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The central value of the Rankin-Selberg
L-functions

Xiaoqing Li

Abstract
Let f be a Maass form for SL(3,Z) which is fixed and u; be an or-
thonormal basis of even Maass forms for SL(2,Z), we prove an asymptotic
formula for the average of the product of the Rankin-Selberg L-function
of f and u; and the L-function of u; at the central value 1/2. This implies
simultaneous nonvanishing results of these L-functions at 1/2.

1 Introduction

The values of L-functions at special points have been the subject of intensive
studies. For example, a good positive lower bound for the central value of
Hecke L-functions would rule out the existence of the Landau-Siegel zero, see
the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions
is a crucial ingredient in the current development of the generalized Ramanujan
conjecture [LRS], etc. In this paper, we consider the simultaneous nonvanishing
problem of products of Rankin-Selberg on GL(3) and GL(2) and Maass L-
functions on GL(2) at the central point 1/2.

Specifically, let u;(z) be an orthonormal basis of even Hecke-Maass forms for
the modualr group SL(2,Z). For each u;(z), let a;(n) be its normalized Fourier
coefficients (see the next section), we associate the L-function:

(1.1) L(s,u;) =Y _aj(n)n”"
n>=1

which has analytic continuation to the whole complex plane and satisfies a
functional equation relating s to 1 — s. Let f(z) be a Hecke-Maass form of
type (v1,v9) for SL(3,Z) and f(z) be its dual Maass form. f(z) has a Fourier-
Whittaker expansion with Fourier coefficients A(m, n). The L-function

(1.2) L(s, f)= > A(l,m)m™*
m=1

has analytic continuation to the whole complex plane and satisfies a functional
equation. The Rankin-Selberg L-function defined by

(1.3) Lis,fxup) =33 %

m>=21ln>1
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also has analytic continuation to the whole complex plane and satisfies a func-
tional equation relating s to 1 — s. See the next section for related terminology
and details.

Our main theorem is the following:

Theorem 1.1. For f a fized Hecke-Maass form for SL(3,7Z) and f be its dual
Maass form, u; an orthonormal basis of even Hecke-Maass forms of type %—I—itj

for SL(2,7Z), we have

(1.4) Zle_;izL <%,f X Uj> L (l,uJ) = MWTQ 4 Osﬁf(Tl_ﬁlJrs)

- 2 s
J

where * means summing over the orthonormal basis of even Hecke-Maass forms
and € > 0 is arbitrarily small.

It is known [JS] that L(1, f)L(1, f) # 0, so we have

Corollary 1.1. Under the same assumption as in the above theorem, there are
infinitely many u;s such that

1 1
L <§,f X Uj) L <§,’U,j> 7§ 0.

Remarks 1. If f comes from the Gelbart-Jacquet lift [GJ] from GL(2), then
there is Watson’s formula [Wa] which relates L (3, f x u;) L (3,u;) to some
period integrals. Then the nonvanishing of such L-functions at the central
point implies the nonvanishing of those periods, see also [Re] and [GJR] from
the representation theory point of view.

2. The technology in this paper also yields

_w=m? ] 1
e L(E’f wﬁ(w) = 0 f (T 1)

J

where H = T%, " means summing over the orthonormal basis of even Hecke-
Maass forms. When f is selfdual, by the positivity of the L-functions ([La],
[KS], [Gu]), we have

1 1
L <§,f X ’LL]) L <§,UJ) <<€)f 11%+‘€

for t; — T =< H. This yields the subconvexity of the product of the L-functions
which is as strong as the current record subconvexity bound

wl=

(1.5) L <%uj) < (1+[t;])

combining with the convexity bound

(1.6) L(%,fxu]) < (1+|tj|)%.



(1.5) was first proved conditionally by Iwaniec in [Iwl] and an unconditional
proof was given by Ivic [Ivl] and subsequently by Jutila [Ju], while the con-
vexity bound (1.6) remains untouched. In the case that f comes from the
Gelbart-Jacquet lift [GJ] from GL(2), Bernstein and Reznikov [BR] obtained
the bound L (1/2, f x u;) L (1/2,u;) < (1+ |t;|)* " using the representation
theory for compact Riemann sufaces and they claimed their method should also
work in general.

3. Much stronger nonvanishing results in terms of percentage of nonvanishing
are known for lower degree L-functions using the powerful mollification tech-
niques, see [IS], [Lu], [KMV], [So], for example. In our case, such stronger results
haven’t been done yet.

Our approach to prove Theorem 1.1 makes use of the Kuznetsov formula on
GL(2) and the Voronoi formula on GL(3) which was first derived by Miller and
Schmidt [MS1] using the theory of automorphic distributions, see also [GL] for a
simple, analytic proof. The Voronoi formula on GL(3) has been used by Sarnak
and Watson, Miller and Schmidt (see [Mi], [MS2]) to prove a variety of results
on L-functions, our paper gives another application of this very useful tool.

2 A review of automorphic forms

We set up the problem in a general background.
For n > 2, let G = GL(n,R),I" = SL(n,Z) and

h" = GL(n,R)/(O(n,R)-R*)

be the generalized upper half plane. Every element z € h" has the form z = xy
where

1 ILQ I173 e xl,n
1 xr23 ... T2.n
Tr = s
1 Tn—1,n
1

y = diag(y1y2---Yn—1, Y1¥2---Yn—2, - Y1, 1),
withz;; e Rfor1<i<j<nandy; >0forl1 <i<n—-1
Let v = (v1,v9,...,vp_1) € C"" L. The function

n

I1n—-1

by v

L) =] [Tw"
1 j=1

%

with
y L i ifi+j<n,
YT (m—=1)(n—j) otherwise,
is an eigenfunction of every differential operator D in D", the center of the uni-
versal enveloping algebra of gl(n, R). Here gl(n, R) is the Lie algebra of GL(n, R).



Let us write
DI, (z) = Apl,(2)

for every D € D™. An automorphic form f of type v for T' = SL(n,Z) is a
smooth function on h"which satisfies

1) f(yz) = f(z) for all v € T}
2) Df(z) = Apf(z) for all D € D™.
If f also satisfies

3) [ flux)d*u=0

TNU\U
where d*u =[] du;;, U is formed by all upper triangular matrices of the
1<i<j<n
form

I

T'm,
with r1 + 79 + - -+ 4+ 7, = n, I denotes the r x r identity matrix and * denotes
arbitrary real elements, then f is called a Maass form of type v.

For z € b, let U, (R) denote the group of n x n upper triangular matrices
with ones on the diagonal. Let

Wi tm) = [ L wgue) dlald'u
U, (R)
be Jacquet’s Whittaker function which has rapid decay as y; — 00,1 < i < n—1.

