milan hypertensive rats.88 PST2238 also suppresses
hypertension caused by low-dose ouabain.89 Therefore, the cause of
this type of hypertension is believed to be ouabain. It is thought that
those having adducing polymorphism like similar to the one in Milan
hypertensive rats,90,91 and PST2238 has potential for treating these
patients.92 However, a recent large-scale clinical trial failed to find a
significant reduction of blood pressure with PST2238.93

Sites of production of endogenous digitalis: the hypothalamus
and/or the adrenal gland?
Digoxin and ouabain are of plant origin. As humans eat plants, we
may be ingesting these substances. In fact, when isotope-labelled
digoxin is fed to animals, it accumulates in the adrenal glands, brain
and pituitary gland, which may be where digitalis is produced.94,95

For a long time, the question of whether digitalis detected in
those organs and in plasma was of endogenous or exogenous
origin was debated.55,96 However, it is now known that ouabain is
absorbed poorly (3–5%) in the intestine, indicating that it may be
endogenous.97

There is an interesting case report of an ouabain-producing
adrenocortical tumor.98 The patient’s hypertension returned to nor-
mal with extirpation of the tumor. We found that the plasma level of
OLI was elevated in a patient with pheochromocytoma originated
from the adrenal medulla. The level of OLI also decreased in this
patient after extirpation of the tumor.99

Excess intake of sodium
Renal impairment

Aldosterone

Vascular Tone
Sympathetic activity

HypertensionIncreased vascular resistance

• Pressure natriuresis
• Decreased renal sodium reabsorption

Sodium balance

Increased cardiac output

Proliferation of arterial
smooth muscle cells

Circulating
blood volume

Figure 2 A working hypothesis for the development of hypertension

associated with excess accumulation of sodium salt. Sodium retention
stimulates production of endogenous digitalis, which elevates vascular tone

and cardiac output. This increases blood pressure and directly inhibits the

renal tubular Na+,K+-ATPase, resulting in reduced sodium reabsorption.

Sodium balance is then achieved concurrently with the development of

hypertension. A full color version of this figure is available at the

Hypertension Research journal online.
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When we investigated the tissue localization of OLI using a specific
anti-ouabain antibody, OLI was detected in the adrenal medulla,100

paraventricular nucleus (PVN) and supraoptic nucleus in the
hypothalamus, as well as in the pituitary gland.101,102 OLI-positive
neurons were in the magnocellular region of the PVN. Their nerve
fibers and varicosities also contain OLI, indicating that, similar to
vasopressin, OLI is secreted from those neurons. The nerve fibers were
distributed densely to the subfornical organ, organum vasculosum of
the laminae terminalis and median eminence, which are implicated in
water-electrolyte metabolism.103 OLI was also found at the posterior
lobe of the pituitary gland. The exact same immunoreactivity pattern
was found using an anti-digoxin antibody.104

The plasma levels of DLI increase and the hypothalamus levels
decrease with sodium loading in rats.67 In contrast, when microtu-
bules are destroyed with intracerebroventricular (ICV) injections of
colchicine, the hypothalamic DLI content increases while the plasma
levels decrease.67 We therefore thought that the turnover rate of DLI in
the hypothalamus increased with sodium loading, suggesting that DLI
was produced in the hypothalamus and possibly released from the
pituitary. ICV treatments with 6-hydroxydopamine elicit decreases in
OLI contents in the pituitary, the hypothalamus and the plasma.105

These results suggest that the production and release of OLI are closely
associated with the brain, particularly the hypothalamus–pituitary
axis, and that noradrenergic or dopaminergic neurons, or both, have a
key role in this mechanism. Although we did not examine the
turnover rate of OLI, it might be similar to that of DLI because
OLI was observed in the same region of the hypothalamus.

Cultured immortalized cell lines have been used to study the
mechanisms underlying the production of endogenous digitalis.
When bovine adrenocortical cells are cultured in medium without
serum, the level of OLI released in the medium is 10-fold higher than
the OLI content in the cells.106 Y-1 cells of adrenocortical origin
produce ouabain in culture too.107

N1 cells, which are an immortalized cell line of hypothalamic
origin, were determined to be of PVN or supraoptic nucleus origin
because they produce vasopressin and oxytocin.108 We recently found
that ouabain is released into the serum-free culture medium of N1
cells in a time-dependent manner.109 Therefore, the hypothalamus as
well as the adrenal gland produces ouabain.

