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Abstract
Sand and dust storms (SDS) are a major disruptor in both the source areas where they 
occur and at distant locations. This critical review aims to address the question of whether 
mitigation and adaptation measures have been or can be implemented and what is the opti-
mal scale of their implementation to negate the impacts of SDS in Eastern Mediterranean 
Region (EMR)? Measures which differ in approach are also assessed by recording their 
successes, failures, and future challenges. We conclude that developing and implementing 
appropriate mitigation or adaptation measures for SDS at the local level is feasible but, at 
a wider scale, is a new challenge. This challenge is even more complex in areas like the 
EMR and the SDS sources affecting it, as it is a crossroad of air masses originating from 
three major SDS areas, which exhibit economic, political, and social diversity. This review 
also aims to identify successful mitigation strategies that have been used for similar envi-
ronmental issues and to draw attention to the lack of adaptation measures in the region. 
This critical synthesis will serve as a guide for public stakeholders considering measures to 
mitigate or adapt to SDS based on their effectiveness and the area of implementation.

Keywords  Desert particles · Erodible land surfaces · Future pressures · Socioeconomic and 
political dimensions · Transboundary air pollution

 *	 Andreas Eleftheriou 
	 eleftheriou.g.andreas@ucy.ac.cy

1	 Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, 
University of Cyprus, Nicosia, Cyprus

2	 Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
3	 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 

The Netherlands
4	 Medical School, University of Cyprus, Nicosia, Cyprus
5	 Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental 

Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, 
Guildford GU2 7XH, UK

http://orcid.org/0000-0001-8852-018X
http://orcid.org/0000-0002-6649-1493
http://orcid.org/0000-0003-0512-6115
http://orcid.org/0000-0002-8339-9285
http://orcid.org/0000-0002-2462-4411
http://orcid.org/0000-0001-8393-2441
http://crossmark.crossref.org/dialog/?doi=10.1007/s11027-023-10070-9&domain=pdf


	 Mitig Adapt Strateg Glob Change (2023) 28:33

1 3

33  Page 2 of 36

1  Introduction

Air quality is of critical and rising importance, as widely acknowledged by the World Health 
Organization (WHO) and many other International and National Public Health Organizations, 
because 4.2 and 3.8 million premature deaths annually are associated to exposures to ambient 
and indoor air pollution, respectively (WHO 2016). Previous studies have attributed the increas-
ing trend of both disability-adjusted life years and mortality in various areas of the world to the 
increasing emission rates of anthropogenic and natural air pollutants in relation to other factors 
such as population ageing (Babatola 2018; Cohen et al. 2017; Lelieveld et al. 2015).

Of all the major air pollutants that affect human health, particulate matter (PM) exhibits the 
most multi-scale and multi-variable behaviour (Betzer et al. 1988; van der Does et al. 2018), 
due to its multiple physicochemical characteristics and emission mechanisms. Emissions of 
sand and dust particles in the atmosphere usually emerge from hyper arid, arid, or semi-arid 
areas with barren surroundings and low or no vegetation, such as deserts, which are also char-
acterised by the prevalence of strong winds and low or no moisture (Choobari et  al. 2014; 
Ghose 2002; Middleton and Kang 2017; Thomas et. al. 2005; Webb and Pierre 2018). How-
ever, such sources are not located only in uninhabited areas, but also in places where many 
human activities occur. Agricultural areas in Niger that have been degraded due to droughts 
(Abdou 2013), open mining areas, and abandoned mines in Colombia and Australia (Huer-
tas et al. 2014; Tordoff et al. 2000) are such distinctive examples. In particular, agricultural 
activities and overgrazing have caused a land change in vegetation and cover, which, under 
certain meteorological conditions of wind speed and moisture, lead to sand and dust storms 
(SDS) (Gill 1996; Liu et al. 2015). Interestingly, Mahowald et al. (2010) used ice, coral, and 
lake cores close to the main source areas (dust paleodata) to show that dust emissions doubled 
in the twentieth century because of human influence. However, as the same study indicates, 
other reports have recorded a − 20 to + 60% variation in the anthropogenic effect on desert dust 
emissions, demonstrating the uncertainty and importance of further research in this field.

The World Meteorological Organization (WMO) defines SDS as ‘an ensemble of parti-
cles of dust or sand energetically lifted to higher elevations by a strong and turbulent wind’ 
(WMO 2021). Many effects of moderate or high intensity SDS, namely the impact of parti-
cles on human health and various economic sectors, have been systematically studied (e.g. 
Tsiouri et  al. 2015). However, associated mitigation and adaptation measures are rarely 
studied. For example, only Middleton and Kang’s (2017) review and a large-scale report 
(UNEP et  al. 2016) have gathered different impact mitigation and adaptation measures 
globally. The review paper and the report have not reported how directly affected countries 
in the Eastern Mediterranean Region (EMR) use or can use measures to adapt the phenom-
enon and how the economic, political, and social diversities in each area are important to 
be highlighted before implementing mitigation and adaptation measures.

The EMR and the sources affecting it are economically, politically, and culturally hetero-
geneous, and its geographic boundaries are not accurately defined in the literature. There-
fore, challenges in implementing and evaluating mitigation and adaptation measures are even 
greater. In this review, the EMR refers to countries around the Eastern Mediterranean Sea, 
namely Cyprus, Greece, Israel, Turkey, Lebanon, Syria, and Egypt. This review examined 
mitigation measures in the source areas of the Middle East, Northern Africa, and the Sahel, 
where SDS originate and do not belong to the pre-defined countries of the EMR, whereas the 
adaptation measures are examined in the EMR countries as shown in Fig. 1. The term ‘meas-
ure’ refers to a single or a series of actions at a local or at a wider scale. The aim of this paper 
is to review the different mitigation and adaptation measures that are taken or can be taken 
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in the source areas of SDS or the EMR in order to negate the impacts of SDS locally or far 
away, while investigating the challenges of implementing the measures by the different social, 
economic, and political dimensions’ future challenges.

The search strategy used to conduct this critical review included the Scopus, Web of 
Science, and Google Scholar databases. In addition, the websites of European and non-
European environmental agencies were searched for case reports, editorials, scientific 
papers, and critical reviews published in English from 1984 to 2023. The keywords dust, 
impact mitigation, mitigation and adaptation measures, transboundary emissions, Eastern 
Mediterranean Region, Sahel, Middle East, and Northern Africa were used.

This paper is structured as follows: Section 2 provides the reasoning behind the investi-
gation of SDS in the EMR; Section 3 briefly reviews the impacts of SDS; Sections 4 and 5 
present the different mitigation and adaptation measures in the study area; Section 6 exam-
ines the socioeconomic and political aspects of implementing the measures; Section 7 dis-
cusses the future pressures that can affect the implementation of measures; and finally, Sec-
tion 8 summarises the key conclusions of this review.

2 � SDS in Eastern Mediterranean Region

DS have been reported since ancient times; the historian Herodotus reported that an SDS in 525 
B.C. buried the army of the Cambyses (Herodotus III: 86–88) either from hearsay or the after-
math of the event. In the modern era, the methods of identification, monitoring, and analysis, as 
well as the understanding of the mechanisms that govern SDS, have improved. Despite the differ-
ent characteristics of the sources, they share a common feature, which are the erodible surfaces. 

Fig. 1   The graphical representation of the assessment of mitigation and adaptation measures, as well as the 
presentation of the investigation areas
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The wind erodibility of ground surfaces is controlled by various factors, such as the land cover 
(e.g. vegetation and rocks), characteristics of individual soil types (e.g. texture), or biological 
compositions, which can be of importance in sand and dust emissions (Katra et al. 2017; Soil and 
Water Conservation Society 2017; Zobeck and Van Pelt 2015). In addition, other characteristics, 
such as topographic depressions or locations near the downwind side of mountain ridges (Cuesta 
et al. 2009; Doyle and Durran 2002), can be of importance in the emission of sand and dust. 
Once the particles are lifted to higher elevations, they are transported over long distances, subject 
to the prevailing meteorological conditions. Finally, the suspended particles are brought to the 
earth’s surface, depending on the prevailing atmospheric conditions, by dry and wet deposition 
processes (Knippertz and Stuut 2014). Figure 2 shows the lifetimes of SDS.

