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Abstract The numerous recent breakthroughs in machine learning make imperative to carefully
ponder how the scientific community can benefit from a technology that, although not necessarily new, is
today living its golden age. This Grand Challenge review paper is focused on the present and future role
of machine learning in Space Weather. The purpose is twofold. On one hand, we will discuss previous
works that use machine learning for Space Weather forecasting, focusing in particular on the few
areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at
geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar
wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning
tailored to the Space Weather community and as a pointer to a number of open challenges that we believe
the community should undertake in the next decade. The recurring themes throughout the review are
the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of
uncertainties, and the combination of physics-based and machine learning approaches, known as gray box.

Plain Language Summary In the last decade, machine learning has achieved unforeseen
results in industrial applications. In particular, the combination of massive data sets and computing with
specialized processors (graphics processing units, or GPUs) can perform as well or better than humans in
tasks like image classification and game playing. Space weather is a discipline that lives between academia
and industry, given the relevant physical effects on satellites and power grids in a variety of applications,
and the field therefore stands to benefit from the advances made in industrial applications. Today, machine
learning poses both a challenge and an opportunity for the space weather community. The challenge is
that the current data science revolution has not been fully embraced, possibly because space physicists
remain skeptical of the gains achievable with machine learning. If the community can master the relevant
technical skills, they should be able to appreciate what is possible within a few years time and what is
possible within a decade. The clearest opportunity lies in creating space weather forecasting models that
can respond in real time and that are built on both physics predictions and on observed data.

1. Artificial Intelligence: Is This Time for Real?

The history of artificial intelligence (AI) has been characterized by an almost cyclical repetition of springs
and winters: periods of high, often unjustified, expectations, large investments, and hype in the media, fol-
lowed by times of disillusionment, pessimism, and cutback in funding. Such a cyclical trend is not atypical
for a potentially disruptive technology, and it is very instructive to try to learn lessons from (in)famous AI
predictions of the past (Armstrong et al., 2014), especially now that the debate about the danger of artificial
general intelligence (i.e., AI pushed to the level of human ability) is in full swing (Russell & Bohannon, 2015;
Russell & Norvig, 2016). Indeed, it is unfortunate that most of the AI research of the past has been plagued
by overconfidence and that many hyperbolic statements about utility of AI had very little scientific basis.
Even the initial Dartmouth workshop held in 1956, credited with the invention of AI, had underestimated
the difficulty of understanding language processing.

At the time of writing some experts believe that we are experiencing a new AI spring (e.g., Bughin &Hazan,
2017; Olhede &Wolfe, 2018), which possibly started as early as 2010. This might or might not be followed by
yet another winter. Still, many reckon that this time is different, for the very simple reason that AI has finally
entered industrial production, with several of our everyday technologies being powered by AI algorithms.
In fact, one might not realize that, for instance, most of the time we use an app on our smartphone, we are
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Figure 1. (top) Scene from the Terminator 2movie (1991). (bottom) Examples of segmentation problems as solved by
Mask R-CNN (2018) (He et al., 2017).

using amachine learning algorithm. The range of applications is indeed very vast: fraud detection (Aleskerov
et al., 1997), online product recommendation (Pazzani & Billsus, 2007; Ye et al., 2009), speech recognition
(Hinton et al., 2012), language translation (Cho et al., 2014), image recognition (Krizhevsky et al., 2012),
journey planning (Vanajakshi & Rilett, 2007), and many others.

Leaving aside futuristic arguments about when, if ever, robotic systems will replace scientists (Hall, 2013),
we think this is an excellent time to think about AI for a Space Weather scientist, and to try formulating
(hopefully realistic) expectations onwhat our community can learn from embracing AI in amore systematic
way. Other branches of physics have definitely been more responsive to the latest developments in machine
learning. Notable examples in our neighbor field of astronomy and astrophysics are the automatic identifi-
cation of exoplanets from the Kepler catalog (Kielty et al., 2018; Pearson et al., 2017; Shallue & Vanderburg,
2018), the analysis of stellar spectra from Gaia (Fabbro et al., 2017; Li et al., 2017), and the detection of
gravitational waves in LIGO signals (George & Huerta, 2018).

Each generation has its own list of science fiction books and movies that have made young kids fantasize
about what the future will look like after artificial general intelligence will finally be achieved. Without
digressing too much, we would just like to mention one such iconic movie, the Terminator saga. In the
second movie, a scene is shown from the cyborg point of view. The cyborg performs what is today called
a segmentation problem, that is identifying single, even partially hidden, objects from a complex image
(specifically, the movie's hero is intent in choosing the best motorcycle to steal). The reason we are men-
tioning this particular scene is that, about 30 years later, a landmark paper has been published showing
that solving a segmentation problem is not science fiction anymore (see Figure 1; He et al., 2017). Not many
other technologies can claim to have made fiction come true and in such a short time frame!
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2. TheMachine Learning Renaissance

One of the reasons why the current AI spring might be very different from all the previous ones, and in fact
never revert to a winter, is the unique combination of three factors that have never been simultaneously
experienced in our history. First, as we all know, we live in the time of big data. The precise meaning of what
constitutes big data depends on specific applications. In many fields the data is securely guarded as the gold
mine on which a company's wealth is based (evenmore than proprietary, but imitable, algorithms). Luckily,
in the field of Space Weather most of the data and associated software is released to the public (National
Academies of Sciences & Medicine, 2018).

The second factor is the recent advancement inGPUs computing. In the early 2000sGPUproducers (notably,
Nvidia) were trying to extend their market to the scientific community by depicting GPUs as accelerators
for high performance computing (HPC), hence advocating a shift in parallel computing where CPU clusters
would be replaced by heterogeneous, general-purpose, GPU-CPU architectures. Even though many such
machines exist today, especially in large HPC labs worldwide, we would think that the typical HPC user
has not been persuaded to fully embrace GPU computing (at least in space physics), possibly because of the
steep learning curve required to proficiently write GPU codes. More recently, during the last decade, it has
become clear that a much larger number of users (with respect to the small niche of HPC experts) was ready
to enter the GPUmarket: machine learning practitioners (along with bitcoin miners!). And this is why GPU
companies are now branding themselves as enablers of the machine learning revolution.

It is certainly true that none of the pioneering advancements in machine learning would have been possible
without GPUs. As a figure of merit, the neural network (NN) NASnet, which delivers state-of-the-art results
on classification tasks of ImageNet and CIFAR-10 data sets, required using 500 GPUs for 4 days (including
search of optimal architecture; Zoph et al., 2017). Hence, a virtuous circle, based on a larger and larger
number of users and customers has fueled the faster than Moore's law increase in GPU speed witnessed in
the last several years. The largest difference between the two groups of GPU users targeted by the industry,
that is, HPC experts and machine learning practitioners (not necessarily experts) is in their learning curve.
While a careful design and a deep knowledge of the intricacies of GPU architectures is needed to successfully
accelerate an HPC code on GPUs, it is often sufficient to switch a flag for a machine learning code to train
on GPUs.

This fundamental difference leads us to the third enabling factor of the machine learning renaissance: the
huge money investments from Information Technology (IT) companies, that have started yet another virtu-
ous circle in software development. Indeed, companies like Google or Facebook own an unmatchable size
of data to train their machine learning algorithms. By realizing the profitability of machine learning appli-
cations, they have largely contributed to the advancement of machine learning, especiallymaking their own
software open-source and relatively easy to use (see, e.g., Abadi et al., 2016). Arguably, the most successful
applications of machine learning are in the field of computer vision. Maybe because image recognition and
automatic captioning are tasks that are very easy to understand for the general public, this is the field where
large IT companies have advertised their successes to the nonexperts and attempted to capitalize them. Clas-
sical examples are the Microsoft bot that guesses somebody's age (https://www.how-old.net), which got 50
million users in 1 week, and the remarkably good captioning bot www.captionbot.ai (see Figure 2 taken
from Donahue et al., 2015, for a state-of-the-art captioning example).

In a less structured way, the open-source scientific community has also largely contributed to the advance-
ment of machine learning software. Some examples of community-developed python libraries that are now
widely used are theano (Bergstra et al., 2010), scikit-learn (Pedregosa et al., 2011), astroML (VanderPlas
et al., 2012), emcee (VanderPlas et al., 2012), and PyMC (Patil et al., 2010), among many others. This has
somehow led to an explosion of open-source software, which is very often overlapping in scope. Hence,
ironically the large number of open-source machine learning packages available might actually constitute
a barrier to somebody that entering the field is overwhelmed by the amount of possible choices. In the field
of heliophysics alone, the recent review by Burrell et al. (2018) compiles a list of 28 python packages.

As a result of the unique combination of the three above discussed factors, for the first time in history a
layperson can easily access terabytes of data (big data), afford to have a few thousand cores at their disposal
(GPU computing), and easily train a machine learning algorithm with absolutely no required knowledge of
statistics or computer science (large investments from IT companies in open-source software).

CAMPOREALE 1168

https://www.how-old.net


Space Weather 10.1029/2018SW002061

Figure 2. Automatically generating captions to images represents a state-of-the-art achievement in Machine Learning, that combines image recognition and
natural language processing. Figure taken from the arXiv version of Donahue et al., 2015 (2015; arXiv:1411.4389).

The purpose of this review is twofold. On one hand, we will discuss previous works that use machine learn-
ing for Space Weather forecasting. The review will be necessarily incomplete and somewhat biased, and we
apologize for any relevant work wemight have overlooked. In particular, we will focus on a few areas where
it seems that several attempts of using machine learning have been proposed in the past: the forecasting of
geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal
mass ejection (CME) propagation time, and of solar wind speed. On the other hand, this paper serves as a
gentle introduction to the field of machine learning tailored to the Space Weather community and, as the
title suggests, as a pointer to a number of open challenges that we believe the community should undertake
in the next decade. In this respect, the paper is recommended to bold and ambitious PhD students!

This review is organized as follows. Section 3 briefly explains why and how Space Weather could benefit
from the above described machine learning renaissance, and it concisely introduces the several tasks that
a machine learning algorithm can tackle. Section 4 introduces the typical machine learning workflow and
the appropriate performance metrics for each task. Section 5 constitutes the review part of the paper. Each
subsection (geomagnetic indices, relativistic electrons at geosynchronous Earth orbit (GEO), solar images)
is concluded with a recapitulation and an overview of future perspective in that particular field. Section 6
discusses a few new trends in machine learning that we anticipate will soon have an application in the pro-
cess of scientific discovery. Section 7 concludes the paper by discussing the future role of machine learning
in Space Weather and space physics, in the upcoming decade, and by commenting our personal selection of
open challenges that we encourage the community to consider.

3. Machine Learning in SpaceWeather

How can Space Weather benefit from the ongoing machine learning revolution? First of all, we would like
to clarify that Space Weather is not new to machine learning. As many other subjects that are ultimately
focused on making predictions, several attempts to use (mainly, but not only) NNs have been made since
the early 1990s. This will be particularly clear in section 5, which is devoted to a (selected) review of past
literature. Especially in some areas such as geomagnetic index prediction, the list of early works is quite
overwhelming. Before proceeding in commenting how machine learning can be embraced by the Space
Weather community, it is therefore necessary to address the (unfortunately still typical) skeptical reaction of
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Table 1
Data Used for Space Weather

Mission Website

ACE http://www.srl.caltech.edu/ACE/

Wind https://wind.nasa.gov/

DSCOVR https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory

SOHO https://sohowww.nascom.nasa.gov/

STEREO https://stereo.gsfc.nasa.gov/

SDO https://sdo.gsfc.nasa.gov/

OMNI https://omniweb.gsfc.nasa.gov/index.html

VAP http://vanallenprobes.jhuapl.edu/

GOES https://www.goes.noaa.gov

POES https://www.ospo.noaa.gov/Operations/POES/index.html

GPS https://www.ngdc.noaa.gov/stp/space-weather/satellite-data/satellite-systems/gps/

DMSP https://www.ngdc.noaa.gov

Ground-based magnetometers http://www.intermagnet.org

GONG https://gong.nso.edu/

Note. ACE = Advanced Composition Explorer; DSCOVR = Deep Space Climate Observatory; SOHO = Solar and
Heliospheric Observatory; STEREO = Solar Terrestrial Relations Observatory; SDO = Solar Dynamics Observatory;
VAP = Van Allen Probes; GOES = Geostationary Operational Environmental Satellite system; POES = Polar
Operational Environmental Satellites; DMSP = Defense Meteorological Satellite Program; GONG=Global Oscillation
Network Group.

many colleagues that wonder “if everything (i.e., anymachine learning technique applied to SpaceWeather)
has been tried already, why do we need to keep trying?” There are two simple answers, in my opinion. First,
not everything has been tried; for example, deep learning based on convolutional NNs (CNN, see Appendix),
which incidentally is one of the most successful trends in machine learning (LeCun et al., 2015), has been
barely touched in this community. Second,machine learning has never been as successful as it is now: this is
due to the combination of the three factors discussed in section 2 thanks to which it is now possible to train
and compare a large number of models on a large size data set. In this respect, it is instructive to realize that
the basic algorithm on which a CNN is based has not changed substantially over the last 30 years (LeCun
et al., 1990). What has changed is the affordable size of a training set, the software (open-source python
libraries) and the hardware (GPUs). Hence, this is the right time when it is worth to retest ideas proposed
10 or 20 years ago, because what did not seem to work then might prove very successful now.

