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Abstract

In this review, recent developments and future pros-

pects of obtaining a better understanding of the

regulation of nitrogen use efficiency in the main crop

species cultivated in the world are presented. In these

crops, an increased knowledge of the regulatory

mechanisms controlling plant nitrogen economy is

vital for improving nitrogen use efficiency and for

reducing excessive input of fertilizers, while maintain-

ing an acceptable yield. Using plants grown under

agronomic conditions at low and high nitrogen fertil-

ization regimes, it is now possible to develop whole-

plant physiological studies combined with gene,

protein, and metabolite profiling to build up a compre-

hensive picture depicting the different steps of nitrogen

uptake, assimilation, and recycling to the final deposi-

tion in the seed. A critical overview is provided on how

understanding of the physiological and molecular con-

trols of N assimilation under varying environmental

conditions in crops has been improved through the use

of combined approaches, mainly based on whole-plant

physiology, quantitative genetics, and forward and

reverse genetics approaches. Current knowledge and

prospects for future agronomic development and

application for breeding crops adapted to lower fertil-

izer input are explored, taking into account the world

economic and environmental constraints in the next

century.

Key words: Crops, environment, fertilization, low input,

nitrogen management, yield.

Nitrogen fertilization and sustainable agriculture

The doubling of agricultural food production worldwide
over the past four decades has been associated with a 7-
fold increase in the use of nitrogen (N) fertilizers. As
a consequence, both the recent and future intensification
of the use of N fertilizers in agriculture already has and
will continue to have major detrimental impacts on the
diversity and functioning of the non-agricultural neigh-
bouring bacterial, animal, and plant ecosystems. The most
typical examples of such an impact are the eutrophication
of freshwater (London, 2005) and marine ecosystems
(Beman et al., 2005) as a result of leaching when high
rates of N fertilizers are applied to agricultural fields
(Tilman, 1999). In addition, there can be gaseous emission
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of N oxides reacting with the stratospheric ozone and the
emission of toxic ammonia into the atmosphere (Ramos,
1996; Stulen et al., 1998).
Despite the detrimental impact on the biosphere, the use

of fertilizers (N in particular) in agriculture, together with
an improvement in cropping systems, mainly in developed
countries, have provided a food supply sufficient for both
animal and human consumption (Cassman, 1999). Pro-
duction of N fertilizers by the Haber–Bosch process was
therefore one of the most important inventions of the 20th
century, thus allowing the production of food for nearly
half of the world population (Smil, 1999). However,
between now and the year 2025, the human population
of around 6 billion people is expected to increase to
10 billion. Therefore, the challenge for the next decades
will be to accommodate the needs of the expanding world
population by developing a highly productive agriculture,
whilst at the same time preserving the quality of the
environment (Dyson, 1999). Furthermore, farmers are
facing increasing economic pressures with the rising fossil
fuels costs required for production of N fertilizers.
Enhancing productivity in countries which did not benefit
from the so-called ‘green revolution’ will also be required
by developing specific cropping strategies and by select-
ing productive genotypes that can grow under low N
conditions (Delmer, 2005).
More recently, the production of biofuel from plant

biomass in a variety of crops has been widely seen as an
alternative to replace fossil energy and, as such, requires
an extensive use of N fertilizers in several species
(Boddey, 1995; Giampietro et al.. 1997). Since large
quantities of fossil fuels are required to produce N
fertilizers, selecting new energy crop species such as
Miscanthus (Lewandowski et al., 2000) or willow (Heller
et al., 2004), or genotypes of the already cultivated crops
that have a larger capacity to produce biomass with the
minimal amount of N fertilizer, could be another in-
teresting economic and environmental challenge.
When an excess of N cannot be totally avoided, it

should also be important to search for species or
genotypes that are able to absorb and accumulate high
concentrations of N. Although it is well known that there
is some genetic variability in maximum N uptake in rice
(Borrell et al., 1998) and wheat (Le Gouis et al., 2000),
the physiological and genetic basis for such variability has
never been thoroughly investigated (Lemaire et al., 1996).
Such variability could confer on some species or geno-
types the ability to store greater quantities of N during
periods of abundant N supply, thus avoiding losses into
the soil. As described in the review articles of Lemaire
et al. (2004) and Hirel and Lemaire (2005), it is possible
to develop a framework for analysing the genotypic
variability of crop N uptake capacity across a wide range
of genotypes, thus allowing the selection of those having
the greatest capacity to accumulate an excess of N.

Rice, wheat, maize, and, to a lesser extent, barley,
coarse grains in legumes along with root crops are the
most important crops cultivated in the world and account
for the majority of end-products used for human diets
(http://apps.fao.org/), and it is likely that they will still
contribute to human nutrition in the next century.
Moreover, the high yields of rice, wheat, and maize
largely contributed to the total increase in the global
supply of food production since 1967 (Cassman, 1999). It
is therefore of major importance to identify the critical
steps controlling plant N use efficiency (NUE). Moll et al.
(1982) defined NUE as being the yield of grain per unit of
available N in the soil (including the residual N present in
the soil and the fertilizer). This NUE can be divided into
two processes: uptake efficiency (NupE; the ability of the
plant to remove N from the soil as nitrate and ammonium
ions) and the utilization efficiency (NutE; the ability to use
N to produce grain yield). This challenge is particularly
relevant to cereals for which large amounts of N fertilizers
are required to attain maximum yield and for which NUE
is estimated to be far less than 50% (Zhu, 2000; Raun and
Johnson, 1999). In addition to the improvement of N
fertilization, soil management, and irrigation practices
(Raun and Johnson, 1999; Alva et al., 2005; Atkinson
et al., 2005), there is still a significant margin to improve
NUE in cereals by selecting new hybrids or cultivars from
the available ancient and modern germplasm collections in
both developed and developing countries. Consequently, the
effective use of plant genetic resources will be required to
meet the challenge posed by the world’s expanding
demand for food, the fight against hunger, and the
protection of the environment (Hoisington et al., 1999).
More recently, the production of oilseed rape (Brassica

napus L.), an emerging oilseed crop, has been significantly
increased, to become second only to soybean in the world
supply. This increased interest in this crop is mostly due to
the use of the oil in end-products, including biofuel (Rayner,
2002). However, as for cereals, the ratio of plant N content
to the N supplied does not exceed 50% whatever the level
of N fertilization (Malagoli et al., 2005), which suggests that
improvement of NUE in this species is also a possibility.
Barley (Hordeum vulgare L.), besides its importance as

a crop, is an established model plant for agronomic,
genetic, and physiological studies (Raun and Jonhson,
1999). However, knowledge of the biochemical and
molecular mechanisms controlling N uptake, assimilation,
and recycling is still fragmentary (Mickelson et al., 2003).
Moreover, the influence of N fertilizer levels and timing
of application on grain yield and grain protein content was
investigated in only a few studies (Penny et al., 1986;
Bulman and Smith, 1993). Therefore, although this crop
may be of interest for future research, NUE in this crop
will not be covered in this review.
In this review, an overview is presented on how

