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The Centroid of the Symmetrical
Kullback–Leibler Distance

Raymond Veldhuis

Abstract—This paper discusses the computation of the centroid
induced by the symmetrical Kullback–Leibler distance. It is shown
that it is the unique zeroing argument of a function which only
depends on the arithmetic and the normalized geometric mean of
the cluster. An efficient algorithm for its computation is presented.

Index Terms—Centroid, clustering, Kullback–Leibler distance.

I. INTRODUCTION

T
HE Kullback–Leibler (KL) distance originates from sta-

tistics where it is used to quantify differences between

two probability distributions or densities, [5]. In information

theory, it is also known as the divergence, discrimination or rel-

ative entropy. In general, the KL distance can be used to quan-

tify differences in shape of strictly positive sequences (or func-

tions) of which the sum (or integral) equals one. Recently, it

has been used in concatenative speech synthesis to quantify the

differences between spectral envelopes at concatenation points

[1]–[4], [7].

The original KL distance is asymmetrical: interchanging the

arguments affects the outcome. In some applications, e.g., [3],

[4], [7], a symmetrical version, the symmetrical KL (SKL) dis-

tance is used.

When sequences (or functions) are clustered, e.g., in vector

quantization as part of the code-book design [6] or in speech

synthesis as part of the construction of a corpus [3], the centroid

often represents the cluster. The centroid is the sequence (or

function) with minimum average distance to the cluster. The KL

centroid, induced by the KL distance, is either the arithmetic

or the normalized geometric mean of the cluster, depending on

which argument is subject to the minimization. Such a closed

form does not exist for the SKL centroid. This paper discusses

properties of the KL and SKL centroids and shows that the SKL

centroid is the unique zeroing argument of a function involving

only the cluster’s arithmetic and normalized geometric mean.

An efficient algorithm to compute it is presented.

II. DEFINITIONS AND KL PROPERTIES

The KL and SKL distances can be defined for sequences

, , or for functions on a continuous subset of

. Here, sequences are considered, but similar results can be

derived for functions.
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For , ,

denotes the set of strictly positive, sum-nor-

malized real-valued sequences on index set . The KL distance

between and is defined as

(1)

It is asymmetrical, i.e., . This can be

repaired by using the SKL distance, defined as

(2)

(3)

Let denote a cluster of

strictly positive sum-normalized sequences with elements.

The arithmetic mean of is defined by

(4)

the geometric mean by

(5)

and the normalized geometric mean by

(6)

The average left KL distance of to is

(7)

and the average right KL distance is

(8)

The left KL centroid and the right KL centroid of

minimize and , respectively, as func-

tions of . It can be shown that

(9)

and

(10)
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with , which is the entropy if is

a probability distribution. The first term of (9) is independent

of and positive. Therefore, . The bracketed part of

(10) is independent of and positive because is concave.

Therefore, . The -dependent terms of (9) and (10)

vanish for the optimal .

The average SKL distance of a sequence to a

cluster is defined as

(11)

(12)

The SKL centroid minimizes as a function

of . Using (9) and (10), we can write

(13)

with only dependent on . Therefore

(14)

and only depends on and . Unlike and

, has a -dependent term that does not

vanish for the optimal . As a first guess, one could assume that

is a linear combination of and , but a counter example

is given in Section IV. Because is convex in both

arguments, it follows for that

(15)

Therefore,

. Of course

(16)

A sharper upper bound is obtained by minimizing the left-hand

side of (15) as a function of . This does not lead to a closed

form for , but it can be shown that converges to when

converges to . Another upper bound sharper than (16) is

. It is the author’s

experience that the SKL centroid is usually close to the line seg-

ment connecting and and that is a good approx-

imation of . In fact, by using and

(21) in Section III, it can be shown that

(17)

if . These bounds also apply for .

Further attempts to derive a closed form for failed.

Therefore, a numerical solution is presented in the next section.

III. ALGORITHM FOR THE SKL CENTROID

Finding the SKL centroid (14) is equivalent to the (uncon-

strained) minimization of

(18)

as a function of and the Lagrange multiplier . The minimizing

can be solved from

(19)

(20)

Because , for , the minimum is

global. Multiplying (19) by and summing over yields

. On substitution of this into (19) and on

multiplication by we obtain

(21)

When is known, (21) can be solved for . Solving

(22)

with arbitrary , however, yields a which is not sum nor-

malized. But , for satisfying (22). Therefore,

increases monotonically with and (21) can be

solved by finding the for which the solution of (22) satisfies

(23)

This is efficiently found by the Newton algorithm starting with

. In each iteration an improved approximation

(24)

is computed, with . In order to evaluate and

, (22) must be solved for . This is straightforward, since (22)

can be rewritten as

(25)

with

(26)

and

(27)

Because , , (25) has unique solutions for the ,

from which the follow through (26). The are also easily

obtained by the Newton algorithm. Starting with ,

, in each iteration an improved approximation

(28)

is computed, with .
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Fig. 1. Spectra of vowels /a/ and /i/, the arithmetic and normalized geometric
means (both plotted as dotted lines, indicated in the plot by A and G,
respectively) of the spectra and their SKL centroid.

The algorithm is summarized as follows.

1) Compute (4) and (6) from . Set

.

2) Compute , through (27). Set

, .

3) Compute improved estimates for the ,

, by evaluating (28).

4) Continue with Step 5 if the update for

computed in Step 3 is small enough,

else return to Step 3.

5) Compute through (26).

6) Compute an improved estimate of by

evaluating (24).

7) Stop if the update for computed in

Step 6 is small enough, else return to

Step 2.

IV. AN EXAMPLE

The computation of the SKL centroid of two speech spectra

is presented as an example. The spectra are power-normalized

all-pole spectra, estimated from Dutch vowels /a/ and /i/. The

spectra, their arithmetic and normalized geometric means, and

the SKL centroid computed with the algorithm from Section III

are shown in Fig. 1. Fig. 2 shows a detail of with

and , where minimizes

. Here, and .

Table I gives the upper bound , the improved upper

bound and the

true . The improved upper bound

is only 2.5% above

the true . This relative difference

becomes even less when the term is taken into account.

Fig. 1 demonstrates the remarkable property of the normal-

ized geometric mean and the SKL centroid that they may locally

be greater than all elements of the cluster. Fig. 2 illustrates that

Fig. 2. SKL centroid of vowels /a/ and /i/ (solid) together with (1=2)(q + �q)
(dash dot) and ̂q + (1� ̂)�q (dashed).

TABLE I
UPPER BOUNDS AND TRUE d (q; q̂ ) + d (q̂ ; �q)

, and are close but distinct.

Because and are distinct, the assumption

that the SKL centroid is a linear combination of the arithmetic

and normalized geometric mean must be rejected.

V. CONCLUSIONS

The centroid is the sequence (or function) with minimum av-

erage distance to a cluster. The KL centroid, induced by the

Kullback-Leibler distance, is either the arithmetic or the nor-

malized geometric mean of the cluster, depending on which ar-

gument is subject to the minimization. This follows elegantly

on writing the average KL distance to a cluster as the sum of

two positive parts, of which one depends only on the cluster

and the other vanishes for the minimizing sequence. A similar

expression exists for the average symmetrical Kullback–Leibler

distance, but a closed expression for the SKL centroid cannot be

obtained. The SKL centroid can be found as the unique zeroing

argument of a function involving only the cluster’s the arith-

metic the normalized geometric mean. An efficient algorithm to

compute it has been presented.
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