Here
Pm(u) = e(miur s + moua 3z + -+ Mp_1Un—1n)

with e(z) := €2 throughout the paper and
+1
w,, =
1

Every Maass form f(z) of type v = (v1,...,v,—1) has the following Fourier-
Whittaker expansion:

21) f(z) = 3 DYDY Ay(lilllv---,mnfl)

E(n—k)
€U _1(Z)\SL(n—1,Z) m1=1 My —2=1 My _17#0 H |mk|f

k=1

'WJvauet (M ("Y 1) Z,V, 1#1,...71,’%1) )
Mnp—1




where U, (Z) is the subgroup of U, (R) with coefficients in Z, and

M = diag (mq ---mp_2|mp_1|,--- ,mima,my,1). It is easy to prove that (see
Chapter 9 in [Go]) the dual Maass form f(z) := f(w,'27 w,) is a Maass form
of type (vp—1,- - ,v1) with Fourier coefficients A(my,—1,...,m1).

Next let’s recall some facts about Hecke operators. Let £2(T'\ h™) be the
space of square integrable automorphic forms for I' equipped with the inner
product:

(f.g) = / F(2)3() & (=),

\p*

n—1
for all f,g € L2(T\ b"), where d*(2) = [ dzi; [] yk_k("_k)_ldy;C is the
1<i<j<n k=1
G left invariant measure. For every integer NV > 1, we define a Hecke operator
Tx acting on £2(T"\ h") by the following formula:

C1 6172 Cl,n
T f( ) f C2 N R )
Ve = —— % o
NT1 n - :
[T e=N Cn

=1
0<ei,1<e; (1Ki<i<n)

The Hecke operators are normal operators. They commute with each other as
well as with the G invariant differential operators. So we may simultaneously di-
agonalize the space £L2(I'\ h") by all these operators. Let f be a Maass form with
Fourier expansion (2.1) which is also an eigenfunction of all the Hecke operators.
We normalize A(1,...,1) to be 1. Then we have the following multiplicativity
relations:

/ / / /
A(mimi, ..., mp_1m,_1) = A(ma, ..., mp_1) - A(mi, ..., my,_1),
if (my...mp_1,m}...ml,_4) =1, and
micp Ma2Cy Mp—-1Cn—2
A(m,1,....,D)A(my,...,mp_1) = E A( , e, )
n C1 C2 Cn—1
1 aa=m
=1
cilmi, calma, ..., cp_1|lmn 1

The above material is taken from [Go]. Our main interests in this paper are the
cases when n = 2 and 3.
For n = 2, one can identify h? with the upper half plane H. D? is generated by

the Laplace operator
0? 0?
A=y —+—
Y (5:62 " 3y2>

which has a spectral decomposition on L?(SL(2,Z)\ H) :

L*(SL(2,Z)\H) =C® C(SL(2,Z) \ H) ® £(SL(2,Z) \ H).



Here C is the space of constant functions. C(SL(2,Z)\ H) is the space of Maass
forms and £(SL(2,Z) \ H) is the space of Eisenstein series.

Let Y = {u;:j > 1} be an orthonormal basis of Hecke-Maass forms of type
sj = % +it; with ¢; > Oin the space C(SL(2,Z)\ H). Any u;(z) has the Fourier
expansion

(2.2) wy(z) = 3 ()W, (n2)

n#0
where W;(z) is the Whittaker function given by

Wi(z) = 2ly|2 K,_1 (2n]y|)e(x)

ST3

and K,(y) is the K-Bessel function. C(SL(2,Z \ H) consists of even Maass
forms and odd Maass forms according to u;(—Z2) = u;(z) or u;(—2) = —u;(2).
The Eisenstein series F(z, s) defined by

(2.3) E(z,s):% y Y

2
c,d€EZL |CZ + d| °
(e,d)=1

S

has the following Fourier expansion

E(z,5) ="+ ¢(s)y' " + ) _ ¢(n, 5)Wi(nz)
n#0
where I ) ( )
P G 3)¢(2s —1
Y =VITRS @)

with {(s) be the Riemann zeta function and

¢(n,s) = wT(s)71¢(25) " n| " In(n, 5)

with s
=3 (2)

Let

(2.0 o) = 20T (5 +it).

we have Kuznetsov’s formula (see [CI))

(2.5) Z/h(tj)aj (n)a; (1) + i /Oo h(r)w(r)i (n % + ir) n <z% + ir> dr

c

= %(5(n,l)H—|— > i {S(n,l;c)H"' (2m> +S(—n,l;c)H™ (2_\/5)},



where E, restricts to the even Maass forms, §(n,!) is the Kronecker symbol,

o0

(2.6) H= % / h(t) tanh(7t)tdt,
(2.7) w(r) =4r|¢ (1, % + ir) cosh™ 77,
. h(t)t
(2.8) Ht(z) = 21_4 ngt(27rx)m ,
(2.9) H (z) = % / Ko (2mz) sinh(mt) h(t)tdt,
(2.10) S(n,l;c) = Z e(dltdn)
dd=1(mod c)

is the classical Kloosterman sum. (2.5) holds for any n,l > 1 and any test
function h(t) which is even and satisfies the following conditions:

I) h(t) is holomorphic in |3t| < o3

IA(t) < (Jt] + 1)~ for some o > & and 6 > 2.

Now for (v1,v2) € C2, set

(2.11) a=-v1—2v+1, B=-v1+rvy, y=211 4+ —1,

for k = 0,1; for ¢(z) € C>°(0,00) and ¢(s) := ?oqﬁ(:v)xs%”, set
(2.12) ’

14s542k+a 1+s5+2k+3 1+s+2k+
P (Hheshse) (L2l ) (Lieiphin

,7 3 \—s ;
4 (z) ._%S[U (w2) e e H(—s — k)ds
with o > max{—1— Ra, -1 — NG, —1 — N},
(2.13) 84(0) = Bole) + T 10
and
7T7303n
(2.14) P41 (x) = Po(x) — mZmai Dy (z),

we have the following Voronoi formula on GL(3) :



Proposition 2.1. ([MS1], [GL]) Let ¢(z) € C(0,00). Let A(n,m) denote
the (n,m)-th Fourier coefficient of a Maass form for SL(3,Z) as in (2.1). Let
a,a,c € Z with ¢ £ 0, (a,c) = 1, and aa = 1(mod ¢). Then we have

Z A(n,m)e (de) d(m)

m>0
2
m1 m2 _ mom
E E ———=—=2S(na, mg;nem; )@Y | — L
mi1mso ’ c'°n

m1|en m2>0

Cﬂ' 2 ml, mg . 1 1 mgm%
g g S(na, —mg;nem; )@071 — |,
mimso con

m1|en m2>0

_5
2

where S(a, b;c) is the Kloosterman sum defined as the above.

3 L-functions

For each u;(z) of type & +it; in the orthonormal basis of even Maass forms for
SL(2,Z) with the normalized Fourier coeflicients a;(n) as in (2.4), we associate
the L-function L(s,u;) as in (1.1) which is entire and satisfies the following
functional equation

(31)  Als,u;) = 7T (S zitj) r (S _2”j) L(s,uy) = A(1 — s,15).