SpaceWeather possesses all the ingredients often required for a successful machine learning application. As
already mentioned, we have a large and freely available data set of in situ and remote observations collected
over several decades of space missions. Restricting our attention on data typically used for Space Weather
predictions, the Advanced Composition Explorer (ACE), Wind, and the Deep Space Climate Observatory
(DSCOVR) provide in situ plasma data in proximity of the first Lagrangian point (L1), with several temporal
resolution, someofwhich date back 20 years. The Solar andHeliosphericObservatory (SOHO), the Solar Ter-
restrial Relations Observatory (STEREO), and the Solar Dynamics Observatory (SDO) provide Sun images at
different wavelengths, magnetograms, and coronographs, also collectively covering a 20-year period. More-
over, the OMNI database collects data at both hour and minutes frequency of plasma and solar quantities,
as well as geomagnetic indices. Other sources of Space Weather data are the twin Van Allen Probes whose
database is now quite sizable, having entered their seventh year of operation; the Geostationary Operational
Environmental Satellite system (GOES) provides measurements of geomagnetic field, particle fluxes and
X-rays irradiance at geostationary orbit. Recently, 16 years of GPS data have been released to the public, pro-
viding a wealth of information on particle fluxes (Morley et al., 2017). Particle precipitation is measured by
the Polar Operational Environmental Satellites (POES) and the Defense Meteorological Satellite Program
(DMSP).In addition to space-based measurements, an array of ground-based magnetometer monitors the
Earth's magnetic field variation on time scales of seconds. A list of data sources for Space Weather can be
found in Table 1.
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Table 2
Comparison Between White- and Black-Box Approaches

White (physics-based) Black (data-driven)

Computational cost Generally expensive. Often not Training might be expensive

possible to run in real-time. (depending on the datasize) but

execution is typically very fast.

Robustness Robust to unseen data and rare Not able to extrapolate outside

events. the range of the training set.

Assumptions Based on physics approximations. Minimal set of assumptions.

Consistency with observations Verified a posteriori. Enforced a priori.

Steps toward a gray-box approach Data-driven parameterization of inputs. Enforcing physics-based con

Uncertainty quantification Usually not built-in. It requires It can be built-in.

Monte Carlo ensemble.

Furthermore, we have rather sophisticated physics-based models and a fair understanding of the physics
processes behind most Space Weather events. The fact that a first-principle approach will never be feasible
for forecasting Space Weather events is essentially due to the large separation of scales in space and time
involved, to the short time lag between causes and effects, and the consequent enormous computational cost
of physics-based models. In this respect, we believe that it is fair to say that the Space Weather community
has a good understanding of why some models have poor forecasting capabilities, for example, what is the
missing physics in approximatedmodels (see, e.g., Welling et al., 2017), and what links of the SpaceWeather
prediction chain will benefit more to a coupling with a data-driven approach. Therefore, Space Weather
seems to be an optimal candidate for a so-called gray-box approach.

As the name suggests, the gray-box paradigm sits in between two opposites approaches. For the purpose of
this paper, black-box methods refer to ones that are completely data-driven, seeking empirical correlations
between variables of interests, and do not typically use a priori physical information on the system of inter-
est (Ljung, 2001; Sjöberg et al., 1995). Machine learning falls in this category (but see section 6 for recent
trends in machine learning that do make use of physics law). On the other end of the spectrum of predictive
methods, white-box models are based on assumptions and equations that are presumed valid, irrespective
of data (just in passing we note that physics is an experimental science, therefore physical laws are actually
rooted in data validation. However, once a given theory stands the test of time, its connection to experimen-
tal findings is not often questioned or checked). All physics-based models, either first principle or based
on approximations, are white box. Note that this distinction is different from what the reader can found
in other contexts. For instance, in Uncertainty Quantification or in Operations Research, a model is said
to be used as a black box whenever the internal specifics are not relevant. Other uses of the white- versus
black-box paradigm involve the concept of interpretability (Molnar, 2018). However, we find that concept
too subjective to be applied rigorously and dangerously prone to philosophical debates. Table 2 succinctly
describes the advantages and disadvantages of the two approaches, namely computational speed and ability
to generalize to out-of-sample (unseen or rare) data.

In the gray-box paradigm one tries to maximize the use of available information, be it data or prior
physics knowledge. Hence, a gray-box approach applies either when a physics-based model is enhanced by
data-derived information, or when a black-box model incorporates some form of physics constraints. In the
field of Space Weather there are at least three ways to implement a gray-box approach. First, by realizing
that even state-of-the-art models rely on ad hoc assumptions and parameterization of physical inputs, one
can use observations to estimate such parameters. This usually leads to an inverse problem (often ill-posed)
that can be tackled by Bayesian parameter estimation and data assimilation (see, e.g., Reich & Cotter, 2015,
for an introductory textbook on the topic). Bayes's theorem is the central pillar of this approach. It allows to
estimate the probability of a given choice of parameters, conditioned on the observed data, as a function of
the likelihood that these data are indeed observed when the model uses the chosen parameters. In mathe-
matical terms, Bayes's formula expresses the likelihood of event A occurring when event B is true, p(A|B)
as a function of the likelihood of event B occurring when event A is true, p(B|A). In short, the parameters
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that we seek to estimate are treated as a multidimensional random variablem (for model), that is related
to observations (data) d through a forward model (the physics-based equations): F(m) ≈ d. The quantity of
interest is the so-called posterior probability density function ofm, given d, which is calculated by Bayes's
formula:

p(m|d) ∝ p(d|m)p(m) (1)

where p(d|m) is a conditional probability known as likelihood, and p(m) is called the prior, which represents
the knowledge (or assumptions) ofm before looking at the data. The computational cost of this procedure
resides in calculating the likelihood which, for instance, can be expressed as p(d|m) ∝ exp(−||F(m) −

d||∕2�2) and requires to solve the forward model for each given choice ofm. The standard procedure, for
high-dimensional problems (i.e., large number of parameters) is to resort to a Markov chain Monte Carlo
(MCMC) approach (Gelman et al., 2013; Kennedy & O'Hagan, 2001). However, MCMC requires to run a
large ensemble of forward models that are often costly simulations. More efficient methods based on the
combination of machine learning, sparse grid collocation, and Monte Carlo have recently been proposed
(see, e.g., Jin, 2008; Ma & Zabaras, 2009).

A second gray-box approach is the following. Space weather predictions are produced by a chain of inter-
connected models that solve different physics equations in different parts of the Sun-Earth domain. Loosely
speaking, (at least) four domains are studied separately: the Sun surface to the bow shock (solar wind), the
magnetosphere, the radiation belt, and the ionosphere-thermosphere (down to ground). In each of these
models there are components that might be successfully replaced by a machine learning module, which is
by a surrogatemodel that (once trained) has a much lower computational demand and similar accuracy.

Finally, for many quantities of interest prediction algorithms have been studied based completely either on
a black- or on a white-box approach, which is using either data- or physics-based models. It would be a
worthwhile effort to develop ensemble predictions based on a combination of models, where the weights
assigned to eachmodel are learned depending, for example, on geomagnetic conditions. Ensemblemodeling
has been shown to be very effective in Space Weather applications (Morley et al., 2018; Murray, 2018).

Having sketched some of the general trends and future possibilities of using machine learning in Space
Weather, we nowmove to amore detailed description of different tasks that can be tackled bymachine learn-
ing algorithms. This is still a concise description andwe refer the reader to specialized textbooks (e.g., Bishop,
2006;Murphy, 2012) and dedicatedmonographs (Camporeale et al., 2018). A nomenclature well-established
in the machine learning community is to describe a task as supervised or unsupervised, depending whether
the user has access to a “ground truth” for the output of interest or not (i.e., either no ground truth exists or
we do not know what it is). We use the same nomenclature in the following.

3.1. Supervised Regression

Let us assume that we want to find a nonlinear map between a set of multidimensional inputs x =

(x1, x2, … , xNi ) and its corresponding scalar output y, under the general form

� = � (x) + � (2)

where � ∶ R
Ni → R is a nonlinear function and � is a stochastic error (noise) term. If we have access to a

list of observations {xiobs, �
i
obs} of size ND, this constitutes a supervised regression problem. Depending on

what assumptions we make on the function f and on the error term �, this problem can be solved by a large
variety of methods. All of the methods, however, can be understood as an optimization problem. Indeed,
any regression problem can be set up as finding the unknownmap f that minimizes a given cost function. In
turn, the cost function is defined as a function of the observed values �iobs and the predictions �̂

i = � (xiobs),
for a certain number of training data i = 1, … ,NT . Examples of cost functions are the mean squared error
MSE =

1
NT

∑NT
i=1 (�̂

i − �iobs)
2 and themean absolute errorMAE =

1
NT

∑NT
i=1 |�̂

i−�iobs|. In practice, the unknown
function f is restricted to a given class that is chosen a priori. For instance, the first method we encounter
in a statistics textbook is probably linear regression solved by the method of least squares. In that case, f is
defined as f = ax + b, with a a row vector of size Ni and b a scalar. The assumption on the error term � is
that it is normally distributed, and the corresponding cost function is theMSE.

Note that excluding the error term in the definition (2) transforms the regression into an interpolation prob-
lem. Interpolation is less interesting, because it assumes that a nonlinear function f exists that maps exactly
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x into y. In other words, the term � takes into account all possible reasons why such exact mapping might
not exist, including observational errors and the existence of latent variables. In particular, different values
of y might be associated to the same input x, because other relevant inputs have not been included in x
(typically because not observed, hence the name latent).

The input x and the output y can be taken as quantities observed at the same time, inwhich case the problem
is referred to as nowcasting, or with a given time lag, which is the more general forecasting. In principle a
supervised regression task can be successfully set and achieve good performances for any problem for which
there is a (physically motivated) reason to infer some time-lagged causality between a set of drivers and an
output of interest. In general, the dimension of the input variable can be fairly large. For instance, one can
employ a time history of a given quantity, recorded with a certain time frequency. Examples of supervised
regression in Space Weather are the forecast of a geomagnetic index, as function of solar wind parameters
observed at L1 (Gleisner et al., 1996; Lundstedt & Wintoft, 1994; Macpherson et al., 1995; Uwamahoro &
Habarulema, 2014; Valach et al., 2009; Weigel et al., 1999), the prediction of solar energetic particles (SEPs)
(Fernandes, 2015; Gong et al., 2004; Li et al., 2008), of the F10.7 index for radio emissions (Ban et al., 2011;
Huang et al., 2009), of ionospheric parameters (Chen et al., 2010), of sunspot numbers or, more in general,
of the solar cycle (Ashmall & Moore, 1997; Calvo et al., 1995; Conway et al., 1998; Fessant et al., 1996;
Lantos & Richard, 1998; Pesnell, 2012; Uwamahoro et al., 2009), of the arrival time of interplanetary shocks
(Vandegriff et al., 2005), and of CMEs (Choi et al., 2012; Sudar et al., 2015).

Regression problems typically output a single-point estimates as a prediction, lacking any way of estimat-
ing the uncertainty associated to the output. Methods exist that produce probabilistic outputs, either by
directly using NNs (Gal &Ghahramani, 2016), or by using Gaussian Processes (GP; Rasmussen, 2004). More
recently, a method has been developed to directly estimate the uncertainty of single-point forecast, produc-
ing calibrated Gaussian probabilistic forecast (Camporeale et al., 2019). The archetypemethod of supervised
regression is the NN. See Box 1 for a short description of how a NN works.

3.2. Supervised Classification

The question that a supervised classification task answers is as follows: What class does an event belong to?
This means that a list of plausible classes has been precompiled by the user, along with a list of examples of
events belonging to each individual class (supervised learning). This problem is arguably the most popular
in the machine learning community, with the ImageNet challenge being its prime example (Deng et al.,
2009; Russakovsky et al., 2015). The challenge, that has been active for several years and it is now hosted
on the platform kaggle.com, is to classify about hundred thousands images in 1,000 different categories. In
2015 the winners of the challenge (using deep NNs) have claimed to have outperformed human accuracy in
the task.

In practice any regression problem for a continuous variable can be simplified into a classification task, by
introducing arbitrary thresholds and dividing the range of predictands into “classes.” One such example, in
the context of Space Weather predictions, is the forecast of solar flare classes. Indeed, the classification into
A, B, C, M, and X classes is based on the measured peak flux in (W/m2) arbitrarily divided in a logarithmic
scale. In the case of a “coarse-grained” regression problem, the same algorithms used for regression can be
used, with the only change occurring in the definition of cost functions and a discrete output. For instance,
a real value output z (as in a standard regression problem) can be interpreted as the probability of the asso-
ciated event being true or false (in a binary classification setting), by squashing the real value through a
so-called logistic function:

�̂ = �(z) =
1

1 + e−z
. (3)

Because �(z) is bounded between 0 and 1, its probabilistic interpretation is straightforward. Then, a simple
and effective cost function is the cross-entropy C, defined as

C(�, z) = (� − 1) log(1 − �(z)) − � log(�(z)) (4)

where y is the ground true value of the event (0-false or 1-true) and z is the outcome of the model, squashed
in the interval [0, 1] via �(z). One can verify thatC(y, z) diverges to infinity when |�− �̂| = 1, that is, the event
is completely misspecified, and it tends to zero when |�− �̂| → 0. This approach is called logistic regression
(even though it is a classification problem).
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Other problems represent proper classification tasks (i.e., in a discrete space that is not the result of a
coarse-grained discretization of a continuous space). Yet the underlying mathematical construct is the
same. Namely, one seeks a nonlinear function f that maps multidimensional inputs to a scalar output as in
equation (2) and whose predicted values �̂minimize a given cost function. In the case of image recognition,
for instance, the input is constituted by images that are flattened into arrays of pixel values. A popular classi-
fier is the Support Vector Machine (SVM; Vapnik, 2013), which finds the hyperplane that optimally divides
the data to be classified (again according to a given cost function) in its high-dimensional space (equal to
the dimensionality of the inputs), effectively separating individual events into classes.

