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Abstract
This article addresses the nature of student-generated representations that support students’ early algebraic reasoning in the 
realm of generalized arithmetic. We analyzed representations created by students for the following qualities: representations 
that distinguish the behavior of one operation from another, that support an explanation of a specific case of a generalization, 
and that support justification of a generalization. One key finding is that representations in the form of pictures, diagrams, 
arrangements of manipulatives, or story contexts that embody the meaning of the operation(s) allow students to distinguish 
between operations. Such representations can be used by young students to illustrate relationships conveyed in specific 
instances of a general claim. Further, extending these representations to class of numbers is a mechanism for proving a 
general claim.
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1 Introduction

As part of her start-of-the-day routine, fourth-grade teacher 
Monica Royce1 gave her class a few quick subtraction prob-
lems, among them 145 − 100 and 145 − 98. Students solved 
the problems correctly except 145 − 98, for which the class 
had two answers: 47 and 43. They listened intently as their 
classmates presented different strategies for solving the 
problem, and all became convinced the correct answer was 
47, but some were still mystified. Since 98 is 2 less than 100, 
shouldn’t 145 − 98 be 2 less than 145 − 100? Why wasn’t 
that working? After some discussion, Brian got up to draw 
a picture (Fig. 1), explaining, “It’s like you’ve got this big 
thing to take away, and then you have a littler thing to take 
away, so you have more.”

Rebecca said, “It’s like you have this big hunk of bread, 
and you can take a tiny bite or a bigger bite. If you take away 
smaller, you end up with bigger,” and Max declared, “Yeah, 
the less you subtract, the more you end up with and, in fact, 

the thing you end up with is exactly as much larger as the 
amount less that you subtracted.”2

This episode illustrates a key aspect of early algebraic 
reasoning: exploring generalizations in the context of arith-
metic and quantitative reasoning (Kaput, 2006). Starting 
with a question that arose from a routine subtraction prob-
lem, Brian, Rebecca, and Max broadened their thinking 
from specific numbers to examine the behavior of subtrac-
tion. Based on Brian’s drawing and Rebecca’s story context, 
Max formulated a generalization that could be translated 
into algebraic notation: a − (b − c) = (a − b) + c, where a, b, 
and c are positive numbers and a > b > c. In the example of 
145 − 98, if a = 145, b = 100, and c = 2, the problem can be 
thought of as 145 − (100 − 2) = (145 − 100) + 2.

Ms. Royce reported this episode as part of a multi-year 
collaboration between researchers, including the authors, 
and groups of teachers to investigate algebraic thinking at 
ages 5–12. As we collected classroom cases from participat-
ing teachers, we found that drawings, such as that offered 
by Brian, and story contexts, like Rebecca’s, provided the 
means for students to recognize and articulate generaliza-
tions about the operations and gain insight into why they 
must be true. * Deborah Schifter 

 DSchifter@edc.org

1 Education Development Center, Waltham, MA, USA
2 TERC, Cambridge, MA, USA

1 Pseudonyms are used for teachers and their students.
2 This case appears in Schifter, Bastable, and Russell (2018), pp. 
34–36.

http://orcid.org/0000-0002-8834-0346
http://crossmark.crossref.org/dialog/?doi=10.1007/s11858-022-01379-x&domain=pdf


1290 D. Schifter, S. J. Russell 

1 3

This article addresses the strand of our early algebra 
research that involves noticing, articulating, exploring, and 
justifying generalizations about the operations. Specifically, 
we consider the question, what characterizes images like 
Brian’s and story contexts like Rebecca’s that help students 
make sense of the regularities they notice in arithmetic 
calculations?

Deep understanding of generalizations about opera-
tions—including but not exclusive to the commutative, asso-
ciative, and distributive properties; the identity elements; the 
inverse relationship of addition and subtraction, and that of 
multiplication and division—provides an important founda-
tion for students as they enter the study of algebra in older 
grades. As we discuss later, in addition to establishing a 
set of mathematical dispositions such as looking for struc-
ture and constructing mathematical arguments, experience 
with generalizations about the operations may help students 
interpret the same ideas expressed in algebraic notation and 
become fluent with algebraic symbol manipulation.

2  Related research

Much study of representation in early algebra focuses on 
the use of algebraic notation in the content of functions or 
generalized arithmetic, sometimes combined with natural 
language (Blanton et al., 2019; Brizuela & Earnest, 2008; 
Ramírez et al., 2020). In contrast, our focus is on images 
and models already familiar to young students: drawings, 
arrangements of physical objects, and story contexts. Our 
interest is on how children can use such tools to explore 
the regularities they notice in their work on calculation and 
to understand why the generalizations they formulate work 
as they do. For the purposes of this paper, we define repre-
sentations as pictures, diagrams, arrangements of physical 
objects, or story contexts created by students to illustrate 
such regularities.

Multiple representation of mathematical operations, 
relations, and structures has been described as key in early 
mathematics learning (e.g., Bruner, 1966; Hiebert et al., 
1997; National Council of Teachers of Mathematics, 2000, 
2014; National Research Council, 2001). The power of 

mathematical representations is in moving between represen-
tations and in linking physical models and visual representa-
tions with mental images (Lesh et al., 1987). In comparing 
representations for the same mathematical situation, students 
learn to abstract the common underlying structure (Khoury 
& Behr, 1982; Lesh, 1979). Representation in mathematics 
learning is essentially bi-directional, “an interaction of inter-
nalization of external representations and externalization of 
mental images” (Pape & Tchoshanov, 2001, p. 119).

In the context of early algebra involving functions and 
covariation, several researchers have converged on this 
aspect of the role of multiple representations. Radford 
(2011) comments: “The awareness of these structures and 
their coordination entail a complex relationship between 
speech, forms of visualization and imagination, gesture, 
and activity on signs (e.g., number and proto-algebraic nota-
tions)” (p. 23). Moss and London McNab (2011) theorize 
that “the merging of the numerical and the visual provides 
the students with a new set of powerful insights that can 
underpin not only the early learning of a new mathematical 
domain but subsequent learning as well” (p. 280).