Milan hypertensive rats show a roughly 10-fold increase in ouabain
content in their brains compared with control rats.87 The hypothala-
mus, but not the adrenal gland, of this animal model shows marked
upregulation of genes coding for the P450 side chain cleavage enzyme
and for the delta5-3beta-hydroxysteroid dehydrogenase/delta5-delta4-
isomerase enzymes.110 Knockdown of the gene coding for these
enzymes decreases production of ouabain-like factor from neural
tissue.110 Therefore, ouabain may be produced in the rat hypothala-
mus. We also found that rat PC-12 cells, which are of adrenomedullary
origin, produce ouabain.73 As the adrenal medulla is of neural crest
origin, this may suggest that neural tissues produce ouabain ubiqui-
tously. As noted, OLI is also detected in the rat adrenal medulla by
immunohistochemistry.99 To summarize, ouabain and digoxin are
produced by neuronal cells in the hypothalamus and by adreno-
cortical and -medullary cells.

Bufadienolides are acting as endogenous digitalis
Bufadienolides are molecules with a six-membered lactone ring in the
C17 position of the steroid nucleus (there is a five-membered lactone
ring in this position in cardenolides of plant origin). Bufadienolides
can be isolated from cataractous eye lenses111 and from toad skin
and salivary glands.112 They have been used in traditional Chinese

medicine.113 Similar to cardenolides, bufadienolides inhibit Na+,K+-
ATPase activity114,115 and are considered to be EDLFs and CTSs.
Bufadienolides include MBG, MBT, telocinobufagin, telocinobufo-
toxin, bufalin, 19-norbufalin, proscillaridin A and others. Bufalin has
positive inotropic and pressor responses associated with robust
natriuretic activity, which are stronger than equimolar concentrations
of ouabain.116 Of the bufadienolides, MBG has been studied most
extensively.117–120 MBG has great affinity for and inhibits the activity
of the a1-subunit of the Na+,K+-ATPase,80 which is the main Na+

pump isoform in vascular sarcolemma and renal tubules.
We originally isolated MBT,20 telocinobufagin121 and telocinobufo-

toxin122 from human plasma and from cultured Y-1 and PC-12 cells.
Some reports indicate that these bufadienolides are of adrenocortical
origin.123,124 However, because the CNS has been implicated in
electrolyte balance and blood pressure regulation, bufadienolides
may also be produced in the nervous system. As the adrenal medulla
is of neural crest origin, we investigated whether PC-12 cells produce
these bufadienolides. Like ouabain, MBT, telocinobufagin and teloci-
nobufotoxin were all found in cultured PC-12 cells.122 However, using
the anti-MBG antibody, which cross-reacts with MBT, to perform
immunohistochemical staining of the hypothalamus, we were unable
to detect significant immunoreactivity in the hypothalamic nuclei.
This may be due to technical reasons, because bufadienolides are
lipophilic and may have been extracted into the organic solvent during
sample tissue fixation.

In summary, bufadienolides seem to be produced mainly in the
adrenal cortex. This contrasts with ouabain, which is produced mainly
in the hypothalamus. These substances may work separately to
regulate electrolyte balance and cardiovascular functions.

Stimulation of CTS secretion
On sodium loading, ouabain and digoxin levels increase not only in
plasma but also in urine,10,117,125–128 suggesting that sodium loading
triggers their production. Furthermore, OLI levels increase during
exercise129 and are elevated in patients with acute myocardial infarc-
tion.130,131 Thus, the role of these CTSs might be different from that of
other CTSs that increase with sodium loading, particularly in the
CNS.

In terms of long-term regulation of CTS secretion, OLI is increased
in patients with chronic renal failure,121,132 primary aldosteron-
ism,133,134 congestive heart failure135,136 and pre-eclampsia,137,138

and, to a lesser extent, in most patients with essential hyperten-
sion.132,139–142 Patients with essential hypertension have cardiac hyper-
trophy, bradycardia and increased ejection fraction, which are known
pharmacological effects of digitalis glycosides.143 Plasma OLI concen-
trations decreased in obese subjects after 3 months of supervised
exercise.144 As regular exercise decreases sympathetic activity and
blood pressure, OLI may be involved in this mechanism.

Although plasma levels of OLI and DLI can increase or decrease in
response to physiological and pathophysiological environmental
factors, the magnitude of the changes is so small that it is hard to
imagine that they have vasoconstrictive or cardiotonic effects in vivo.
On the other hand, subtle local changes in levels in the brain may have
significant biological effects, similar to those of a neurotransmitter or
neuromodulator. Supporting this idea, microinjection of ouabain into
the hypothalamus or lateral ventricle elevates blood pressure by
increasing peripheral sympathetic activity.145–148 Therefore, plasma
concentrations of these CTSs may originate in CNS tissue.

Thus, investigation of EDLFs led to the discovery of many other
factors that act in concert with EDLF in response to sodium loading in
the CNS. The proposed theory that sodium metabolism is influenced
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by EDLFs and other factors in the CNS, and that this is essential in the
genesis of hypertension has now been confirmed.