In the context of SpaceWeather, an example is the automatic classification of sunspot groups according to the
McIntosh classification (Colak & Qahwaji, 2008), or the classification of solar wind into types based on dif-
ferent solar origins (Camporeale et al., 2017). It is useful to emphasize that, contrary to regression problems,
interpreting the output of a classification task from a probabilistic perspective ismuchmore straightforward,
when using a sigmoid function to squash an unbounded real-value output to the interval [0, 1]. However,
some extra steps are often needed to assure that such probabilistic output is well calibrated, that is, it is sta-
tistically consistent with the observations (see, e.g., Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan,
2001).

3.3. Unsupervised Classification, Also Known as Clustering

Unsupervised classification applies when we want to discover similarities in data, without deciding a priori
the division between classes or, in otherwords, without specifying classes and their labels. Yet again, this can
be achieved by an optimization problem, where the “similarity” between a group of events is encoded into
a cost function. This method is well suited in cases when a “ground truth” cannot be easily specified. This
task is harder (and more costly) than supervised classification, since a criterion is often needed to specify
the optimal number of classes. A simple and often used algorithm is the so-called k-means, where the user
specifies the number of clusters Nk, and each observation x

i = (xi1, x
i
2, … , xi

Ni
) is assigned to a given cluster.

The algorithm aims tominimize the within-cluster variance, defined as
∑NK

k=1

∑
i∈Sk

||xi− k||2, where the first
sum is over the number of clusters, the second sum is over the points assigned to the cluster k, and �k is the
centroid of cluster k.

An unsupervised NN is the self-organizing map (SOM; Kohonen, 1997). The output of the network is a
two-dimensional topology of neurons, each of which maps to a specific characteristic of the inputs. In a
self-organizing map, similar inputs activate close by neurons, hence, aggregating them into clusters. Even
though some initial choice and constraint in the network architecture need to be done, this method dis-
penses from choosing a priori the number of clusters and it indeed gives a good indication ofwhat an optimal
number might be.

In SpaceWeather, an unsupervised classification of the solar wind has been performed in Heidrich-Meisner
and Wimmer-Schweingruber (2018), and a self-organizing map has been applied to radiation belt particle
distributions in Souza et al. (2018). It is fair to say, however, that the majority of past studies have focused
on supervised learning.

3.4. Dimensionality Reduction

The last family of methods that we concisely describe is dimensionality reduction. This is a family of tech-
niques that aims at reducing the size of a data set, preserving its original information content, with respect
to a specific prediction objective. It is very important in the context of multidimensional data sets, such as
when working with images, since a data set can easily become very sizable and data handling becomes a
major bottleneck in the data science pipeline. A dimensionality reduction technique can be also used to rank
the input variables in terms of how important they are with respect to forecasting an output of interest, again
with the intent of using the smallest size of data that conveys the maximum information. Dimensionality
reduction is not often performed in the context of Space Weather. A recent example is the use of Principal
Component Analysis (PCA) for the nowcasting of SEPs (Papaioannou et al., 2018).

4. Machine LearningWorkflow

In this final section before the review part of the paper, we summarize the different phases that constitute
the workflow in applying machine learning to a Space Weather problem (and maybe more generally to any
physics problem). This is not to be considered as a strict set of rules but rather as a guideline for good practice.
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This workflow is inspired by the scikit-learn algorithm cheat sheet (https://scikit-learn.org/stable/tutorial/
machine_learning_map/).

4.1. Problem Formulation

The importance of formulating the problem in a well-posed manner cannot be overstated. The relative
easiness of using an off-the-shelf machine learning library poses the serious risk of trying to use machine
learning for problems that are not well formulated, and therefore whose chances of success are slim. It is
not straightforward to define what a well-posed problem is. First, one has to define what is the objective of
the study and to address a number of questions related to the well-posedness of the problem:

• Predict a quantity: Regression (see section 3.1) Is there any physicalmotivation that guides us into choosing
the independent variables? Are time dependence and causality taken into account? Forecasting or Now-
casting? Do we have enough data so that the trained algorithm will be generalizable? Is the uniqueness of
the input-output mapping physically justified?

• Predict a category
- Labels are known: Supervised Classification (see section 3.2) Are the labeled classes uniquely defined
and disjoint? Dowe expect to be controlling variables that uniquely define the boundary between classes?
Is the data balanced between classes?
- Labels are not known: Clustering (see section 3.3) Is there a physical reason for the data to aggregate
in clusters? Do we have a physical understanding of what is the optimal variables space where cluster-
ing becomes more evident? Do we expect to be able to physically interpret the results obtained by the
clustering algorithm? Is the data representative of all the clusters we might be interested into?

• Discover patterns or anomalies in the data: Dimensionality reduction (see section 3.4) Is there a physi-
cal motivation that can guide our expectation of the optimal dimensionality? Are there variables that are
trivially redundant or strongly correlated?

4.2. Data Selection and Preprocessing

The quality of the data will largely affect the goodness of a machine learning algorithm. After all, machine
learning constructs a nontrivial representation of the data, but it will not be able to find information that
is not contained in the data in the first place. This is the step where a specific domain expertise and
collaborationwith the persons responsible for the datamanagement (for instance, the PI of a satellite instru-
ment) becomes very important. From an algorithmic point of view, data preprocessing involves so-called
exploratory data analysis, which consists in collecting descriptive statistics (probability distribution, per-
centile, median, correlation coefficients, etc.) and low-dimensional visualization that is descriptive of the
data (heat maps, scatter plots, box plots, etc.). In this step human intuition can still play a role in steering
the machine learning workflow toward the most effective algorithm.

Aword of caution is needed in overtrusting statistical quantities such as the linear correlation coefficient: an
intriguing example of obviously different data sets that share the same statistics can be found inMatejka and
Fitzmaurice (2017). Hence, it is worth mentioning a field of research devoted to understanding nonlinear
causal relationship between physical observables that uses tools adopted from Information Theory. A whole
review could be devoted to that topic, andherewewill only uncover the tip of the iceberg. For a recent review,
we refer the reader to Johnson and Wing (2018). In short, within the field of System Science, Information
Theory can be used to address the following question: What is the smallest possible (i.e., not redundant)
set of variables that are required to understand a system? Using ideas based on the well-known Shannon
entropy (Shannon, 1948), one can defineMutual Information as the amount of information shared between
two or more variables, one can look at cumulant-based cost as a measure of nonlinear dependence between
variables and finally infer their causal dependence by studying their transfer entropy. For instance, Wing
et al. (2016) have studied the relationship between solar wind drivers and the enhancement of radiation
belt electron flux, within a given time-lag. This approach not only is able to rank the proposed drivers in
terms of importance but also provides a maximum time horizon for predictions, above which the causal
relationship between inputs and outputs becomes insignificant. This is extremely valuable in designing a
forecasting model, because it informs the modeler on what inputs are physically relevant (hence avoiding to
ingest rubbish in). Other studies of Space Weather relevance are Johnson and Wing (2005), Materassi et al.
(2011), and Wing et al. (2018).

Preprocessing also involves data cleaning and taking care of any data gaps one might encounter. Unfortu-
nately, the way data gaps are handled (for instance, gaps can be filled by interpolation, or data with gaps
can be discarded) can affect the final outcome. Also, one has to think of how to deal with any outliers. Are
outliers physically relevant (and maybe the extreme events we are interested in predicting) or just noise?
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Figure 3. Example of overfitting with polynomial regression. By increasing
the order of the polynomial l, the error with respect to the training data
decreases (until for l = 9 the data points are fitted exactly), but the model
becomes less and less generalizable to unseen data. For reference, the data
were generated as a cubic function of x with small Gaussian noise.

And finally, one might consider if it makes sense to augment the data to
reduce imbalance or improve the signal-to-noise ratio (see also section 6).

4.3. Algorithm Selection

The choice of the most promising algorithm depends on a number of fac-
tors. Unfortunately, this is the area where the science overlaps with the
art. One interesting consideration is that, in theory, there is no reason for
one algorithm to outperform other algorithms: when interpreted as opti-
mization problems, a local minima of a chosen cost function should be
detected as a local minima by any algorithm. However, in practice, the
internal working of a given algorithm is related to a particular choice of
the free parameters (hyperparameters), and one cannot fully explore the
hyperparameter space. Hence, algorithm selection often boils down to a
trade-off between accuracy, training time, and complexity of the model.

Other considerations involve whether the model needs to be regularly
retrained (for instance, with incoming new data like in themodel of Ling
et al., 2010, discussed in section 5.3), how fast the model runs in predic-
tion mode (after being trained), and whether it is scalable with respect
to increasing the data set size. For a more detailed discussion about
where each machine learning algorithm stands in terms of accuracy,
computational cost, and scalability, we refer the reader to specialized
textbooks.

However, there is one simple concept that is useful to introduce, which divides the algorithms in two camps:
parametric versus nonparametric. Models that have a fixed number of parameters are called parametric,
while models where the number of parameters grows with the amount of training data are called non-
parametric. The former have the advantage of being faster to train and to be able to handle large data set.
The disadvantage is that they are less flexible and make strong assumptions about the data that might not
be appropriate. On the other hand, nonparametric models make milder assumptions but are often com-
putationally intractable for large (either in size or in dimensions) data sets (Murphy, 2012). Examples of
parametric models include linear and polynomial regressions and NNs. Nonparametric models include
k-means and kernel methods such as GP, SVM, and kernel density estimators.

4.4. Overfitting andModel Selection

After selecting amachine learning algorithm, the next step consists in training themodel, that is, to optimize
its parameters. Yet there are a number of parameters, dubbed hyperparameters that are free to choose (i.e.,
their value is not a result of an optimization problem). Appropriately tuning the hyperparameters can have a
nonnegligible impact on the accuracy and computational cost of training a model. Moreover, in parametric
models the number of hyperparameters is itself a degree of freedom (for instance, the number of neurons in
a NN). Model selection deals with the choice of hyperparameters.

It is also important to stress the concept of overfitting, which is frequently invoked as a weakness ofmachine
learning, but often inappropriately. The idea can be easily understood by analyzing polynomial regression in
one dimension. Let us assume to have 10 data points that we want to approximate bymeans of a polynomial
function. Recalling our nomenclature in definition (2), � (x) =

∑
lalx

l (where l is now an exponent and the
index of the unknown vector of coefficients a). In principle, one can always find the ninth order polynomial
that fits exactly our 10 points, for which the model error � = 0, no matter how it is defined. However, this
would result in a highly oscillatory function that will unlikely pass close to any new data point that we will
observe in the future and rapidly diverging outside the range of the initial data points (see Figure 3).

This is a simple example of data overfitting, where the underlying function was made fit the noise rather
than the signal, reducing the error � to zero, when calculated on the training set. On the other end of the
spectrum in polynomial regression, one might equally be unhappy with using a simple linear function, as
the one described in section 3.1, whichmight not be able to capture, for instance, a faster than linear increase
in x. Eventually, the problem we face is a trade-off between the complexity of the model, that is, its ability to
capture higher-order nonlinear functions and its ability to generalize to unseen data. This problem is com-
mon to anymachine learning algorithm, where the complexity (number of hyperparameters) can be chosen
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and fine-tuned by the user. For instance, in a NN, a larger number of neurons and hidden layers determine
its ability to approximatemore andmore complex functional forms. The risk is to convince ourselves to have
devised a very accurate predictor that effectively is not able to predict anything else than what has been fed
as training data.
4.4.1. Training and Validating

Several strategies exist to circumvent this misuse of machine learning algorithms. Unfortunately, they all
come at the cost of not using the entirewealth of data at our disposal and to sacrifice some of that. In practice,
one divides the available data into three disjoint sets: training, validation, and test. The training set is used
to effectively fine-tune themany unknown parameters that constitute themodel. Algorithms are commonly
trained iteratively by one of the many variants of a stochastic gradient descent method (Ruder, 2016), which
seeks to reduce the value of the cost function at each iteration by updating the unknown parameters that
enter in the definition of the chosen cost function. Especially for not very large data sets, one can push such
minimization to very low values of the cost function, which corresponds to an overfit on the training set. In
order to avoid overfitting, the cost function is periodically evaluated (every few iterations) on the validation
set. Because the algorithm does not use these data (validation) in the minimization of the cost function, this
should not decrease unless themethod has captured some generic features of the data that are not specific to
the training set. In practice what happens is that both cost functions evaluated on the training and validation
sets decrease (on average) for a certain number of iterations, until at some point the cost calculated on the
validation set stops decreasing and starts increasing. That is a sign that the algorithm is starting to pick
features that are distinctive of the training set and not generalizable to the validation set. In other words, it
is starting to fit the noise, and the iterations should be stopped. At that point, further reducing the score on
the validation set (for the same amount of model complexity) would probably require more information in
terms of latent variables.

4.4.2. Cross Validation

Another procedure that is often used in machine learning is called cross validation (Schaffer, 1993; Shao,
1993). In order to assure that a given model is not specific to an arbitrary choice of a training set and that its
good performance is not just good luck, one can split the original training set into k disjoint partitions and
use k−1 of them as training set and the remaining one as validation set. By permuting the role of validation
and training, one can train k differentmodels, whose performance should approximately be equal andwhose
average performance can be reported.