understanding of the key steps of N assimilation in some
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of the main crop species cultivated in the world has been
improved through the use of combined approaches in-
cluding physiology and molecular genetics in relation to
agronomy. This review will focus on crop species that do
not fix nitrogen under symbiotic conditions. Symbiotic N
fixation will not be covered in this review, although it has
been estimated that it contributes approximately half of
the amount of N applied in inorganic N fertilizers (Smil,
2006) and it may represent an ecological alternative to
inorganic N fertilization in several areas in the world
(Shantharam and Mattoo, 1997). A number of reviews
focusing on selection criteria, breeding methods, and
genetic engineering approaches have covered future
improvements in legume crops that will be beneficial not
only to the environment and farmers but also to consum-
ers in both developed and developing countries (Hirel
et al., 2003; Ranalli, 2003).
Fertilizer recovery is the result of the balance between

crop N uptake and N immobilization by microbial
processes in soils of different compositions. Therefore,
the concept of the NUE of a crop should also be
considered as a function of soil texture, climate con-
ditions, interactions between soil and bacterial processes
(Walley et al., 2002; Burger and Jackson, 2004), and the
nature of organic or inorganic N sources (Schulten and
Schnitzer, 1998). However, due to the complexity of these
factors and their interactions, this aspect of N assimilation
in plant growth and productivity will not be covered here.
Current knowledge and prospects for future plant

improvement under various N fertilization conditions are
explored, taking into account both the plant biological
constraints and the species specificities.

The main steps in plant N economy and
their species specificities

In most plant species examined so far, the plant life cycle
with regard to the management of N can be roughly
divided into two main phases occurring successively in
some species or overlapping in others (Fig. 1). During the
first phase, i.e. the vegetative phase, young developing
roots and leaves behave as sink organs for the assimilation
of inorganic N and the synthesis of amino acids
originating from the N taken up before flowering and then
reduced via the nitrate assimilatory pathway (Hirel and
Lea, 2001). These amino acids are further used for the
synthesis of enzymes and proteins mainly involved in
building up plant architecture and the different compo-
nents of the photosynthetic machinery. Notably, the
enzyme Rubisco (ribulose 1,5-bisphosphate carboxylase)
alone can represent up to 50% of the total soluble leaf
protein content in C3 species (Mae et al., 1983) and up to
20% in C4 species (Sage et al., 1987). Later on, at
a certain stage of plant development generally starting
after flowering, the remobilization of the N accumulated

by the plant takes place. At this stage, shoots and/or roots
start to behave as sources of N by providing amino acids
released from protein hydrolysis that are subsequently
exported to reproductive and storage organs represented,
for example, by seeds, bulbs, or trunks (Masclaux et al.,
2001). However, for N management at the whole-plant or
organ level, the arbitrary separation of the plant life cycle
into two phases (Masclaux et al., 2000) remains rather
simplistic, since it is well known that, for example,
N recycling can occur before flowering for the synthesis of
new proteins in developing organs (Lattanzi et al., 2005).
In addition, during the assimilatory phase, the ammonium
incorporated into free amino acids is subjected to a high
turnover, a result of photorespiratory activity, as it needs
to be immediately reassimilated into glutamine and
glutamate (Hirel and Lea, 2001; Novitskaya et al., 2002).
Therefore, the photorespiratory flux of ammonium, which
at least in C3 plants can be 10 times higher compared with
that originating from the nitrate reduction, is mixed with
that channelled through the inorganic N assimilatory
pathway (Novitskaya et al., 2002). Furthermore, a signifi-
cant proportion of the amino acids is released following
protein turnover concomitantly with the two fluxes of
ammonium (from assimilatory and photorespiratory
fluxes) (Malek et al., 1984; Gallais et al., 2006). The
occurrence of such recycling mechanisms introduces

Fig. 1. Schematic representation of nitrogen management in various
crops. (A) During vegetative growth, N is taken up by the roots and
assimilated to build up plant cellular structures. After flowering, the
N accumulated in the vegetative parts of the plant is remobilized and
translocated to the grain. In most crop species a substantial amount of
N is absorbed after flowering to contribute to grain protein deposition.
The relative contribution of the three processes to grain filling is
variable from one species to the other and may be influenced under
agronomic conditions by soil N availability at different periods of plant
development, by the timing of N fertilizer application, and by
environmental conditions such as light and various biotic and abiotic
stresses. (B) The relative contribution (%) of N remobilization and post-
flowering N uptake in different crops. Rice utilizes mostly ammonium
as an N source, whereas the other crops preferentially use nitrate. Note
that in the case of oilseed rape, a large amount of the N taken up during
the vegetative growth phase is lost due to the falling of the leaves.
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another level of complexity in the exchange of N within
the pool of free amino acids. The co-existence of these
different N fluxes has led to reconsideration of the mode
by which N is managed from the cellular level to that of
the whole plant (Hirel and Gallais, 2006; Irving and
Robinson, 2006).
In wheat (Triticum aestivum L.), 60–95% of the grain N

comes from the remobilization of N stored in roots and
shoots before anthesis (Palta and Fillery, 1995; Habash
et al., 2006). A less important fraction of seed N comes
from post-flowering N uptake and N translocation to the
grain. After flowering, both the size and the N content of
the grain can be significantly reduced under N-deficient
conditions (Dupont and Altenbach, 2003). However, it is
still not clear whether it is plant N availability (including
the N taken up after anthesis and the remobilized N
originating from uptake before anthesis) or storage protein
synthesis that limits the determination of grain yield in
general and grain protein deposition in particular (Martre
et al., 2003). In winter wheat grown under agronomic
conditions, N applications are performed in a split way
and are generally calculated by the total N budget method
(Meynard and Sebillote, 1994; Kichey et al., 2007). Until
tillering, the plant demand is usually satisfied by the
N available from the soil. Therefore, three applications are
generally performed: one at tillering (50–80 kg ha�1), one
at the beginning of stem elongation (around 50 kg ha�1),
and one at the second node stage (40–50 kg ha�1). In
wheat, it has been shown that the SPAD meter has
potential for predicting grain N requirements. However,
its utilization is limited to certain varieties (Lopez-Bellido
et al., 2004).
Compared with wheat, a similar pattern of N manage-

ment was observed during the life cycle of rice (Oryza
sativa L.), although the plant preferentially utilizes
ammonium instead of nitrate. The remobilized N from the
vegetative organs accounts for 70–90% of the total panicle
N (Mae, 1997; Tabuchi et al., 2007). In the field, the
amount of N fertilizer applied in the form of ammonium
or urea to sustain the early growth phase and tillering
ranges from 40 to 110 kg N ha�1. Additional top-dressing
N (15–45 kg ha�1) is then applied between the panicle
primordia initiation stage and the late stage of spikelet
initiation, and appears to be the most effective for spikelet
production. After this period, N uptake has very little
influence on sink size. During the grain-filling stage, it is
the N accumulated in leaf blades before flowering that is
in large part remobilized to the grain and that contributes
to grain N protein deposition (Mae, 1997). Some field
trials revealed that it is rather difficult to synchronize N
supply with seasonal plant demand (Cassman et al.,
1993). However, in some cases, the use of chlorophyll
meter (SPAD)-based N fertilization treatments may help
to monitor the leaf N status to guide fertilizer-N timing on
irrigated rice (Peng et al., 1996).