In the context of generalized arithmetic, Warren and 
Cooper (2009) used balances to convey the meaning of the 
equal sign and number lines to build students’ understand-
ing of the inverse relationship of addition and subtraction. 
They hypothesize that “abstraction is facilitated by com-
paring different representations of the same mental model 
to identify commonalities that encompass the kernel of the 
mental model” (p. 90).

The research and curriculum development of Dougherty 
and Slovin (2004), based on Davydov’s (1975) emphasis 
on generalized representational tools (using length, area, 
volume, or mass to represent “how much”), indicates that 
students are capable of early abstraction through moving 
between different representations of a situation, using “an 
approach that consistently and simultaneously links the 
physical model, intermediate representations, and symboli-
zations within each lesson, and not in a sequential manner” 
(p. 301). Within the first few weeks of school, the funda-
mental properties of equality—reflexive, symmetric, and 
transitive—are introduced, and “because the children are 
modeling the properties with physical quantities, they can 
clearly see and describe how these properties work” (Dough-
erty, 2008, p. 393). From these experiences, a variety of 
number and operation concepts emerge. For example, given 
two unequal lengths, students explain there are two ways 
to make them equal: add a quantity to the shorter length or 
subtract the same quantity from the longer length.

Ding and Li (2014) considered word problems as a form 
of representation in their study of the treatment of the dis-
tributive property in a Chinese textbook series. Their analy-
sis points to the potential power of story problem contexts 
which are often ignored in favor of physical models or 

Fig. 1  A representation of the result of subtracting less
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diagrams as a tool for connecting the concrete and abstract. 
They note that while word problems are often used as appli-
cations, they are rarely seen as tools for the development 
of knowledge about mathematics, such as the properties of 
operations, examples of which we saw in the elementary 
classrooms we studied.

3  Research methods and questions

In this article, we report on data collected from collaborating 
teachers across five projects conducted from 1993 to 2022. 
(See Appendix A.) In addition to classroom field notes and 
video recordings, our data included what we call “episode 
writing,” for which collaborating teachers recorded class-
room lessons. Based on the transcription, they selected an 
episode from the lesson and wrote a narrative that included 
samples of student work and discussion of their goals, rea-
soning behind their on-the-spot decisions, reflections on 
what transpired, and questions about student thinking. Early 
in our first project, we noted that, once classrooms opened 
up to students’ ideas, students frequently commented on reg-
ularities in the number system. We asked teachers to focus 
lessons on such student observations and to ask, “Will this 
always work?” and “How do you know?” Thus, our extended 
inquiry into early algebraic reasoning began. In subsequent 
projects, we refined our questions and continued to collect 
from collaborating teachers between 80 and 220 episodes per 
year. We also documented more than 200 lessons with field 
notes and video recording.

As our research program developed, collaborating teach-
ers enacted lessons in which students noticed, expressed, and 
proved generalizations about the operations. Recognizing 
the complexity of this content for young students, we cre-
ated a teaching model to help students and teachers focus on 
key aspects of this process. The model emerged from close 
analysis of K-6 students’ written and oral expression and 
of collaborating teachers’ developing practices. Through an 
iterative process of delineating the model, we identified and 
elaborated five phases of activity (Schifter & Russell, 2020):

1. Noticing regularities in the study of number and opera-
tions.

2. Articulating conjectures based on what students notice.
3. Representing examples with diagrams, pictures, physical 

models, and story contexts in order to understand the 
mathematical structure of their conjectures.

4. Constructing representation-based arguments for a class 
of numbers.

5. Comparing and contrasting operations by investigating 
analogous generalizations for another operation, moving 
again through phases 1–4.

This paper addresses the part of our analysis focused on 
drawings, diagrams, arrangements of manipulatives, and 
story contexts—referred to in this paper as representa-
tions—created by students in the process of investigating a 
generalization. For phases 3 and 4 of the model, we exam-
ined students’ representations to consider which contributed 
to insight about the generalization under study and which did 
not. Our research questions about student-generated repre-
sentations are:

1. What characterizes a representation that allows students 
to distinguish one operation from another?

2. What characterizes a representation that supports 
students’ insight into an instance of a generalization 
relating two equations (e.g., 145 − 100 = 45 and 145 − 
98 = 47)?

3. What characterizes a representation that supports stu-
dents’ arguments for a generalization about an opera-
tion?

The representations used as data for the study were pro-
duced by students of teacher collaborators who voluntar-
ily participated in the projects for their own professional 
development. Professional development activities focused on 
three broad areas: teachers explored mathematical concepts 
that underlie the elementary curriculum (i.e. mathematics 
content for teachers themselves), analyzed cases of student 
thinking related to this content, and investigated their own 
students’ thinking through episode writing.

In our data analysis, we considered representations in 
three categories: (1) representations of a single number 
sentence, (2) representations of specific instances of a gen-
eralization, and (3) representations of the generalization. 
For each category, we sorted representations into those that 
could ultimately support a general argument for a generali-
zation and those that could not, and we described the rep-
resentations. We periodically discussed our findings with 
collaborating teachers, who used our descriptions to con-
sider selection of student representations to bring to class-
room discussions and guide their focus in those discussions. 
Through an iterative process, we examined new classroom 
episodes until our description of each category stabilized.

Although our analyses included representations created 
across multiple projects, the examples that follow, chosen 
to illustrate representations in each category, are drawn 
from classrooms using lesson sequences written by pro-
ject researchers in 2012 (Russell et al., 2017). These les-
son sequences were produced for grades 1–5 based on our 
teaching model, each sequence addressing a set of related 
generalizations in 20–25 20-min sessions (see Appendix 
B for generalizations addressed in each sequence). From 
2013 to 2020, participants in our projects taught two lesson 
sequences each year, in addition to their regular mathematics 
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curriculum; lessons were documented through field notes, 
teacher episodes, video, and photographs.