ACTIVATION OF THE BRAIN RAAS BY SODIUM LOADING

Antihypertensive agents such as CCBs, angiotensin I-converting
enzyme inhibitor (ACEI), angiotensin type-1 receptor blocker (ARB)
and mineralocorticoid receptor blocker (MRB) are very useful in
controlling hypertension of any cause in the clinical setting.149–153

RAAS blockers in particular may be superior to other agents because
they can prevent the onset of diabetes mellitus154,155 and protect against
cardiovascular complications.156–159 ACEI completely restores normal
blood pressure levels in rats with spontaneous hypertension.160,161

Sodium loading suppresses PRA and serum aldosterone concentra-
tion.162 Therefore, the RAAS was not thought to be essential in the
pathogenesis of hypertension on sodium loading. In patients with
essential hypertension who may have high-sodium consumption, roughly
one-third have lower PRA.163,164 RAAS blockers were still effective in
these patients.165,166 Unexpectedly, MRB is more effective in patients
with low-renin essential hypertension than in high-renin patients.167

PRA mainly reflects the activity of renal renin, but there is renin not
only in salivary glands168 but also in the brain.169 Expression of renal
renin mRNA markedly increases with sodium depletion and captopril
treatment, whereas brain renin mRNA decreases.170 Brain renin
may differ from that produced elsewhere as the end product, Ang II
in the CNS, causes sympathetic activation and increases blood
pressure.171–175 When we examined renin mRNA in the hypothala-
mus, expression was higher in rats fed a high-salt diet compared with
control rats with a normal diet.176 Similarly, expression of ACE mRNA
and angiotensin type-1 receptor mRNA was higher in deoxycorticos-
terone acetate–salt hypertensive rats,177 and ICV injection of Ang II
causes far greater rises in blood pressure in those rats than in control
rats. So, in contrast to its effect on PRA, sodium loading increases the
activity of the brain renin–angiotensin system. There is aldosterone in
the hypothalamus,178 and its levels increase with sodium loading in
rats,179 suggesting that sodium loading activates the brain RAAS. Both
Ang II and aldosterone injected ICV cause centrally induced increases
in blood pressure.180,181 Therefore, activation of the brain RAAS may
be an essential cause of hypertension. If RAAS blockers affect central
sites, it makes sense that they are effective even in low-renin essential
hypertensives.164,165

In our experience, the hypertensive response to ICV injection of
hypertonic saline is accompanied by an increase in the plasma DLI
concentration, which is blocked by ICV pretreatment with ARB.182 On
the basis of this, we proposed that sodium loading could activate the
brain renin–angiotensin system, with EDLFs implicated in this series
of responses. Blood pressure increases after ICV injection of hyper-
tonic saline are accompanied by increased peripheral sympathetic
tone.183,184 In particular, renal nerve activity markedly increases with
ICV injection of hypertonic saline,185 and renal arterial blood flow, as
measured with radioactive microspheres, decreases.186 As this response
is reversed by ICV pretreatment with atrial natriuretic peptide or
C-type natriuretic peptide, it appears that these peptides compete with
the RAAS in the brain. There are natriuretic peptides in the
brain,187,188 and brain natriuretic peptide and C-type natriuretic
peptide were originally isolated from the brain. Elevated sympathetic
activity acts as a powerful anti-natriuretic factor.189 Therefore, sodium
loading may lead to sodium retention via the central mechanism (that
is, positive feedback). However, lower concentrations of ICV sodium
suppress renal sympathetic nerves190 and cause natriuresis in rats191

and sheep192 (that is, negative feedback). It is hard to understand
which mechanism is actually working in vivo. There may be a sodium

level threshold in the cerebrospinal fluid that triggers the positive
feedback mechanism.

IS THE EPITHELIAL SODIUM CHANNEL (ENAC) A SENSOR

FOR SODIUM IONS IN THE BRAIN?

Vasopressor responses to ICV injections of hypertonic saline may not
be triggered by nonspecific stimuli like osmotic pressure, because
equimolar amounts of urea injected ICV do not cause the same
response.193 As we taste sodium salt via ENaCs on our tongues,194,195

we proposed that ENaC also works as a sensor for sodium ions in the
CNS. The increases in blood pressure and sympathetic hyperactivity
caused by ICV injection of hypertonic saline are abolished with ICV
pretreatment with benzamil, a selective ENaC blocker.196 Wang
et al.197 studied the relationship between ENaC and ouabain in the
CNS and found that ICV injection of low-dose aldosterone in artificial
cerebrospinal fluid with elevated sodium content markedly elevated
blood pressure and sympathetic activity; these effects were abolished
by ICV pretreatment with benzamil. Furthermore, ICV pretreatment
with digibind, the Fc fragment of the anti-digoxin antibody that
blocks ouabain’s inhibition of the Na+,K+-ATPase, also significantly
suppressed the hypertensive activity of aldosterone and hypertonic
artificial cerebrospinal fluid. This group conducted a series of studies
of these relationships,198–202 and others reported similar findings.203

Taken together, these findings indicate that ENaC may sense Na+ in
CSF and stimulate aldosterone production. This triggers the release of
ouabain, which in turn activates sympathetic outflow and causes
hypertension.