Using the functional equation (3.1) we shall represent the central values L(%, uj)
by its partial sums of length about O(|¢t;]). To this need, we choose a function

(IK], pp. 98)

A
3.2 Glu) = ( —) ,
(3.2) (u) cos —
we then have the following approximate functional equation (this has been
worked out for general L-functions in [IK]):

Lemma 3.1. For any u;(z) of type % + it; in the orthonormal basis of even
Maass forms for SL(2,7)

1
(3.3) L (g,uj) =23 a; ()2 U(1t5)
1>1
with
v(3 + u, t) du

(3.4) Uly,t) = % y_uG(U)WZ
() )

where G(u) is defined by (3.2) and
(3.5) y(u,t) = 74T (U-;zt>1_\(u;zt) '




Proof. See [IK] pp. 98. O
U(y,t) has the following properties which effectively limit the terms in (3.3)

Lemma 3.2. Fory,t >0,
1) (IK], pp. 100) the derivatives of U(y,t) with respect to y satisfy
¢ y

8 —A
C—U(y,t) < 1+ = ,
Y gy @) ( |t|>

0° y\“
« 7 Uyt =5a+0((—> )
Y oy (y,1) m

.0

where 0 < a < %750: 1
a,a and A.
2) if 1 <y < t17¢, then we have the following asymptotic expansion as t — oo
(3.6)

1 t \ d
Uly,t) = 5— ( ) G(u) [1+p2_(“) IO <p6t(31)))] 7u+0(t73),

" omi 21y t £2

otherwise and the implied constants depend only on

1
2

where v = Su, p;(v) are polynomials of v of degree i and B > 0 is arbitrarily
large.

Proof. 1) See [IK], pp. 100.
2) For Ru = %, s — oo and Rs = %, by Stirling’s formula, we have
(s +u) <| |% (7T| |)
) s|Texp (5 lul) .

It follows that for Ru = %,

[ul
< etluljg)a
1t
r(34)
I tu—it
A Jul
it et |t|4
L)
hence .
—+U,t s
7(2 T )<<62|u‘|t|2
(Evt)
SO
1 ,u Y(E +u,t) du _
(37) el RO et
29
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for any large B > 0.
By Stirling’s formula

1 1 1
logT'(s + ¢) = (s—i—c— 5) logs — s+ 510g27r—|—013_1 + s 240 (W)
s

for any constant ¢ (the ¢,’s are constants depending on ¢), as |s| — oo uniformly
for |arg s| < ™ — e <, one obtains that for |u| < ¢°,

(3.8) 77%(;;)’” = <%>u [1+p27@)+p;—§))+0<1%>],

where p;(v) are polynomials of v of degree i.
Combining (3.4), (3.7) and (3.8) yield the conclusion of II). OJ
By Cauchy’s inequality, Lemmas 3.1 and 3.2, we have

1
(3.9) L (5,%—) < |t]2Te

where we used [Iw2] (pp. 130) and [HL], (3.9) is the convexity bound of L(%,u;).
Correspondingly, to the Eisenstein series E(z, s), we associate the
L-function

(3.10) L(s,E) = Z n (n, % + Z'T) n=° = ((s —ir)((s +ir).
n=1

It satisfies the functional equation (3.1) which can be verified directly using the
functional equation of {(s); so (3.3) becomes

(3.11) Is <%+ir> P=23" (Z (%)) =2 U(1,7)
1>1 \ad=I

where U(l,r) is defined by (3.4).
Now let f be a Maass form of type (v1,v2) for SL(3,7Z), the L-function L(s, f)
(see (1.2)) is entire and satisfies the functional equation

Gu(s)L(s, f) = Gu(1 = $)L(1 = 5. f)

where

G (s) = 72T <W)F <s+u;—u2)r (s—1+;1+2,/2),

Gols) = n5T <—S+1_2”1 _2”2)r (5_”;+”2)r (S_1+22”1+V2),

and f is the dual Maass form. The Rankin-Selberg L-function defined by

m,n 2
Lg% =3 3 0l

m=21n>1
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for Rs large has a meromorphic continuation to the whole plane with the only
simple pole at s = 1. By a standard contour integration, one shows that

(3.12) D> > |A(m,n)]* <5 N.

m2n<N

By Cauchy’s inequality and (3.12), one derives that

(3.13) > |A(m,n)| < Nm.
n<N

The Rankin-Selberg L-function of f and u;

aJ (m,n)
s xug) = 30 3 wgt
(m

m>21n>1

is entire and satisfies the functional equation
(3.14) A(s, fxu;) = A1 —s, f x uj)

where

Ao f x5) = 3sr( e (=) p (=)
(e (D ()
) )
( (

and

~ t; t; t;
A(s, f x uj) = 3SF(S+Z ta F(S+Z +h F(S+Z +Fy)

.1_‘< —it; —i—a) s —it; —i—B)

a=-v1—2uv+1, B=—-v1+1vs, y=201 41— 1.

— it; +7> Ls, f x uy),

in the above,

Set
Tu\ —3A
(3.15) F(u) = (cosg) ,
_ 1 —u 71(%—'—'&,15) du
(3.16) Vi(y,t) = 27m./y F(u) n@H u
3)
1 _ 72(% + uvt) du
1 t) = 5— B (u) =g
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note that one could move the line of integration in Vi (y,t) and Va(y,t) to %

which is justified by Luo-Rudnick-Sarnak’s bound on the Ramanujan conjecture
[Ral, [RB|, [RY] < § — 15 (see [LRS)),

s 1 () () )
stit—a\  (s+it—pF\  (s+it—ry
.r( ! )r( ! )r( ' )

(3.19) ~a(s,t) = 7 3T (S _i2t+o‘> T <S _i;“Lﬂ) T <$>

.F<s+i;+a>F<s+i;+ﬂ)r(S+z’2t+’y),

one has the following approximate functional equation for L(s, f x u;) :

Lemma 3.3. For a Maass form f of type (v1,v2) for SL(3,Z) and any u;(z) of
type %—i— it; in the orthonormal basis of even Hecke-Maass forms for SL(2,Z),
we have

(320) L (%,f X u]') = Z Z %Vﬂm%@tﬂ

m>21ln->1

+ Z Z %Vg(m2n,tﬂ.

m>21ln->1 (

Proof. Following [IK] pp. 98, we consider the integral
1 1 1 du
I<§,f X U,j> = %/A <§ +’U,,f ><’U,j> F(’UJ);
3)

Moving the line of integration to ftu = —3 and applying the functional equation,

there yields
1 1 1 -

where A(3, f x u;) comes from the simple pole of u='F(u) at u = 0. By ex-
panding into absolutely convergent Dirichlet series, we have

(3170) = o) L et foror-ro 50

m>1n>1 71(5,@') u

Similarly,

1. 1 a;(n)A(n,m) 1 Cupy 125 Fusty) du
(3 7m) = (3) 3 B Mmoo RS
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Combining them and dividing both sides by 71(%, t;), one finishes the proof of
the lemma. 0

Vi(y,t) and Va(y,t) have the following properties which effectively limit the
terms in (3.20) with m?n < |¢;[3.