4.4.3. Testing andMetrics

Finally, the test set plays the role of “fresh”, unseen data on which the performance metrics should be cal-
culated and reported once the model has been fine-tuned and no further modifications will be done. A few
subtle pitfalls can be encountered using and defining the three sets. For instance, in the past it was common
to split a data set randomly, while it is now understood that if temporal correlations exist between events
(which always exist in the common case of time series of observations), a random split would result in an
artifactual increase of performance metrics for the simple reason that the unseen data in the validation set
are not truly unseen, if they are very similar to events that belong to the training set because they are tem-
porally close. Another pitfall concerns the fine-tuning or the choice of a model a posteriori, that is, after it
has been evaluated on the test set. Let us assume that we have two competingmodels that have been trained
and validated. Any further information that is gained by evaluating the models on the test set should not be
used to further improve the models or to assess which model performs better.

Both the final performance and the cost function are represented in terms of metrics. It is a good practice
to use different metrics for the two purposes. In this way one can assure that the model performs well with
respect to a metric that it was not trained to minimize, hence, showing robustness. We report a list of perfor-
mance metrics and cost functions routinely used for regression and classification, both in the deterministic
and probabilistic cases in Table 3. A useful concept is that of skill scorewhere the performance of a model is
compared with respect to a baseline model. Usually, the baseline is chosen as a zero-cost model, such as a
persistence or a climatologicalmodel. For extensive discussions aboutmetric selection, the reader is referred
to Bloomfield et al. (2012), Bobra and Couvidat (2015), Liemohn et al. (2018), and Morley et al. (2018).
4.4.4. Bias-Variance Decomposition

Thementioned trade-off between complexity and ability to generalize can be understoodmathematically by
decomposing the error in what is known as bias-variance decomposition. The bias represents the extent to
which the average prediction over all data sets differs from the desired outcome. The variance measures the
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Table 3
Performance Metrics for Binary Classification and Regression, Both for Deterministic and
Probabilistic Forecasts

Performance metric Definition Comments

Binary classification—Deterministic

Sensitivity, hit-rate, recall, true TPR =
TP
P

The ability to find all positive

positive rate events. Vertical axis in the

ROC curve (perfect TPR = 1)

Specificity, selectivity, true TNR =
TN
N

The ability to find all negative

negative rate events.

False positive rate FPR =
FP
N

= 1 − TNR Probability of false alarm.

Horizontal axis in Receiver Op-

erating Characteristic (ROC)

curve (perfect FPR = 0).

Precision, positive predicted PPV =
TP

TP+FP
The ability not to label as pos-

value itive a negative event (perfect

PPV = 1).

Accuracy ACC =
TP+TN
P+N

Ratio of the number of correct

predictions. Not appropriate for

large imbalanced data set (e.g.,

N ≫ P).

F1 score F1 = 2PPV ·TPR
PPV+TPR

Harmonic mean of positive

predicted value (precision) and

true positive rate (sensitivity),

combining the ability of finding

all positive events and to not

mis-classify negatives.

Heidke Skill Score (1) HSS1 =
TP+TN−N

P
= It ranges between −∞ and 1.

TPR
(
2 − 1

PPV

)
Perfect HSS1 = 1. A model

that always predicts false can

be used as a baseline, having

HSS1 = 0.

Heidke Skill Score (2) HSS2 = It ranges between −1 and 1.
2(TP·TN)−(FN·FP)

P(FN+TN)+N(TP+FP)
Skill score compared to a ran-

dom forecast.

True Skill Score TSS = TPR − FPR = Difference between true and
TP

TP+FN
−

FP
FP+TN

false positive rates. Maximum

distance of ROC curve from

diagonal line. Ranges between

−1 and 1. It is unbiased with

respect to class-imbalance.

extent to which the solutions for individual data vary around their average or, in other words, how sensitive
amodel is to a particular choice of data set (Bishop, 2006). Very flexible models (more complex, many hyper-
parameters) have low bias and high variance and more rigid models (less complex, few hyperparameters)
have high bias and low variance. Many criteria exist that help select a model, by somehow penalizing com-
plexity (for instance, limiting the number of free parameters), such as the Bayesian Information Criterion
(Schwarz, 1978), the Akaike Information Criterion (Akaike, 1998), and the Minimum Description Length
(Grünwald, 2007). This is a wide topic, and we refer the reader to more specialized literature.
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Table 3 Continued

Binary classification—Probabilistic

Brier score BS =
1
N

∑N
i=1 (�i − oi)

2 N is the forecast sample size,

fi is the probability associated

to the event i to occur, oi is

the outcome of event i (1-true

or 0-false). Ranges between 0

and 1. Negatively oriented (i.e.,

perfect for BS = 0).

Ignorance score IGN =
1
N

∑
(oi- Definitions as above, except

1) log(1 − �i) − oi log(�i) IGN ranges between 0 and∞.

Continuous variable (regression)—Deterministic

Mean square error MSE =
1
N

∑N
i=1 (�̂i − �i)

2 N is the size of the sample, �̂i

is the ith prediction (scalar

real value) and yi is the cor-

responding observation. MSE

penalizes larger errors (sensitive

to outliers).

Root-mean-square error RMSE =
√
MSE It has the same units as y

Normalized-mean-square error NRMSE =
RMSE

�̄
�̄ is either defined as the mean

of y or its range ymax − ymin

Mean absolute error MAE =
1
N

∑N
i=1 |�̂i − �i| MAE penalizes all errors

equally: it is less sensitive to

outliers than MSE.

Average relative error ARE =
1
N

∑N
i=1

|�̂i−�i|
|�i|

Correlation coefficient cc or R = ��̂ and �y are, respectively, the∑N
i=1(�̂i−��̂)(�i−��)√∑N

i=1 (�̂i−��̂)
2
√∑N

i=1 (�i−��)
2

mean values of the predictions

�̂ and of the observations y.

R ranges between −1 (perfect

anticorrelation) to 1 (perfect

correlation)

Prediction efficiency PE = 1 −
∑N
i=1 (�̂i−�i)

2

∑N
i=1 (�i−��)

2
Perfect prediction for PE = 1

Median symmetric accuracy 
 = Qi = �̂i∕�i andM stands for

100(exp(M(| logQi|)) − 1) Median. See Morley et al. (2018)

5. Review ofMachine Learning in SpaceWeather

In this section we review some of the literature concerning the use of machine learning in Space Weather.
We focus our attention on three applications that seem to have received most scrutiny: the forecast of geo-
magnetic indices, relativistic electrons at geosynchronous orbits, and solar eruptions (flares and CMEs).
This review has no pretension of completeness, and as all reviews, is not free from a personal bias. However,
the intention is to give an idea of the wide breadth of techniques covered over the years, more than to offer
detailed comments on specific works. Also, even if we report performance metrics, it has to be kept in mind
that an apple to apple comparison is often not possible, because different techniques have been tested on
different data sets. Finally, Figure 4 emphasizes the timeliness of this review, by showing the distribution of
publication years of the works cited in this paper (only the papers presenting a machine learning technique
for Space Weather). The explosion of interest that has occurred in 2018 (the last bar to the right) is quite
remarkable. Time will tell if that was just noise in the data.
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Table 3 Continued

Continuous variable (regression)—Probabilistic

Continuous rank probability CRPS = N is the size of the sample,

Score 1
N

∑
i ∫

∞
−∞ (F̂i(z) −H(z − �i))

2dz F̂i(�) is the i-th forecast prob-

ability cumulative distribution

function (CDF), and H is the

Heaviside function. CRPS col-

lapses to MAE for deterministic

predictions, and it has an ana-

lytical expression for Gaussian

forecast Gneiting et al. (2005).

Ignorance score I(p, y) = pi(yi) is the probability den
1
N

∑
i − log(pi(�i)) -sity function associated to the

ith forecast, calculated for the

observed value yi

Note. In binary classification (deterministic) P and N are the total number of positives and negatives, respectively, and
TP, TN, FP, and FN denote true-positive/negative and false-positive/negative. For probabilistic binary classification, f
is the forecasted probability and o is the real outcome (1-true or 0-false). For deterministic regression, y is the observed
real-valued outcome and �̂ is the corresponding prediction.

5.1. Geomagnetic Indices

A geomagnetic index is a simple measure of geomagnetic activity that attempts to condense a rich set of
information about the status of the magnetosphere in a single number. Many such indices exist: historically
Kp and Dst are probably the most widely used, but many more have been proposed (AE, AL, AU, ap, am,
IHV, Ap, Cp, C9, SYMH, and ASYH; Menvielle et al., 2011; Rostoker, 1972). Each index is meant to capture
a different aspect of geomagnetic activity, such as local geographical dependency. An interesting attempt
to construct a single composite index that would uniquely define the geomagnetic state has been recently
proposed in Borovsky and Denton (2018).

The prediction of a geomagnetic index has always been a very attractive area for machine learning appli-
cations because of its straightforward implementation, the well-posed definition of indices, the availability
of large historical data set, and the restricted range of possible outcomes. Dst and Kp are the ones that have

Figure 4. Number of publications between 1993 and 2018 in the area of
machine learning applied to Space Weather cited in this review.

received most attention, with the first models proposed in Lundstedt and
Wintoft (1994), Gleisner et al. (1996), and Wu and Lundstedt (1997).

5.1.1. Forecasting Kp

The use of a NN to forecast Kp either one or multiple hours in advance
has been proposed in Bala et al. (2009), Boberg et al. (2000), Costello
(1998), Gholipour et al. (2004), Tan et al. (2018), Uwamahoro and
Habarulema (2014), Valach and Prigancová (2006), Wing et al. (2005),
and Wintoft et al. (2017), among others. Real-time forecasts based on
some of these models are running at RWC, Sweden (http://www.lund.irf.
se/forecast/kp/), Rice Space Institute, USA (http://mms.rice.edu/mms/
forecast.php), INPE, Brazil (http://www2.inpe.br/climaespacial/portal/
swd-forecast/), and the Space Environment Prediction Center, China
(http://eng.sepc.ac.cn/Kp3HPred.php).

The U.S. Space Weather Prediction Center (SWPC/NOAA) has provided
real-time 1 and 4 hr ahead forecast based on theWing et al. (2005) model
from 2010 to 2018, when the Wing Kp was replaced by the physics-based
Geospace model developed at the University of Michigan (Tóth et al.,
2012). The Wing Kp model used solar wind parameters at L1 (|Vx|,
density, IMF |B|, Bz) and the current value of Kp to predict the future
Kp ≈1 hr ahead (a modified model predicted 4 hr ahead). By compar-
ing with the competing models of the time (i.e., the models by Costello,
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1998 and Boberg et al., 2000 and the NARMAXmodel, Ayala Solares et al., 2016; Boynton et al., 2018), Wing
et al. (2005) reported a higher performance attributed to a larger training set and the inclusion of nowcast
Kp, which is highly correlated with its future values and a correlation coefficient R = 0.92. However, the
authors noticed that this metric, by itself, does not indicate how well a model performs.

Because Kp is a discrete index, one can look at metrics designed for discrete events that take into account
the number of true/false positive/negative. One such metric is the True Skill Score (see Table 3) that was
considered in Wing et al. (2005), where they reported a TSS ∼ 0.8 for the range 2 ≤ Kp ≤ 8. They con-
sidered both feed forward and recurrent NNs, with one hidden layer and the number of hidden neurons
ranging between 4 and 20. The data set covered the period 1975–2001, which was randomly split into train-
ing and test sets of equal size. It is now realized that a random split is not the best procedure, since the test
set (on which the final metrics are reported) gets contaminated by the training set. In other words, the two
sets are not completely independent and the reported performance is higher than if it was calculated on out
of samples (unseen) data.

A parallel, independent effort has been carried out by the Rice Space Institute, which provides real-time 1-hr
and 3-hr forecasts (Bala & Reiff, 2012; Bala et al., 2009). These predictions are also based on NNs, with the
interesting characteristic of using coupling functions (and their history) as inputs. The original work used
only the Boyle index (BI), which empirically approximates the polar cap potential as a function of solar wind
speed,magnitude of interplanetarymagnetic field, and clock angle (Boyle et al., 1997). Improvedmodels also
included dynamic pressure. Comparing the use of BI, Newell, and Borovsky coupling functions (Borovsky,
2008; Newell et al., 2007) resulted in very similar forecasting performance, withNewell having slightly better
metrics (correlation coefficient, root-mean-square error, and average relative error). This result seems to be
in line with the general idea that NNs are universal approximators, and given enough expressive powers (in
terms of number of hidden layers and number of neurons), they should be able to transform the inputs into
any complex nonlinear function. Hence, the question arises of how beneficial it is to feed the network with
a given coupling function, rather than the individual physical quantities that enter in such function and
that might just depend on how deep the network is or on the numbers of neurons for single hidden layer
networks.

Ji et al. (2013) proposed to improve past work based on NNs by also including all three components of
interplanetary magnetic field and the y component of electric field. They reported higher performance
with respect to the models by Bala and Reiff (2012), Costello (1998), an Wing et al. (2005); however, the
comparison was not carried out with equal network architecture or same training and test data set.

The model of Boberg et al. (2000) was recently improved in Wintoft et al. (2017). The main innovations
with respect to the original work are the inclusion of local time and day of the year as inputs and the use
of an ensemble of networks. Also, the model was designed not to forecast Kp with a prefixed lead time
(i.e., 1 hr ahead), but by using a variable propagation lead time that depends on the solar wind velocity. As
a result, the lead times range between 20 and 90 min. Although this might seem more accurate, it brings
in the additional difficulty of accurately estimating the solar wind propagation time and to quantify the
uncertainties associated with such estimate. The reported performance was RMSE ∼ 0.7 and correlation
coefficient cc ∼ 0.9.