THE RELATIONSHIP BETWEEN THE RAAS AND OUABAIN

IN THE BRAIN

As noted, pressor responses and increases in plasma DLI after ICV
injections of hypertonic saline are abolished by ICV pretreatment with
ARB.182 The renin-angiotensin system is upregulated in rats fed a
high-salt diet, as shown by increased expression of renin,176 and ACE
and angiotensin type-1 receptor mRNA.177 ICV injection of Ang II
causes greater pressor responses in rats fed a high-salt diet than in rats
with normal sodium levels. Augmented central pressor responses to
Ang II in sodium-loaded rats are supported by the work of Houghton
et al.26 Increased production of Ang II in the hypothalamus in
response to sodium loading has been shown using microdialysis,204

and there is sodium retention in rats with renal failure, indicating that
the brain renin–angiotensin system is upregulated.205 Pressor
responses to ICV infusion of high-sodium artificial cerebrospinal
fluid are blocked by ICV pretreatment with spironolactone, an
MRB.197 Thereby, hypothalamic aldosterone is increased and OLI
content is decreased in both the hypothalamus and pituitary gland by
spironolactone. This indicates that the higher levels of sodium ion in
the artificial cerebrospinal fluid stimulated production of aldosterone
and ouabain. The enzymes required for aldosterone synthesis from
cholesterol are expressed in the brains of both rats206,207 and
humans,208 and there are minoralocorticoid receptors (MRs) in the
brain.207 Dahl salt-sensitive rats have higher hypothalamic aldosterone
levels than in Sprague–Dawley rats.209 These findings suggest that
increased sodium ion levels trigger activation of the RAAS, releasing
ouabain and leading to sympathetic activation as indicated by Huang
et al.210 However, ICV treatment with aldosterone elevates renin–
angiotensin system activity in the brain.211 Therefore, there are
complex interactions involving renin, angiotensin, aldosterone and
ouabain in the brain. Ouabain acts downstream of aldosterone in this
scenario, because spironolactone blocks the sodium ion-dependent
increase in brain OLI.197
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To summarize, the RAAS in the brain is activated by sodium ions,
which causes pressor responses via activation of the sympathetic
nervous system.

CENTRAL ACTIONS OF ANG II AND ALDOSTERONE

OF PERIPHERAL ORIGIN

It has been known for at least 40 years that Ang II injected into
vertebral arteries causes pressor responses and sympathetic activa-
tion.27,212 ICV injection of Ang II also elicits pressor responses along
with sympathetic overactivity.171–175 These findings show that Ang II
of peripheral or central origin directly affects the central vasomotor
center to cause sympathetic activation. In fact, peripheral administra-
tion of Ang II causes sympathetic activation irrespective of the pressor
response.213,214 However, generally speaking, pressor responses to
subcutaneous or intravenous injections of Ang II were long thought
to be due to Ang II’s direct vasoconstrictive activity and inotropic
actions on the heart because Ang II is a very potent vasoconstrictor
in vivo. The finding in 2010 that pressor responses to systemic
administration of Ang II are mediated exclusively via the CNS was
thus surprising.215 In that study, ICV pretreatment with an aldoster-
one synthase inhibitor abolished pressor responses to subcutaneous
infusion of low-dose Ang II. When the dose of Ang II was high, the
pressor response was only partially inhibited because the direct
peripheral effects overcame the central effects. Moreover, the inhibi-
tory effects could be reproduced by ICV pretreatment with either
eplerenone or digibind.215 Another research group reported similar
findings: ICV infusion of an MRB, RU28318, almost completely
blocked the pressor responses to subcutaneous infusions of Ang
II.216 Furthermore, chronic intravenous infusion of Ang II gradually
increased blood pressure, reaching a plateau level after about 2
weeks.217 Fra-like activity, an indicator of chronic neuronal activation,
was increased in the PVN in that study. ICV treatment with losartan
(an ARB), tempol (a reactive oxygen scavenger) or pyrrolidine
dithiocarbamate (an NF-kB inhibitor), all abolished hypertensive
responses to intravenously infused Ang II.

These mechanisms of actions of Ang II are very different from its
established roles in constricting arteries and increasing cardiac muscle
contractility. However, these studies show that aldosterone production
may be induced by Ang II via angiotensin type-1 receptors in the
brain, once again suggesting that the brain RAAS is acting to regulate
systemic circulation. We may have to change our concept of aldoster-
one’s mechanism of action as well. Aldosterone acts on renal tubules,
inducing sodium retention, and also exerts inotropic effects on the
heart.218–220 However, these effects may not underlie hypertension
induced by aldosterone; instead, aldosterone’s site of action may be the
hypothalamus.