Lemma 3.4. Fory,t>0,i=1,2,
1) the derivatives of V;(y,t) with respect to y satisfy

a

0 Y -4
“— 7 ) 1 T2 )
Vi i) < ( +|t|3>

=0+ (5) )

where 0 < ¢ < émm{— — §Ra 5 — %[3,% — Ry}, do = 1,0 otherwise and the
implied constants depend only on a,a,A and f.

2)if 1 <y < 3+, then as t — oo, we have

(3.21)

1 2 \" ( ) | pa(v) ps(v) || du B
Vi(y,t) = — — | F 1 O|——= )| —+0O(t
() 2mi / <87r3y) () [ + t2 + t3 u +0(#77)
%
where v = Su, p;(v) are polynomials of v of degree i and B is arbitrarily large.

Proof. 1) See [IK], pp. 100.
2) Similar to the proof of Lemma 3.2 2). O
By Lemmas 3.3 and 3.4,

( fxu]) < Y ) |a] )||t e

m2ng|t;[3+e

+ ZZ |a’] ) )llt |a

m2ng|t;|3te

Furthurmore, applying Cauchy’s inequality, [Iw2] (pp. 130), [HL] and (3.12),
we have

(3.22) sy il o

l
m2n<|t;|3+e )2
Similarly, one can prove that
Iag m)| e
(3.23) 3 <se lt)?
m2n<|t;|3+e )

Combining (3.22) and (3.23), we obtain the convexity bound

1 :
(3.24) L (§,f X uj> Lt |tj|%+8.
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It follows from the convexity bound (3.9) of L (3, u;) and Weyl’s law, the con-
tribution to (1.4) from the error term of (3.21) is bounded by

Ly jay(m)A(m,m) 1
Do YN s A = 0(1h)

j m2n<|t;|3+e t;

where we also used [Iw2] (pp. 130), [HL] and (3.12).

Similarly, the contribution to (1.4) from the error term of (3.6) is bounded by
o(T'*e).

From now on, we only consider the leading terms in (3.6) and (3.21) since all
the other terms can be treated similarly.

To the Maass form f of type (v1,12) for SL(3,Z) and the Eisenstein series
E (z, % + ir) we associate the L-function

WRYOED 3) i et Lk

m>21ln>1

By looking at the Euler products

3
(s =Y A T]0 - B

m21 p i=1
1 ; —s —54ir\— —s—ir\—
L(S,E)=Zn(n,§+w)n =[[a-pt) @ —pn),
n>1 P

one derives that

3
s, fx E = H H(l - Bnkpirfs)*l(l _ Bchpfirfs)fl

p k=1

= L(s —ir, f)L(s +ir, f).

It yields that

(3.25) L(%,fxE) =L(1—w f) (1+W f)

This satisfies the functional equation (3.14) which can also be verified directly
using the functional equation of L(s, f). So (3.20) becomes

(3.26) L ( ) Ty (dz (%)_”) A(m n)

m>21ln>1

Vl(mzn, T)

Va(m?n, 7).

NI»—A
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In using the Kuznetsov formula, we need also consider the continuous spectrum
E(z, s). We are led to prove the following proposition in order to prove our main
theorem - Theorem 1.1:

Proposition 3.1. Let f be a fivzed Hecke-Maass form for SL(3,Z), u; an
orthonormal basis of even Hecke-Maass forms for SL(2,7Z), we have

g (1 1
(3.27) Ze_ﬂL<§,fxuj)L<§,uj>
J

. 76_;_22L(%+it,f)L(%—it,fgk‘(%—i—it) .
|¢(1 + 2it)|

— 00

2
= B L0 nn ) + 0. (TH).

™

Remarks. 1. Because of (3.10) and (3.25), one can see that the integral in the
above is the continuous analogue of the discrete part. Actually, the contribution
from the integral on the left of (3.27) is small. Indeed, by the well known bounds
[Ti]

C(1 4 2it) > log(1 + 2Jt)) 1,

1
¢ <5 + it> < (Jt| +1)5+°

and

o0 2
_ 2 3
/e T2 dt < T2%¢

1
L (5 +’Lt,f>

which is a direct consequence of the approximate functional equation of L(s, f)
(see [IK], pp. 98-100), one derives that

[ 2 Ll@G+it LG —itf)ICG+ir) [ ple
(3.28) / e~ TETTIIE dt <o ;T

which is admissible with the error term in Theorem 1.1.

Let Q(z) be a smooth function compactly supported on [%, 2T1+ﬂ with Q =1
on [1,T*] and 0 < Q < 1 on [§,2T%] ; k(x) be a smooth function compactly
supported on [£,273%¢] with k(z) = 1 on [1,7%7] and 0 < k(z) < 1 on
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[3,2T3¢], then (3.3) and (3.20) yield that

Coa (1 1
Ze T2 [, g,fxuj L i’uj

J

_ zz T Z 3 a;(Da; A, 1) ) 431 m2n, )00 k(m?n)

I>1 m>1n>1 anZ)%
(3.29)
a; n)A(n,m)
"1‘2 e T2 J ’ Ul,t‘V m2n7t‘Qlkm2n
Z ;mgl,; anl)% (L) Va( U K( )

+0y(T77)
where B > 0 is arbitrarily large.

Next we transform the main term in (3.29) by the Kuznetsov formula (2.5) into
A+ %N A, where

330 A=Y A1) & ) (m2n)s(n, 1) H,

1
>1 m>1n>1 (m?nl)2
£33 3 S ki, D
I>1 m>1n>1 (m ”l 2

is the diagonal term,
NA = NALY + NAY2 4 NA%D + NA?22 is the nondiagonal term with

(3.31) NAM =23 %" Z anl ;Q k(m?n)
>1 m>1n>1
> sont (227
c>0

(3.32) NAY? =23 %" Z )Q k(m?n)

m2nl 3
121 m>1 n>1

'ZC_IS(n,l;c)Hf_ (2\£m> )

c>0

(333)  Na2l=23"N" % A1) 6 e(m2n)
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(3.34)  NA22=23"% AW ) 6 (m2n)

I>1 m>1n>1 (mznl)%
2vnl
Zc Ls( n,l,c)Hf( n),
c>0 ¢
1 7 t2
(3.35) H =— /efﬁU(n,t)Vl(an,t) tanh(rt)tdt,
7T
i ~ ULV (0, 1)
+ o ‘ e 2U(l,t)Vi(m*n,t)t
(3.36) H (z) =21 / Jait(2m2) p— dt,
4 7 2
(3.37) H(z)=— / Kot (2mx) sinh wte” 72 U (1, t) Vi (m*n, t)tdt,
T
1 7 t2
(3.38) Hy=— /efﬁU(n,t)Vg(an,t) tanh(7t)tdt,
7T
i ~EUQLOVa(min, )
+ o ‘ e 2U(l,t)Vo(m*n,t)t
(3.39) H(z) =21 / Jair(2m2) p— dt,
4 T 2
(3.40) Hy(z)=— / Kot (2mx) sinh wte” 72 U (1, 1) Vo (m?n, t)tdt.
T