4  Results

4.1  Representation of a number sentence

Research Question 1: What characterizes a representation 
of a number sentence that allows students to distinguish one 
operation from another?

Characterization: Effective representations are pictures, 
diagrams, arrangements of manipulatives or story contexts 
that embody the meaning of the operation(s). They show 
the relationship between the operands and the result of the 
operation.

In extant practice, especially in higher grades, diagrams, 
pictures, and manipulatives are usually dropped as students 
work with calculation procedures on larger or different 
kinds of numbers, and students frequently lose touch with 
the meaning of the operation. When working with numerical 
expressions and equations, students may focus exclusively 
on number patterns, and the operations lose salience (Kieran, 
1989, 2018; Subramaniam & Banerjee, 2011). Some of the 
most persistent errors in arithmetic calculation are based on 
the assumption that regularities noticed in addition apply 
to other operations as well. In our classroom documenta-
tion, we found that, even when a class conjecture specified 
the operation of addition, many students assumed the same 
regularity would occur for subtraction or multiplication. For 
this reason, we sought a mechanism to return students to the 
very meaning of the operations.

In the introductory example, Ms. Royce’s fourth graders 
knew that, given an addition equation, if a term decreases by 
some amount, the sum decreases by the same amount, and 
some students expected the same to happen when subtract-
ing. It took Brian’s representation to bring students back to a 
meaning of subtraction—removing one part from a whole—
to recognize that subtraction behaves differently than addi-
tion: If the subtrahend (the second term) decreases, the dif-
ference increases. Key to Brian’s representation is that it 
shows the relationship between three quantities—the whole, 
the amount removed, and the amount that remains—under 
the action of subtraction.

Our analysis found that representations that allowed stu-
dents to distinguish between operations were pictures, dia-
grams, arrangements of manipulatives, or story contexts 
that embody the meaning of the operation(s) and quanti-
ties involved. That is, the representation demonstrates the 
relationship between two operands and the result of the 
operation. A representation of an addition equation might 
show the joining of two quantities which, together, com-
prise the sum, whereas a representation of a subtraction 

equation might show one quantity being removed from 
another, leaving the difference. Kanika, a first grader who 
created the work shown in Fig. 2, drew two representa-
tions for 7 + 5 = 12: (1) 7 balloons held by one child and 
5 balloons held by another, totaling 12 balloons, and (2) 
7 lines labeled 1 to 7 and 5 lines labeled 8 to 12, making 
a total of 12 lines. Kanika’s representation of 12 − 5 = 7 
shows 12 balloons, with 5 crossed out, leaving 7 balloons.

Because a static drawing or model cannot convey 
intended dynamic characteristics of the representation, 
students’ gestures and natural language explanations that 
accompany their representations are often essential parts 
of the representation. Kanika’s classmate, Jan, working 
with the same problems, built a stack of 7 cubes of one 
color and a stack of 5 cubes of another color. To show 
addition, she put the stacks together to make a single stack 
of 12 cubes. To show subtraction, she started with the 
stack of 12 and removed the 5 cubes of one color, leaving 
7 cubes of the other color (see Fig. 3.)

A representation of multiplication or division might 
show a collection of equal-sized groups. Third grader Jude 
drew the representation in Fig. 4 for 7 × 5 = 35, along with 
a story context, “There are 7 tables with 5 kids at each 
table. There are 35 kids in all.”

As students create their own representations, they also 
become familiar with and begin to use conventional rep-
resentations—initially encountered in their regular math-
ematics curriculum—such as number lines, as shown in 

Fig. 2  Kanika’s representations of 7 + 5 = 12 and 12 − 5 = 7

Fig. 3  Jan put together two stacks of cubes to show addition and 
removed one stack to show subtraction
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Fig.  5. To represent 12 − 5 = 7, second grader Emma 
started at 12, took five steps to the left, and landed on 7.

Similarly, as students come to understand the structure 
of arrays by identifying correspondences between arrays, 
multiplicative contexts, and images of equal groups, such 
as Jude’s in Fig. 4, they may include this conventional rep-
resentation in their repertoire.

We have identified three types of representation created 
by students that do not embody the operation. First, when 
asked to represent a story problem about subtraction, for 
example, that 12 birds were sitting on a wire and 5 birds 
flew away, very young students may simply draw a picture of 
birds. They have drawn a scene, not a representation of the 
quantities and their relationships. Unlike Kanika’s represen-
tations of the balloons, they don’t specify the initial quanti-
ties, the action of the operation, and the result of that action.

Second, students may show each quantity separately, con-
necting them with the symbols they have learned in school 
as shown in Fig. 6a for the story problem about birds on the 
wire. This kind of pseudo-equation, like an equation using 
mathematical symbols, is not an image of how the initial 
amount and the subtracted amount are related to the differ-
ence. In fact, the student could just as easily draw the quanti-
ties incorrectly, as in Fig. 6b. Because the three quantities 
are drawn independently of each other, there is nothing in 

the drawing itself that requires that it be correct. Contrast 
this to Kanika’s representation. Although she could, perhaps, 
count incorrectly as she created or explained her representa-
tion of balloons, her pictures and descriptions embody the 
actions of addition and subtraction. Once the correct quanti-
ties of the numerical expression 7 + 5 or 12 − 5 are depicted 
and either joined or crossed out, the result will be the correct 
sum or difference.

A third common student response before having experi-
ence with representation is like Fig. 6a: some students used 
cubes to recreate the equation itself, as shown in Fig. 7. This 
representation neither reveals the meaning of subtraction nor 
the relationship between the terms and the difference.