SDS in the EMR originate more frequently from Northern Africa and the Sahel (North 
Africa) during spring, and during autumn from the Middle East (Gherboudj et al. 2017; 
Varga et al. 2014; Kubilay et al. 2000). The sources are separated in 3 types: (a) hydrologi-
cal, referring to playas, ephemeral, and dried lakes, (b) natural non-hydrological, referring 
to areas with low land use such as sand and dust dunes, and (c) anthropogenic, referring to 
areas with high land use such as agricultural fields (Ginoux et al. 2012). In North Africa, 
the Sahara Desert is spanning from the Atlantic Ocean to the Suez Canal and from the 
Mediterranean Sea to the Sahel, consisting of the largest sand and dust source in the world. 
More than half of the global dust emission budget, around 500–1400 Tg year−1, is emitted 
from this desert (Ginoux et  al. 2004; Miller et  al.2004; Tanaka and Chiba 2006), while 
Gherboudj et al. (2017) reported that more than twenty (20) source areas of SDS have been 
identified across North Africa. The Bodele depression, the Nubian Desert in Egypt, and the 
Saharan Atlas slopes are only some of the high dust emission areas.

In addition, the Middle East is situated between the three (3) areas of the Global Dust Belt, 
North Africa, and Central Asia, both of which are key SDS sources. This area is a mosaic of 
different source types ranging from the Euphrates-Tigris basin and the Syrian desert, stretch-
ing to Saudi Arabia and the Sistan basin, all of which are profoundly influenced by human 
activity through land use change and the construction of reservoirs (Rashki et al. 2012; Zender 

Fig. 2   Physical processes that lead to sand and dust emission and govern the lifetime of SDS
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2003). From this area, it is estimated that the annual mean dust flux is between 40 and 500 Tg 
year−1 (Ginoux et al. 2004; Miller et al. 2004; Tanaka and Chiba 2006).

Meteorological conditions and climate variability have both been proven to have an exert influ-
ence on SDS. Bodenheimer et al. (2019) concluded that SDS of eastern origin are mostly related 
to the Red Sea Trough system while, Varga et al. (2014) identified that SDS of western origin are 
mostly related to Mediterranean cyclones during winter and Sharav cyclones during spring. Con-
sequently, the SDS in the region can affect the air quality in mainland Greece, the North Aegean 
Region, Cyprus, Israel, and Turkey (Çapraz and Deniz 2021, Triantafyllou et al. 2020; Tsifliki-
otou et al. 2019; Vratolis et al. 2019, Krasnov et al. 2016a; Mouzourides et al. 2015).

As a dominant phenomenon for EMR, SDS is being recorded by researchers in different 
studies in terms of their frequency and intensity based on very high-resolution ground and 
satellite data. For example, based on ground data from stations within Pey et al. (2013) records 
that in the whole Mediterranean Basin, the south-eastern part which includes the EMR has 
higher annual dust contributions than the west or the western part of the Basin. Furthermore, 
over a 49-year data analysis from 1958 to 2006, Ganor et al. (2010) found an increasing trend 
of SDS in the EMR. In addition, individual studies in specific areas have been monitoring the 
trends of SDS. For Cyprus, data between 1993 and 2008 from an urban station in Nicosia and 
a background station in Agia Marina found that average daily concentrations of PM10 during 
SDS have decreased from the year 2000 to 2008, even though the number of dust days has 
increased (Achilleos et al. 2014). In another instance, ground monitoring stations measuring 
PM10 concentrations in 3 cities of Israel between 2001 and 2015 identified more extreme con-
centrations PM10 due to SDS in the years after 2009 (Krasnov et al. 2016b). Lastly, Aslanoğlu 
et al. (2022) identified the climatology of dust in the area using CALIOP and MODIS sat-
ellite systems for a 9-year period (2007–2015) in Turkey. This study found that the eastern 
part is more affected than the western part of the country. In general, studies in the area were 
conducted without uniform methodology in different areas of the EMR. An exception was 
found in the literature, for example, Achilleos et al. (2020) focused on 3 sites simultaneously 
(Cyprus, Crete-Greece, and Israel) over a 12-year period from 2006 to 2017. Their study 
provides a holistic approach of identifying dust days with PM ground measurements, satel-
lite products, and meteorological conditions. They also found that there is no increasing or 
decreasing trend, but rather a quasi-steady state of dust days in the area for the period of study.

Due to the variability in meteorological conditions, modelling and forecasting SDS is com-
plex and significant SDS events in the EMR are the centre of attention and study. For example, 
a severe SDS over the Eastern Mediterranean that took place in September 2015 (cf. Figure 3) 
was missed by the operational models due these weaknesses (Mamouri et al. 2016; Solomos 
et al. 2017). The magnitude of this event, although rare, showed how many countries in the 
area can be affected, highlighting the need for adequate concerted efforts for mitigation and 
adaptation measures. Other significant events have also been investigated in the EMR as the 
‘Minoan Red’ event in Crete-Greece during late March of 2018 (Monteiro et al. 2022) or the 
intense SDS in April of 2005 over Greece (Kaskaoutis et al. 2008).

3 � Impacts of SDS

3.1 � Negative impacts

Hazards due to SDS have been recognised in all three phases of the phenomenon, i.e. from 
the entrainment-lifting of sand and dust, to transport and deposition (Middleton 2017). 
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Hazardous impacts may be identified but are not limited to human and animal health (e.g. 
Vodonos et al. 2014; Neophytou et al. 2013a, b), satellite signals (Solheim et al. 1999), and 
air flights (Middleton 2017), whereas it may have a substantial impact on the performance 
of renewable energy infrastructure such as photovoltaic panels (Conceição et  al. 2018; 
Saidan et al. 2016).

In drylands, where degradation is high (Reynolds et  al. 2007), deflation removes the 
topsoil where nutrients are mostly found, reducing the productivity of agricultural areas 
and damaging young plant roots (Armbrust and Retta 2000; Mrabet 2002). Furthermore, 
damage to the plant leaf tissue due to sandblasting affects the overall growth and perfor-
mance of the plants and consequently impacts agricultural production (Stefanski and Siva-
kumar 2009). Infrastructure is also affected by deflation in near-source areas, where the 
entrainment and transport of large quantities of particles occur (Huszar and Piper 1986; 
Wang et al. 2010). For example, in Kuwait, the annual cost of removing sand and dust from 
roads is $9.36 million annually (Al-Hemoud et al. 2019).

The hazardous impact of SDS on human and animal health (Heal et al. 2012) increases 
in complexity in urban areas, where dust particles are mixed with anthropogenically emit-
ted organic particles (Riemer et  al. 2019) because of the particular airflow structures in 
compactly built areas and street canyons. Such airflow structures have been found to sub-
stantially enhance the accumulation of entrained particles transported over long distances 
and reduce the breathability capacity (Panagiotou et al. 2013) of urban streets, which can 
be thought of as the lungs of a city. Due to the reduced breathability capacity in highly 
compacted built areas, higher concentrations of particles are observed within street can-
yons than in other areas, resulting in the increased exposure of pedestrians and citizens to 
particulate pollution; such observations were made in laboratory experiments (e.g. Neo-
phytou et al. 2014), computational simulations (e.g. Kubilay et al. 2017), and field meas-
urements within urban street canyons of compacted built areas (e.g. Karra et al. 2017).

In the EMR, especially for countries such as Cyprus, Greece, and Israel, several stud-
ies demonstrated associations of PM10 levels during DDS outbreaks with increased total 
and case-specific mortality and hospital admissions for asthma and chronic obstruc-
tive pulmonary disease (Middleton et  al. 2008; Neophytou et  al. 2013a, b; Samoli et  al. 
2011, Vodonos et al. 2014).