Some very interesting elements of novelty in the use of NN to forecast Kp have been presented in Tan et al.
(2018). Following the current trend of “going deep,” and leveraging of recent advances in NNs, they pro-
posed to use a Long Short-Term Memory network (LSTM; Hochreiter & Schmidhuber, 1997; Gers et al.,
1999). This is a special type of recurrent network, and its main characteristic is the ability of retaining infor-
mation from the past, being able to automatically choose the optimal time lag, that is, how long back in time
the information is still relevant. LSTMhas been successfully employed inmany fields of time series forecast-
ing (Goodfellow et al., 2016). They also discuss the well-known problem of data-imbalance, meaning that
the distribution of Kp is highly skewed, with a typical ratio of storm to nonstorm close to 1:30. The main
feature that differentiate this work from all the previous papers, is the idea of first casting the problem into
a classification task, namely, to predict whether the next 3 hr fall in the storm (Kp ≥ 5) or quiet (Kp < 5)
condition. They then train two separate regression submodels for each case. Hence, the prediction pipeline
is made of a classification step, which decides which submodel for regression is called. Obviously, each sub-
model is trained only on the relevant data set. This can be seen as a special case of ensemble modeling (with
only two members), where the final outcome is not an average of all ensemble predictions but rather a win-
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ner takes allmodel. The apparent downside is that any misclassification in the pipeline will likely result in
a bad performance of the regression submodels. The authors studied the correlation between 11 candidate
input parameters and eventually (probably also due to the heavy load of the LSTM training) chose only three
inputs: proton density, Kp, and the Boyle index BI. The final metrics are not overwhelmingly superior to
previous works: RMSE = 0.64 and cc = 0.81.

A methodology based on Nonlinear Autoregressive with Exogenous inputs (NARX) was presented in Ayala
Solares et al. (2016). This family of models is not very dissimilar from NN, in that the expected output is
modeled as a superposition of nonlinear functions of the inputs. In NARX, such nonlinear functions are
taken as a large combination of monomials or polynomials of inputs, including error terms. In principle,
one could retain a large number of terms; however, in practice the vast majority of monomials will have no
influence on the output. One of the objectives of a NARX model is to identify a parsimonious combination
of inputs. An algorithm to identify the most important terms is the so-called FROLS (Forward Regression
Orthogonal Least Square) algorithm (Billings, 2013; Billings et al., 1989), which is used in combination
with the error reduction ratio index to measure the significance of each candidate model term. In Ayala
Solares et al. (2016) six terms were eventually identified as input drivers: past Kp values, solar wind speed,
southward interplanetary magnetic field, the product of the two, solar wind pressure, and its square root.
Several models were proposed and tested, for a different range of prediction time lag, using 6 months of
data from the year 2000 for training and 6 months for testing. However, only one model provided a true
(3 hr ahead) forecast that is not using future values of some input. Those models resulted in the following
performance: RMSE ∼ 0.8, cc ∼ 0.86, and PE ∼ 0.73. In particular, the authors noted a consistent bias in
underpredicting events with Kp ≥ 6.

Finally, the recent work by Wang et al. (2015) stands out in providing a probabilistic forecast (rather than a
single-point prediction), by constructing conditional probabilities over almost 40,000 3-hourly events in the
period August 2001 to April 2015. The authors have tested more than 1,200 models by considering different
combination of three conditional parameters, among a possible choice of 23 inputs. They cast the problem
as a classification task that forecasts the category of Kp rather than its value (the 28 discrete values are
grouped into four categories: quiet, active, minor storm, and strong storm). The performance of the models
is appropriately measured in terms of Rank Probability Score (RPS), Discrimination Distance (DISC), and
relative operating characteristic area (ROCA). The best performing model yields an RPS value equal to 0.05,
which is about half of what results by using a classical climatological model. Hence, this model can provide
a simple and effective baseline to test future probabilistic predictions.
5.1.2. ForecastingDst

The Dst index is based on four low-latitude stations, and it measures the deviation of the horizontal com-
ponent of the Earth's magnetic field from its long-term average. It is a proxy for the axisymmetric magnetic
signature of magnetospheric ring currents (Sugiura, 1963). It is an hourly based index, measured in nan-
otesla, and it can be considered a continuous value index, even though it is expressed as an integer, with
minimal increments of 1 nT.

As already mentioned, the forecasting of Dst has been the subject of intensive investigation using machine
learning techniques. Wu and Lundstedt (1996, 1997) presented one of the first applications of artificial NNs
for 1- to 8-hr-ahead forecasts. They have proposed the use of a two-layer network with feedback connection
(Elman architecture, Elman, 1990) which was designed to capture time-dependent dynamics. They tested a
combination of solar wind parameter inputs, including speed, density, totalmagnetic field and its southward
component, and their products. They used a data set covering years 1963–1992. The best performing network
yielded a correlation coefficient cc ∼ 0.9, root-mean-square error RMSE ∼ 15, and prediction efficiency
PE ∼ 0.8, for 1 hr ahead. The general conclusion for predictions more than 1 hr ahead was that the initial
phase of a storm was not accurately predicted, while the main phase could be predicted relatively well up
to 2 hr in advance. This model was further improved and made operational (for 1 hr ahead) in Lundstedt
et al. (2002). A remarkable feature is that the trained network is extremely compact (especially compared
to today's standards), with only four hidden layer neurons. The values of weights and bias were given in the
paper, and relative scripts are available on http://lund.irf.se/rwc/dst/models/.

Kugblenu et al. (1999) have improved the prediction performance of 1-hr-ahead forecast, by including the
3-hr time history ofDst and achieving a performance efficiency PE as high as 0.9. However, they trained and
tested their network exclusively on storm times (20 storms for testing and 3 storms only for testing).
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Pallocchia et al. (2006) made the interesting argument that in situ solar wind plasma instruments tend to
fail more often than magnetometers, because they can saturate for several hours due to large emission of
particles and radiation. This can be problematic for operational forecasting based on solar wind density
and velocity. For this reason, they proposed an algorithm based exclusively on IMF data and the use of an
Elman network, dubbed EDDA (Empirical Dst Data Algorithm). Somewhat surprisingly, they reported a
performance comparable to the Lund network (with the caveat that training and test sets were different,
58,000 hourly averages used for EDDA and 40,000 for Lund). An interesting test was shown on the 2003Hal-
loween storm, when the ACE/SWEPAM instrumentmalfunctioned for several hours, transmitting incorrect
values of density and bulk flow speed, while the ACE/MAG magnetometer continued to produce reliable
data. In this situation the Lund operational forecast becomes unreliable, while EDDA still produces valid
predictions.

Vörös and Jankovičová (2002) have made the interesting suggestion of using the information about the scal-
ing characteristics of magnetic fluctuations as an additional input to a NN. They have implemented this by
computing the so-called Hölder exponent of past geomagnetic time series and shown that it significantly
improved the prediction accuracy. They also expanded the standard set of inputs by including time deriva-
tives of magnetic field intensity, solar wind speed, and density and performed a dimensionality reduction
of inputs by using PCA, effectively reducing the number of inputs to two. A related idea has been more
recently proposed in Alberti et al. (2017), where the time scales associated with solar wind-magnetospheric
coupling have been investigated through an Empirical Mode Decomposition, with the suggestion that infor-
mation relevant at different time scales (i.e., above or below 200 min) can directly be used for geomagnetic
forecasting.

Lethy et al. (2018) have presented an extensive study on the geoeffectiveness of different combinations of
solar wind parameters, on the effect of different training set periods and of different prediction horizon
and time delays, using a single-layer NN. They have presented results covering 1- to 12-hr-ahead predic-
tions, and reporting RMSE ∼ 12 and cc ∼ 0.9 for 12-hr-ahead forecast (tested on a few storms in the
period 2016–2017). The authors remark that their method has slightly lower accuracy than other methods
for short-time prediction but that it stands out in medium-term (12 hr) prediction.

The standardmethod of training aNN is by using a so-called back-propagation algorithm,where the iterative
update of weights and biases are calculated by using information on the gradient (i.e., calculated analytically
in a NN) and the repeated application of the chain rule for derivatives (Carè & Camporeale, 2018). Other
methods exist, based on global optimization techniques including simulated annealing, genetic algorithms,
and particle swarm. The latter method has been proposed in Lazzús et al. (2017), for training a feed-forward
NN with a single hidden layer containing 40 neurons. The particle-swarm technique has the advantage of
being less sensitive to the weights' initial conditions, and less prone to being “stuck” in local minima during
training. In this work, the authors used inputs composed of the time history of Dst only and a remarkably
large data set for training, validation, and test sets (1990–2016). Six different models for forecasting Dst 1
to 6 hr ahead were trained. Predictions up to 3 hr ahead yielded relatively high accuracy when specifically
tested on 352 geomagnetic storms (the metrics, however, were calculated on the whole data set including
the training set): they reported a RMSE ∼ 10.9 for 1 hr ahead and RMSE ∼ 25 for 3-hr-ahead predictions.

Yet a different method to train a NN, based on a Genetic Algorithm has been presented in Vega-Jorquera
et al. (2018), where 1- to 6-hr-ahead predictions were developed using a single hidden layer NN. The results
were very good for 1 hr ahead, but degraded strongly for 6 hr ahead (RMSE ∼ 14). A Genetic Algorithm
approach was also proposed in Semeniv (2015).

The majority of the machine learning approaches to forecasting geomagnetic indices use NNs. However,
other machine learning techniques have been proposed. Lu et al. (2016) have compared the use of SVM
(Vapnik, 2013) with NNs. They have identified 13 solar wind input parameters, trained and tested their
models on 80 geomagnetic storms (1995–2014). K-fold cross validation was used, meaning that one fifth of
the data set (i.e., 16 storms) was left out for testing, repeating the experiment 5 times with different training
sets, and finally averaging the results. Their best model achieved a correlation coefficient cc ∼ 0.95.

Choi et al. (2012) used the value of Dst to distinguish between geoeffective (Dst < −50) and nongeoeffective
CMEs and used a SVM to forecast that feature. The input parameters for the SVM classification were the
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speed and angular width of CME obtained from SOHO/LASCO and the associated X-ray flare class. One
hundred six CMEs in the period 2003–2010 were used for prediction, yielding an accuracy of 66%.

Wei et al. (2007) used an expansion in radial basis function (RBF) tomodelDst as function of the time history
of solar wind dynamic pressure and the product of velocity and magnetic field amplitude. The RBF kernel
was chosen as a multiscale squared exponential. A total of 10 inputs and 15 regressors were selected. The
model presented a good performance, even though it was tested on a very limited portion of data (156 hr
only).

A NARMAX approach has been proposed in Boaghe et al. (2001) and Boynton et al. (2011). By employing
the error reduction ratio technique, they have inferred that the best coupling function between solar wind
parameters andDst is p

1∕2V4∕3BTsin
6(�∕2) and derived an expression to forecast 1-hr-aheadDst as function of

the past values ofDst and of the history of the coupling function. The analytical expression is explicitly given
in Boynton et al. (2011). Finally, the model was tested for 10 years of data (1998–2008) yielding a correlation
coefficient cc ∼ 0.97.

A NARX methodology has been compared to the use of Support Vector Regression (SVR) in Drezet et al.
(2002), by using the 7-hr time history of Dst and VBz only. The SVR method differs from other black-box
approaches in the way it enforces parsimony (model complexity), by selecting a low-dimensional basis.

Parnowski, (2008, 2009) has used a simple linear regression approach, that yielded a prediction efficiency as
high as PE ∼ 0.975 for 1-hr-ahead forecast and PE ∼ 0.9 for 3 hr ahead. They used a statistical method based
on the Fisher statistical parameter to calculate the significance of candidate regressors (Fisher, 1992). The
final total number of regressors was in the range 150–200. Aside from parameters whose geoeffectiveness is
well understood (and used in previous model), one interesting result concerned the longitudinal flow angle,
which was found to have a statistical significance larger than 99%.

Sharifie et al. (2006) have proposed a Locally Linear Neurofuzzy model based on a Gaussian RBF for 1- to
4-hr-ahead predictions. The model was trained using 10 years of data (1990–1999) and tested for a 6-month
period, yielding cc ∼ 0.87 and RMSE ∼ 12 for 4 hr ahead.

Other methods include relevance vector machine (Andriyas & Andriyas, 2015) and Bayesian NNs
(Andrejková & Levicky, 2003).

All the approaches discussed above fall in the category of supervised learning, where a nonlinear mapping
is sought between a set of inputs and the predictedDst output. An approach based on unsupervised learning
has instead been proposed by Tian et al. (2005), based on the methodology of SOMs networks (Kohonen,
1997). A SOM is a NN where no “ground truth” output is provided and the objective of the network is to
cluster similar events in a two-dimensional map, where the distance between neurons signifies a similarity
between inputs. Tian et al. (2005) have classified Ey ∼ VBz into 400 categories, using a data set covering the
period 1966–2000. A total of 21 categories (neurons) have then been identified as indicators of geomagnetic
storms, out of which six were connected to large storms (defined as Dst ≤ −180 nT). Even though this
approach does not provide a predicted value forDst (i.e., it is a classification task, rather than a regression), it
is still interesting to evaluate its performance in terms of predicting the occurrence of a storm. The authors
identified 14 categories that provide a 90% probability of intense storm, and the six categories associated
with strong storms have a missing prediction rate of about 10%. These are promising results, with the only
drawback that the authors did not separately evaluate the performance on training and test sets (based on
the argument that the training is unsupervised). Hence, it would be interesting to compute the prediction
rate of the trained network on unseen data.

We finally turn our attention to probabilistic forecast. The overwhelming majority of methods provide a
single-point estimate,with no indication of probabilities or uncertainties associated to the forecast.However,
the quantification of uncertainties and the understanding of how they propagate from data to models and
between interconnected models is becoming a predominant theme in Space Weather, recently highlighted
in Knipp et al. (2018). In fact, the operational and decision-making aspect of SpaceWeather depends largely
on the uncertainty of a forecast and on the reliability of such uncertainty.