4 Evaluation of the diagonal terms

In this section, we will estimate the contribution from the diagonal term A
which is defined by (3.30).
Write A as Ay + Ag, where

(4.1) A=Y %Q(n)k(m%)Hl
n=z2lm>1

and

(4.2) Ay = Z Z %Q(n)k(mznﬂ{g.

n=>lm>1



18

Clearly

(4.3) A=

nzlm21

where B > 0 is arbitrarily large.
Let’s first consider

Alm,n
Sy A

)Hl +0(T~B)

* A(m7n) 2

(4.4) =YY = U (n, Vi (m*n, 1),

nzlm21
Set -

Uls,t) ::/U(:v,t):vs
0

1ys

which is equal to %7(2j ) by (3.4), set
s (5
1(s1,t /Vl x,t)x

F(sl) v1(3+s1,t) b

n(2 )

which is equal to

that

and

y (3.16). The Mellin inversion formula yields

/ Vi(s1,t)y~ 1 ds

0’1)

Ul(z,t) = % /U(s,t)x_sds

with o > —=

5 Land oq > —

(@)

75 Which is justified by Luo-Rudnick-Sarnak’s bound

on the generalized Ramanujan conjecture [LRS].

Due to Bump [Bu], we know that

L(s+1,f)L(w+1, f)

Z Z ms+1nw+1 -

m>1n>1

therefore

3

C(s+w+2)

A(m ds dsy

mn

Al = 2m //51V1 s1,t)sU (s, t) Z Z 7;")”—8( 2~ $5 451

(3) (3)

S S1

2s1 + 1 1,f)dsd
o //slvl s1,1)s0 (s, 1) L(2s1+ 1, /)L(si +s+1,f)ds 51
7TZ

(3) (3)

C(3s1+s+2) s 81
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Moving the line of integration to o = —i and o1 = 11, picking up a pole at
(0,0), by the Residue theorem, we have
! ¢(2) + 2mi C(s+2) sUls 1) s
(-%)

Y L2s1+ 1, [)L(si+s+1,f) .
" <%> / / C(3s1+s+2) Vi(s1,)U (s, t)dsds:

1
11

N\

L /L(251+1,f) (s1+1,f)

_ fd
o C(3s1 +2) Vi(s1,1)dsy

1
i1

= w +0 ((|t| + 1)—%) '

¢(2)
Thus
2
(4.5) A = @La NEL ) + 05 (T7+°)
Similarly
2 ~ 7
(4.6) Ay — %La N+ 0. (T37).

Combining (4.5) and (4.6), we obtain
12T2

(4.7) A= DL NEOL ) + 0pe (T5F)

5 Sums of Kloosterman sums - large c

From now on, we will start to show the contribution from sums of Kloosterman
sums - the nondiagonal terms is small (recall (3.31)-(3.34)). For simplicity, we
only treat NA'! later on since NAYM2, NA%! and NA2%2 can be estimated

similarly.
Let g, h be smooth functions supported on [1, 2], we apply smooth partitions of
unity to [ and m?n,
- S S
> 9l > s

U=—00 V=—00
then

e 9 )99 9p D LULTRD

2 1
N1 Nz =1 m>1n>1 (m?nl)2

(52 S s (2

c>0
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where No = 2% and Ny = 2°.

Since Q(z) limits the l-sum to | < 7' and k(z) limits m?n to

m?n < T3¢ Ny < T'*¢ and N, < T3¢, For fixed m, we split the c-sum into
three ranges:

D) e<Tstem™;

IT) T5+m-1<e< Cm™1;

1) ¢ > Cm~! with C = T5 ¢ + /N Ns.
In this section, we will study the third case.

Let
1 v (3 +u, —0oi+y)du
(5.1) Ul,—oi+y) = — /l’“G(u) 2 _ —
211 7(5,—Jz+y) U
(A)
and

. 1 u v (3 +u,—oi+y) du

59 V. 2 — :_/ 2 F J\2 -

(52)  Vi(m'n,—oi+y) 2mi )(m n Fw= (3.—oity) w
B

for j =1,2,A> 0 — 1 and B > max{o + [Ra| — 3,0+ |RB| — 1,0+ |Ry| — 5},
where 7(u, s) is defined by (3.5), 71(u, s) and v2(u, s) are defined by (3.18) and
(3.19) respectively. Recall G(u) is defined by (3.2) and F'(u) is defined by (3.15).

By Stirling’s formula, one derives that

A
- vt oo (W)
B
2 ; ly*
(5.4) Vi(m*n, —ci+y) <, <%> .

Recall H; (x) is defined by (3.36). Moving the line of integration to 3t = —o,
then H, () becomes

(5.5)
r S U, —gi + y)Vi(mPn, —oi + y)(=0i + 1)
_ e ,—oi+y)Vi(m?*n,—ci+y)(—oi+y
2t | J2iyt20(2 - dy.
Z/ 2iy+20 (277) coshm(—oi + y) 4

For 0 < z < 1, using the bound

(E2U€7T|y| y —20 if y >1
J2iy+2a(27rx) < { 11720 | | if Iy} ; 1

and (5.5), we have (taking 0 = A = B)
Hi‘,—(x) < xQUTQUJFQZ*U(an)*U.
By the above bound, (3.13) and Weil’s bound for Kloosterman sums

(5.6) S(n,l;c) < c%(n,l,c)%T(c),
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we have

Z c1S(n,l;c)Hy (2@)
<71

4, 110
T—5°t 718

which is negligible since ¢ can be very large.

6 Sums of Kloosterman sums - small ¢: Part 1

In the following two sections, we will estimate the contribution from
¢ <T5*tm~'in Nx'. The Voronoi formula on GL(3) will be used.
The J-Bessel function has an integral representation ([GR], pp. 902):

oo

2
Jair(2mx) = - /sin(27r:v cosh ¢ — imt) cos 2¢(d(
0

from which one derives

0 (2mz) — J_gi (2 2 sinhrt [
Jair(2m7) = -2t (2m2) ] /cos(27r:1:cosh<) cos 2t¢dC.
cosht 7 cosht
For x = 2@ > T~ and |t| < T'*¢, by partial integration once, we have
(61) Jgit(QFl') — J_Qit(2ﬂ'$)
cosh 7t
2 h "
 inh ot
_ e / cos(2mz cosh ¢) cos 2t¢d¢ + O(T )
m coshmt
7T€
for any B > 0.
Combining (6.1) with the definition of H; () (recall (3.36)), one obtains
T1+E Te
2 sinh 7t _ 2
ti) — 2 -t 2
(62) Hf(r) =2 / / LT S ULV (P, 1)1
_Tlte _T=

-cos(2mz cosh ¢) cos(2t¢)d¢dt + O(T~P).
For convinence, we apply a smooth partition of unity to the variable ¢

0

a=—00
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where () is a smooth function compactly supported on [1, 2], then