Fig. 3   Satellite images of the EMR as the SDS event progressed in September 2015, extracted from NASA 
Earth Observing System Data and Information System (EOSDIS), https://​world​view.​earth​data.​nasa.​gov

https://worldview.earthdata.nasa.gov
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Sand and dust particles can also negatively affect the hydrologic cycle and global radia-
tive budget (Hui et al. 2008; Kaufman et al. 2005) because they act as cloud condensations 
and ice nuclei or absorb and scatter incoming solar radiation, respectively. Specifically, 
dust particles form longer-living shallow clouds and decrease the size of the droplets by 
10–30%. As a result, they are further susceptible to evaporation by absorbed solar radia-
tion, which in turn inhibits precipitation (Lohmann and Feichter 2005). Moreover, during 
the SDS deposition phase, dust particles can ‘contaminate’ water bodies by changing their 
chemical characteristics (Griffin et al. 2001).

3.2 � Positive impacts

Positive effects of SDS have also been reported in the literature. Micron-sized particles (i.e. 
1–20 µm) significantly affect the net change in the energy balance of the earth’s system. 
Depending on their characteristics, particles can absorb or scatter solar radiation, causing 
a cooling effect in the atmosphere and ocean (Ginoux 2017; Lau and Kim 2007). Studies 
have reported that large sand and dust particles can act as greenhouse gases by heating the 
atmosphere (Kok et  al. 2017; Mahowald et  al. 2014). Similarly, large dust particles are 
effective cloud condensation nuclei when they are freshly emitted, mainly because of their 
size, and when coated with soluble or hygroscopic material as they age in the atmosphere 
(Choobari et al. 2014; Kumar et al. 2011; Levin 2005).

Positive effects have also been observed because significant amounts of nutrients are 
transferred across regions during SDS. For example, the cross-fertilisation of the Amazon 
forest, where the soil is low in nutrients due to high erosion from high rainfall, and the 
Bodele depression in Chad acts as one of its main nutrient sources (Ben-Ami et al. 2010; 
Koren et  al. 2006; Swap et  al. 1992). In addition, plankton and chlorophyll productivity 
in ecosystems is enhanced because of the settling of dust in the sea (Gallisai et al. 2014). 
Chlorophyll in the central and eastern Mediterranean was found to be affected mostly by 
sand and dust deposition, particularly during spring. Finally, sand and dust can be partly 
alkaline and negate the effects of acid rain (Han et al. 2011).

Overall, SDS have significant positive effects on the environment and ecosystems, and 
consequently on humans, indicating that mitigation measures must be designed and imple-
mented to moderate their negative effects without disturbing the ecological balance.

4 � Mitigation measures in the emission source areas

Sand and dust sources have different characteristics and are therefore subject to different 
mitigation approaches. This section overviews the mitigation measures and assesses their 
success or implementation challenges near-source areas. We should note here that mitiga-
tion measures are the means used in the source areas to prevent, reduce, or control SDS. 
In some cases, mitigation measures also include restitution for any damage to the environ-
ment caused by the emissions of sand and dust through compensation, replacement, resto-
ration, or any other actions.

The mitigation actions reviewed in the following subsections, which have been applied 
at different scales, are structured based on the type of emission sources (Fig. 4). Table 1 
summarises all the mitigation measures based on their applications at different locations. 
Evidently, the most systematic efforts to reduce dust episodes are mainly located in Central 
Sahel-Niger, Mali, and Burkina Faso. Few studies have been conducted on the Arabian 
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Peninsula, where sand and dust mitigation measures have been considered. The insufficient 
information on this subject in the Arabian Peninsula may be due either to the insufficient 
interest in mitigation measures or the limited publication of relevant activities.

4.1 � Mitigation measures for wide‑scale SDS

Large-scale and cross-sectoral actions in the societal, agricultural, and economic dimen-
sions have been initiated in some source emission areas.

The massive planting of trees around the Sahel has been given a broader sense with the 
Great Green Wall (GGW) of the Sahara and Sahel. This initiative was first introduced in the 
1980s and formally adopted in 2007 in the National Action Plans of several Sahelian coun-
tries (UNCCD 2016). This enormous plan comprises a 15-km-wide and 7775-km-long tree 
line from Dakar to Djibouti in order to reduce wind erosion, desertification, and ultimately 
SDS. As of 2020, some of the countries involved with the project have made significant 
progress in land restoration while others not so much. Specifically, in the UNCCD (2020) 
report, all 11 countries taking part in the project have reported financial challenges while 
governance, monitoring, and technical challenges were also identified between 2011 and 
2017. Such forest plantations can fail for many reasons, e.g. from anthropogenic (e.g. lack 
of planning, injuries to young plants during planting, and unsuitable species of trees) and 
natural reasons (e.g. low rainfall and high temperatures (Jackson 1984). Thus, maintaining 
and monitoring a plantation in its early stages does provide with a higher survival rate. 
Although millions of trees have been planted along the GGW, much more planting must be 
performed, and the plan is expected to be completed in the next decades. Large-scale tree 
plantations, similar to the GGW in Africa, not only mitigate the effects of SDS but also 
reduce the effects of climate change by reducing the greenhouse gases in the atmosphere 
(Bastin et al. 2019; Benjaminsen and Hiernaux 2019).

Fig. 4   Graphical summary of mitigation measures based on emission sources
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To reverse the adverse effects of significant losses of fertile land due to desertification 
and population pressures, the ‘Maradi Commitment’ was established in Niger in the 1980s, 
wherein a block of 10 ha in each city was planted with trees (Larwanou et al. 2006). Addi-
tionally, farmers were urged to use the trees naturally growing in their fields as soil stabi-
lisers and as a source of fuel and food for livestock through continuous harvest techniques 
under a programme called Farmer-Managed Natural Regeneration (Abdou 2013). Further-
more, the government of Niger adopted the 3N initiative, Nigeriens Nourishing Nigeriens, 
to promote sustainability and combat poverty, land degradation, and hunger (Abdou 2013). 
Today, villages have 10 to 20 times more trees than at the beginning of the programme, and 
5 million ha of land is estimated to have been regreened (Pye-Smith 2013; Reij et al. 2009).

Degrading lake systems and drying rivers can result in the exposure of soft sediments, 
as in the case of the Bodele depression in the Sahel region, which is one of the biggest 
sources of sand and dust. The lake was part of Mega Lake, Chad, which once covered 
350,000 km2 (UNESCO 2004). Since 1950, the lake went through different dry states up 
to 300 km2 in the 1980s, exposing much of its highly erodible sediment and degrading 
nearby agricultural lands and pastures because of climate variability and human interven-
tion (Galeazzi et al. 2017; LCBC 2016; Mahmood and Jia 2019). Millions of individuals 
reside in and depend on the area; therefore, in 2009, measures were implemented through 
the Lake Chad Basin Sustainable Development Programme to reverse the degradation 
situation. At the end of the programme in 2017, local plants covering 148  ha stabilised 
the dunes, and new agricultural and pastoral lands were developed (ADF 2020). Notably, 
other soil and water protection programmes and conservation schemes adopted in the Sahel 
aimed to stabilise the blowing sand from dunes, fence off areas that have been restored, and 
plant trees. These aims have been successfully executed due to German cooperation and 
funding from African projects (GIZ 2012).

In Northern Africa, the southeast rangelands of Morocco were restored by harvesting 
rainwater and transplanting rosemary, which increased vegetation, serving the needs of the 
local population (Homrani Bakali et al. 2016). This action was part of the Greater Green 
Morocco Plan that started in 2008, which attempted to increase agricultural production 
and the income of farmers as well as to ensure sustainable development (Solh and Saxena 
2011).

The area with the least amount of intervention was the Middle East. The only relevant 
reference found in the literature review was the signing of a memorandum agreement 
between Iran and Iraq in 2011 (Ganjalinejhad et al. 2018) to facilitate the management and 
control 1 million ha of deserted land, but whether the plan was implemented was unclear.

4.2 � Cropland

Croplands provide another significant source of SDS, and actions are implemented by 
farmers and scientists to reduce soil erosion and increase crop yield. There are many cul-
tivated land areas in the source regions of the Sahel, Northern Africa, and the Middle East 
(Ginoux et al. 2012). The incorrect or limited use of best practices to prevent soil erosion 
can have many disadvantages, as highlighted by Govers et al. (2017). In the source areas 
investigated, the soil condition was poor, and the trend of soil erosion was increasing, mak-
ing them susceptible to desertification (FAO and ITTPS 2015).