The finding that the pressor responses to Ang II are abolished by
tempol and pyrrolidine dithiocarbamate indicates that Ang II leads to
oxidative stress in the brain.217 Similar findings showing that oxidative
stress in the brain is reduced by olmesartan, an ARB, have been
reported in stroke-prone spontaneously hypertensive rats.221 Renal
sympathetic discharge caused by ICV injection of Ang II is suppressed
by ICV treatment with tempol, supporting the idea that Ang II elicits
an oxidative stress reaction in the brain to cause hypertension.222 When
aldosterone is infused subcutaneously in rats with supplementation
of 1% saline as drinking water for 4 weeks, blood pressure gradually
increases by about 30 mm Hg with concomitant increases in (salty)
water drinking.216 In that study, when irbesartan (an ARB), RU28318
or spironolactone were infused ICV with osmotic minipumps, the
pressor responses caused by subcutaneous aldosterone plus salt loading
were abolished in all three pretreatment groups,216 and the increase in

saline intake was lower. As these pressor responses were inhibited
by nicotinamide adenine dinucleotide phosphate inhibitors, that is,
apocynin or tempol, aldosterone must be acting as an oxidative
stressor.216 However, the drinking behavior was not blocked by
apocynin or tempol, in contrast to the actions of ARB and MRB.
Therefore, salt appetite and pressor mechanism may be regulated
independently in the brain. Further, drinking salty water is not directly
related to aldosterone’s pressor activity, although it may affect the long-
term control of blood pressure. These findings are supported by a
report that showed that blood pressure increases accompanied by
sympathetic activation were ameliorated by RU28318, losartan or
tempol.211

Both RAAS and sympathetic nervous system activity are increased
in patients with heart failure. Specifically, plasma and hypo-
thalamic aldosterone levels are increased in a rat ischemia-induced
heart failure model.223 Further, the rats with heart failure showed
higher mRNA and protein expression levels of ACE and Ang II type-
1R, and expression was suppressed by ICV treatment with
RU28318.223 RU28318 also suppressed the excitation of PVN neurons
in the hypothalamus, and the plasma level of norepinephrine
was lower. Thus, aldosterone of adrenocortical origin appears to
reach the hypothalamus, triggering a series of events accompanied by
the progression of heart failure. As systemic administration of
aldosterone causes hypertension, which is abolished by a small
dose of ICV-infused MRB,216 these observations show that aldoster-
one is actually acting at MRs in the CNS to cause sympathetic
excitation and hypertension. The renin–angiotensin system may be
downstream of the MR, because aldosterone elicits oxidative stress to
activate the renin–angiotensin system (because MRB decreases nico-
tinamide adenine dinucleotide phosphate-mediated superoxide pro-
duction in the hypothalamus). An excellent review article describing
oxidative stress in the CNS and sympathetic activation is appeared
recently.224

These findings indicate that Ang II and aldosterone independently
cause oxidative stress in the brain, increasing sympathetic activation
and leading to increases in blood pressure. They further indicate that
aldosterone upregulates the renin–angiotensin system. These novel
findings regarding the central actions of Ang II and aldosterone are
exciting for people working in the field of hypertension research.

CENTRAL MECHANISMS OF HYPERTENSION

The CNS regulates blood pressure, and the baroreceptor reflex
mechanism acts as a homeostatic mechanism for stabilizing blood
pressure.225 However, baroreceptors only stabilize blood pressure at
the set point rather than actually determining the set point.226–228

Regulation occurs via the medulla oblongata, and the set point is
thought to be determined by the higher center of the central
vasomotor control, possibly in the hypothalamic nuclei, that is, the
PVN and supraoptic nucleus.229 The baroreceptor set point in
hypertensive individuals is shifted to a higher level, and their baror-
eceptor sensitivity is lowered.230 When ACEI is administered systemi-
cally to decrease circulating Ang II, the set point shifts to a normal
level as does the baroreceptor sensitivity.230 Even when blood pressure
is increased to hypertensive levels by phenylephrine infusion, the set
point remains in the normal range. This indicates that Ang II is
essential for determining the blood pressure set point. Consequently,
blockade of the renin-angiotensin system restores blood pressure to
normal. Although it seems logical that ACEI decreases Ang II in the
peripheral circulation, it may act on the CNS. In either case, because
the CNS is the control center for circulation, Ang II acts at the central
site to shift the blood pressure set point.
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As the brain RAAS is activated when there is excessive intake of
sodium salt, the effect is opposite that of ACEI administration: the
blood pressure set point is raised, that is, hypertension develops.
Needless to say, EDLF is important in the central mechanism of action
of the sodium–RAAS cascade.