Chen et al. (1997) have introduced a Bayesian method to predict the geoeffectiveness of solar wind struc-
tures (defined as geoeffective when they result inDst < −80), that has been subsequently tested for real-time
WIND/IMF data covering the period 1996–2010 in Chen et al. (2012). Even though, strictly speaking, this is
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not a machine learning approach, it is still worth commenting, being one of the few real-time probabilistic
predictions of Dst. In fact, although a large emphasis is given in the original paper on the physical features
and recognition of magnetically organized structures, the method essentially employs a statistical analysis.
The original method considers the components of the magnetic field and the clock angle as sufficient fea-
tures to obtain a large accuracy rate formoderate to large storms, while the inclusion of solar wind speed and
density slightly improves the classification of weak storms. Themethod is a straightforward implementation
of Bayes theorem using probability distribution functions constructed from the OMNI database covering
the period 1973–1981. The output of the prediction is the estimated duration of an event and its associated
probability to be geoeffective. A contingency table presented in Chen et al. (2012) (where a probability is
translated into a binary classification using 50% as a threshold) shows an accuracy rate of 81% (on a total of
37 storms).

A more sophisticated probabilistic method, based on GP has been proposed in Chandorkar et al. (2017)
and Chandorkar and Camporeale (2018). GP regression is a Bayesian method that is very appealing for
its straightforward implementation and nonparametric nature. One assumes a certain covariance structure
(kernel) between data points (i.e., between all pairs of training and test points) and predictions are made by
calculating Gaussian probabilities conditioned on the training set. By working with Gaussian distributions
the mathematical implementation is analytically tractable, and it boils down to simple linear algebra. The
output is a prediction in terms of a mean and standard deviation of a Gaussian distribution. Chandorkar
et al. (2017) have tested a GP autoregressive model (using past history of Dst, solar wind speed, and Bz as
regressors) on the set of 63 storms proposed in Ji et al. (2012) for the period 1995–2006. They reported a
RMSE ∼ 12 and cc ∼ 0.97 for 1-hr-ahead prediction.

A clear advantage with respect to parametric models, such as NNs, is that the number of adjustable parame-
ters (hyperparameters, see section 4) in a GP is typically very small. On the other hand, a major drawback is
the nonoptimal scalability with the size of the data set. To overcome the computational bottlenecks, sparse
(approximate) GP has been proposed and it has become a standard procedure in the Machine Learning
literature (see, e.g., Rasmussen, 2004).

An interesting approach that combines the power and scalability ofNNswith the probabilistic interpretation
of GP has recently been presented in Gruet et al. (2018). In this work, an LSTM NN is trained to provide up
to 6-hr-ahead prediction of Dst using solar wind parameters and the magnetic field amplitude recorded by
a GPS satellite. The NN prediction is then used as a mean function for a GP regression problem, with the
final outcome being a Gaussian probabilistic prediction. The model yields a RMSE ∼ 10 and cc ∼ 0.9 for
6-hr-ahead predictions, with relevant information on the uncertainty of the predictions, even when tested
for storm events.

5.2. Recapitulation—Geomagnetic Indices

It is evident that geomagnetic index prediction has served as a testbed for a plethora of machine learning
techniques for the last 20 years. This short review is necessarily incomplete (for more related or similar
works, see; Barkhatov et al., 2000; Dolenko et al., 2014; Gavrishchaka & Ganguli, 2001, 2001; Gleisner &
Lundstedt, 1997; Hernandez et al., 1993; Mirmomeni et al., 2006; Pallocchia et al., 2008; Revallo et al., 2014;
2015; Srivastava, 2005; Stepanova et al., 2008; Stepanova & Pérez, 2000; Takalo & Timonen, 1997; Watanabe
et al., 2002, 2003). The reader might feel overwhelmed by the quantity and the diversity of published work.
Yet it is not easy to formulate a clear answer to the question: how well are machine learning techniques
doing in predicting geomagnetic indices? There are at least two main reasons: the first is that the body of
literature has grown in an inorganic way, meaning that new works have not always built on previous results
and experience and often new papers propose novel methods that are not straightforward to compare to
early works.

The second reason is that the degree of freedom for any machine learning technique is quite large, in terms
of the regressors to use and how long of a time history is appropriate, time horizon (how many hours
ahead to predict), how to deal with data gaps, the time periods used for training, validation, and test, the
cross-validation strategy, themetrics chosen to assess accuracy and reliability, and the complexity of amodel
(e.g., number of layers and neurons in a NN, hyperparameters in kernel-based methods). The issue of the
most appropriate choice of inputs is probably the topic that the most skeptics in the community use to crit-
icize a machine learning approach. The argument is that by letting an algorithm choose what parameters
are the most informative, with no regard for the physics behind it, one can risk to associate causal informa-
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tion to parameters that are actually not physically relevant and to develop a model that cannot distinguish
very well the signal from the noise, or in other words that is not very able to generalize to unseen data (the
proverbial “rubbish in-rubbish out”). In fact, the indisputable advantage of a physics-based model is that it
will return a sensible result for any set of (sensible) inputs, and not only for a subset of seen data, as long as
the assumptions and limitations of the model are valid.

Looking back at the evolution of machine learningmodels for geomagnetic indices, one can certainly notice
that the early models were very cautious on choosing inputs andmany papers provide physical argument to
justify their choice. Also, there was a certain tendency (often not explicitly spelled out) to design parsimo-
nious models, that is, to have a trade-off between the complexity of the model and its accuracy. One reason
is the notorious problem of overfitting, again related to the lack of generality, but something to keep inmind
to properly put in perspective models as old as 5 or 10 years is that training a complex model was expen-
sive. Nowadays, the advances in GPU computation and the availability of machine learning libraries that
exploit GPUs with no effort for the user, have clearly moved the field into trying more complex models, the
archetype of which are deep NNs. The easiness of using open-access software for training a large (not nec-
essarily deep) NN is a double-edged sword. On one hand, it will allow us to explore increasingly complex
models, in terms of number of inputs and nonlinear relationship among them, which were simply out of
reach a decade ago. On the other hand, the “rubbish in-rubbish out” paradigm will always lurk in the inde-
cipherable complexity of a model, even though to be completely fair, we have not encountered, in preparing
this review, a single work that uses a given input without providing even a vague physicalmotivation, simply
because it seems to work!
5.2.1. What Has Not Been Done Yet?

The importance of being able of accurately predict geomagnetic indices several hours in advance is twofold.
First, by incorporating some information of the Earth-magnetosphere system, geomagnetic indices give a
warning on upcoming geomagnetic storms; second, they are often used to parameterize physical quantities
in computational models. For instance, diffusion coefficients in radiation belt quasi-linear models are often
parameterized in terms of Kp (see, e.g., Tu et al., 2013). Hence, the alleged superiority of physics-based
models is severely weakened by their dependence on parameters empirical determined.

Most, if not all, previous works have focused on short- or medium-time prediction from solar wind drivers,
often incorporating knowledge of the past state of the geomagnetic field, by using the same or other indices
as input, or by using low ormediumEarth orbit satellites (Gruet et al., 2018). For physical reasons, these pre-
dictions cannot be made for horizon times longer than about 12 hr. In the future, we will see more attempts
at forecasting indices directly from solar inputs that allow a prediction horizon of the order of days. For
instance, Valach et al. (2014) have presented a NN for forecasting the C9 index based on geometrical proper-
ties of CMEs, such as position angle, width and linear velocity, and of observed X-ray flares, but still without
using images.

The direct use of solar images and magnetograms will present a major challenge that will certainly be tack-
led in the near future, both in terms of data handling (with several Gigabytes of data at our disposal from
SOHO and SDO) and in terms of the most optimal design of an accurate machine learning method. A deep
convolutional NN seems to be themost obvious choice (at least as a first attempt), given its well-documented
ability of detecting features in images. However, there are many aspects that we do not currently know: Do
solar images contain enough information for predicting geomagnetic states? Would a one-step approach
(from Sun to Earth) be feasible or should we envision a multistep (Sun to L1, to magnetosphere, to Earth)
similarly to what is done in modular physics-based simulations? Is the events imbalance (meaning a large
abundance of quiet time compared to a very few instances of storms, especially large storms) an insurmount-
able obstacle to the success of machine learning techniques, or will we be able to overcome it by augmenting
data either empirically or through simulations?

We believe that the answer to most of these question will be established within the next decade. And finally,
how to incorporate physics knowledge into a machine learning algorithm (or vice versa), to create a proper
gray-box approach is, in my view, the ultimate holy grail quest for Space Weather forecasting.

5.3. Relativistic Electrons at Geosynchronous Orbit

One of the most challenging tasks in Space Weather forecasting is the prediction of relativistic electrons
at GEO. In particular, it is known that megaelectronvolt electron fluxes in the Earth's radiation belt are
affected by a combination of physical processes that lead to loss and local acceleration (Baker et al., 2018;
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Camporeale, 2015; Reeves et al., 2013; Ukhorskiy & Sitnov, 2012). One of the first attempts to use an artificial
NN to predict the flux of energetic electrons at GEO was presented in Stringer et al. (1996), where GOES-7
data was used to forecast the hourly averaged logarithm of electron flux at energies of 3–5MeV, 1 hr ahead. A
feed-forward NNwith a single hidden layer was used, varying the number of neurons between 7 and 11. The
training set was composed of 1,000 hr of data starting from 1 July 1989 and 1,000 hr starting from 1 January
1990 were used for testing. The inputs of the NN were the following: 4 hr history of the electron flux, Kp
and Dst indices, plus the magnetic local timeMLT of the predicted electron flux (1 hr in the future). Despite
achieving very good results in terms of both prediction efficiency and root-mean-square error (PE ∼ 0.95
and RMSE ∼ 0.1) the authors pointed out that due to the strong autocorrelation of Log(flux) at a lag of 1 hr
“… the NN is not much better than linear extrapolation one hour into the future. Indeed [...] to first order,
the output depends only on the previous history of the Log(flux).” Unfortunately, a comparison against
a persistence model (where the output 1-hr ahead is simply taken as the value at current time) was not
quantitatively performed.

Building on thiswork, Fukata et al. (2002) have proposed amore involvedNN, known as Elman architecture,
which has still only one hidden layer (15 neurons), but it contains feedback connections from the hidden
to the input layer. They did not use the past history of the Log(flux) as input, but instead, they proposed
to use the AL magnetic index. History of AL and Dst were incorporated in

∑
AE and

∑
Dst, which are the

summation of the index values from the time of Dst minimum in the main phase. They explicitly focused
on forecasting 1-hr-ahead relativistic electron flux during a storm recovery phase. Nine storms in the period
1978–1994 were used for training and 20 storms for testing. The average value of PE turned out to be 0.71,
which is lower than the one reported by Stringer et al. (1996) (not calculated on the same test set). They also
experimented by dropping out inputs and noticed that

∑
AE is more important than

∑
Dst.

A completely different approach has been taken by O'Brien and McPherron (2003), by leveraging on the
expressive power of NNs as nonlinear regressors combined with a genetic algorithm to systematically
explore the large dimensional input space. In that paper, the authors explicitly state that their goal was
to build a simple empirical model for the energetic electron flux, rather than a forecasting tool. About
700 different NNs were tested, with different combination of outputs and time lags that included Kp, Dst,
AE, and ULF wave power, each with time lags ranging from 0 to 48 hr in the past. Interestingly, the
best performing (feed-forward) NN used only five hidden layer neurons and four magnetospheric inputs:
Dst(t),Dst(t−1),Dst(t−4), andULF(t). The root-mean-square error on out-of-sample datawas 0.122 (the same
metric computed for the persistencemodelwas equal to 0.138). The skill scorewith respect to the persistence
model was 22%. The main goal of that work, however, was to derive an analytical dynamical equation for
the time change of the electron flux. Hence, the NNwas merely used to identify the most important magne-
tospheric drivers (solar wind drivers were purposefully excluded). As we will see, this is a recurring theme
in the (space) physics community where some sort of dissatisfaction often results by using the black-box
machinery of NNs. In that respect, thework of O'Brien andMcPherron (2003)was one of the first attempts to
open the black box, deriving an (hopefully easy to interpret) analytical formula, in the context of relativistic
electrons dynamics. The analytical formula was derived using a statistical phase-space analysis technique
combined with least squares optimization to fit coefficients. When used for 1-hr-ahead prediction, the for-
mula achieved a skill score of only 4%. However, the authors argued that the true value of the dynamic
equation was to be appreciated when derivingmultiple-hour predictions (with the skill score getting as high
as 50% for 48-hr-ahead prediction). Still, it remains unclear how much of the reported skill scores is due to
the goodness of the empirical analytical model, or to the fact that persistence becomes completely useless
after a few hours. Finally (as rightly pointed out by the authors), the derived empirical equation has no fore-
casting value, because it will need future values ofDst andULFwave power to performmultiple-hour-ahead
predictions.