Soil management techniques and barriers have been used for reducing the loss of 
nutrient-rich topsoil in croplands. Bielders et  al. (2001) examined the use of ridges 
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perpendicular to the prevailing wind direction, showing a drastic decrease in soil erosion 
by 57%, and that reducing the spacing between the ridges increased their effectiveness in 
an on-farm experiment in Southwest Niger. However, this practice had a short life span due 
to rainfall and thus requires continuous maintenance, especially in the sandy soil types of 
the Sahel (Fryrear 1984).

Mulching is another countermeasure to wind erosion and was first implemented in 
Niger. Nigeriens used manure and crop residue to cover sandy soil. However, due to the 
different methodologies used in the studies, their mitigation effects could not be accurately 
determined (Sterk 2003). To evaluate the effectiveness of this measure, Abdourhamane 
Toure et al. (2011) investigated the quantity of crop residue required to control wind ero-
sion by monitoring the erosion flux over 2 years. The results showed that generally low 
crop residues of approximately 100 kg ha−1 or approximately 2% of the total cover are suf-
ficient for reducing wind erosion by a factor of 4.

In another practice, parkland systems in Burkina Faso (i.e. landscapes where scattered 
vegetation of trees and shrubs can grow) are sustained in cultivated or recently fallowed 
fields (Leenders et al. 2016). Shrubs were found to reduce wind speed and sediment trans-
port by up to 7.5 times (Leenders et al. 2007; 2011). Intercropping, parkland-style vegeta-
tion with trees among crops, as practiced in Morocco can also help reduce soil erosion, as 
indicated by Daoui and Fatemi (2014). In contrast, changing rangeland to agricultural land 
can increase wind erosion and contributed to a net soil loss of 62 Mg/ha per year, which 
is five times more than the tolerable soil loss rate for the area (Houyou et al. 2016). Thus, 
exploitation of land for crop cultivation can lead to increased erosion if appropriate meas-
ures are not implemented to mitigate it.

The use of trees as windbreaks for crop protection in croplands is a common practice, 
and they can also act as soil stabilisers. The fallow band system, which was also applied 
along the Sahel, comprised herbaceous windbreaks that were 5-m wide and were placed 
against the erosive wind direction from the rainy to the dry season. This fallow band sys-
tem has shown that over 3 years, it can effectively capture soil particles and coarse organic 
matter (Ikazaki et al. 2011). Tree-windbreakers have also been used in the Sahel, and Sterk 
(2003) indicated that trees can inhibit wind erosion. However, several limitations have been 
observed, such as the competition of trees for water and nutrients with the crops, solar 
radiation, cattle grazing, and land tenure concerns.

In addition to the aforementioned passive measures, agricultural machinery can play an 
influential role in soil stability. An experiment was performed in South Tunisia to assess 
how the use of different machinery tillage approaches affects soil erosion. The findings 
demonstrated that using a mouldboard attached to a tractor in cultivated fields had signifi-
cantly better results in reducing wind erosion than using tractor discs or tillers as part of 
conventional tillage techniques (Labiadh et al. 2013). Additionally, in Morocco, decreased 
wind and water erosion was observed when minimum disturbance equipment, no-tillage 
methods, no-till disc drills, and dry seeding methods were used as part of the conserva-
tion tillage techniques (Mrabet et al. 2012). Generally, the complete removal of residues 
reduces crop yield because of high erosion (Mrabet 2002). Furthermore, Bot and Benites 
(2005) reported that increased soil organic matter and erosion control can be achieved. Ben 
Moussa-Machraoui et  al. (2010) showed that under different crop types, the soil organic 
carbon and matter were enhanced when no-tillage practices were used, compared with 
their levels while using conventional tillage in a 4-year study in northern and north-west-
ern Tunisia. These results agree with the findings of Moussadek et al. (2014) in Central 
Morocco, where the use of no-tillage practices for 5  years increased soil organic matter 
from 2 to 10% in two major soils, vertisol and cambisol. Likewise, in the Middle East, 
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and specifically in Northern Syria, zero tillage and crop residue measures were applied 
from 2008 to 2012 in different experimental crop fields to assess the difference between 
conventional and conservative tillage. The results showed that in conservative agriculture, 
high soil organic carbon and microbial biomass were observed, showing the potential for 
decreasing erosion (Sommer et al. 2014). Moreover, all residue treatments had a positive 
influence on soil organic matter and improved soil properties and moisture levels (Som-
mer et al. 2011). An additional example of soil loss reduction is the use of stone fragments 
in Jordan. Abu-Zreig et al. (2011) found that using 5% and 15% stone fragments in a field 
could reduce soil erosion by 35% and 53%, respectively. Some of the practices used for 
countering soil loss are also helping with crop yield, if used correctly. Stone fragments are 
found to increase crop yield in various cases and hold moisture in the soil, while they help 
with surface runoff and erosion (Nyssen et al. 2006; Katra et al. 2008). On the other hand, 
large stone fragments are found to be reducing crop yield (Chow et al. 2007). Considering 
the area of application, a mitigation measure can have the opposite effects if not applied 
properly.

4.3 � Rangelands and natural ecosystems

Addressing the changes to rangelands and natural ecosystems, which may change SDS 
because of anthropogenic and natural intervention, through various measures is essential. 
One third of humanity lives in rangelands and drylands where semi-arid or arid climates 
persevere, covering more than 40% of the land area. Consequently, their stability is crucial 
for human survival (Reid et  al. 2014; Safriel et  al. 2005; Middleton and Thomas 1997). 
Moderate grazing regimes in a nomadic style are likely to improve rangeland regeneration 
rather than ranching or stocking rates, according to a long-term study of monitoring veg-
etation between 1981 and 2007 in the central Sahel (Miehe et al. 2010). In North Ethiopia, 
enclosure strategies to prevent grazing have produced very good restoration results (Gebre-
hiwot and Veen 2014; Yayneshet et al. 2009).

Furthermore, 31% of SDS on a global level are attributed to hydrological sources, such 
as river valleys, alluvial fans, and playas (dried lakes) (Ginoux et al. 2012; Goudie 2018). 
In Iran, Lake Urmia is an example of the anthropogenic influence on water bodies and 
their desiccation: the lake was severely downsized because of overconsumption and the 
building of dams, reducing it to 2366 km2 by 2011 (Ouria and Sevinc 2016; Garousi et al. 
2013). With 88% of its water cover lost from approximately 2000 (AghaKouchak et  al. 
2015), an estimation of a 30–60% increase in PM10 in nearby cities was recorded (Sotoude-
heian et al. 2016). To counteract this decline, the Urmia Lake Restoration National Com-
mittee was established in 2013, to devise and implement a plan to stabilise the decline 
and restore the lake through a series of measures. These measures comprised a decrease in 
agricultural land and, consequently, the use of agricultural water, additional water release 
from the dams to increase the water level of river valleys, and the control of the illegal 
withdrawal of water from the lake (ULRP 2018). In 2016, the water level was stabilised, 
and other actions, such as replacing the old irrigation systems with new, efficient versions, 
showed that the Urmia Lake Restoration plan has contributed considerably (Danesh-Yazdi 
and Ataie-Ashtiani 2019). However, Zucca et al. (2021) indicate that many of the reported 
mitigation measures of SDS impacts from hydrological sources are just mentioned as pos-
sible solutions based on statistical or other observations without any evidence of success-
fulness. In the review, a list of Sustainable Land and Water Managements (SLWM) prac-
tices are identified based on their nature of application, intervention zone either upstream, 
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playa or downwind, and importance, with the help of the World Overview of Conserva-
tion Approaches and Technologies. Examples of high importance are integrated watershed 
management planning and implementation as an approach for all 3 intervention zones, 
improved water use efficiency as technologies related to water primarily for upstream and 
playa zones, and windbreaks as technologies related to wind and water erosion for playa 
and downstream zones.