In collaborating teachers’ classrooms, students learned 
how to create a variety of representations not only by hav-
ing opportunities to produce their own images but through 
whole group discussion in which the class analyzed a selec-
tion of representations produced by their classmates.

4.2  Representation of an instance 
of a generalization

Research Question 2: What characterizes a representa-
tion that supports students’ insight into a generalization 
that relates two equations (e.g., 145 − 100 = 45 and 145 
− 98 = 47)?

Characterization: A representation of an instance of a 
generalization embodies the meaning of the operation(s) 
and shows how one equation can be transformed into the 
other. If the generalization is stated in if–then format, the 
representation shows how the premise of the generalization 
leads to the conclusion.

At the start of lesson sequences written by project 
researchers, students are presented with sets of related 
expressions, equations, and/or story problems that illustrate 
a particular behavior of an operation to engage students in 
noticing patterns and articulating conjectures. A teacher 
might start the class’s investigation of a structure of mul-
tiplication by posting these pairs of equations and asking 
students what they notice:

After seeing a regularity across multiple sets of equations, 
and after working together to formulate a conjecture based 

3 × 5 = 15

4 × 5 = 20

|
|
|
|
|

3 × 5 = 15

3 × 6 = 18

Fig. 4  Jude’s representation of 7 × 5 = 35

Fig. 5  Emma’s number line representation of 12 − 5 = 7

a

b        

Fig. 6  a Mimicking the equation format is not a useful representation. 
b Such a format can just as easily mimic an untrue number sentence

Fig. 7  A cube construction of 12 − 5 = 7
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on that regularity, students create representations of specific 
instances of their conjecture.

In Maisie Schmidt’s fourth-grade class, students articu-
lated the conjecture: When you add 1 to the first or sec-
ond factor, the product goes up by the factor that does not 
change. Individuals and pairs created representations for spe-
cific instances of the claim, first the two equations 3 × 5 = 15 
and 4 × 5 = 20, then the equations 3 × 5 = 15 and 3 × 6 = 18. 
After reviewing the class’s work, Ms. Schmidt selected sev-
eral representations to discuss with the class (Fig. 8), includ-
ing some that would need editing.3

For each representation, Ms. Schmidt asked the following 
questions.

• How does this representation show multiplication?
• How does it show changing one of the factors by 1?
• How does it show the change in the product?
• Does this show an example of our conjecture?

The teacher’s questions about each of the representa-
tions—which we call core questions—focus the students on 
the operations and how the two equations are related. By 
applying the same questions to a variety of representations 
and looking for correspondences across representations, 
students make explicit the aspects that reveal mathematical 
structure.

To address the fourth question—Does this show an exam-
ple of our conjecture?—students in Ms. Schmidt’s class dis-
cussed, for each representation in Fig. 8, whether it shows 
why the premise, 1 is added to a factor, leads to the conclu-
sion, the product increases by the factor that doesn’t change. 
They explained that the bag of apples Jeff’s Mom bought 
was the 1 bag added to 3 bags (the first factor), increasing 
the total number of apples, the product, by 5 (the second fac-
tor). They identified how the story relates to the four squares, 
each with five circles inside—the fourth square (orange in 
the original) could be Jeff’s Mom’s bag, showing the product 
increasing by 5. Similarly, Jeff’s Mom’s bag and the fourth 
square containing 5 dots correspond to the bottom row of 
the array of squares (red in the original).

When students are first learning to represent examples of 
a conjecture, some students create a representation for each 
equation but do not show how the equations are related. In 
selecting representations to discuss, Ms. Schmidt intention-
ally chose a few that raised this issue. For example, consider 
the story problems created for 3 × 5 = 15 (Jeff bought 3 bags 
of apples with 5 apples in each) and 3 × 6 = 18 (Jeffy, Jeff’s 
twin brother, bought 3 bags of apples with 6 apples in each). 
Both story problems match their corresponding equation, but 
they don’t show what changes when the first is transformed 
into the second. The second story, as written, does not show 
1 added to 5 nor 3 added to 15. In contrast, the context for 
the first pair of equations embeds the story for 3 × 5 = 15 in 
the story for 4 × 5 = 20: Jeff bought 3 bags of apples with 5 
in each. Jeff’s Mom bought 1 more bag with 5 in it.

As the class began to discuss the second set of repre-
sentations, the author of the story recognized the issue and 
asked to revise his story: Starting with the same story for 
3 × 5 = 15, his revision stated, “Jeffy, Jeff’s twin brother, 
bought 3 apples, adding 1 to each of Jeff’s three bags.” The 

Fig. 8  A selection of represen-
tations to illustrate a conjecture 
about multiplication

3 This was the ninth lesson of Sequence 5 (see Appendix B). The 
sequence starts with an exploration of what happens to the sum when 
an addend increases by some amount. Lesson 5 initiates the question 
of what happens to the product when 1 is added to a factor. In sub-
sequent lessons, students extend their generalization to what happens 
when any amount is added to a factor and then compare their gener-
alizations for addition and multiplication.
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1 apple Jeffy added to each bag corresponds to the 1 added 
to 5 (the second factor in the first equation), and the 3 apples 
Jeffy bought correspond to the 3 (the first factor) added to 15 
(the product in the first equation).

The same issue arose for the set of three squares, each 
containing six dots. Although the representation correctly 
shows 3 × 6 = 18, it does not explicitly demonstrate how 
it relates to 3 × 5 = 15. To correct this, students suggested 
showing one dot in each square in a different color to indi-
cate the 1 apple Jeffy added to the 5 apples already in each 
bag (see Fig. 9).

As the discussion in Ms. Schmidt’s class demonstrates, 
representing an instance of a conjecture involves more than 
simply creating separate representations of the two equa-
tions. Rather, one must demonstrate how the representation 
of one equation is related to and can be transformed into 
the representation of the other. Keeping their conjecture in 
mind, the students revised the representations to show, in 
each instance, a factor increasing by 1 and how the conclu-
sion of the conjecture—that the product increases by the 
amount of the other factor—follows from the composition 
of the representation.