T1+5 TE

(6.3) Hf(x):_zz:/ /Sinhme’%U(l,t)Vl(an,t)t

T coshmt

To _Tl+e —_T¢

- cos(2mx cosh €) cos(2t¢)n (TL) d¢dt +0(T~5)
0

where Ty = 2% <« T1e.
There are two cases:
I) If Ny > Tyt or Ny > Tg™e, then due to the rapid decay of U(l,t) and
Vi(m?n,t) (see Lemma 3.2 and Lemma 3.4), the contribution from such terms
is negligible.
IT) If Ny < T01+s and Ny < TOSJ“E, we apply the asymptotic expansion of U(l,t)
and Vi (m?n,t) (see Lemma 3.2 and Lemma 3.4). If |¢| > T, '€, applying par-
tial integrations to the t-integral many times, one shows that its contribution is
negligible. So next we only consider the case [¢| < T, '™, We cut the (-integral
smoothly by inserting a smooth factor w (#) , where w(z) is compactly

0

supported on [—2,2] and equals 1 on [—1,1]. Set

W(t) := / w (#) cos(2mx cosh €) cos(2t¢)d¢

then by partial integration twice, we have

W(t) = Wi(t) + Wa(t) + O(Ty P)

with -
Wi(t) = —= / ¢ ) cosh ¢ sin(2mz cosh ¢) cos 26¢dC
) =g [ T sh ¢ sin(27x cos s :
2.2
Wa(t) = thx / w (#) sinh? ¢ cos(2mz cosh ¢) cos 2tCd(¢
0

and B arbitrarily large. For simplicity, we only consider the term involving
Wi(t).
Since ¢ < TJHE, by the Taylor expansion of cosh (,

e(zcosh() =e(x)e CQ—x 1+ ig% 4t LC%ZC + O(Ty 2H+e)
a 2 41 (2k)! 0 '

From now on, we only deal with the leading term since all the other terms
are similar. We always truncate the series at some point till the error term is
negligible. Now

T™r

(6.4) Wh(t) ~ S o0z | v (%) cosh e(x)e (%) cos(2t¢)d¢
— 00 O
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which is bounded by 9ct_2T071+‘E trivially. We are led to estimate
l m2n

6.5 k(m®n (—) h (—) nl

(6.5) ZZZM Wk(m®mg (3= ) () v

51 ma1n51 (
Z c28(n,l;c)e (2@) e (CQ\C/H> .

11
0<c<T o Tem—1

Trivially it is bounded by Ny N2T* due to Weil’s bound (5.6) and (3.12), which
yields that

66 33> Ao <m2”>9(zv%>h(n;vgf)

mznl %
121 m>1 n>1

2v/nl
> ¢ 'S(no)HY < \/"_> < NN Ty e,
11, ¢

0<e<T 9 "*m—1
In the case that N1 Ns < T%"’ETO, the above trivial bound implies that (6.6) is

bounded by T%"’E, which is admissible with the error term in the main theorem.
In the following, we assume

(6.7) T > NNy > T Ty,
Hence
(6.8) Ty > Trste.

Depending on the length of I, we consider two cases:

6.9) 1) Ny < T3 2) Ny > T

In this section, we will study the first case. The second case will be done in the
next section. Opening the Kloosterman sum S(n,;c) as in (2.10) and applying
the Voronoi formula Proposition 2.1 for the n-sum, we have

(6.10) ZAmn (nd)w(n)
n>0
2
YD Alna. ) md,nz;mcnll)‘l’81<n2nl)
: m

3
nin C
nilemn2>0 172

2
C7T 2 ng n1 _ nan
g g —=—28(md, —na; men] 1)\11(1) ) —1),
, 3
ning com

nilem n2>0

_5
2

where

m33m m3c3m

> i), Wo4(w) = o(z) —

Nt n

(6.11) g, (x) = o(x) +

n
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for k=0,1
(6.12) ¢u@:2ﬁx/k )Gk (s)P(—25 + 1 — k)d
(")
with ¢ = HT‘T > %,
D(s+k+$)0(s+k+2)T(s+k+12)
(6:13) Grls) = 1 a (1 /3) 1 )
ERFETEY CRP) T
(6.14) 99 = [ vt
0
and
(6.15) o) = e (”cﬂ 46 ﬁ) k(m22)h (’%)

We require an asymptotic formula for ¥ (z) when xNym =2 is large. We formu-
late the asymptotic formula for the general case in the following lemma:

Lemma 6.1. Suppose 1(x) is a smooth function compactly supported on [X,2X],
Yo(x) is defined by (6.12), then for any fized integer K > 1 and X > 1, we
have

Y
j=1 (7T3 ‘Ty)

+o(@Xyﬁ“),

where ¢; and d; are constants depending on «, B and vy, in particular,

_2ﬂ_ Cm/w iC]COS 67T$3y3)+d Sln(6ﬂ'$3y3)d
0

Cc1 = O, dl = —\/%.
Proof. Let
—s)I -1 5
V(S) — ( 5)3(35 )3765+—7
then
Go(s) =V (s)+ V(s)H(s)
where



25
Applying Stirling’s formula, namely
1 1 " a 1
_ j
logT(s+¢) = (s—l—c— 5) logs — s+ §log27r+]§:1 v + Os (|5|K+1)

which is valid for ¢ a constant, any fixed integer K > 1,|args| < m — § for
0 > 0, where the points s = 0 and the neighbourhoods of the poles of T'(s + ¢)
are excluded, and the a; are suitable constants, one shows that

b, 1
_ j
1) =32 +0 ()
j=1
where b; are constants depending on «, 5 and . In the folllowing we will follow

closely the proof of Ivic [Iv2] for the special case « = 8 =+ = 0. Let

L = 2 w2V (s)h(—2s + 1)ds.

oW

(o)

Changing variables 3s — 1 — w, we have

-2 r wit -~ (—2w+ 1
I = (1+w)7(w) 3722wy 2 (71” >dw

" 6mi (i —w) 3
(")
= I3+ I,
where
-2 T(w) 1 9y —ow+t [ —2w+1
I, = —= — 7 3 w — | d
57 6mi F(%—w) ’ vty 3 v
(")
and
) D(w) . 1 gy —guwir - [ —2w+1
J—— W w ; ke I
47 i wl"(%—w)fs Y 3 v

(e")

with " =30 —1. Moving the line of integration in I to the left to s = —oo,
we pick up poles of I'(w) at w = —n for n = 1,2,... with residues (—1)"/n!,
then we have

6N () R (2
I4_\/—Z nll—‘(n+%) 3

w

n=1
2 7 sin (G(uy)%)

S — /d
mow(y) ()} Yy
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T T 1(6(uy)3
/w@—ii%ﬁgw
. (3(uy)®)?