Sand dunes cover large parts of natural ecosystems, such as deserts, and their forma-
tion is controlled by sand supply, wind regimes, and vegetation (Lancaster 2011). Signifi-
cant shifting patterns in sand dunes have been associated with the topography and regional 
atmospheric circulation of an area (Washington et  al. 2006). Furthermore, in arid areas, 
the chemical composition of sand dunes plays a significant role in wind erosion reduction; 
for example, the Negev and Sinai deserts contain 17% silt and clay, enabling them to be 
stabilised naturally (Tsoar and Zohar 1985). The microphytic communities in the northern 
Negev Desert form a biological crust that enhances stabilisation (Veste et al. 2001), thus 
not disturbing the areas can be crucial.

Additionally, anthropogenic interventions, such as the formation of sand fences from 
palm trees next to a road in southern Tunisia (Wiggs 2011) and the use of unadulterated 
seawater and cleaned urban sewage in Mauritania (Badescu and Cathcart 2010) to stabilise 
sand dunes, constitute sustainable practices to reduce wind erosion in natural ecosystems 
such as deserts.

4.4 � Industrial settings‑mineral operations

Mitigation measures are not only those directly related to natural sources and ecosystems 
but also those applied to sources related to large-scale anthropogenic activities such as 
mining and industrial operations. Fugitive dust from mining or industrial operations can be 
more harmful than normal dust emissions from deserts because it can contain contaminants 
from chemical additives used for mineral extraction processes and heavy metals (Csavina 
et al. 2011, 2012). An example is arsenic: 40% is emitted from smelting operations (Allo-
way et al. 1997). Dust particles from mining operations have been found to contribute sig-
nificantly to suspended particle concentrations, 25% of which are respirable (Zota et  al. 
2009) and are mainly emitted from haul roads, tailing beaches, and slope areas (Park et al. 
2019).

Despite the reports on emissions from mines in the dust source areas examined, such as 
in Mali and Niger (Garrison et al. 2014), Iran (Monjezi et al. 2009), and Algeria (Moka-
dem et al. 2014), no mitigation measures have been reported. However, such measures have 
been applied (e.g. Park et al. 2019) in areas not covered by this review. Nevertheless, they 
are briefly cited as examples or recommendations as follows:

	 i.	 Water spraying on tailings
	 ii.	 Covering tailings with other materials
	 iii.	 Stabilising tailings with vegetation
	 iv.	 Stabilising tailings with chemicals

The use of chemicals (e.g. biopolymers for stabilisation) was found to be more effec-
tive in enhancing moisture retention than using only water spray on tailings (Chen et al. 
2015). Furthermore, phytoremediation, used in the USA as a measure of controlling dust 
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emissions from tailings, showed a decrease in dust particle emissions and was comparable 
to the emissions from undisturbed grasslands (Gil-Loaiza et al. 2018).

5 � Adaptation measures

Except for large-scale forecasting, covering the entire EMR region, we found no other 
wide-scale adaptation measure in the literature. On these grounds, small-scale and personal 
adaptation measures are recommended.

5.1 � Monitoring and forecasting of SDS

An intermediate step for the implementation of other adaptation measures, highlighting 
the necessity and usefulness of monitoring and early prediction of SDS in areas far from 
emission sources, is important. Monitoring of SDS has always been conducted using long-
term sand and dust observations and meteorology (Goudie and Middleton 1992). Before 
the advancement of atmospheric modelling and remote sensing, the categorisation of SDS 
severity was established based on the intensity of wind speed and reduction of visibility 
(Joseph et al. 1980; Xin-fa et al. 2001).

However, current technological and scientific progress has enabled scientists to moni-
tor and predict SDS. The monitoring of sand and dust was recorded mainly by the ground 
stations. Networks such as the European Monitoring and Evaluation Programme include 
background stations that are located far from anthropogenic sources to record pollutants 
from long-range distances. Continuous monitoring is conducted at each site by using high 
temporal resolution equipment, such as a tapered element oscillating microbalance. These 
monitoring techniques are useful for evaluating models worldwide (Eleftheriou et  al. 
2021). AERONET, which employs a network of sun photometers (Holben et al. 1998), is 
another example of an observational system. Orbital or geostationary remote sensing plat-
forms such as MODIS, SEVIRI, and CALIPSO also provide many satellite products with 
atmospheric aerosol properties at various temporal and spatial resolutions (Paz et al. 2013). 
Despite their great capabilities, monitoring techniques have limitations because most of 
them cannot provide the source apportionment of the particles in real time. In addition, 
sun photometers and lidars cannot perform reliable measurements during intense dust 
events (Fernández et al. 2019), and providing reliable satellite products is difficult when 
the atmosphere is cloudy, smoky, or dark.

Additionally, regional-scale forecasting of SDS requires the modelling of complicated 
physicochemical processes that occur in the environment. This finding implies methodo-
logical variability (various methods and databases, i.e. ground observations, satellite prod-
ucts, weather, and dust models), different levels of complexity, and ultimately significant 
uncertainty in forecasting. This uncertainty is due to many reasons, such as the lack of suf-
ficient evaluation measurements appropriate to enable the confirmation of different stages 
(e.g. emission and deposition schemes) in the modelling processes, sub-grid variation caus-
ing differentiation in the friction velocity, particle size distribution, and the development of 
satellite methodologies (Shao and Dong 2006). Moreover, due to the use of ‘static’ land 
use and cover databases of SDS at sources, seasonal variations in land are not considered. 
In recent years, attempts have been made to produce dynamic SDS source databases (Kim 
et al. 2013; Solomos et al. 2019; Vukovic et al. 2014).
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Such large-scale forecasting data is being hosted on online databases such the Sand and 
Dust Storm Warning Advisory and assessment System (SDS-WAS) which was established 
by the WMO in 2007 and is hosted in Spain for the European, African, and Middle East 
regions and in China for the Asia/Central-Pacific region (SDS-WAS 2020). Nowadays, 
a new updated platform is used the WMO Barcelona Dust Regional Center (https://​dust.​
aemet.​es/) and this centre is responsible for the research activities and operations of the 
WMO related to SDS. This online database hosts many, if not all, of the available opera-
tional dust models which are updated on a daily basis. Each individual model is run by 
a different country/authority/institution with different input data and modelling processes, 
resulting in varying outputs of dust concentration on the same area of interest.

In a long-term intercomparison of models with satellite products, substantial discrepan-
cies have been recorded among several global- or regional-scale models (Evan et al. 2014). 
The lack of observations of soil characteristics (e.g. size and mineralogy) and gaps in mete-
orological conditions at source areas, which are important for modelling SDS, can result in 
differences among models (Benedetti et al. 2018; Roberts et al. 2015; Menut 2008).

Overall, monitoring and forecasting tools are used and can be used as adaptation meas-
ures to provide necessary warnings for individuals to be protected from incoming SDS, 
especially SDS. However, as reported in the literature, many concerns must be resolved to 
obtain the most timely, correct identification of SDS and their severity.

5.2 � Personal exposure and protection and the reliance on early warning systems 
for SDS

Historically, SDS have not been considered harmful to humans, because of their natural 
origin and crustal composition. In line with this approach, legislation of the European 
Union considers SDS impossible to prevent, implicitly harmless, and discounts their con-
tribution to the daily and annual air quality standards of PM10. However, during the last 
two decades, several epidemiological studies from the EMR countries, such as Cyprus 
(Middleton et al. 2008; Neophytou et al. 2013a, b), Greece (Samoli et al. 2011), and Israel 
(Vodonos et al. 2014), have demonstrated associations of PM10 during SDS outbreaks with 
increased total and case-specific mortality and hospital admissions for cardiovascular dis-
eases, asthma, and chronic obstructive pulmonary disease.

Currently, during SDS, competent authorities and mass media in the countries of the 
region issue non-standardised warnings to the general public and vulnerable groups, most 
commonly advising them to remain indoors and reduce outdoor activities. There is lim-
ited evidence on the societal concerns and risk perceptions for SDS and the health-related 
effects (Im et  al. 2006). Only few studies examined the current knowledge and relevant 
practices of competent authorities or the knowledge and perceptions of involved social 
stakeholders in the region regarding the health effects of SDS (Kinni et al. 2021).