4.3  A representation that supports a general 
argument

Research Question 3: What characterizes a representation 
that supports students’ arguments for a generalization about 
an operation?

Characterization: To support an argument for a generali-
zation, a representation must meet three criteria.

1. The meaning of the operation(s) involved is represented 
in diagrams, manipulatives, or story contexts.

2. The representation shows how the conclusion of the gen-
eralization follows from the premise.

3. The representation can accommodate a class of 
instances, for example, all whole numbers.

Young children bring to formal schooling a natural incli-
nation to prove, to convince, and to be convinced (Stylianou 
et al., 2009). Early in our research into early algebraic think-
ing, building on that inclination, we suggested to collabo-
rating teachers that, when students notice a pattern or state 

a generalization, they ask, “Does that work for other num-
bers?” “What other numbers does that work for?” “How do 
you know?” In response, students often turned to represen-
tations. For example, on the topic of changing the order of 
addends, first graders would hold up two stacks of cubes 
and show that when they change the positions of the stacks, 
“Nothing got taken away and nothing more was added in, 
so it’s the same.” Although some young students might be 
thinking only of the specific number of cubes in the two 
stacks, others indicated, by their wording and gestures, that 
they understood that changing the order of addends does not 
change the sum, no matter how many cubes are in the stacks.

Another example that arose early in our study was what 
we referred to as “Brian’s blob,” the representation produced 
by Ms. Royce’s student. Although the class was specifically 
talking about 145 − 100 and 145 − 98, some students saw 
in it the demonstration of a general claim, in Max’s words, 
“The less you subtract, the more you end up with and, in 
fact, the thing you end up with is exactly as much larger as 
the amount less that you subtracted.”

The teachers’ written classroom episodes offered evi-
dence that representations that illustrate the meaning of 
the operations serve as touchstones, or starting points, for 
conviction, an analog to a mathematician’s axioms. As we 
analyzed students’ explanations, we referred to them as rep-
resentation-based arguments, for which we identified the 
three criteria stated above (Russell et al., 2011). The first two 
of these criteria are satisfied by representations that illustrate 
specific instances of a generalization, discussed in the previ-
ous section. Now the challenge to students is to think of the 
representations in general terms.

Marla Gonzales’s fifth graders formulated the conjecture, 
For a multiplication expression, if you divide one factor by 
2 and multiply the other factor by 2, the product is the same. 
They represented specific instances such as 3 × 10 = 6 × 5 
and 8 × 6 = 4 × 12 by cutting arrays into two parts and rear-
ranging those parts (see Fig. 10).4

These representations satisfy the first two criteria: (1) 
The meaning of the operation(s) involved is represented in 
diagrams, manipulatives, or story contexts. The first factor 
of a multiplication expression is represented as the num-
ber of rows in an array; the second factor is the number of 
squares in each row; the product, the result of multiplica-
tion, is the total number of squares. (2) The conclusion of 
the claim follows from the structure of the representation. 
Each of the representations shows that by moving half the 
array, the number of rows is halved (or doubled) and the 
number of squares in each row is doubled (or halved), creat-
ing a new array with the same number of squares. While the 

Fig. 9  Using a different color for 1 dot in each square, students 
embedded a representation of 3 × 5 = 15 in the representation of 
3 × 6 = 18

4 These representations were created in the sixth lesson of Sequence 
7 (see Appendix B).
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dimensions of the arrays (the factors) change, the number of 
unit squares (the product) does not.

With that insight, students realized that they could imag-
ine rectangles with unspecified dimensions (see Fig. 11).

The two-colored rectangle on the left represents an initial 
equation. No matter what the length and width representing 
the two factors, the area represents the product of those fac-
tors. By cutting the rectangle in half and realigning the two 
parts, a second rectangle is created. In this second rectangle, 
one dimension (one factor) is half the corresponding dimen-
sion of the first rectangle, the other dimension (the other 
factor) is double that of the corresponding dimension of the 
first rectangle, and the area (the product) is conserved. This 
representation-based argument can accommodate any posi-
tive values for the factors, thus satisfying the third criterion.

For another example, consider the representations offered 
by Jill Bujak’s third graders56 after they articulated the 
conjecture: If you have two addends, and you take some 
amount from an addend and add that same amount to the 

other addend, it should equal the same sum. Maria created a 
story context: “There are two parties. At one party, there are 
some people. At the other there are some. When an amount 
of people leave the party and go to the other, you will always 
get the same amount of people you started with, if you’re 
adding the two parties.” In Maria’s representation, adding 
an amount to or subtracting it from an addend is represented 
by some number of people joining or leaving a party, and the 
sum is represented by the total number of people attending 
the two parties (Criterion 1). The premise of the conjecture 
is represented as some number of people leaving one party 
and joining the other. The conclusion—that the sum is the 
same—follows from the fact that the same set of people are 
distributed between the two parties (Criterion 2). Any whole 
number of people can attend the parties and any number of 
people up to the size of a party can leave that party to join 
the other (Criterion 3).

Even when students work with representations that nec-
essarily contain a fixed number of elements, such as stacks 
of cubes, they might describe them in such a way as to have 
them stand for a class of instances, what Mason (1996) calls 
“seeing the general through the particular.” Maria’s class-
mate, Melody, justifying the same conjecture, presented a 
long stick of red cubes and a long stick of blue cubes for her 
two addends: “Our model shows that we don’t know how 
many cubes are on the stick. We don’t, actually! And if we 
take this many,” removing some red cubes, “and put it onto 
there,” adding them to the blue stick, “it would be the same 
thing. The red one got smaller and the blue one got bigger, 
and it’s the same.”

Through representation-based arguments, young stu-
dents take on the question, how can you know a statement 
is true when you can’t test every instance? Even when stu-
dents’ images show a finite number of items such as cubes 
or squares, the drawing or model together with students’ 
words and actions, can stand for a representation that applies 
to the general case.