In maize (Zea mays L.), 45–65% of the grain N is
provided from pre-existing N in the stover before silking.
The remaining 35–55% of the grain N originates from
post-silking N uptake (Ta and Weiland, 1992; Rajcan and
Tollenaar, 1999b; Gallais and Coque, 2005). Under field
growth conditions, only a single application of N fertilizer
is generally performed at sowing, ranging from 100 to
240 kg N ha�1 to attain optimal yield depending both on
the genotype and on soil residual N (Plénet and Lemaire,
2000). However, in some cases, it can be fractionated by
applying the N fertilizer at sowing and at the 5–6 leaf
stage (Plénet and Lemaire, 2000). In maize, chlorophyll
meters provide a convenient and reliable way to estimate
leaf N content during vegetative growth (Chapman and
Baretto, 1997) and over a large time scale after anthesis
(Dwyer et al., 1995), which may be a way to monitor N
fertilizer applications. However, the correlation between
chlorophyll content and grain yield is not always
significant (Gallais and Coque, 2005).
In oilseed rape, the requirement for N per yield unit is

higher than in cereal crops (Hocking and Strapper, 2001).
Oilseed rape has a high capacity to take up nitrate from
the soil (Lainé et al., 1993), and thus to accumulate large
quantities of N that is stored in vegetative parts at the
beginning of flowering. However, in oilseed rape, yield is
half that of wheat, due to the production of oil, which is
costly in carbohydrate production. Since oilseed rape N
content in the seed is not much higher (3% in oilseed rape
and 2% in wheat on average), an important part of the N
stored in the vegetative organs is not used. Moreover,
a large quantity of N is lost in early falling leaves
(Malagoli et al., 2005) and the amount of N taken up by
the plant during the grain-filling period apparently remains
very low (Rossato et al., 2001). After sowing, to allow
maximum growth at the beginning of winter, N fertilizer
application may be necessary when there a shortage in soil
N availability. Fertilization is necessary again in spring
during the full growth period when large amounts of N are
required and up to 70% of the plant N requirement must
be satisfied. This is achieved by the application of N
fertilizers, which may be fractionated according to the size
of the plant and yield objectives (Brennan et al., 2000).
Peak seed yield usually occurs when 180–200 kg N ha�1

are applied (Jackson, 2000).
The main steps in N assimilation in rice, wheat, maize,

and oilseed rape are summarized in Fig. 1.

Is productivity compatible with low N
fertilization input?

A prerequisite to maintaining high crop productivity under
lower N fertilization input is to determine whether it is
possible to select for genotypes that are adapted to low or
high N fertilization, or that can perform well under both
N fertilization conditions.
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The majority of the selection experiments at low N
input have up to now been performed on maize, for which
genetic variability compared with other crops is high in
both tropical and temperate genotypes (Wang et al.,
1999). This has led to the proposal of the concept of
critical N concentration (%Nc), corresponding to the
minimum %N in shoots required to produce the maximum
aerial biomass at a given time of plant development
(Plénet and Lemaire, 2000). In Europe, Presterl et al.
(2003) showed that it is possible to select genotypes under
low N fertilization conditions, although there was a signif-
icant reduction in yield. Despite this reduction in yield,
these authors showed that a direct selection under low N
fertilization input would be more effective than an indirect
selection under high N fertilization input. The same
conclusions were drawn by Bänziger et al. (1997), when
a panel of tropical maize lines was studied using the
condition that the decrease in yield was not lower than
43%. In some cases, it has been reported that the
genotypes selected under low N fertilization input are not
truly adapted to N-rich soils (Muruli and Paulsen, 1981).
Gallais and Coque (2005) suggest that when the plant
material performs relatively well under low N input, it
should be selected under N deficiency conditions for
which yield reduction does not exceed 35–40%.
Obtaining a satisfactory minimum yield under low

N fertilization conditions is therefore one of the most
difficult challenges for maize breeders. Instead of de-
veloping blind breeding strategies, as was carried out in
the past, further research needs to be performed to
explain, for example, why certain maize varieties originat-
ing from local populations have a better capacity to absorb
and utilize N under low N fertilization conditions (Toledo
Marchado and Silvestre Fernandes, 2001) whereas others
do not (Lafitte et al., 1997). This will allow the
identification of the morphological (roots traits in particu-
lar), physiological, and molecular traits that are associated
with adaptation to N-depleted soils.
In parallel, whole-plant physiological studies (Hirel

et al., 2005a, b) combined with 15N-labelling experiments
(Gallais et al., 2006) preferably performed in the field
should be undertaken. These experiments will allow the
identification of some of the key molecular and bio-
chemical traits, and NUE components that govern the
adaptation to N-depleted environments before and after
the grain filling in lines or hybrids exhibiting variable
capacities to take up and utilize N (Rajcan and Tollenaar,
1999b; Martin et al., 2005).
To investigate in more detail the genetic control of

maize productivity under low N input, correlation studies
between the different components of NUE and yield using
different genotypes or populations of recombinant inbred
lines (RILs) have been carried out. The aim of these
studies was to identify NUE components, chromosomal
regions, and putative candidate genes that may control

yield and its components directly or indirectly when the
amount of N fertilizers provided to the plant is varied.
Such an approach allowed Moll et al. (1982) to show that
with high N fertilization, differences in NUE in a range of
experimental hybrids were largely due to variation in the
NupE, whereas with low N supply it was the NutE. Bertin
and Gallais (2001) found that most of the chromosomal
regions for yield, grain composition, and traits related to
NUE detected at low N input corresponded to quantitative
trait loci (QTLs) detected at high N input, whereas
Agrama et al. (1999) detected more QTLs at low N input.
These quantitative genetic studies confirmed that, in
maize, variation in the utilization of N including remobi-
lization at low N input was greater than the variation of N
uptake before or after flowering, whereas it was the
opposite at high N input (Bertin and Gallais, 2000; Gallais
and Coque, 2005). Interestingly, comparison of N uptake
capacities of maize and sorghum under contrasting soil N
availability showed that under non-limiting N supply, the
two crops have similar N uptake, while under severe N
limitation the N uptake capacity of sorghum is higher than
that of maize (Lemaire et al., 1996). The reason for this
difference is unclear, but it could be due to a more
developed and branched root system for sorghum as
compared with maize. It would therefore be interesting to
identify in sorghum which components of the N uptake
system are involved and to find out if they can be used to
improve N uptake capacity in maize and possibly other
crops under N-limiting conditions.
In other species, such as bread wheat and rice, studies