There is no scientific evidence on the efficacy of any of the recommendations in 
reducing exposure to SDS PMs or mitigating related health effects. The main goal of 
the demonstration project ‘MEDEA’ (Mitigating the Health Effects of Desert Dust 
Storms Using Exposure-Reduction Approaches; https://​www.​life-​medea.​eu) is to pro-
vide field-based evidence for the feasibility and effectiveness of adaptation measures 
to SDS in South-Eastern Europe, focusing on exposure reduction approaches. In this 
project, which is ongoing, exposure reduction is pursued by implementing both out-
door and indoor interventions (Kouis et  al. 2021). For the outdoor intervention, chil-
dren with asthma after receiving timely personal alerts and specific recommendations 

https://dust.aemet.es/
https://dust.aemet.es/
https://www.life-medea.eu
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by smartphone and web-based applications and tools demonstrated significantly reduced 
outdoor exposure during SDS events by reducing time spent outdoors (− 28%) and 
reducing outdoor physical activity (− 13%) (Kouis et  al.  2023). For the indoor inter-
vention, children with asthma and adults with heart arrhythmias were asked to close 
windows and doors, seal possible cracks around windows and doors to minimise home 
ventilation, and use an air cleaner continuously to filter indoor air and managed to sig-
nificantly reduce indoor PM2.5 and PM10 by 43% and 41%, respectively, in comparison 
to the control group (Achilleos et al. 2023). In addition, anecdotal evidence from these 
studies, which is currently in the publication process, documented significant improve-
ments in asthma symptom control in children and health-related quality of life in adults 
with heart arrhythmias. Implementation of interventions also depends on validated 
models for forecasting SDS in EMR, as well as early dissemination of warnings and 
audio-visual recommendations for exposure reduction via a web-based platform and 
smart mobile application to alert patients of upcoming SDS.

For the EMR, an early warning system, the SDS-WAS platform and now the WMO 
Barcelona Dust Regional Center as mentioned before, is commonly used. The concentrated 
expertise and data found on these online databases has proved valuable for competent 
authorities around the world to issue warnings for the public. Typically, the multi-model 
median (MMM) is being taken as an output or individual model based on each competent 
authority’s experience or statistical analysis.

Exposure-reduction strategies have an important role in adaptation strategies. The 
employment of novel environmental epidemiology and telemedicine methods to assess per-
sonal compliance to recommendations, measure exposure to air pollutants in indoor and 
outdoor environments, and monitor clinical outcomes among the population is very impor-
tant in the evaluation of these strategies. The methods previously employed in air pollution 
health effect studies have several inherent inaccuracies in assessing exposure and health 
outcomes. Exposure estimates are typically based on measurements conducted at sparsely 
distributed monitoring stations. These approaches use outdoor air pollution concentrations 
as a proxy for total exposure; therefore, they lack information on indoor air pollution levels, 
which introduces significant exposure errors (Baek et al. 1997; Hoek 2017; Leung 2015). 
Furthermore, exposure estimates are usually assessed for a given residential address, with-
out considering participants’ activity and mobility throughout the day (Park and Kwan 
2017; Setton et al. 2011; Wu et al. 2011).

With modern technologies, wearable GPS and activity sensors can be used to continu-
ously measure activity and time spent indoors and outdoors. This approach enables the 
assignment of exposure to the respective air pollutant levels measured in indoor and out-
door environments, differentiated by activity levels throughout the day, providing a high 
spatiotemporal resolution (Yarza et  al. 2020). The health effects of desert dust exposure 
are typically assessed using ecological retrospective data on major outcomes such as death, 
hospital admissions, and outpatient clinic visits (Vodonos et  al. 2014; Neophytou et  al. 
2013a, b; Samoli et  al. 2011; Middleton et  al. 2008). However, data on hospital admis-
sions and outpatient clinic visits are influenced by subjective health care seeking behaviour 
and are therefore problematic in evaluating the onset, duration, and severity of an outcome 
(Yarza et al. 2020). With telemedicine methodologies, a range of clinical outcomes may be 
assessed beyond what standard tools, such as validated clinical symptoms questionnaires 
offer. In this context, health parameters such as heart rate, blood pressure, and oxygen satu-
ration can be obtained from wearable sensors, and heart arrhythmias can be obtained from 
implanted pacemakers, providing continuous measures of a whole range of clinically rel-
evant parameters that can be related to exposure to SDS.
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5.3 � Green infrastructure (GI)

The literature suggests a few GI-related adaptation measures for SDS in areas away from 
the sources. Therefore, adopting ideas and solutions that have been successfully imple-
mented for similar environmental topics such as traffic pollution is necessary. GI, also 
referred to as nature-based solutions (NBSs; Debele et al. 2021), is a passive control meas-
ure, such as planting trees hedges, or shrubs to reduce air pollution (Abhijith and Kumar 
2020; Kumar et al. 2019, 2022). For example, Abhijith et al. (2017) reviewed approaches 
and methodologies applied to open roads and street canyons and highlighted their benefits. 
For instance, trees in canyons with low porosity and high height can act as walls, trapping 
the pollution underneath them, forcing the air to flow above them, and thereby reducing air 
exchange (Abhijith and Gokhale 2015; Janhäll 2015). Therefore, trees can also be used to 
filter ambient air from dust or resuspended particles (Ottosen and Kumar 2020). Planting 
trees in compact urban areas to reduce air pollution and increase human welfare is not an 
easy task because many parameters need to be considered before committing to this action 
(Kumar et al. 2019; 2021).

Crucial parameters for consideration include, for example, the tree type, geometry of 
the area to be planted, and spacing between the trees (Barwise and Kumar 2020). Moreo-
ver, hair and waxes on certain types of trees (Sæbø et al. 2012), and the surface of leaves 
and their shape (Perini et al. 2017), influence the number of particles deposited on them, 
thereby increasing the accumulation of pollutants. Thus, GI can be of importance in adap-
tation measures because it can allow the deposition the atmosphere PM on them and miti-
gate against natural hazards such as flooding, landslides, and heatwaves (Debele et  al. 
2021; Kumar et al. 2020). The implementation of this measure, especially in an urban envi-
ronment where the air quality is heavily burdened and buildings are much denser, must be 
carefully considered.

6 � Social, economic, and political dimensions of mitigation 
and adaptation measures

Examples of how challenging the implementation of SDS mitigation and adaptation prac-
tices is can be realised when the socioeconomic and political aspects of each area are con-
sidered. For example, in most SDS source areas, the rural population is among the poorest 
worldwide, and there are many environmental problems such as land degradation, soil ero-
sion, and the lack of water (Middleton et al. 2011).

Land degradation in drylands is caused by a number of natural and human-driven activi-
ties such as extreme climatic variations and overgrazing respectively (Davies et al. 2012; 
IUCN 2017). Grazing has been found in literature (Rowntree et al. 2004) to be of a com-
plex desertification driver, as it is at the same time interacting with other factors affecting 
the area. These factors range from the perception of how beneficial grazing is for a coun-
try (Middleton 2018), extreme weather conditions and long-lasting droughts in drylands, 
to human activities such as the abandonment of cultivated land and tree cutting (Dregne 
2002). Although overgrazing has been identified as a cause for desertification, pastoralism 
for example in the Sahel is an important occupation and composes a large sum of some 
countries’ gross domestic product (Middleton et al. 2011). Thus, the control of overgrazing 
and its impacts promoting desertification needs to be enforced by the understanding and 
considering all the other accompanying factors described above for a holistic establishment 
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of the mitigation measures in this instance. As Butt (2016) suggested, a more in-depth 
investigation of the impact of overgrazing than those in the literature must be conducted 
because pastoralists are being pushed into additional contained areas, which might lead to 
overgrazing. In addition, Beyene (2010) indicated that rangeland enclosures affect pastoral-
ists’ livelihoods and do not promote sustainability. Thus, the need for grazing control of 
livestock in such areas is in contrast with the need for individuals to survive with measures 
implemented to counter the overgrazing impact. Sahelian herders also have different char-
acteristics based on being nomadic or sedentary; thus, their characteristics differ by when, 
where, and how their herds are led (Young et al. 2019).