CENTRAL EFFECTS OF OTHER STEROID HORMONES

Although centrally induced vasopressor responses have been docu-
mented for aldosterone,209,210 the central effects of glucocorticoids and
sex hormones are less well established. Our group showed that cortisol
acts at a central site to increase sympathetic outflow and cause
vasopressor responses that are abolished by ICV pretreatment with
ACEI or [1-Sar, 8-Ileu] Ang II.231 Cortisol is converted to cortisone by
11b-hydroxy steroid dehydrogenase-2 locally at the affected site.232

MRs have equal affinity for aldosterone and cortisol,233 but because
cortisol is converted to cortisone by 11b-hydroxy steroid dehydrogen-
ase-2 before acting at MRs, cortisol usually does not affect MRs.
However, if 11b-hydroxy steroid dehydrogenase-2 is absent in tissues
where MRs are present, cortisol can bind to MRs and have the same
effects as aldosterone. It is clear that MRs are expressed in the
hypothalamus,234 but 11b-hydroxy steroid dehydrogenase-2 is barely
detectable there.235,236 Thus, when circulating cortisol reaches its sites
of actions in the CNS, it may directly affect MRs, increasing sympa-
thetic activity and hypertension when circulating cortisol reached at
the site of actions in the CNS. If the response was caused by
stimulation of MR by cortisol, renin-angiotensin system may be at
the down-stream of mineralocorticoid. Although no one has tested,
EDLF may also be involved in this cascade.

Conjugated estrogen also elicits centrally induced vasopressor
responses, which can be abolished by blocking actions of AngII,237

which is very similar to the central action of cortisol and aldosterone.
Collectively, not only aldosterone but also glucocorticoids and sex

hormones may be acting at the CNS to cause hypertension, corre-
sponding to Cushing’s syndrome and pregnancy-induced hyperten-
sion in a clinical setting, respectively.

A HYPOTHESIS IN GENESIS OF HYPERTENSION

When we considered these epidemiological and experimental
facts mentioned earlier, a hypothesis may appear. The human who
evolved in the salt-deficient environment, has strong salt
appetite together with a powerful mechanism to retaining sodium.
The RAAS and the sympathetic nervous system made it possible for
humans to survive during the Stone Age, because higher blood
pressure levels allowed humans to respond and fight enemies
and wild animals by increasing the blood supply to the heart and
skeletal muscles.

The renal RAAS developed so that changes in the sodium
balance could be corrected quickly using negative feedback. In addi-
tion, another powerful positive feedback system, possibly the brain
EDLF/RAAS, controls long-term maintenance of sodium retention
and maintains elevated blood pressure. The sodium balance is thus
controlled by opposing forces in the CNS and in the periphery.

Humans may have evolved to be prone to elevated blood pressure
via excitation of sympathetic nerve activity in response to stimuli such
as sodium loading. The switch in modern times to a diet that includes
a lot of salty food has led to elevated blood pressure, which may cause
essential hypertension. What, then, is the cause of secondary hyper-
tension? In renovascular hypertension, activation of the RAAS in the
CNS causes hypertension directly via Ang II and aldosterone. In
patients with primary aldosteronism, increased aldosterone directly
affects the CNS. Sodium retention because of hyperaldosteronism may

also contribute to centrally induced hypertension. Sodium retention
because of impaired renal function may account for the response to
sodium loading in patients with renal hypertension and in older
hypertensive patients with impaired renal function.

In conclusion, CNS control of sodium metabolism underlies every
type of hypertension, including essential hypertension, primary
aldosteronism, pheochromocytoma, renovascular hypertension, renal
hypertension and pregnancy-induced hypertension (Figure 3).

ANTIHYPERTENSIVE AGENTS AND THE CENTRAL

MECHANISM OF BLOOD PRESSURE REGULATION

The key factors in the sodium-induced mechanisms of action of
hypertension include Na+, ENaC, the RAAS, EDLF, oxidative stress
and the CNS sympathetic nervous system. Agents that influence these
factors can either induce or decrease hypertension (Figure 4).
Antihypertensive agents in particular must affect these factors; other-
wise, treatment with antihypertensive agents would be accompanied
by adverse circulatory events. That is, if the baroreceptor reflex set
point is not lowered, the CNS will struggle to restore blood pressure to
a higher level. For example, vasodilators such as hydralazine238 and
short-acting dihyropyridine CCBs239 often cause angina pectoris by
increasing sympathetic tone. In fact, although excellent antihyperten-
sive agents are now available, many antihypertensive agents have been
screened during the long clinical history of hypertension treatment,
only to be rejected because of adverse events.240,241 A number of large-
scale clinical trials have evaluated the prognosis of current antihyper-
tensive agents and provided evidence of their efficacy.242–245