are currently being performed to identify key traits related
to plant performance at low N input (Kichey et al., 2006,
2007) and to localize chromosomal regions and genes
involved in tolerance to N deprivation (Laperche et al.,
2007). When the adaptation and performance of bread
wheat were evaluated under conditions of low N fertiliza-
tion, it was found that modern cultivars were more
responsive to N in terms of economic fertilizer rates
compared with old cultivars (Ortiz-Monasterio et al.,
1997).
Le Gouis et al. (2000) confirmed that there is a genetic

variability for grain yield at a low N level and that the
genotype3N level interaction is significant. They also
showed that N uptake explained most of the variation for
NUE at low N and of the interaction for grain yield. As
for maize, it has been shown that a direct selection under
low N fertilization would be more efficient in wheat
(Brancourt-Hulmel et al., 2005). In more recent studies
performed on wheat double haploid lines (DHLs), direct
selection under low N fertilization conditions was also
proposed (Laperche et al., 2006) as well from a wide
range of soil N availability (An et al., 2006). Correlation
studies revealed that under low N availability, it would be
easier to select for traits related to plant or grain N protein
content rather than yield per se. In another recent report,

Improving nitrogen yield in crops 2373

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/58/9/2369/543374 by guest on 16 August 2022



the finding that specific QTLs for yield were detected
under low N fertilization conditions suggests that it may
be possible to improve yield stability by combining QTLs
related to yield that are expressed in low N environments
(Quarrie et al., 2005).
As for other cereals, significant differences were

obtained for N uptake and efficiency of use in different
rice genotypes, N uptake being one of the most important
factors controlling yield (Singh et al., 1998). The potential
importance of non-symbiotic N fixation in rice, together
with the possibility of enhancing nitrification efficiency in
rice paddy fields, has also been emphasized (Britto and
Krunzucker, 2004). A preliminary analysis of a rice RIL
population for tolerance to low amounts of N fertilization
showed that most of the QTLs related to shoot and root
growth at the seedling stage were different under low and
high N fertilization conditions (Lian et al., 2005).
In oilseed rape, there is a paucity of data on the genetic

variability for NUE at low N fertilization input. In spring
rape, it has been shown that cultivars with the lowest
yields at the lowest N concentration generally responded
more markedly to increased N application rates than
cultivars with a higher yield at high N supply (Yau and
Thurling, 1987). This is presumably due to a greater
ability for uptake and translocation of N (Grami and
LaCroix, 1977). More recently, in spring canola differ-
ences in NUE were found resulting in a greater biomass
production (Svecnjak and Rengel, 2005) and due to
differences in the root to shoot ratio and harvest index.
However, no major impact on plant biomass, N uptake,
and seed yield were found across two contrasting N
treatments (Svecnjak and Rengel, 2006). These observa-
tions confirmed earlier findings showing that there was no
interaction between QTLs for yield and N treatments (Gül,
2003). As recently reviewed by Rathke et al. (2006), it is
clear that to improve seed yield, oil content, and N
efficiency in winter oilseed rape the use of N-efficient
management strategies is required, including the choice of
variety and the form and timing of N fertilization adapted
to the site of application.
Although more work is required to understand better the

genetic basis of NUE in crop plants, attempts have been
made to identify individual genes or gene clusters that are
responsible for the variability of this complex trait. A
limited number of candidate genes have already been
identified using maize (Gallais and Hirel, 2004; Martin
et al., 2006) and rice (Obara et al. 2001; Tabuchi et al.
2005) as a model species.
In maize, Hirel et al., (2001) have highlighted the

putative role of glutamine synthetase (GS) in kernel
productivity using a quantitative genetic approach, since
QTLs for the leaf enzyme activity have been shown to
coincide with QTLs for yield. One QTL for thousand
kernels weight was coincident with a GS (Gln1-4) locus,
and two QTLs for thousand kernel weight and yield were

coincident with another GS (Gln1-3) locus. Such strong
coincidences are consistent with the positive correlation
observed between kernel yield and GS activity (Gallais
and Hirel, 2004). In higher plants, all the N in a plant,
whether derived initially from nitrate, ammonium ions, N
fixation, or generated by other reactions within the plant
that release ammonium, is channelled through the reac-
tions catalysed by GS (Hirel and Lea, 2001). Thus, an
individual N atom can pass through the GS reaction many
times (Coque et al., 2006), following uptake from the soil,
assimilation, and remobilization (Gallais et al., 2006) to
final deposition in a seed storage protein. As such, the
hypothesis that in cereals the enzyme is one of the major
checkpoints in the control of plant growth and pro-
ductivity has been put forward on a regular basis (Miflin
and Habash, 2002; Hirel et al., 2005b; Tabuchi et al.,
2005; Kichey et al., 2006). However, whether this
checkpoint may be more efficient under low and high
N fertilization regimes has never been assessed, since all
the experiments for candidate gene detection were
performed at high N input (Hirel et al., 2001; Obara
et al., 2001).
Very recently the roles of two cytosolic GS isoenzymes

(GS1) in maize, products of the Gln1-3 and Gln1-4 genes
(Li et al., 1993), were further investigated by studying the
molecular and physiological properties of Mutator in-
sertion mutants. The impact of the knockout mutations on
kernel yield and its components was examined in plants
grown under suboptimal N feeding conditions (Martin
et al., 2006). The phenotype of the two mutant lines was
characterized by a reduction of kernel size in the gln1-4
mutant and by a reduction of kernel number in the gln1-3
mutant. In the gln1-3/1-4 double mutant, a cumulative
effect of the two mutations was observed. In transgenic
plants overexpressing Gln1-3 constitutively in leaves, an
increase in kernel number was observed, thus providing
further evidence that the GS1-3 isoenzyme plays a major
role in controlling kernel yield under high N fertilization
conditions. The ear phenotype of the three GS mutants
and the GS-overexpressing lines was examined when the
plants were grown under N-limiting conditions. As
expected, a strong reduction in kernel number was
observed in the wild type when N was limiting (Below,
2002). The three mutants, grown under the same N-
limiting conditions (N–), did not produce any kernels
(Fig. 2A). In N–, the two GS-overexpressing lines still
produced more kernels but, compared with the correspond-
ing null segregants, did not perform any better than when N
was not limiting (N+) (Fig. 2B). These results therefore
strongly suggest that, in maize, GS controls kernel yield
whatever the N application conditions. The constitutive
nature of the enzyme whatever the N nutrition was also
highlighted by the identification of the N-responsive
chromosomal region following recurrent selection (Coque
and Gallais, 2006). The finding that in both maize (Hirel