The challenge of variability of herding practices can be faced through improved com-
munication between stakeholders for the correct and sustainable exploitation of rangelands, 
which seems to have increased in the 2010s. However, the lack of law enforcement and 
trust between herders are examples of the factors that make it challenging to promote sus-
tainability (Coppock et al. 2017; Turner et al. 2014). Opposed to overgrazing and degra-
dation of land in the Sahel, actions have been put in place, and ground observations and 
reports have confirmed the increase in vegetation, but long-term assessments indicate that 
biodiversity is decreasing, which might affect the environment and livelihoods (Fensholt 
et al. 2017). In another instance, due to the introduction of commercial agriculture in the 
Sahel in the 1700s, dust deposition in alluvial systems has increased dramatically (Mulitza 
et al. 2010), indicating that the economic and social development of the area has resulted 
in the formation of an SDS source. This case is similar to that of the Senegal River, which 
provides more material to be blown away during periods of drought, showing anthropo-
genic influence.

Another implementation of mitigation measures through collective action was the suc-
cessful application of the Lake Chad Action Plan, but major constraints were encountered 
that interrupted the smooth completion of the project (ADF 2020). Such constraints were 
the lack of competent programme experts, leading to the constant change in plans; the 
weak capacity shown by governmental services in performing tasks and supervision; the 
low organisation of surrounding communities in applying the measures; and insecurity. 
The insecurity in the Lake Chad area, linked to the water scarcity caused by the drought, is 
directly related to the socio-political instability of the surrounding countries, which drives 
the area into water conflicts and increases terrorism and insurgency, such as that of Boko 
Haram (Okpara et al. 2015). In addition, prolonged conflicts in the Middle East and North-
ern Africa can result in the deterioration of land and land use changes that can influence 
dust emissions (Jaafar and Woertz 2016). Similar challenges were also identified in GGW 
project, where challenges in governance are found due to the lack of environmentally 
friendly political agenda and lack of coordination between authorities and relevant sectors. 
Additionally, the absence of monitoring and evaluation data on the ground due to the lack 
of finance or the overwhelming work on governments creates lack of credibility towards 
investors, making it harder for new funding.

Moreover, in Libya, the change from agriculture to the oil industry after the discov-
ery of oil provided a major flow of money in the economy, which funded many projects 
for the development of agriculture from the 1970s to the 1980s (Sachs and Warner 1999). 
Medium-term plans for agriculture were implemented with great success, but with the 
decrease in oil prices, annual plans were established with limited success, showing the 
influence of the economy on the successful implementation of plans (Allafi 2014). Addi-
tionally, the role of governance in securing sustainability is crucial in Northern Africa, 
as proposed by Ates et al. (2016); this is because the short-lived and sometimes harmful 
environmental practices remain incomplete. Thus, sound governmental input must overall 
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be established in all cases. Furthermore, national plans such as the Green Morocco Plan, 
which attempted to ensure sustainability in rural territories, have failed to achieve their 
goals (Faysse 2015) because the information used as a baseline was inaccurate.

In the Middle East, Iran’s Restoration Plan for Lake Urmia cannot be considered com-
pletely successful in terms of its goals, due to lack of data and deep understanding of the 
various physical processes of the anthropogenic and natural stressors of the lake. Specifi-
cally, data scarcity for certain parameters, such as land cover distribution, topography, and 
evapotranspiration, and those physical processes that have not been adequately understood, 
constituted some of the reasons that the restoration plan timetable of Lake Urmia was out 
of schedule (Danesh-Yazdi and Ataie-Ashtiani 2019). Furthermore, Salimi et  al. (2019) 
indicated that the implementation of the restoration phase poses great challenges due to 
the contradictory national policy of agricultural development and the restoration of the lake 
reducing water consumption, the lack of proper funding, the weak local communities that 
need to change their water usage norms, and the future political instability of the country 
that might not prioritise this project.

External financing of projects having a great positive impact against land degradation 
and sustainable land managements is necessary as mitigation actions in areas with high 
poverty and scarcity of national funding as in the case of the GGW. The need for a certain 
level of global international governance is becoming more evident, and in the recent United 
Nations Environment Programme (UNEP) summit on Climate Change (2022) in Sharm 
El-Sheikh Egypt between 6 and 18th of November, the possibility of funding of a global/
regional nature is being further introduced and established. The UNCCD (2020) progress 
report indicates that between 2011 and 2019, there is a notable discrepancy between exter-
nal/international funding and national funding. Furthermore, there were a total of 870.3 
million USD out of the 1.2 billion USD Sahel and West Africa Program (SAWAP) from 
international donors in support of the GGW project. This indicates how depended are SDS 
source countries on international attention and funding to proceed with successful plans. 
On the other hand, adaptation measures can be financed by national resources with early 
response mechanisms, green infrastructure, and training of the vulnerable groups with of 
the country that is affected through technology, making them more easily applicable and 
better monitored.

Regarding adaptation measures in the EMR, we found no literature on how effective 
the measures taken during SDS are. It is not clear whether these recommendations and 
warnings are established by employers or ignored because of lack of knowledge or lack of 
supervision from competent authorities. A recent study assessing interventions in reducing 
exposure to SDS indicated that compliance with adaptation measures is also dependent on 
behaviour, especially for children, and in school or at home (Kouis et al. 2021). Further-
more, NBS is based on co-approaches, that is, the cooperation of stakeholders at all levels 
and the disciplines involved in implementing them (Woods-Ballard et al. 2015). However, 
this interaction can reveal the perceptions of stakeholders, such as government bodies or 
landowners, which can cause major delays in the procedure, and their acceptance of the 
plan (Santoro et al. 2019).

The many conflicting interests with environmental goals have also been reported to be a 
problem in implementing NBS projects because developments in certain areas can be good 
for the short-term economy but bad for the long-term environment (Kabisch et al. 2016; 
Waylen et  al. 2014). A common social dimension that must be considered when imple-
menting measures is trust among stakeholders. As van Ham and Klimmek (2017) indicate, 
trust can be something that has been built or unbuilt during projects; thus, trust can be a 
decisive condition between success and failure.
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In summary, in the implementation of mitigation and adaptation measures, the standard 
of living and culture of the affected individuals should be taken into important consid-
eration. Values such as transparent governance, security, trust, and human welfare play an 
important role in the actual effectiveness of the implementation of measures. In addition, 
the scientific community also needs to provide a simpler context, because the context fol-
lowed to date has been one of the reasons for the failures in measures’ implementations 
(Dong et al. 2017).

7 � Future pressures and approaches

Known or unknown future pressures are inevitable because of the changing norms of today, 
and new challenges will arise for leaders of nations and the world to manage. These pres-
sures extend from climatic, socioeconomic, and humanitarian crises.

Simulations of climate change in source areas affecting the EMR show different results 
for changing temperatures and weather conditions; thus, different scenarios were investi-
gated. The Mediterranean and West Asia will become drier, and the simulations of the 
Sahel will be inconsistent. Drier conditions on the ground could lead to lower monsoonal 
rainfall and thus longer droughts in the Sahel (Solmon et al. 2008; Yoshioka et al. 2007), 
which may further intensify SDS. From another perspective, a model experiment reduc-
ing SDS led to the enhancement of Saharan vegetation due to the extension of the West 
Africa Monsoon to the north (Pausata et al. 2016). Furthermore, observations have shown 
increased precipitation in the Sahel because of shorter, more frequent dry spells that can 
help the area’s agriculture and resilience from droughts (Bichet and Diedhiou 2018). How-
ever, an increase in extreme storms has also been observed (Taylor et  al. 2017); thus, a 
greater chance of SDS as convective storms is one of the generation mechanisms. The 
unpredictability of future climatic conditions must be considered when GI is used as an 
adaptation measure, because the increase in extreme events, such as heatwaves, droughts, 
and floods, can affect the selected vegetation used for air pollution protection (Bouwer 
et al. 2010; Forzieri et al. 2016).