5  Discussion

In our early algebra research, we sought a mechanism to 
address the fact that many students tended to think that regu-
larities they noticed in their calculations were about num-
bers rather than about a specific operation. We found that 
representations in the form of pictures, diagrams, arrange-
ments of manipulatives, or story contexts could be employed 
to address this concern. Project researchers analyzed stu-
dent-generated representations in three categories—rep-
resentation of a number sentence, representation of a pair 
of related equations that illustrate a specific instance of a 
generalization, and representation of a generalization—and 
characterized those that could eventually prove fruitful as 

Fig. 10  Representations of specific instances of a conjecture about 
multiplication

Fig. 11  A representation of the generalization for all positive factors

5 Maria’s and Melody’s representations were created in the eleventh 
lesson of Sequence 3 (see Appendix B).
6 Events from this lesson appear in Russell, Schifter, Kasman, Basta-
ble, and Higgins (2017).



1297The centrality of student‑generated representation in investigating generalizations about…

1 3

students work to understand what a given generalization says 
and why it is true. Our findings indicate that pictures, dia-
grams, arrangements of manipulatives, or story contexts that 
embody the meaning of the operation(s)—that is, those that 
show the relationship between the operands and the result of 
the operation—served as touchstones, analogous to a math-
ematician’s axioms, for reasoning about operations. To rea-
son about a specific instance of a generalization illustrated 
by two related equations, students used such representations 
to show how one equation can be transformed into the other. 
An argument in support of the generalization itself extends 
such representations to accommodate a class of numbers.

The purpose of the teaching model we created, as well 
as the lesson sequences we wrote to enact it, was to engage 
students in the practices of noticing, articulating, investi-
gating, and justifying generalizations about the operations. 
Creating representations and analyzing classmates’ repre-
sentations allowed students to deepen their understanding of 
mathematical structure (Kieran, 2018) and to encounter the 
activity of justifying mathematical generalizations. The goal 
was not necessarily that each student individually construct 
representation-based arguments. While we have observed 
some students coming up with representation-based argu-
ments on their own, most of the work on conjecture and 
argument we have documented in elementary grades occurs 
in the social context, through discussions among students 
(Cobb et al., 1992; Seeger, 1998).

Collaborating teachers reported to us that, when the class 
turned to lessons on generalizations about the operations, 
greater numbers of students participated in discussions than 
in their regular mathematics lessons. When focused on rep-
resentations, all students could participate in the discussions 
while attending to what they needed to work on. Some stu-
dents took on the challenge of deductive reasoning, other 
students were building networks of connections across repre-
sentations and specific examples to solidify their conception 
of the generalization, and yet other students continued to 
build their understanding of what the operations are and how 
to represent them. Even though different students focused 
on different aspects of the investigation, the variety of com-
ments moved the discussion forward.

We believe student engagement has to do with the vari-
ety of representations presented for the same conjecture. 
Consistent with the studies described above in the literature 
review, the variation across representations triggers the act 
of abstraction, even for those students who are not as fluent 
with symbolic manipulation. Making sense of and compar-
ing a variety of representations may be precisely what allows 
students to recognize what those representations share—the 
generalization they represent. Apprehending commonalities 
across representations, alongside verbal statements of the 
generalization and arithmetic symbols illustrating specific 
instances, is an important pathway for students in making 

the critical connection between the concrete and the abstract. 
In this way, students develop “structure sense” and “symbol 
sense,” both in the early grades and in their later study of 
formal algebra (Arcavi, 1994; Hoch & Dreyfus, 2004, 2006; 
Mason et al., 2009; Tabach & Fridlander, 2008).

6  Limitations of the study

There are two broad areas in which future research could 
build on the findings described in this paper. First, in almost 
all our data, students were working in the domain of whole 
numbers, and their representations generally accommodated 
whole numbers, although occasionally students created rep-
resentations that accommodated all positive numbers. We 
have not studied what happens if students have opportunities 
to investigate related structures as they are introduced to 
new kinds of number—fractions, integers, etc. What ques-
tions might arise as they revisit the generalizations they have 
established for whole numbers? What forms of representa-
tion can they use to justify conjectures about integers or 
rational numbers?

Second, this project did not produce instruments for scor-
ing student-created representations to assess performance in 
the aggregate. Such an instrument could provide data on how 
the nature of students’ representations develop by grade or 
through the year and to what extent students’ production of 
different categories of representation correlate with other 
measures of their understanding of a generalization.

7  Establishing new dispositions 
and implications for later grades

In the classrooms of our collaborating teachers, as students 
noticed, expressed, and proved generalizations about the 
operations, they moved back and forth between physical 
models, drawings, diagrams, gestures, story contexts, arith-
metic symbols, and verbal statements. In this way, they 
developed an elaborate network of connections and deep-
ened their understanding of the generalization under inves-
tigation. Working through the five phases of the teaching 
model nurtured a set of dispositions we characterize with 
the following points:

1. Through their study of generalizations about operations, 
students develop the habit of looking for regularity to 
identify structure.

2. As they construct and analyze their representations, stu-
dents develop a deeper understanding of how the opera-
tions behave, recognizing that a regularity they have 
identified for one operation doesn’t necessarily hold for 
others. Operations attain greater salience and are recog-
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nized as objects, each with a unique set of properties, 
rather than exclusively as a set of steps to perform cal-
culations (Kieran, 1989; Sfard, 1991; Slavit, 1999).

3. Using representations, students explain to themselves 
and to others why their conjectures are true, initially 
showing how the conclusion follows from the premise 
for specific instances. Representation-based argument 
provides a mechanism for generalizing their representa-
tions to justify a claim for a class of numbers.

4. Students recognize applications of their generalizations 
when decomposing and recomposing numbers to calcu-
late. As reported by teachers and documented on video, 
when discussing a new computational strategy, students 
would comment, “It’s just like our conjecture.”