Sl

wl=

i}) )dy

/1/} cos
3\/37

where we used the well-known integral representation of the J-Bessel function
(see [EMOT], p.21)

1 / T'(s) ds _ Jy(22)
2mi ) T(v—s+1)a2 v
(o)

for 0 < o < v+ 3 and the formula (see [GR], p.914)

2 1 d \" cosz
— n+3
Jm%*”—vgzz<aﬁ> p

for n a nonnegative integer and x > 0. For j7 > 1, let

ds.
:_/ WV (s)b(~2s + 1) >

Set 3s — 1 = w, then

-2 F(w) _1_9 o owsl ~ [ 2w+ 1 dw
L= [ 14w 3-3-2utj, 2= _
29~ G /( ORI ) " w( 3 )(w+1)J

(e

where ¢ =30’ — 1. Particularly,
2 7 cos (6(uy)%)
I 31 d
2,1 3 Wer 0/¢(y) (uy)§ Y
and

with
-2 —T'(w) 3 o0y _ouwtl ~ [(—2w+1
Il _ 3 2w 2 == =
2 6m | GwrG w0 U\
(%)

and

-2 3T : wil ~ (=2 1

2,=_—= . (w) S ] e P
: m ) 2(5 —w)(w+1I(5 —w) 3
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Using the above integral representation of the J-Bessel function and the follow-
ing formula (see [GR], p.914)

w2 o1 d \"sinz
Jn+§($) =(-1) \/;35 Tz <%) .

for n a nonnegative integer and x > 0. we have

L 2.38 [ Ji(6(uy)?)
I2,2——9 0/¢(y)7\/§(uy)a dy

2 T sin (6(uy)%)
—ﬁJMFﬁ@r@

Applying the above precedure repeatly to 12272, one can derive the lower order
terms. The last integral can be estimated trivially by shifting the line of inte-
gration as far as possible. This finishes the proof of the lemma. [

For later use, we only consider the leading term in Lemma 6.1 since all the other
terms can be treated similarly. Now let ¢)(z) be defined by (6.15).

1) In the case :1:% > T¢, by the above lemma,

(4 Y
3
" (m3wy
Te (2@ + 3x%y%) k(m?y)h (mTiy) e (mcz)
- 4 c (&
=7 xdl/ (7T3ary)% dy
0
o 70 o () (52)
- xdl/ (7r3xy)% dy
0
Let
2yl
u(y) = \éy_ +325y3,
then
/ Iy L2
uy(y) = - ;‘Ffﬂsy 3,

SO
uy(y)y > x3ys > T,

By partial integration enough times, one shows that the contribution from
the first integral in (6.16) is negligible. Let

2yl 11
ualy) = 2 gbyd,
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then

e
5.
—~
<
S—

I
Q-
ﬁ\
|

8

Wl
@|
W

1) If 2 > 2¢/ 25 then |uy(y)| > y~2l2¢7 !, s0

T2c0
’ 1 1
lug(y)y| > NENZT5 =€ > T¢ due to (6.7) and (6.8). In this case, by partial
integration enough times, the contribution from the second integral in (6.16) is
negligible.
2) If v < 21/ 255 then |uy(y) >y~ 3lzc¢ !, s0

T2c0

lus(y)y| > yZ13c™" > T°.

By partial integration enough times, one shows that the contribution from the
second integral in (6.16) is negligible.

3) If % f:{;fﬁ <z <2 ﬁ;fi, then there is a stationary phase point yo =

S22173 such that uy(yo) = 0. Applying the stationary phase method ([Hu],
Lemma 5.5.6), we have

(6.17) 7 ctuatule (XY ity (52 )

e(—acti e (3) e(¢Etalk(m?ctatl*)h (e )

usy (Yo)
1
27e NI §T8
+o | S L)
N2 mz NQZ
Since
(6.18)
Id u
Z e (—) S(md,ng;menyt) = Z S(0,1+uny;cle (Lul)
c men
0<d<c u(mod meny ') !
(d,e)=1 uwa=1(mod meni ")
where

sOao= 3 e (“_Cd)

d(mod c)
(d,e)=1

is the Ramanujan sum which is bounded by (a, ¢). Therefore, (6.18) is bounded
by mc!te. The contribution to (6.5) from the error term in (6.17) is bounded
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SYom(y) ¥ 0%

11 3 3
e, —1milem 5 /Nyl VN1l
0<e<T™® T*m~—1 1 2Y L na2 YL
n n
1 1

2
|A(ng,n1)| (2T Nyic3Te NN3\® N\ E
: N. + 13 206 m2
ning 2 m§N24 m=c m

< ToT'He + T2T= .

The contribution to (6.5) from the main term in (6.17) is bounded by

(6200 > > (g (;2) > > 2.

11
121 m>1 O<c<T?+Em*1 n1|cm% «/N2113 <na<2 VN3

ny

341 _1
NA(no)| g 5 (NINGNTTE (NN T8 e
ning © \m2es m?2 <o

where we used the condition that

(6.21) N < T3te, Ny < Ty
Now if 2% < T¢ (recall 1o(z) is defined by (6.12)), let o = z
, - (N_§)720/+1
wO(J;) <L / (E72U (|S| + 1)60 7§Wd8
(o)
N 20 .
<t (m;) < T5.

whose contribution to (6.5) is bounded by

622 Y3 Y Y ¥ Mg(l)ﬁ

I>1 m>1 11 cmies 72 Ny
R B S

< NoT'9 te,

where we used (3.13) again. Combining (6.19), (6.20) and (6.22), we conclude
that under the condition (6.21), (6.6) is bounded by

17
(ToT™e + TET3+e + TT3+e + T8 TO)T; ' <« T8¢ which is admissible with
the error term in the main theorem.
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7 Sums of Kloosterman sums - small c¢: Part 11

In this section, we continue to estimate the contribution from sums of Kloost-
erman sums for small ¢, i.e., (6.5), under the condition that

1
(7.1) Ny < T3, NyNp >Tote Tj < Ny < T

)

Opening the Kloosterman sum as in (2.10) and applying the Poisson summation
for the I-sum in (6.5), we have

72 e <ld+3m> ¢ <<2ﬁ> Ql)g <NL2>

leZ

(B ()

keZ_"

Let
(ke + d)x 4+ 2v/nx

w(z) = -

then

W' (z) = w

There are two cases:
1) For |ke+d| > 101/%, then

/ 1 /NN
w (2)Ny > =4 =2 > T*.
C m

By partial integration [?] + 1 times

O/OOe(w(:zr))e <<2\£ﬁ) Q(z)g <N%> da

N.
<« —=2 <N T A

|ke+d|Ns \ =
c

where A > 0 is arbitrarily large. Thus the contribution from such terms is
negligible.

2) For |ke+d| < %1/1\,]2\%2,
=

, N1 N
w (2)Ny > %m > TF,
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as the above, by partial integration [?] + 1 times,

[ etwiore (L ey ()

C——— <N T

where A > 0 is arbitrarily large. Hence the contribution from such terms is
negligible.
3) For 1,/ % |ke + d| < %, there is a stationary phase point

L0 = oz such that w "(20) = 0. By the stationary phase method (see [Hu],
Lemma 5.5.6), we have

76<w<x>e (@) Q(x)g (N%) dx — v/2ae <2;§7sz (1 >
0

(%) ke +d|~30 <(kc —T: d)2) g ((kc +Z)2N2)

+0. (c2m2T‘5Nf1 + C%NéNl_%m%Ta) .