2374 Hirel et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/58/9/2369/543374 by guest on 16 August 2022



et al., 2005b) and wheat (Kichey et al., 2006), GS enzyme
activity is representative of the plant N status regardless of
the developmental and N fertilization conditions further
supports this conclusion.
Although a large number of studies have been devoted

to GS because of its central role in N assimilation and

recycling, further work is necessary to identify whether
other root and shoot enzymes or regulatory proteins
(Yanagisawa et al., 2004) could play a specific role under
low N availability. These include those directly related to
N metabolism or intervening at the interface between
carbon and N metabolism during plant growth and
development (Krapp and Truong, 2005). In a recent report
by Coque and Gallais (2006), strategies to achieve this
task have been envisaged, although it appears that most of
the genes expressed under stress conditions (including N
stress) are constitutive but may be differentially regulated
under adverse conditions. Altogether, the studies per-
formed on maize suggest that some of the genes involved
in the control of yield and its components may be
different from those related to the adaptation to N
deficiency. It will therefore be necessary to identify
genomic regions responding specifically to an N stress
and isolate, via positional cloning, the gene(s) involved in
the expression of the trait, as was achieved for tolerance to
drought stress in maize (Tuberosa and Salvi, 2006). It is
very likely that the occurrence of epistatic interactions
between genes (Li et al., 1997) under low or high N input
and possibly the presence of non-shared genes within the
genome of different genotypes (Brunner et al., 2005) will
complicate gene identification and cloning. However, the
recent progress made in sequencing and mapping of large
genomes will probably help to decipher part of this
complexity (http://www.maizegenome.org/; http://
www.wheatgenome.org/; http://www.brassica.info/).
Whether the populations available for different crop
species are appropriate to identify these genes also
remains open to discussion. The fact that most of the lines
used to produce populations for QTL studies or cultivated
hybrids were selected under high N fertilization input
(Gallais and Coque, 2005) needs to be carefully consid-
ered. Therefore, to circumvent this problem, it may be
necessary to develop specific breeding programmes and
QTL approaches using parental lines and populations
originating from different areas of the world that have
been adapted to a wide range of environments (climate,
photoperiod, water availability, flowering precocity, soil
properties, etc.).

Importance of the root system

The roots are central to the acquisition of water and
mineral nutrients including N. Therefore, improving our
understanding of the relationship between plant growth,
plant productivity, and root architecture and dynamics
under soil conditions is of major importance (Whu et al.,
2005). Among the morphological traits associated with the
adaptation to N-depleted soils, the qualitative and quanti-
tative importance of the root system in taking up N under
N-limiting conditions has been pointed out in several

Fig. 2. Phenotypes of maize ears in GS1-deficient mutants and
overexpressing lines. (A) Ears of wild type (WT), gln1-3, gln1-4, and
gln1-3/gln1-4 mutants harvested at maturity and grown under sub-
optimal N conditions (N+) or under N-limiting conditions (N–). (B) Ears
of WT null segregants and T4 transgenic lines (lines 1 and 9)
overexpressing the Gln1-3 cDNA. Maize plants (line FV2) were
harvested at maturity and grown under suboptimal N conditions (N+)
or under N-limiting conditions (N–). Plant growth conditions were
essentially the same as those previously described by Hirel et al.
(2005a) and Martin et al. (2006).
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studies (Guingo et al., 1998; Kamara et al., 2003; Coque
and Gallais, 2005).
One of the main difficulties in evaluating the influence of

the size, the volume, and the root architecture system on
NupE and traits related to yield or grain N content is to
remove the entire intact root system from soil when plants
are grown under agronomic conditions (Guingo et al.,
1998; Kondo et al., 2003). To solve this problem,
alternative techniques have been developed under con-
trolled environmental conditions using either ‘rhizotrons’
(Devienne-Barret et al., 2006; Laperche et al., 2007),
artificial soil (Wang et al., 2004), or hydroponic culture
systems (Tuberosa et al., 2003). Consequently, there are
only a limited number of reports describing the response of
the root morphology of cereals to different levels of N
fertilization (Kondo et al., 2003; Wang et al., 2004), and
there are even fewer studies in which the importance of the
root system was investigated in relation to N supply,
biomass production, and yield (Mackay and Barber, 1986).
For example, it has been shown that the morphology of the
root system may be influenced by a locally restricted nitrate
supply (Sattelmacher and Thoms, 1995; Zhang and Forde,
1998) and that N application rates affect various essential
components of root morphology such as length, number of
apices, and frequency of branching (Drew and Saker, 1975;
Maizlich et al., 1980). However, it is important to bear in
mind, as pointed out by Wiesler and Horst (1994), that N
uptake conditions in the field may be non-ideal due to the
irregular distribution of roots and nitrate and to limited
root–soil contact and differences between root zones in
uptake activity. Consequently, studies of the response of
roots to soil physical conditions should be undertaken in
parallel in order to develop realistic models to describe the
mechanisms controlling growth in response to soil structure
and N availability (Bengough et al., 2006).
The first study in which the genetic analysis of root

traits was investigated showed that in a maize RIL
population used to study the genetic basis of NUE
(Gallais and Hirel, 2004), there is a weak but significant
genetic correlation between some root traits, biomass
production, and yield under suboptimal N feeding con-
ditions (Guingo et al., 1998). However, further analysis of
these data revealed that there is a negative correlation
between yield and root number particularly at low N input
(Gallais and Coque, 2005). This observation can be
interpreted as there being a competition between the two
sinks represented by the roots and the shoots when
N resources are limited, an hypothesis previously put
forward concerning the competition between N assimila-
tion in roots and N processing in shoots (Oaks, 1992). In
more recent studies, a similar approach was carried out on
both wheat and maize in order to identify genomic regions
involved in root architecture and the relationship with
N assimilation under low N fertilization input. Coinciden-
ces with QTLs for traits related to NUE were detected

(Laperche et al., 2007), indicating that such a quantitative
genetic approach holds promise for further identification
of genomic regions involved in the control of plant
adaptation to N deficiency under agronomic conditions. A
recurrent selection programme for the adaptation of maize
at low N input showed that root architecture would be of
major importance for grain yield setting, whatever the
amount of N fertilizer applied (Coque and Gallais, 2006).
Further work is necessary to ascertain the role of root

architecture in the expression of yield and its components,
taking into account the species specificities in terms of
NupE and duration of N uptake before and after flower-
ing. The finding that, in maize, N uptake is less important
at low N supply, whereas it is the reverse in wheat, needs
to be considered. Taking into account the capacity of
a given genotype to absorb N before or after flowering
will also be essential. Figure 3 illustrates the genetic
variability existing for root architecture in selected maize
lines representative of American and European diversity
(Camus-Kulandaivelu et al., 2006) which could be
exploited for a better understanding of the control of
NupE. In addition, the use of mutants specifically affected
in root development like those isolated in maize will
probably help to expand further our knowledge of N
acquisition by root crops (Hochholdinger et al., 2004).
The availability of a limited supply of N during these two
periods will also be important since, whatever strategy is
developed by the plant for capturing the maximum
amount of N, its availability and accessibility in the soil
will in turn become a limiting factor.
In parallel, it will be necessary to take into account the