These points have direct application for later mathemati-
cal studies and address common difficulties students encoun-
ter in formal algebra courses. If students develop the habit 
of looking across representations to find correspondences 
and explain why mathematical relationships hold—including 
geometric representations (Banchoff, 2008) and story con-
texts (Ding & Li, 2014; Tabach & Fridlander, 2008)—they 
are creating a repertoire of tools they can use to understand 
algebraic concepts. The disposition to explain why estab-
lishes a foundation for understanding proof. In this early 
work on representation of general claims, students encoun-
ter the distinction between proving a claim for an infinite 
set and relying on empirical verification, a distinction that 
often eludes high school students (Chazan, 1993; Healy & 
Hoyles, 2000).

With greater salience of the operations, students are better 
positioned to interpret the language of algebra, for example, 
recognizing that ab = ba is not a statement about a and b, 
but a statement about multiplication. Furthermore, deeper 
understanding of the laws of arithmetic can support greater 
fluency with algebraic manipulation. Experiences like those 
in Ms. Royce’s class when discussing 145 − 100 and 145 
− 98 may provide students with a foundation for thinking 
through, for example, why

Finally, the experience of recognizing structure in their 
study of number systems and applying this structural under-
standing to strategically decompose and recompose numbers 
as they solve computation problems, may provide both the 
disposition and tools for students to look for application of 
structure in solving problems in algebra (Kieran, 2018).

As we hypothesize how students in their algebra stud-
ies might draw on their activity of generalizing in early 
grades, we must acknowledge that bridging these two realms 
effectively will depend on many factors, including teachers 

a + (b + c) = (a + b) + c, but

a−(b−c) ≠ (a−b)−c.

who encourage students to access and build on their earlier 
experiences.

8  Conclusion

Over the years and across projects, we have worked with 
teachers in a wide variety of schools: in urban, suburban, 
and rural settings; in communities with majority white popu-
lations and those with mostly Black and brown students; 
and in schools with a range of income levels, including 
those in which the majority of students qualify for reduced-
price meals. Our most recent project was based in a school 
assigned the status of “turn around” for its low performance 
on standardized tests. In all these settings, given support 
and experience, students succeeded in constructing, analyz-
ing, and comparing representations for understanding the 
behavior of the operations. Collaborating teachers consist-
ently reported that discussions based on representations 
engaged students who tended to struggle with calculation 
as well as those for whom calculation came easily. These 
reports were confirmed by field observations and analysis 
of videotaped class sessions. Not captured in transcripts, but 
evident in video, is that near the end of many of the lessons, 
the majority of students are still eagerly raising their hands 
to contribute.

Across our projects, teachers had opportunities to learn 
about generalized arithmetic, representation-based argu-
ments, and how students reason about such content. Without 
professional development that introduces elementary teach-
ers to what generalizing about the operations looks like at 
these grades, and to the centrality of representation in the 
development of mathematical arguments, they may have 
no images of how students engage in this crucial practice. 
LeMay (2017) found in his study of K-5 educators’ concep-
tions of mathematical argument that they saw arguments 
about generalized arithmetic as “products of prose … bereft 
of representations” (p. 35), and that, even when representa-
tions were used, they were considered as intermediate steps 
that were then “sidelined” and not presented as part of final 
work.

From observations across many classrooms, we con-
clude that, once teachers know how to bring this content to 
their teaching, students are deeply interested in the behav-
ior of operations and how they are represented. The focus 
of discussion is not on finding an individual sum, differ-
ence, product, or quotient; the “answers” are known to the 
students before discussions begin. Rather, the discussion 
emphasizes the foundations of the number system—it pro-
vides a challenge to students’ reasoning and requires hard 
work in articulating that reasoning. Noticing, representing, 
and generalizing about the behavior of the operations is at 
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the core of what elementary students are learning, and they 
are eager to learn it.

Appendix A

Our research into early algebra was conducted in the context 
of five projects that each had a professional development 
component for teachers and educational leaders, as well as 
a materials development component.

• Teaching to the Big Ideas (TBI)
• Teaching to the Big Ideas of Early Algebra (TBI-EA)
• Foundations of Algebra in the Elementary and Middle 

Grades: Supporting Students to Make, Represent, and 
Justify General Claims about the Operations (FOA)

• Using Routines as an Instructional Tool for Developing 
Students' Conceptions of Proof (Routines)

• Mathematical Argument and Student Agency and Iden-
tity (MASAI)

Years Number of 
teachers in 
each cohort

Professional 
develop-
ment contact 
hours

Grade 
levels

Funder

TBI 1993–
1997

36 355 K-6 National 
Science 
Foun-
dation 
(NSF)

TBI-EA 2003–
2008

30/80/150 108/24/24 K-8 NSF

FOA 2006–
2012

9/11/85/20 72/48/54/54 1–8 NSF

Rou-
tines

2010–
2016

7/13 84/42 2–5 NSF

MASAI 2018–
2022

6 20 1–4 Internal 
support 
from 
TERC 
and 
Boston 
Teacher 
Resi-
dency

Teaching to the Big Ideas was a multi-year collaboration 
to investigate key conceptual themes of K-6 mathematics, 
documenting how such themes arise in different contexts 
and tracking how they develop through the grades. In this 
context, we began to explore generalizations students notice 
in their study of number and operations. Teacher collabora-
tors wrote “episodes,” described in the text of this paper, 
both as a source of research data (in addition to field notes 
and video recordings) and as a professional development 

exercise. Episode writing, field notes, and video continued 
to be a feature of subsequent projects.

Teaching to the Big Ideas of Early Algebra narrowed the 
mathematical focus from K-6 mathematics in general to two 
branches of early algebra: generalized arithmetic and func-
tions. As part of our investigation of generalized arithmetic, 
we defined representation-based argument and began to 
delineate characteristics of student-generated representa-
tions. As subsequent projects brought in more samples of 
student work, we periodically reviewed, revised, and refined 
our criteria for assessing students’ representations.