(7.2) becomes

(7.3) > V2enlke +d|” e (ﬁ>

N N
161/ Wymz Slhetd|<10 [ T2bs

—-n +1 0 n
el — 4+ 2
2k +cd 8 (kc+d)? kc+d )2 Ny
N,

emT® ctmzT® 3.1 3 3
+0 + +m2TEN; Y +¢2 NS N, *m2T¢
¢ < NiN> | NiNg ¢m iz M )

The contribution to (6.5) from the above error term is bounded by
[A(m, n)| -1
sy v
EERR—

1 1
emT® c2m?2T*¢ _ 3 1 3 3
— 4+ EmPTEN; ! + 2 NS N, *m2T®
1
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Therefore the contribution to (6.6) from the above error term is:
O((NE N, 3T +¢ 4 NN, TTH+e 4 PF+e 4 NI NFTE )7, 14)
=0, (T%“) .

The contribution to (6.5) from the main term in (7.3) is

(7.5) Z Z Wk(m%)h (mTin) Z 2 Z

mF1n1 S AR i
2

_3 —(*n 1

2 vzenlke +d <m+§>

1 N N
0 N27112 <‘kchdKlo\/ N2'rlnz

(i) o (i)« (% + o)

For the n-sum, we apply the Voronoi formula on GL(3), i.e. Proposition 2.1:

(7.6) 3" A(m,n)e (”7‘[ - ﬁ) é(n)

n>1

where
—(%z 9 m2x x T
= k h Q .

o) = Ve <c2k+cd (m™a)h | =5 (ke + d)2 ) 7 \ (ke + d)2N;
Since B B ,

d 1 dck+d-1 d

c k+ecd  clck+d) T

obviously c/|ck + d, by the Voronoi formula, (7.6) is equal to

5 2
2 n2 n1 - ro_ na2mn
g g —= =2 5(md’, n2; me nj 1)@8)1 (—,3 L
c°m

ning
nl‘c m n2>0

2

C7T 3 ng,nl - o 1 nany
E E (md', —ng;me nj )P01 (| —5— >

c“m

ninz
nl‘c m n2>0

/

(7.7)

where ®f | () and ®§ , (x) are defined by (2.13) and (2.14), respectively.
We only consider the contribution from ®¢(z) (recall (2.12)) since all the other
terms can be estimated in the same way.

By making a change of the variable,

®y(z) = 27z / (%) "2 G(s)p(—2s + 1)ds
(")



/\c“

where G(s) is defined by (6.13) and ¢ = %2
consider two cases seperately.
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7+ As in the last section, we
1) When x% >T°:

Lemma 6.1 yields that

Dg(x) ~ 27 zxd1/¢ ) sin 67T:103y3)(7r xy)” 3dy.
0

By partial integration [é} + 1 times with A arbitrarily large, we obtain

7
N 6
Dy(1) < x5 (m—;) T

whose contribution to (7.6) is neghglble
)Whenx—<T5'wesetU =

ol

1
3
Since C
G(s) < (ls|+1)% =2
and

~ ('
H(—2s+1) < 2

(|s] + 1)r007
we have

() e ()
6) and (7.7), (7

’ Ang,nl
Yy ewm)

’_q\L
s (d,ng,mcn11)2

In this case, by Weil’s bound (5. .6) is bounded by

’

nilc'm B m3re

n2x 2
niNy

2 1720 ——20’ 3
r_ 1.1 nan Nl ry L
“(menyt)zte L <c NP
1 /3 1
c m

m2

y (3.13) and the partial summation formula.
7.5) is bounded by

>

m2>1

1 1
Z c 2 Z
m
1<e<T B +em—1 1 N1~ < N1
<eg b/ oky <Ike+d|<10, /<20

_1 1
<<N1N2 2 +N12T%+5

;3 1
lke+d|"2¢ *N?



34

whose contribution to (6.6) is

O((N1N2 + N?Tlsﬂ)TgHs) =O(T's +9),

where we used the condition (7.1). The above error term is admissible with the
error term in the main theorem.

8 Bilinear forms of Kloosterman sums

In this section, we will study the contribution from sums of Kloosterman sums
L1

for ¢ in the intermediate range: To+em—1 < ¢ < NPNy m~1. We split the

m-sum into two ranges:

)m>/RET; 1) m < /{7~

e For the first range, we apply Weil’s bound (5.6) and (3.13),

% X s () (%)

l>1 T . n=1

Z ¢ 2S8(n,l;c)e <2Tm> e (@Tm>

11 1
T9 T m=1<c<KNENZm~1

W ol

< NiNjT® <TP7

e For the second range, we consider the following bilinear forms which techniques
are used in [DI]:

n mzn
(8.2) >3 amb()S(n, s c)e (9‘?) h <T) k(m?n)

n>11>1

where
a(n) = A(m,n)k(m?n), b(l) = Q(l)g (—) , 0=2+C%

By Cauchy’s inequality, (8.2) is bounded by
(8.3)

>l (52 [ sostnse (Lm)h(%n)

n>1 n=1|1>1

AT T Y% %M)Zm) N}

1121121 0<d1<c 0<da<c nez
(dl,c):l (dg,c):].
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where

with
dy — d2x+ 2(Vl; — V)T

C C

p(z) =

By the Poisson summation formula,

(8.4) > e(p(n))h < > Z/ h(mT%)d:z:.

nez k€L 1

Let A= %=dz g 20MvVBlg 1t ;£ A then |k — A] > L. Since

\/_c\/ﬁ\/_ ;1]\72 m\/i < =

, N Ni 1IN
Ik —p (2)] = > |k — Al =% > = — > T*.
m m cm

By partial integration p-times,

Hence on taking p = [B/c] + 1 with B arbitrarily large, we deduce that
m2z Ny
(8.5) > [elvta (_) dr < Nipp
k;éA Nl m

which is negligible.
Ifk=A, then k=A=0, d; =ds.
N1

m2$ p if ll = 12
8.6 /epx h(—) dr < o/ N1N2
i R e M N if 1y # 1o

[l1—1l2]

where we used partial integration once in the case that I3 # l3. Combining (8.3),
(8.5) and (8.6), it yields that (8.2) is bounded by

(S

c N1N2 .

2 . \/ 1

> b(0)*e +Z > b)[b(12)]1S(0, 1 — lzaC)|m Ny
>1 121 1<l2#0h

1
< &céNi
m
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where we used (3.12). It yields that

CORD DD ZWW”“”"LQ””(NL)"(TVQ? >

>1 m< %T*E n>=1

Z ¢ 2S(n,l;c)e <2\im> e <<2\c/m>

11 1 1
T9 P m-1<c<KNENZm—1

‘)—l

1

1 z
<K NINFT T < TET™ TS,

%

Gathering (8.1) and (8.7), we conclude that
A(m,n) 9 l m2n

121 m>1n>1
2vnl
E c_ls(n,l;c)Hfr< n)

c

K TETH <« T4

which is admissible with the error term in the main theorem. This finishes the
proof of the main theorem. [
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