Furthermore, with the increase of water needs as derived from the climate change sim-
ulations (UNEP et  al. 2016), droughts may lead to conflicts (Feitelson and Tubi 2017). 
Upper riparian countries, such as Turkey, control the source of water for Tigris and Euphra-
tes rivers, and without any agreements for water supply with the downstream countries, 
economic instability, migration, and insecurity are only a few of the problems that arise 
in such unstable areas (Al-Ansari 2016). Conflicts and hostile relationship between neigh-
bouring countries sharing same hydrological resources can promote drought that controls 
politics and social behaviour, which among others burden the environment with additional 
sand and dust emissions.

Moreover, almost all countries worldwide have ageing populations because of declin-
ing fertility and increasing life expectancy (UN 2020). Related to climate change and the 
increase in extreme weather events (e.g. heatwaves), studies have shown that elderly indi-
viduals are more vulnerable to these conditions, increasing mortality (Chen et  al. 2020; 
Hong et  al. 2019). Additionally, deteriorating air quality, together with the potential 
increase in SDS due to climate change, can have an added burden on the ageing population 
(Simoni et  al. 2015). Thus, competent authorities of affected countries need to be ready 
with their respective protection mechanisms, infrastructure, and organisation to adopt 
adaptation measures for SDS.
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Last, Geist and Lambin (2004) in their meta-analysis on what drivers affect desertifica-
tion found that in 73% of cases, a population increase and immigration of farmers towards 
rangelands or herders to marginal sites are the driving issue. For example, in Lake Chad, 
many individuals migrate to the area every season, increasing the pressure on the environ-
ment (Zieba et al. 2017).

Focusing on the future, the Sendai Framework for Disaster Risk Reduction 2015–2030 
is an important framework. Adopted in 2015 at the Sendai, Japan World United Nation 
Conference, this framework gives emphasis on the disaster risk management aiming at ‘the 
substantial reduction of disaster risk and losses in lives, livelihoods and health and in the 
economic, physical, social, cultural and environmental assets of persons, businesses, com-
munities and countries’ as stated in UN (2015). Furthermore, there is an effort to increase 
the number of countries with risk reduction strategies and availability to early warning sys-
tems and to enhance international cooperation. There are 4 priorities in adapting the Sendai 
Framework which must be adopted at a local, regional, and global level in order to enhance 
governance strategies, preparedness, and coordination on disasters:

	 i.	 Priority 1: Understanding disaster risk
	 ii.	 Priority 2: Strengthening disaster risk governance to manage disaster risk
	 iii.	 Priority 3: Investing in disaster risk reduction for resilience
	 iv.	 Priority 4: Enhancing disaster preparedness for effective response and to ‘Build Back 

Better’ in recovery, rehabilitation, and reconstruction

The framework also promotes, especially for developing countries, their cooperation 
with international stakeholders, such as the World Bank and other international institutions 
in order to transfer their technological expertise, management techniques, and financial 
support to successfully achieve the implementation of the measures needed for.

For SDS, the United Nations Economic Commission for Asia and the Pacific (UNES-
CAP) and Asian and Pacific Centre for the Development of Disaster Information Manage-
ment (APDIM) have assembled guidelines based on the Sendai Framework. This initiative 
resulted in a step-by-step guide for the member states to enhance the states’ capabilities 
to monitor and report data from the impacts of SDS and building an evidence base on the 
negative impacts (UNESCAP-APDIM 2020). Using this framework before any mitigation 
or adaptation measures could be an effective way of assessing the situation of how well the 
impacts from SDS are monitored and recorded so that the correct actions can be taken.

8 � Conclusions

SDS is a phenomenon that starts locally and can grow globally. As a result, it is of increas-
ing importance, especially in view of climate change, due to the scale of its impacts. To 
mitigate or adapt the effects of SDS, this critical review examines a wide range of measures 
and challenges in their implementation. In addition, remarks were made regarding the con-
nection between the EMR and source areas. The main concluding remarks of this review 
are as follows:

(1)	 Mitigation measures implemented on a small scale in the source areas did not mitigate 
SDS on an impactful level. Large-scale implementation measures need to be introduced 
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to prevent or reduce sand and dust suspension from the source areas, considering the 
successes and difficulties of the considered measures to be applied, as in the case of 
the Great Green Wall and Lake Chad Action Plan. The large-scale planning requires 
substantial funding, especially in the SDS source areas that do not have the national 
resources to cover the cost of the management techniques in vast areas. This comes 
down largely to external/international funding such as from the World Bank and the 
Green Environment Facility. Except financial support in SDS source areas, technical 
and governance assistance needs to be also provided for the project to be successful 
monitoring and reporting.

(2)	 The implementation of adaptation measures focuses on early warning systems using 
forecasting models. The models require more in situ data from the source areas, 
and an improved network for sharing information to obtain a more complete picture 
of the SDS. No other adaptation measures were found to be implemented for the 
EMR, or whether an extensive network of warnings for employers or businesses from 
authorities was successfully applied. To our knowledge, a project, the MEDEA pro-
ject (LIFE + MEDEA 2020), targets its efforts on the feasibility and effectiveness of 
different adaptation measures for personal protection. The results of this project indi-
cated that with use of technology and personal alerts, target groups were asked to take 
measures during an SDS event and significantly reduced their exposure to PM pollut-
ants. The adaptation measures must also ensure that all SDS, independent of scale or 
intensity are considered. This consideration is crucial because the influence of dust (e.g. 
performance of photovoltaic system, contaminate water bodies) is always persistent, 
not only when certain political threshold criteria are fulfilled.

(3)	 Assessing the socio-political-economic situation in each area is critical and must be 
considered in an overall approach to implementing mitigation and adaptation measures 
while considering the positive and negative of SDS. Despite their negative impacts, 
SDS can be crucial drivers of positive global impacts, such as the fertilisation of the 
Amazon forest. Thus, substantially reducing SDS through a series of measures can 
damage the environment. Examples that have affected the unsuccessful implementation 
of measures are the insufficient training of local populations, the lack of common goals 
in governmental policies, the lack of supervision in the implementation of measures, 
and a suitable behaviour or perception of a situation. Insecurity and the lack of funds 
in related projects are also situations found to be important for adopting measures for 
SDS.

(4)	 Future pressures are expected to modify the extent of the source areas. Climate change 
affects differently each area of interest we investigated in this review, and the projec-
tions are inconsistent, showing, for example, either increasing or decreasing rainfall. 
Preventing the further impacts of climate change or stabilising it can help with SDS 
mitigation and adaptation. Moreover, population increases or social pressures such as 
poverty or the need for immigration in search of food and security have been shown 
to affect lands and promote desertification. The ageing population will also be a chal-
lenge for competent authorities because they will need to increase their organisation, 
infrastructure, and protection mechanisms to cope with the potential increase in SDS 
due to climate change or humanitarian crises. Lastly, shortage of basic resources such 
as water can result to conflicts between countries and internal instability leading to the 
abandonment of land and SLWM which can promote SDS, thus affecting areas far away 
from sources. Thus, tools such as the Sendai Framework for Disaster Risk Reduction 
are best to be used before adopting measures.
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For further research, the socioeconomic and political teleconnections (i.e. an action in 
an area affecting another area far away) between SDS sources and the EMR can be studied 
because this connection can result in major SDS. Such a teleconnection can be because the 
source areas affecting the EMR have been troubled by non-peaceful conflicts, as in the case 
of Syria, and this can further degrade the lands and drive farmers away, enhancing dust 
suspension or forming new dust sources.

In closing, the EMR is an area affected by different SDS source areas, each of different 
social, political, and economic dimensions, necessitating a customised approach for imple-
menting wind erosion mitigation measures. Notably, adaptation measures are mainly based 
on early warning systems and progress accordingly with capacity building to provide accu-
rate forecasts. For the proper use of accurate forecasts, more infrastructure, organisation, 
and will from competent authorities and employers to implement adaptation measures are 
required. The socioeconomic and political context for implementing various mitigation and 
adaptation measures should always be examined before proceeding. This review can guide 
policymakers, planners, and engineers to what they should consider before selecting and 
implementing measures to mitigate or adapt to SDS.
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