Diuretics lower blood pressure by affecting the central mechanism
of hypertension. Specifically, diuretics lower the concentration of
circulating Na+, decreasing sympathetic outflow. However, decreased
venous return to cardiopulmonary region because of circulating
volume contraction decreases the low-pressure baroreceptor reflex
tone (the sensors are located in the cardio-pulmonary region) and
increases sympathetic activity.246 As a result, sympathetic activity
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Figure 3 A proposed cascade showing sympathetic activation in the brain

and the development of hypertension, which is triggered by elevated

circulating sodium ion levels. Sodium ions are absorbed via epithelial
sodium channels, further activating the brain renin–angiotensin–aldosterone

system. Aldosterone stimulates the production of endogenous digitalis,

possibly ouabain, in the paraventricular and supraoptic nuclei to trigger

sympathetic activation. Angiotensin II and aldosterone cause oxidative

stress, which also stimulates sympathetic outflow in the central nervous

system. A full color version of this figure is available at the Hypertension

Research journal online.
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increases after treatment with diuretics in a clinical setting,247 but
blood pressure is decreased and sympathetic hyperactivity is minimal
probably due to the central actions of decreased Na+ concentrations.
Thus, diuretics end up decreasing sympathetic activity and do not result
in reflex tachycardia when blood pressure is significantly decreased.248

Local blockade of ENaCs in the CNS should reduce blood pressure
in humans as well as in animal models. In fact, amiloride and
triamterene, which are used to treat hypertension,249,250 are thought
to act at the distal renal tubules to suppress Na+ and K+ exchange in
the kidney and thereby lower blood pressure. It is also possible that
these agents act directly on the central site.

Blockade of the RAAS with a direct renin inhibitor, ACEI, ARB or
MRB is powerful treatment for almost all types of hypertension.251–254

These agents most likely act on the most essential part of the central
mechanism of hypertension and are considered the best antihyperten-
sive agents because of positive results from a number of large-scale
clinical trials.242–245,255 All are used worldwide. Systemic administra-
tion of ARB in rats prevents sympathetic hyperactivity and hyperten-
sion caused by ICV injection of hypertonic saline256 or Ang II.257

Possibly because these agents act on the central mechanism of
hypertension, they have few adverse effects. The prognosis of hyper-
tensive patients treated with these agents is also good as the agents
prevent cardiovascular complications.258–262

Agents that block EDLF actions may be candidates for antihyper-
tensive agents, with PST2238 (rostafuroxin) serving as a prototype
drug.88 Although there were no significant hypotensive effects in a
clinical trial in a general population,92 very effective hypotension was
achieved via increased plasma ouabain levels in patients with genetic
variants such as those in adducin 1, lanosterol synthase, hydroxyl-d-5-
steroid dehydrogenese and ATP-binding cassette sub-family B
member 1.90,263 Therefore, agents that selectively affect EDLF activity
may be worth developing.

Sympatholytic agents such as a2-adrenergic agonists and imidazo-
line receptor agonists are also useful antihypertensive agents.264,265

Those are acting at the vasomotor center in the lower brain stem to
decrease sympathetic outflow, which again suggest that sympathetic
nervous system activity is a key factor for regulation of blood pressure.

However, adverse effects such as drowsiness and dry mouth limit the
use of these agents, particularly a2-adrenergic agonists.

The a1-adrenoceptor blocker is thought to act on a1-receptors in
the peripheral arterial wall to dilate vessels, which is the principal
effect of this agent.266 If this blocker works purely as a vasodilator,
reflex tachycardia will occur in response to hypotension and the
antihypertensive actions will be limited. In fact, pulse rate does
not increase in response to hypotension caused by prazosin, doxazosin
and bunazosin.267 When injected intravenously in anesthetized rats,
bunazosin lowers blood pressure by suppressing sympathetic out-
flow.268,269 Therefore, we assume that these a1-receptor blockers act
directly at central a1-receptors to suppress sympathetic outflow. This
may be why treatment with these agents does not result in reflex
tachycardia.

CCBs are widely used because they are potent antihypertensive
agents with minimal adverse effects. Again, this kind of agent does not
induce reflex tachycardia regardless of its hypotensive effect, except
when it acts rapidly.270,271 Some agents act directly on cardiac muscle
to suppress pacemaker activity.272,273 Even with dihydropyridine
CCBs, which have less of an effect on the pacemaker, reflex tachycardia
is usually absent and the heart rate may decrease.271 Of course, reflex
tachycardia occurs when a potent CCB like nifedipine is administered
and rapidly lowers blood pressure.274 However, when blood pressure is
lowered gradually with slow-release nifedipine or amlodipine, reflex
tachycardia is absent; instead, there is bradycardia.275,276 Thereby,
peripheral sympathetic tone is decreased.276 Therefore, when CCBs
are administered, there are effects that are very similar to those
induced by a1-blockers. Diltiazem given intravenously causes hypo-
tension and bradycardia without peripheral sympathetic excitation.277

ICV injections of diltiazem elicit vasodepression with decreases in
abdominal sympatholytic activity, which is attenuated by electric
ablation of the hypothalamic anteroventral third ventricle area.277

Similar findings have been reported with nifedipine in rats on a
high-salt diet.278

Beta-adrenergic blockers cause centrally induced vasodepression:
ICV injections of propranolol, a representative b-blocker, elicits
vasodepressor responses accompanied by suppression of sympathetic
outflow.279,280 Intravenous injections of propranolol act on the brain
to raise the local concentrations to levels similar to those observed
after ICV injection to induce hypotension.281 Those will be the reason
why b-blockers are widely used for treatment of patients with
congestive heart failure, who have elevated peripheral sympathetic
tone.