genetic control of nitrate uptake by the roots at different
levels of N fertilization through the activity of the
different components of the nitrate transport system in
relation to root and shoot development (Zhang et al.,
1999). This will establish whether or not there are
common factors determining the genetic variability of root
development and N uptake regardless of the requirement
of the plant (Gastal and Lemaire, 2002; Harrison et al.,
2004). Such adaptive regulatory control mechanisms
allowing a response to a shortage in N availability may,
under certain conditions, be directly controlled through
the activity of the nitrate transport system itself, in a given
environment (Remans et al., 2006). During the last
decade, both physiological and molecular genetic studies
have already demonstrated the importance of the nitrate
and ammonium high affinity (HATS) and low affinity
(LATS) transport systems (Glass et al., 2002; Orsel et al.,
2002) in the control of N acquisition in relation to plant
demand and to NO3

– and NH4
+ availability. Although most

of our present knowledge on the regulation of inorganic N
absorption arose from studies performed on Arabidospis,
it is likely that similar regulatory control also occurs in
crops such as rice (Lin et al., 2000; Tabuchi et al., 2007),
maize (Santi et al., 2003), and barley (Vidmar et al., 2000).
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Interestingly, it was proposed that in maize the inducible
NO3

– transport system could be a physiological marker for
adaptation to low N input (Quaggiotti et al., 2003). Thus,
more research is required to study the regulation of the
NO3

– and NH4
+ uptake system and further exploit its genetic

variability in relation to crop demand under low or high
N fertilization input. In addition, the use of models that
integrate interaction of below- and above-ground plant
growth as a function of N availability, taking into
account the contribution of the N uptake system, will

certainly be very useful in order to understand better the
interaction between roots and their environment (Wu et al.,
2007).

Nitrogen use efficiency, grain composition, and
grain filling

In addition to agronomic NUE (Good et al., 2004; Lea
and Azevedo, 2006), the N harvest index (NHI), defined
as N in grain/total N uptake, is an important consideration

Fig. 3. The root architecture of different maize lines. The maize lines were selected to represent the genetic diversity of the crop (Camus-
Kulandaivelu et al., 2006). Note the genetic variability in the density and length of lateral roots in both the primary and lateral roots.
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in cereals. NHI reflects the grain protein content and thus
the grain nutritional quality (Sinclair, 1998). However,
studies on identifying the genetic basis for grain compo-
sition showed that breeding progress has been limited by
an apparent inverse genetic relationship between grain
yield and protein or oil concentration in most cereals
(Simmonds, 1995) including maize (Feil et al., 1990),
wheat (Canevara et al., 1994), and oilseed rape (Brennan
et al., 2000; Jackson, 2000). It is possible, however, to
identify wheat lines that have a higher grain protein
content than predicted from the negative regression to
grain yield (Oury et al., 2003; Kade et al., 2005). It has
also been demonstrated that both grain yield and grain
protein respond positively to supplemental N fertilizer,
and such a paradox suggests that studying the interactive
effect of genotype and N availability should provide
insights into the genetic and physiological mechanisms
that underline the negative yield–protein relationship.
Recently, in an interesting study performed on maize

hybrids derived from the Illinois high and low protein
strains, it has been shown that the strong genetic control
of grain composition can be modulated by the positive
effect of N on reproductive sink capacity and storage
protein synthesis (Uribelarrea et al., 2004). This finding
opens new perspectives towards breaking the negative
control existing between yield and grain protein content by
performing the appropriate crosses between high yielding
and high protein varieties. This will also allow a better
understanding of the relative contribution of N uptake and
N use for grain protein deposition under low and high
N fertilization conditions (Uribalarrea et al., 2007).
Another aspect of grain filling in relation to N avail-

ability concerns the period before anthesis (Fig. 1), which,
for example in maize, is known to be critical for trans-
location of carbon assimilates and kernel set (Neumann
Andersen et al., 2002). Moreover, the N status of the plant
around 2 weeks before anthesis appears to be a determi-
nant for the number of kernels, since it is strongly
dependent on the amount of N available during this period
of plant development (Below, 1987). However, there is
a paucity of data on both the physiological and molecular
control of this process in relation to N availability and its
translocation during this critical period of ear development
(Seebauer et al., 2004).
Therefore, it will be necessary to identify the critical

steps associated with NUE during the formation of the ear
and the reciprocal regulation between the vegetative plant
and the seed. This will allow the identification of
physiological QTLs and genes controlling kernel set under
low and high N fertilization input to evaluate their impact
on grain filling (translocation of carbon). In both spring
wheat (Demotes-Mainard et al., 1999; Martre et al., 2003)
and rice (Mae, 1997), grain number is reduced in plants
affected by N deficiency around anthesis and is highly
dependent on the intensity and duration of N deficiency.

This observation indicates that, as in maize, N availability
during the flowering period is a determinant for yield, and
its genetic variability should be investigated (Martre et al.,
2003).

Photosynthesis and nitrogen use efficiency

N nutrition drives plant dry matter production through the
control of both the leaf area index (LAI) and the amount
of N per unit of leaf area called specific leaf N (SLN).
There is therefore a tight relationship between N supply,
leaf N distribution, and leaf photosynthesis and, as such,
an effect on radiation use efficiency (RUE), to optimize
light interception depending on N availability in individ-
ual plants or in the entire canopy (Gastal and Lemaire,
2002). Moreover, the photosynthetic NUE (PNUE), which
is dependent on the level of CO2 saturation of Rubisco, is
another factor that needs to be taken into consider-
ation when C3 or C4 crop species are studied. At low
N availability, C3 plants have a greater PNUE and NUE
than C4 plants, whereas at high N, the opposite is true
(Sage et al., 1987). Consequently, identifying the regula-
tory elements controlling the balance between N alloca-
tion to maintain photosynthesis and the reallocation of the
remobilized N to sink organs such as young developing
leaves and seeds in C3 and C4 species is of major
importance, particularly when N becomes limiting. There-
fore, the complexity of the ubiquitous role of the enzyme
Rubisco in primary CO2 assimilation, in the photorespir-
atory process, and as a storage pool for N needs further
investigation to optimize NUE and particularly NupE
under low fertilization input in both C3 and C4 species
(Sage et al., 1987; Esquivel et al., 2000; Lawlor, 2002).
The physiological impact of plant N accumulation with
respect to an increased photosynthetic activity requires
critical consideration as a supplemental investment of N in
the photosynthetic machinery may be detrimental to the
transfer of N to the grain and thus to final yield (Sinclair
et al., 2004). In addition, the recent finding that the
synthesis, turnover, and degradation of Rubisco are sub-
jected to a complex interplay of regulation renews the
concept of the importance of N use and recycling by the
plant (Hirel and Gallais, 2006).
Interestingly, in maize, a number of QTLs for NUE