More recent works have focused on developing models for the daily averaged electron flux (rather than
hourly averaged; Kitamura et al., 2011; Lyatsky & Khazanov, 2008; Ukhorskiy et al., 2004). From a Space
Weather perspective a 1-day-ahead forecast is certainly more useful than only a few-hour-ahead prediction.
However, a word of caution is needed, because what “one-day ahead” really means in most of the papers
discussed hereafter is the daily averaged value of electron flux, which is averaged over a period of 24 hr. By
shifting the focus on predicting an averaged quantity, one clearly loses the ability of forecasting sudden large
events, which, on the other hand, are the most interesting and challenging.
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Ling et al. (2010) have systematically tested feed-forward NNs with a single hidden layer, by varying the
number of hidden neurons and the number of inputs. They focused on >2-MeV electrons measured by the
GOES-7 satellite. They used the time history of electron flux and Kp as inputs and tested the best perform-
ing NN for a period of 6 months starting from 1 January 2009. A somewhat unsatisfactory result was that
the performance metrics seemed to be very sensitive with respect to the size of the training data. The PE for
1-day-ahead forecast jumped from 0.58 to 0.67 when the training set period was enlarged from 6 months to
1 year. Also, to overcome a neuron saturation problem, the authors settled on a strategy where the model
is retrained daily (with incoming new data), using a training set size of 2 years. In this way, the mean PE
for 1-, 2-, and 3-day forecast is 0.71, 0.49, and 0.31, respectively. Finally, the authors reported a better per-
formance (for the period 1998–2008) with respect to the linear filter model REFM (Relativistic Electron
Forecast Model) developed by Baker et al. (1990), which is still currently implemented at the NOAA SWPC
(https://www.swpc.noaa.gov/products/relativistic-electron-forecast-model).

The same group of authors have compared their NN model (dubbed FluxPred) against the SWPC-REFM
model and the semiempirical model by Li et al. (2001), for 1-, 2-, and 3-day-ahead predictions in the period
1996–2008 (Perry et al., 2010). The Li et al. (2001) model is a nice example of gray-box modeling, where
a physics-based radial diffusion equation is data-augmented, by parameterizing boundary conditions and
diffusion coefficients as functions of past solar wind observations. The result of Perry et al. (2010) wasmostly
inconclusive, that is, eachmodel didwell at different phases of the solar cycle, and therewas no clearwinner.
Quoting the paper: “Over all, the three models give slightly better +1 day and much better +2 day forecasts
than persistence [...]. All models are solar cycle-dependent, meaning predictions are better during solar
minimumandworse during solarmaximum.” Somewhat hidden in the conclusion of this comparison study,
however, lie a suggestion that, almost 10 years later, is rapidly becoming a mainstream idea in forecasting,
namely, the use of ensembles, for example, giving different weights to different models during different
phases of the solar cycle.

Other competing models that are based on more standard statistical analysis are Turner and Li (2008) and
Kellerman et al. (2013), which reported prediction efficiencies not dissimilar from themodels based onNNs.
For instance, Figure 8 in Kellerman et al. (2013) shows PE as function of time for the period 1992–2010,
roughly ranging from 0.4 to 0.8 (1-day ahead) and 0.2 to 0.6 (2-days ahead).

Yet another methodology that is complementary to NNs is the use of an autoregressive model in one of
its many flavors. Specifically, a NARX model was presented in Wei et al. (2011), where the model perfor-
mance was specifically compared to the model of Ukhorskiy et al. (2004). Higher average values of PE were
reported for the years 1995 and 2000 on which the new algorithm was tested. The extension from NARX to
NARMAX (NARX with Moving Average) was presented in Balikhin et al. (2011), and Boynton et al. (2013)
studied separately several energy bands. With this approach, an explicit formula linking inputs to output
can be derived, fromwhich the long-standing idea of the NARMAX proponents is that some physics insight
can be learned (for instance, which terms contribute the most). For example, in Wei et al. (2011) 30 mono-
mial terms involving solar wind speed v, dynamics pressure Pdyn, vBz term, AsyH, and Symh geomagnetic
indices were retained, even though the explicit formula for the forecasting of electron flux was not explicitly
given. Balikhin et al. (2016) have compared the performance of the Sheffield SNB3 GEO online forecast tool
(based on NARMAX) against the SWPC-REFM model for the period 2012–2014. The accuracy of the fore-
cast in terms of PE was very similar for the two models with SNB3 GEO performing slightly (5–10%) better.
Moreover, the authors pointed out that one main deficiency in relativistic electron forecast is the inability of
predicting dropouts caused by mangetopause shadowing (Turner et al., 2012), which in turn is due to poor
forecast of solar wind parameters at L1.

Sakaguchi et al. (2013) and Sakaguchi et al. (2015) have proposed multivariate autoregressive models based
on Kalman filters to forecast GEO and Medium Earth Orbit energetic electrons (see also Rigler et al., 2004).
A cross-correlation analysis was carried out to identify physical drivers, for a range of time lags and different
L shells. Themore highly correlated quantities are solar wind speed, magnetic field, dynamics pressure, and
the geomagnetic indices Kp and AE. Predictions from 1 to 10 days ahead were tested in a 8-month window
(September 2012 to December 2013). Interestingly, predictions for GEO yielded smaller prediction efficiency
than for L = 3.6, 4.6, 5.6. Indeed, a clear trend was found where orbits closer to Earth (smaller values of L)
were easier to predict.
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Bortnik et al. (2018) have proposed a two hidden layers NN to model radiation belt electrons in the energy
range 1.8–7.7 MeV and L < 6, by using the SYM-H index (sampled at 5-min cadence). They used ∼188,000
data points from the Relativistic Electron Proton Telescope instrument on-board the two Van Allen Probes
and achieved a correlation coefficient in the range∼0.73–0.84, generally becoming progressively lower with
increasing energy.

All the cited models focused on high-energy electrons (>2MeV). One of the very fewmodels that attempted
to predict also lower energies has been presented in Shin et al. (2016). They still used a rather simple NN,
although the number of hidden neurons was now increased to 65. Also, it is interesting that their network
was designed to forecast simultaneously 24-hourly values of the electron flux in a 1-day window. Regarding
the inputs, a slight novelty with respect to past work was the use of the Akasofu parameter (Akasofu, 1981).
All input variables were considered with their 4-hr history. Themain results were as follows: The prediction
efficiency decreases with decreasing electron energy, and it depends on themagnetic local time (more so for
low energies than high energies). The reported PE for >2 MeV electrons was 0.96 (1 hr ahead) and ∼0.7 (24
hr ahead), when tested with GOES 15 data. However, it has to be pointed out that these metrics have been
calculated on the validation test and not on an independent test set. Hence, the generality of such a good
performance was not demonstrated.

Following the current trend in Machine Learning of “going deeper,” a deep learning model has finally
appeared in the arena of energetic electron flux forecasting, in 2018. The paper by Wei et al. (2018) uses a
so-called LSTM (Hochreiter & Schmidhuber, 1997), which has been successfully employed in time series
forecasting. In this paper, both daily and hourly forecasts are presented, testing several combinations of
inputs and number of hidden neurons (the largest being 512). Three years (2008–2010) were used for test-
ing. Maybe because of the computational cost of training a LSTM network, only three inputs were used in
all experiments (one of which is always the flux itself). As a result, the prediction efficiency reported is not
substantially higher than what was obtained with more traditional networks. For instance, the highest PE
for the daily prediction (averaged over 1 year of forecast) was 0.911.

Finally, the paper by Miyoshi and Kataoka (2008) needs to be mentioned, for the simple reason that it
appears to be the only model that produces a probabilistic forecast instead of single-point predictions. The
importance of probabilistic predictions is a recurring theme in this review paper and they pose an important
challenge for future Space Weather research. The model of Miyoshi and Kataoka (2008) is not very sophis-
ticated, being based on the statistical analyses of superimposed epochs, taking seasonality and solar wind
speed into account. The model is essentially a climatological model, and the forecast is based on long time
average (11 years) of observed stream interfaces. Unfortunately, no quantitative metrics were discussed.

5.4. Recapitulation—Relativistic Electrons at Geosynchronous Orbit

Similarly to the predictions of geomagnetic indices, it is hard to draw a straightforward conclusion from
the review presented in the previous section for relativistic electrons at geosynchronous orbit. Many dif-
ferent approaches have been tried, mostly using NNs, but lessons from past works have not always been
taken in consideration. Hence, newer models often did not outperform older ones. Moreover, a trait that
undermines most works in the field of Space Weather predictions is the lack of a standard and agreed-on
set of “challenges” or benchmarks commonly used to assess and validate different models. As a result, the
metrics reported in one paper cannot easily be transferred to another paper, which is trained and tested
on different sets. In passing, we note that the Space Weather community has been involved in the past in
community-wide validation efforts, especially to support model transition to operations. One such example
concerns the geospace model to predict ground magnetic field perturbations (Glocer et al., 2016; Pulkkinen
et al., 2013; Welling et al., 2018).

It appears that the inaccuracies of current models are mostly due to the uncertainties in the forecast of solar
wind parameters that are used as drivers to estimate future fluxes of relativistic electrons. Another source
of uncertainty might be to the internal magnetospheric dynamics that is not easily captured by black-box
models (for instance, substorm cycles). As highlighted in Jaynes et al. (2015), a simple causal relationship
between a fast solar wind driver and the enhancement of radiation belt electron fluxes might miss the rare
occurrences when high-speed solar wind streams do not produce flux enhancements, if the two distinct
population of electrons (termed source and seed) are not properly accounted for.
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We notice that even though most early works have focused on geomagnetic orbit, nowadays we might have
enough data to train models that cover a wider range of orbits (with increasing relevance to SpaceWeather).
In this perspective, a gray-box approach can once again be very effective. For instance, the Fokker-Planck
(quasi-linear) approach that describes the evolution of particle phase space density through a multidimen-
sional diffusion equation (Drozdov et al., 2015; Tu et al., 2013) will benefit from amachine learning estimate
of boundary conditions (Pakhotin et al., 2014) and from Bayesian parameterization of diffusion coefficients
and electron timeloss (Camporeale &Chandorkar, 2017).We emphasize that themodel presented in Li et al.
(2001) represents an early (non-Bayesian) attempt of gray-box modeling, with a large number of ad hoc
assumptions and empirical chosen parameterization, which could in the future be improved by means of
Bayesian data assimilation and machine learning.

Finally, most of the considerations about geomagnetic indices predictions (section 5.2), hold true for the
forecast of relativistic electrons as well. The main challenge in the future will be to extend the predictions
to longer time horizon. This will necessarily mean coupling particle forecasts to the forecasts of solar wind
conditions, eventually driven by solar images. It will also require to understand and being able to model the
propagation of uncertainties from one model to another.

5.5. Solar Images

As already mentioned, solar images offer a large amount of information that seems to be well versed for
machine learning techniques. Because the overall amount of data that one would like to use for machine
learning can easily exceed hundreds of gigabytes (SDO produces about 1.5 Tb of data per day), it is important
to use some dimensionality reduction techniques. These are methods that, exploiting the linear or nonlin-
ear relations between attributes in the data, seek to apply a transformation to the original data set, reducing
their initial dimensionality, at the cost of a minimal loss of information. Banda et al. (2013) have investi-
gated several dimensionality reduction techniques for large-scale solar images data (linear methods: PCA,
Singular Value Decomposition, Factor Analysis, Locality Preserving Projections; and nonlinear methods:
Isomap, Kernel PCA, LaplacianEigenmaps, and Locally Linear Embedding). For details on each one of these
techniques, the reader is referred to the original publications and references therein.

The two tasks where solar images can be effectively used and that we discuss in the following are the
prediction of solar flares and of CMEs propagation time.

5.5.1. Solar Flares

Most of the works that use solar images tackle the problem of solar flares prediction. Solar flares are a sud-
den conversion of magnetic energy into particle kinetic energy associated with large fluxes of X-rays. Flares
are categorized as A-, B-, C-, M-, or X-classes, depending on their X-rays peak flux measured by the Geo-
stationary Operational Environment Satellite (GOES). Flares forecast is certainly one of the major active
area of research in Space Weather, due to their technological consequences, such as radio communication
black-outs, or increase in satellite drag. One of the first attempts to use a NN to predict flares is probably
Fozzard et al. (1988). Seventeen binary inputs were used to feed a five-neuron hidden layer, that resulted
in three output neurons (one for each flare class: C, M, and X). Another pioneering work was proposed
in Borda et al. (2002), where a single hidden layer feed-forward NN was used to perform a binary classifi-
cation on the occurrence of flares. They used images from the Argentinian HASTA telescope and selected
seven features extracted from the images. The data set was necessarily small (361 events in total), and they
reported an accuracy of 95%

More recently, Wang et al. (2008) have developed a single hidden layer NN that uses features based on three
quantities extracted from SOHO/MDI images: the maximum horizontal gradient, the length of the neutral
line, and the number of singular points of the photospheric magnetic field. Data from 1996-2001 was used
for training and the whole year 2002 was used for testing. A full performance analysis was not conducted,
but the overall ratio of correct forecast was indicated to be around 69%.

Yu et al. (2009) have realized the importance of analyzing time sequences of predictors. They used the same
three features as in Wang et al. (2008) and have employed an analysis based both on autocorrelation and
on mutual information, to select the optimal sliding window of past events from which their method would
be trained. The chosen window contained 45 data points, with cadence 96 min (the sampling intervals of
SOHO/MDI magnetograms). They have tested two different machine learning techniques: a Decision Tree,
and a Learning Vector Quantization NN which is a particular version of a NN for supervised classification
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(Kohonen, 1990). The main result of the paper was in showing how the sliding window helped in boosting
the performance of both methods by about 10%.

Yu et al. (2010) have proposed a method based on a Bayesian network using again the same three features
as in Wang et al. (2008). The Bayesian network is a probabilistic graphical model that connects variables by
their respective conditional probabilities. The output of the network is a binary classifier (flare/no-flare),
which in this case predicts whether a flare of at least class C1.0 is produced within a 48-hr window. The best
model presented in Yu et al. (2010) yielded a hit rate of ∼88% and Heidke Skill Score HSS ∼ 0.7.