The blood–brain barrier blocks the entry of most substances into
the brain. Therefore, except for centrally acting a2-adrenergic agonists,
antihypertensive agents do not generally reach CNS sites. On the other
hand, circumventricular organs such as the subfornical organ and the
organum vasculosum of the laminae terminalis are critical centers for
blood volume and blood pressure regulation.282–286 The arterial
architecture differs in the organum vasculosum of the laminae
terminalis and in the area postrema, so there are also differences in
terms of the solutes that permeate them.287 These areas may serve as
overall sensors for body fluid and circulatory regulation. The ante-
roventral third ventricle area, which includes the organum vasculosum
of the laminae terminalis, has been implicated in the genesis of several
types of experimental hypertension288–293 and may include a network
of neurons that regulate electrolyte balance and sympathetic tone.
Circumventricular organs have a less selective blood–brain barrier and
may directly (chemically) sense the circulatory environment. When
the subfornical organ is electrically ablated, pressor responses to
chronic subcutaneous infusion of Ang II are attenuated27 and the
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Figure 4 The cascade that causes sympathetic hyperactivity in the brain and
the antihypertensive agents that target components in this cascade.
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antihypertensive effects of ARB are decreased. Thus, Ang II and ARB
may act on the subfornical organ.

The common characteristic of the first and second choice of
antihypertensive agents recommended by clinical guidelines294,295 is
that they do not result in reflex tachycardia during hypotension. This
means that a baroreflex system senses that the blood pressure level
because of antihypertensive agents is the correct one for the patient.
Current antihypertensive agents may reset the baroreceptor reflex
threshold to a lower level, a process that must be controlled by the
CNS rather than by peripheral barosensors. As noted, antihypertensive
agents would have suppressed sympathetic nervous system activity in
which level blood pressure converge to restore the sympathetic
activity.

Thus, the ENaC–RAAS–EDLF system in the CNS may elicit
sympathetic hyperactivity in the sodium-loaded state, leading to an
elevation in the blood pressure set point. Sodium retention occurs not
only because of excessive intake of sodium salt but also because of
decreased excretion of sodium because of impaired renal function in
renal hypertension, primary aldosteronism, insulin resistance and
senile essential hypertension with renal impairment. Sodium retention
is the common underlying cause of almost all types of hypertension.
Therefore, treatments for hypertension, including diuretics, ACEI,
ARB, MRB, a1-blocker, a2-agonist and b-blocker, all interfere with
this cascade to break the chain that leads to hypertension.

The antihypertensive agents screened during the long history of
antihypertensive therapy allow us to lower blood pressure comfortably
and improve prognosis. This may indicate that these antihypertensive
agents act at the origin of hypertension, that is, the CNS. Therefore,
with this understanding of the genesis of hypertension, efforts should
focus on novel antihypertensive agents that selectively target this
cascade.

FUTURE TASKS

Despite the long history of hypertension research, some of the possible
mechanisms of action of antihypertensive agents have been ignored.
Although the brain controls the sympathetic nervous system (and thus
hypertension), it seemed unlikely to researchers that antihypertensive
therapies targeted the brain. This may be why it took so long to
elucidate the pathogenesis of hypertension. We can now forget that
such agents can change patients’ personalities and may have other
serious side effects. Physiological variables such as respiration and
body temperature are controlled by the CNS, and the CNS is the
overall regulator of many physiological functions, including blood
pressure.29 Sympathetic activation represents a hallmark of the essen-
tial hypertensive state and its complications.296 Some issues remain to
be clarified, including the following:

(1) Does ouabain, digoxin or another Na+,K+-ATPase inhibitor
function as an EDLF in the CNS?

(2) The evidence establishing the connections in the Na–ENaC–
RAAS–EDLF network remains incomplete.

(3) The expression of genes associated with the Na–ENaC–RAAS–
EDLF network must be determined.

(4) Most evidence supporting the central role of this network in
blood pressure regulation was obtained in animal models or
cultured cells. We must determine whether there is a similar
series of responses in humans.

Despite these remaining questions, the paths that lead to hypertension
are becoming clearer, and a full understanding of the mechanisms
underlying hypertension may be close at hand.
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