were found to co-localize with candidate genes encoding
enzymes involved in carbon assimilation, thus supporting
the finding that N facilitates the utilization of carbon used
for grain filling (Gallais and Coque, 2005). Whether the
function of some of these genes may be important at high
and low N input needs further investigation by developing
a physiological quantitative genetic approach similar to
that used for N metabolism in both vegetative and
reproductive parts of the plant. Identifying epistatic
interactions between QTLs and genes for NUE, PNUE,
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and carbon metabolism should also provide a route for
deciphering the complex interplay between the two major
plant assimilatory pathways (Krapp and Truong, 2005).
In addition, the relationship between plant photosyn-

thetic capacities, chlorophyll degradation during leaf
senescence, and the shift from N assimilation to
N remobilization (Fig. 1) has also been investigated in
a number of crops by studying the impact of prolonged
green leaf area duration on yield of maize (Ma and
Dwyer, 1998; Rajcan and Tollenaar, 1999a, b) and other
major crops (Thomas and Smart, 1993; Borrell et al.,
2001; Spano et al., 2003). Attempts have also been made
to identify some of the components responsible for the
physiological control of the ‘stay-green’ phenotype partic-
ularly in relation to NUE. For example, in both Sorghum
and maize, delayed leaf senescence allowed photosyn-
thetic activity to be prolonged, which had a positive effect
on the N uptake capacity of the plant. In Sorghum this
enabled the plant to assimilate more carbon and use more
N for biomass production (Borrel et al., 2001), whilst in
maize yields were higher (Ma and Dwyer, 1998; Rajcan
and Tollenaar, 1999a, b). Despite attempts to improve the
characterization of the control of N uptake, N assimila-
tion, and N recycling in plants that are stay-green, our
knowledge of the fine regulatory mechanisms that control
this trait still remains fragmentary (Martin et al., 2005;
Rampino et al, 2006). Whether the stay-green character is
beneficial in terms of NUE and yield in different crop
species still remains a matter of controversy (Borrell et al.,
2000; Martin et al., 2005). This is probably because most
studies conducted on stay-green genotypes have not been
performed on plants grown under agronomic conditions
and under varying N supply. However, in a recent report,
Subedi and Ma (2005) showed that the stay-green
phenotype in maize was exhibited only when there was
an adequate supply of N. Therefore, further investigation
is required to characterize better the physiological and
molecular basis of the stay-green phenotype (Verma et al.,
2004) in relation to N supply, root N uptake capacity, root
architecture, and leaf structure, and to determine whether
such a phenotype can be beneficial when N fertilization is
reduced and when water resources are limited (Borrell
et al., 2000).

Influence of nitrogen nutrition on plant
development

In plants, it is well known that N availability influences
several developmental processes. According to the spe-
cies, the number of leaves and their rate of appearance, the
number of nodes (Snyder and Bunce, 1983; Mae 1997;
Sagan et al., 1993), and the number of tillers (Vos and
Biemond, 1992; Tràpani and Hall 1996) are reduced
under N-limiting conditions. Moreover, both in spring
wheat (Demotes-Mainard et al., 1999; Martre et al., 2003)

and in rice (Mae 1997), grain number decreases under N
deficiency conditions, a process occurring during the
period bracketing anthesis, which is highly dependent on
both the intensity and the duration of the N stress (see
section: Nitrogen use efficiency, grain composition, and
grain filling). The availability of N for yield determination
is also important through its direct influence on the
sources (leaf area), and consequently the sinks (reproduc-
tive organs). Generally, the reduction in photosynthesis of
the canopy following N starvation is due to the reduction
of the leaf area (radiation interception efficiency, RIE),
rather than a decrease of RUE (Lemaire et al., 2007). In
grasses, the reduction of leaf area extension is due to
a lower cell division in the proximal zone rather than to
the final size of the cell (Gastal and Nelson, 1994). In
many crops, the relationship between leaf area index
(LAI) and N uptake was found to be directly proportional,
whatever the environmental conditions.
In contrast, the respective contribution of RIE and RUE

in the adaptation to N starvation is variable among
species. For example, potato and maize have two different
strategies in their response to N-limiting conditions. In
potato, the leaf area is reduced and adjusted to the rate of
N uptake, keeping the plant leaf-specific nitrogen (g Nm2)
and RUE unchanged (‘potato strategy’). In maize, leaf
area is almost not affected, while photosynthesis and RUE
decrease (‘maize strategy’) (Vos and van de Putten, 1998;
Vos et al., 2005). In potato, the adaptation to N limitation
results exclusively in a decrease in the amount of light
intercepted, the RUE remaining constant, while in maize
both leaf area and RUE are decreased. Classifying species
and genotypes according to both strategies merits further
investigation as it may be another way for selecting crops
more adapted to low N fertilization conditions.

What did we learn from model species?

During the two last decades, a large number of pro-
grammes have been developed worldwide using predom-
inantly Arabidopsis thaliana as a model species to cover
most of the biological facets of plant growth and de-
velopment from the seed to seed (Meinke et al., 1998). To
identify key components of NUE was one of the
objectives of several research groups, taking advantage of
the physical map and of the large genetic diversity of the
species (Yano, 2001). To achieve this, transcriptome
studies were undertaken in order to identify possible
genes that were responsive to long-term or short-term
nitrate deprivation (Wang et al., 2000; Scheible et al.,
2004) and the interaction with carbon metabolism
(Gutiérrez et al., 2007). A large number of differentially
expressed genes were identified which may play central
roles in co-ordinating the response of plants to N nutrition.
However, even though a number of genes encoding plant
homologues of bacterial and yeast proteins known to
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participate in C and N signal transduction pathways such
as PII, SNF1, and TOR have been isolated, neither
transgenic technology nor mutants have allowed a clear
demonstration that these proteins play a similar role in
plants (Hirel and Lemaire, 2005). Recently, the over-
expression of DOF1, a transcription factor involved in the
activation of several genes encoding enzymes associated
with organic acid metabolism, revealed that both plant
growth and nitrogen content are enhanced under low
nitrogen conditions (Yanagisawa et al., 2004). These
results demonstrate that manipulating the level of expres-
sion of regulatory proteins may be a good alternative for
improving NUE in crop plants, although there is no clear
evidence that the transcription factor DOF1 plays the
same regulatory function in cereals (Cavalar et al., 2007).
Quantitative genetic studies were undertaken in parallel

on the model plant Arabidopsis to identify some of the
key structural and regulatory genes that may be involved
in the global regulation of NUE. A number of loci
associated with NUE, total, mineral, and organic N
content, and biomass production under different levels
and modes of N nutrition were identified (Rauh et al.,
2002; Loudet et al., 2003). The fine-mapping and
positional cloning of the major loci identified in these
studies should provide, in the near future, a more
comprehensive view of the key genes involved (Krapp
et al., 2005). Whether the function of these genes will be
equivalent in cereals or closely related crop species such
as oilseed rape, which have during certain periods of
their developmental cycle a totally different mode of
N management compared with Arabidopsis (Shulze et al.,
1994), needs to be carefully considered before embarking
on long-term and costly field experiments. In spite of this,
one of the most significant contributions of the Arabidop-
sis research community has been the improvement in our
understanding of the relationship between N availability,
N uptake, and root development (Zhang et al., 1999;
Remans et al., 2006; Walch-Liu et al., 2006). Since
N uptake is one of the most critical NUE components
under N-limiting conditions in a number of crops, the
transfer of knowledge should be relatively straightforward
when the experimental procedures have been adapted to
larger or structurally different root systems (Hochholdinger
et al., 2004) grown under agronomic conditions.