Foundations of Algebra developed a book and online 
course to support teachers in learning how elementary and 
middle school students come to recognize, verbalize, rep-
resent, and justify general claims about operations, and to 
help teachers make the critical and difficult leap from their 
own learning to sustained, coherent implementation of these 
ideas with students. We created teacher and student assess-
ments for which we developed reliable coding rubrics in 
order to understand what course participants and their stu-
dents learned in contrast to a comparison group.

The Routines project iteratively created and refined 
a teaching model for incorporating mathematical argu-
ment into elementary classroom instruction. Eight lesson 
sequences based on the teaching model were produced, each 
sequence investigating a small set of related generalizations. 
In addition to classroom documentation, Routines included 
individual student interviews using the assessment devel-
oped in the FOA project. Analysis of students’ articulations 
of conjectures in the interviews led to a theoretical frame-
work of four dimensions (Higgins et al., 2022, in press). Stu-
dent-interview data was also used in our continuing analysis 
of student-generated representations.

Mathematical Argument and Student Agency and Identity 
collected video from the classrooms of teachers who imple-
mented lesson sequences created in the Routines project. 
Video analysis, currently underway, examines how the math-
ematical integrity of a lesson is interwoven with equitable 
student participation.

Many teacher collaborators worked with us as core par-
ticipants across multiple projects. In TBI-EA, FOA, and 
Routines, we pilot-tested professional-development materi-
als with an additional cohort of teachers with whom we had 
not worked in prior projects. The third cohort of TBI-EA and 
the fourth cohort of FOA participated in field tests of our 
materials taught by other educators throughout the United 
States.

Most participants taught in public schools in urban, sub-
urban, and rural settings, with a few who taught in inde-
pendent schools. In the Mathematical Argument project, we 
worked exclusively with teachers who taught in a large urban 
school system. The teachers were new to us, but were gradu-
ates from a master’s program in which they took two math 
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courses taught by faculty who had, when they themselves 
were K-6 teachers, participated in our projects.

Materials produced in these projects include four modules 
of the professional development curriculum, Developing 
Mathematical Ideas, one of which focuses on generalized 
arithmetic (Schifter et al., 2018); the book titled Connect-
ing Arithmetic to Algebra: Strategies for Building Algebraic 
Thinking in the Elementary Grades (Russell et al., 2011); 
an on-line course based on that book; and the resource, But 
Why Does It Work?: Mathematical Argument in the Ele-
mentary Classroom (Russell et al., 2017), which includes 
a book, the lesson sequences described in this paper, and 
video examples.

Appendix B

Claims investigated in eight lesson sequences

SEQUENCE 1: Core ideas of addition and subtraction 
(whole numbers)

• Changing the order of the addends in an addition expres-
sion does not change their sum. Includes work with two 
and three addends.

• Changing the order of the numbers in a subtraction 
expression changes the difference, except when the two 
numbers are the same.

• Addition and subtraction are inversely related.

SEQUENCE 2: Changing a number in addition or sub-
traction (whole numbers)

• In an addition expression, if 1 (or some amount) is added 
to an addend, the sum increases by 1 (or that amount).

• In a subtraction expression, if 1 is added to the starting 
amount, the difference increases by 1.

• In a subtraction expression, if 1 is added to the amount 
taken away, the difference decreases by 1.

SEQUENCE 3: Same sum, same difference (whole 
numbers)

• In an addition expression, if you add an amount to one 
addend and subtract the same amount from another 
addend, their sum remains the same.

• In a subtraction expression, if you increase (or decrease) 
both numbers by the same amount, their difference 
remains the same.

SEQUENCE 4: Core ideas of multiplication and division 
(whole numbers)

• Changing the order of the factors in a multiplication 
expression does not change the product. Includes work 
with two and three factors.

• Changing the order of the numbers in a division expres-
sion changes the quotient, except when the two num-
bers are the same.

• Multiplication and division are inversely related.

SEQUENCE 5: Changing a number in addition or mul-
tiplication (whole numbers)

• In an addition expression, if you add some amount to 
an addend, the sum increases by that amount.

• In a multiplication expression with two factors, if you 
add 1 to a factor, the product increases by the other 
factor.

• In a multiplication expression with two factors, if you 
add some amount to a factor, the product increases by 
the other factor multiplied by that amount.

SEQUENCE 6: Factors, products, and fractions (whole 
numbers and fractions)

• In an addition expression, if you add some amount to an 
addend, the sum increases by that amount.

• In a multiplication expression with two factors:

If the factors are both greater than 1, their product is 
greater than both factors.

If one factor is equal to 1, the product is equal to the 
other factor.
If one factor is equal to 0, the product is equal to 0.
If one factor is between 0 and 1, the product is less 
than the other factor.

• In a whole-number multiplication expression with two 
factors, if you add a fraction to one of the factors, the 
product increases by the other factor multiplied by the 
fraction.

SEQUENCE 7: Same product, same quotient (whole 
numbers)

• In a multiplication expression, if you multiply one factor 
by an amount (not equal to 0) and divide the other factor 
by the same amount, their product remains the same.

• In a division expression, if you multiply (or divide) the 
dividend and divisor by the same amount (not equal to 
0), their quotient remains the same.

SEQUENCE 8: Multiplication, division, and powers of 
ten (whole numbers and decimals)



1301The centrality of student‑generated representation in investigating generalizations about…

1 3

• When a number is multiplied by 10, every digit moves 
one place to the left.

• When a number is divided by 10, every digit moves one 
place to the right.

• If you multiply a number by a multiple of 10, for example 
20 or 30, you multiply that number by the number of 
tens, for example 2 for 20 or 3 or 30, then move all the 
digits one place.
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