Future prospects

An approach that integrates genetic, physiological, and
agronomic studies of the whole-plant N response will be
essential to elucidate the regulation of NUE and to
provide key target selection criteria for breeders and
monitoring tools for farmers for conducting a reasoned
fertilization protocol. This prospective conclusion outlines
the main points that will need to be considered in order to
develop an integrated research programme for discovering

genes by means of a complete and extensive phenotyping,
comprising agronomical, physiological, and biochemical
studies on crops grown under low and high N fertilization
applications. The main research tasks that will be neces-
sary to develop can be summarized in the following way.

(i) A functional genomic approach consisting of a meta-
analysis of agronomic, physiological, and biochemical
(including possibly proteomic) QTLs combined with
the data obtained on large-scale transcriptome studies
designed to identify N-responsive genes for further
location on genetic maps. After gathering all the avail-
able data sets in the various crop species concerning
the genomic regions that are specific or not specific to
the response of reduced N fertilization, it will be
necessary to identify the underlying candidate genes
controlling the expression of traits related to NUE in
relation to agronomic traits (growth and biomass
production), grain yield, and possibly other traits, for
example, related to water use efficiency. Taking
advantage of the synteny between grasses (Ware
et al., 2000; http://www.gramene.org/) or between
Arabidopsis and closely related species may help to
refine genetic maps and find common key genes
involved in the control of NUE. Such an approach can
be carried out initially with the already existing
populations, although in certain cases they are not
truly adapted to perform quantitative genetic studies at
low N input. In the future, development of new popu-
lations with exotic strains adapted to a specific envi-
ronment will probably be necessary. Another solution
would be to use whole-genome scan association
mapping based on linkage disequilibrium (Rafalski,
2002), using a large collection of adapted and non-
adapted material with a sufficient agricultural meaning
to permit a field evaluation. The functional validation
of the candidate genes can then be undertaken by
reverse and forward genetic approaches (Tabuchi
et al., 2005; Martin et al., 2006), supplemented by
candidate gene association genetics studies (Wilson
et al., 2004) to identify the most favourable alleles
controlling the expression of the trait of interest prior
to being used for marker-assisted selection (Mohan
et al., 1997). Moreover, since NUE is a complex trait,
it is likely that the interaction of genes not necessarily
linked to N metabolism but involved in the control of
carbon assimilation and of development in more or
less complex networks will have to be deciphered.

(ii) A whole-plant molecular physiology approach should
depict in a dynamic and integrated manner the reg-
ulation of N uptake, N assimilation, and N recycling,
and their progression during the growth and de-
velopment under varying N fertilization treatments
(Hirel et al., 2005b; Kichey et al., 2006). Such
integrated studies will need to be extended by
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monitoring in parallel the changes in the whole
spectrum of proteins and genes under different N
nutrition conditions (Gutiérrez et al., 2007) in differ-
ent organs harvested at various periods of plant
development to increase the potential value of the
physio-agronomic indicators previously identified
(Hirel et al., 2005a). Although this type of approach
will be time-consuming, costly, and will require a
huge computational analysis when developed on
populations, it will be the only way to identify
genomic regions and therefore genes that control the
dynamics of N management throughout the whole
plant life cycle. This may be achieved by using
robot-based platforms to measure multiple enzyme
activities and metabolites (Gibon et al., 2004) and
integrating metabolites with transcript and enzyme
activity profiling (Gibon et al., 2006). Such in-
tegrated studies could be completed by employing
more sophisticated techniques using, for example,
15N labelling (Gallais et al., 2006; Kichey et al.,
2007) to follow the genetic variability of the
dynamics of N distribution within the plant, an aspect
which will not be possible to attain even using the
most sophisticated metabolomic techniques (Goodace
et al., 2004). The recent development of micro-
dissection techniques will also constitute an opportu-
nity to extend these studies at the cellular level by
monitoring the changes in metabolites and gene
expression in the specialized organs or tissues of root
and shoots (Nakazono et al., 2003). Although these
types of studies have been performed on a small
scale, they have provided a better understanding as to
why some genotypes differ in their mode of N
management in order to achieve a similar yield
(Martin et al., 2005).

(iii) More sophisticated crop simulation models already
used in basic and applied research should be de-
veloped. These models have already been produced
by a number of groups to predict the changes in plant
growth, development, and productivity in a given
environment and thus to help in the management of
resources such as fertilizers and water. These were
restricted to the root system (Robinson and Rorison;
1983; King et al., 2003) or to the seed (Martre et al.,
2003), or extended to the whole plant system in
cereals (Jamieson et al., 1999; Brisson et al., 2002;
David et al., 2005) and even to a range of crop and
woody species (McCown et al., 1996). The use of
these models may also be a way to link model
cultivar parameters with simple physiological traits
such as those described in the previous paragraph and
thus facilitate genetic and genomic research to
identify the key genes involved (Semenov et al.,
2006). This may also be a way to identify simple
physiological markers that are easy to measure to

evaluate the physiological status of the plant under
given environmental conditions (Hirel et al., 2005b;
Kichey et al., 2006), thus allowing sustainable
fertilizer management practices. Moreover, an in-
teresting challenge for physiologists, agronomists,
and farmers will be to set up collaborative efforts to
develop easy to use diagnostic kits based on the
detection of physiological or even molecular markers
by taking advantage of the relatively cheap electronic
and computer technology.

It has also been proposed to detect QTLs of model
parameters (Reymond et al. 2004; Quilot et al., 2005;
Laperche et al., 2007). The main advantages are that model
parameters are less sensitive to genotype3environment
interaction and more easily related to physiological pro-
cesses, and it is possible to simulate the behaviour of allelic
combinations that are not present in the original population.
In addition to this, modelling NUE through system

biology approaches will provide in the near future an
avenue to enhance integration of molecular genetics
technologies in plant improvement (Hammer et al.,
2004), thus allowing the re-establishment of fundamental
and practical research in an intimate and meaningful way
(Sinclair and Purcell, 2005).
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