Bian et al. (2013) have investigated a method based on the so-called Extreme Learning Machine (ELM;
Huang et al., 2006). ELMs have a controversial history, but they can simply be understood as single hidden
layer feed-forward NNs, with the interesting feature of having their hidden weights and biases randomly
chosen. The training does not employ a standard iterative algorithm, such as back-propagation or an evo-
lutionary algorithm. Instead, the optimal weights associated to the output layer are calculated via linear
algebra (least squares), by pseudo-inverting the matrix associated with the hidden layer. This translates in a
much faster training and performances often competing with standard and deep NNs (Huang et al., 2015).
In Bian et al. (2013) the total unsigned magnetic flux, the length of the strong-gradient magnetic polarity,
and the total magnetic energy dissipation associated to an active region are used as inputs. The prediction
method is a combination of an Ordinal Logistic Regression (OLR) method with an ELM. The OLR output
consists in four probabilities, respectively associated with classes A or B, class C, M, and X. The OLR out-
put is then fed into the ELM to produce a binary classification. The method yielded positive and negative
accuracies of about 30% and 90%, respectively, for M-class flares.

Boucheron et al. (2015) have developed a SVR model that predicts the type and the time of the occurrence
of a flare. They have extracted 38 spatial features from 594,000 images (time period 2000–2010) from the
SOHO/MDI magnetogram. The output of their regression method is a continuous real value, which is then
mapped to a given class. They account for the imbalance of the data set across different classes, by subsam-
pling the larger classes (weak flares), and they employ a 100-fold cross-validation strategy. They reported an
average error of 0.75 of a GOES class.

Bobra and Couvidat (2015) used a SVM classifier to forecast whether a region will be flaring or not, by
using 13 features (selected among 25 by evaluating their Fisher ranking score; Fisher, 1992), obtained by the
SDO/HMI vector magnetograms. They have identified 303 examples of active regions that have produced
flare (either within a 24- or 48-hr window), in the time period May 2010 to May 2014, and 5,000 examples
of nonflaring active regions. They achieve remarkably good results, with the obvious caveat of a limited test
set (which is selected as 30% of the whole data set, hence resulting in only about 90 positives). Interestingly,
Bobra and Couvidat (2015) present an excellent overview of different performance metrics used for binary
classification, and some of their fallacies when the data set is imbalanced, as in solar flare prediction. See
also Bloomfield et al. (2012) for a discussion of skill scores, in this context. Previous similar works used
line-of-sight magnetic field data, sunspot numbers, McIntosh class, and solar radio flux as input attributes
(Leka et al., 2018; Li et al., 2007; Qahwaji & Colak, 2007; Song et al., 2009; Yuan et al., 2010).

Nishizuka et al. (2017) have built on the work of Bobra and Couvidat (2015) and analyzed the importance of
65 features obtained from 11,700 active regions tracked in the period 2010–2015. The features were obtained
from line-of-sight and vector magnetograms (SDO/HMI) and fromGOES X-ray data. Moreover, a novelty of
this work was to recognize the importance of the chromospheric brightening extracted from the SDO/AIA
1600 Å images. Three machine learning techniques were compared: k-Nearest Neighbor (k-NN) classifier, a
SVM classifier, and an extremely randomized tree. The k-NN yielded the best results, with a TSS greater than
0.9. A caveat of thiswork, pointed out by the authors, is that they have used a random shuffle cross-validation
strategy, that would artificially enhance performance. They also note that the standardization of attributes
strongly affects the prediction accuracy, and that this was not yet widely acknowledged by the solar flare
forecasting community. Finally, a somewhat unsettling finding is that the persistent nature of the flares,
which is the indication of themaximumX-ray intensity in the last 24 hr, turned out the be themost important
feature, once again highlighting the importance of persistent models in Space Weather forecasting.

The same authors have presented a model based on a deep NN in Nishizuka et al. (2018). Here, the fallacy
of randomly splitting the training and test sets was openly addressed and rectified. The same features as in
Nishizuka et al. (2017) were used, with the addition of features extracted from the SDO/AIA 131 Å images,
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totaling 79 features. The network was designed with seven hidden layers, each with either 79 or 200 nodes.
The output layer produced a two-dimensional vector (p(M), p(C)) denoting the probability of a M or C class
event, respectively. The final results, tested on the whole 2015 year, were very promising, yielding a TSS ∼

0.8, 0.6 for M and C class prediction, respectively.

An important milestone in the use of machine learning for solar flare predictions is represented by the
EU-H2020 project FLARECAST, which was explicitly tasked with automatic forecasting based on both sta-
tistical and machine learning techniques. A comprehensive report of the project can be found in Florios
et al. (2018) (see alsoMassone& Piana, 2018). Being a fully dedicated 3-year project, there are several aspects
worth commenting. All the codes produced in the project have been released and are open-access, thus
promising a future legacy and the possibility of a long-standing community-based effort to improve and
adopt their methods. Florios et al. (2018) presents a detailed comparison between three machine learning
methods (a single-layer feed-forward NN, a SVM, and a random forest), and some non–machine learning
(statistical) methods. They tackle specifically the classification task for >M1 and >C1 classes, both as a
binary and a probabilistic prediction. Overall, seven predictors were chosen (six of which were computed
both from line of sight andmagnetograms and three respective radial component), and several performance
metrics were calculated. Interestingly, the paper also provides ROC curves and reliability diagrams for prob-
abilistic forecasts. Although no single method was consistently superior over the whole range of tasks and
performance metrics, the random forest was slightly better than the other methods, with the best reported
TSS ∼ 0.6. Also, by using a composite index that weights accuracy, TSS and HSS, and ranking different
methods (with different probability thresholds), the random forest scored in the top six positions for bothM
and C classes forecast. Finally, the paper proves the superior ability of forecasting of the machine learning
methods versus the statistical ones. Unfortunately, the authors used a random split between training and
test sets, which is well known to artificially increase the performance metrics and leaves room for questions
about the generalization of the results.

Several novelties with respect to previous approaches have been introduced by Jonas et al. (2018). They
recast the problem from a fixed-time forecast (e.g., 12- or 24-hr-ahead prediction) to the prediction of flare
occurrence within a certain time window; that is, will an active region produce an M or X class flare within
the next T hours? They specifically investigated short-time (T = 2) and daily (T = 24) predictions. Similar
to Bobra and Couvidat (2015), a strong emphasis was put on the imbalanced nature of data (with a posi-
tive/negative ratio of 1/53 for the 24-hr prediction). They appropriately split the data into training and test
sets, by segregating all the data associated with the same active region to either one of the sets. One of the
most interesting novelties, from a machine learning perspective, is that, along with the classical features
derived from vector magnetic field (same as in Bobra & Couvidat, 2015), and features that characterize the
time history of an active region, they also considered features automatically extracted from HMI and AIA
image data. They did that by applying a filtering (convolution) procedure, followed by a nonlinear activa-
tion function and downsampling the filtered image to a single scalar. In principle, this procedure is not very
dissimilar to what is done in a CNN, except the filters are not trained to minimize a specific cost function,
but they are chosen a priori.

This is an interesting approach that allows to compare the predictive power of physics motivated and auto-
matically extracted features. Despite having automatically generated features from 5.5 Tb of image data,
taken between May 2010 and May 2014, and to have at their disposal a rich set of features, the authors
have then resorted to use linear classifiers. Two methods were compared (with different regularization
term), both designed to minimize the TSS. They found that the (automatically generated) photospheric
vector-magnetogram data combined with flaring history yields the best performance, even though by
substituting the automatically generated features with the physical ones does not strongly degrade the
performance (within error bars, TSS ∼ 0.8). Somewhat surprisingly, when using all combined features
(physics-based, flare history, and automatically generated fromHMI and AIA), the performance was appre-
ciably lower than in the previous two cases. In conclusion, as pointed out by the authors, the results of this
paperwere only slightly better than the original results presented in Bobra andCouvidat (2015). Yet, it would
be interesting to asses if the automatically generated features would benefit more from a nonlinear classifier.

It is interesting to notice that all the works commented above do not use solar images directly as inputs for
the classifiers, but instead, they rely on features extracted from the solar images. The majority of the models
use features that have an interpretable physicalmeaning. In this sense it seems that the solar flare forecasting
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community (even its machine learning enthusiast portion) has not yet embraced a full black-box approach
where the feature extraction is fully automated.

The single exception is represented by the recent paper by Huang et al. (2018). Here, images of active region
patches of size 100×100 pixels, extracted both from SOHO/MDI and SDO/HMI, are directly fed into a CNN,
without a prior hand-crafted feature extraction. Two convolutional layers with sixty-four 11×11 filters each
are used. As it is customary, the features extracted from the convolutional layers are then fed into two fully
connected layers, respectively, with 200 and 20 neurons, which finally produce a binary output. The model
forecasts C, M, and X class flares for 6-, 12-, 24-, and 48-hr periods. The performance metrics do not seem
to yield superior results than early works with prechosen features. The TSS ranges between ∼0.5 for C class
and ∼0.7 for X class.

5.5.2. CMEs and SolarWind Speed

CMEs are violent eruptions of magnetized plasma that leave the surface of the Sun with speed as large as
1,000 km/s. Predicting the evolution of a CME as it expands away from the Sun and travels toward Earth
is one of the major challenges of Space Weather forecasting (Kilpua et al., 2019). Indeed, it is well known
that the speed and the magnetic field amplitude and orientation of the plasma that impinges on the Earth's
magnetosphere are causally related to the onset of geomagnetic storms (Gosling, 1993). The low-density
magnetized plasma that constitutes the solar wind is well described bymagnetohydrodynamics (MHD), and
the standardway of forecasting CME propagation adopted by all major SpaceWeather forecasting providers,
is to resolve numerically the MHD equations, with boundary and initial conditions appropriate to mimic an
incoming CME (see, e.g., Lee et al., 2013; Liu et al., 2013; Parsons et al., 2011; Scolini et al., 2018). We note in
passing that the problem of determining boundary and initial conditions (which are not completely observ-
able) constitute a core challenge for quantifying the uncertainties associated with numerical simulations
(Kay & Gopalswamy, 2018), and where machine learning techniques can also be successfully employed,
especially within the gray-box paradigm commented in section 3.

Because many models and codes have been developed in years by different groups, an effort to collect and
compare results of different models is being coordinated by the NASA's Community Coordinated Modeling
Center (CCMC), with a public scoreboard available at https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/.
The web-based submission form allows any registered user to submit in real time their forecast. Riley et al.
(2018) have recently presented a statistical analysis of the 32 distinct models that have been submitted in
the interval 2013–2017, for a total of 139 forecasts. Even though different teams have made different num-
ber of submissions (ranging from 114 forecasts from the NASA Goddard Space Weather Research Center
to just 1 from the CAT-PUMA team), this paper provides a useful baseline against which any new model
should compare its performance. We refer the reader to the original paper to appreciate the many caveats of
the statistical analysis (for instance, the bias due to choosing which events to submit), but for the purpose
of this review it is sufficient to capture the overall picture. The mean absolute error of the arrival time aver-
aged over models ranges betweenMAE = 11.2 hr (2013) andMAE = 22.6 hr (2018), with typical standard
deviations of ±20 hr. Interestingly, the authors noted the somewhat discouraging result that forecasts have
not substantially improved in 6 years.

Liu et al. (2018) have presented a model to predict the arrival time of a CME, using SVM. A list of 182
geo-effective CMEs was selected in the period 1996–2015, with average speeds ranging between 400 and
1,500 km/s. Eighteen features were extracted both from coronagraph images (SOHO/LASCO) and from
near-Earth measurement (OMNI2 database). By ranking the importance of the features, based on their
Fisher score, they showed that the CME average and final speed estimated from the field of view of LASCO
C2 are by far the most informative inputs, followed by the CME angular width and mass, and the ambient
solar wind Bz. The performance of the method was remarkable, with a root-mean-square error RMSE ∼

7.3 hr.

The relationship between CMEs and flares is still not completely understood. Indeed, some active regions
trigger both a flare and a CME, while in other regions flares are not associated to a CME. In Bobra and
Ilonidis (2016), the authors have developed a classifier based on SVM to study features that can distinguish
between the two cases and eventually to forecast whether an active region can produce an M or X class
flare. Themethodology is very similar to the one in Bobra and Couvidat (2015), with 19 physicallymotivated
features extracted from the SDO/HMI vectormagnetometer. The best performingmethod yields aTSS ∼ 0.7
and uses no more than six features.
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Inceoglu et al. (2018) have extended the methodology presented in Bobra and Couvidat (2015) devising
a three-category classifier: the new method predicts if an active region will produce only a flare, a flare
associatedwith CME and SEPs, or only a CME. Themachine learning algorithms explored are a (multiclass)
SVM, and a single hidden layer NN. The work builds on the previous findings of Bobra and Couvidat (2015)
in choosing the features and selecting active regions from SDO/HMI images. Several models were built and
compared with prediction times ranging from 12 to 120 hr. The performance in terms of TSS was very high,
with the best models achieving TSS ∼ 0.9.

The study of CME propagation is obviously only a part of the bigger challenge of being able to accurately
model and forecast the ambient solar wind properties, in particular speed andmagnetic field. A comprehen-
sive review about the state of the art in solar wind modeling resulting from a workshop on “Assessing Space
Weather Understanding and Applications” can be found in MacNeice et al. (2018). One of the main con-
clusions of the review is that currently empirical models outperform both semiempirical and physics-based
models in forecasting solar wind speed at L1, and all models perform poorly in forecasting Bz.

One of themain application ofmachine learning in forecasting solar wind speed 3 days aheadwas presented
in Wintoft and Lundstedt (1997, 1999). A potential field model was employed to expand the photospheric
magnetic field obtained frommagnetograms to 2.5 Rs. A time series of the source surface magnetic field was
then fed to a radial basis NN to output the daily average solar wind speed. The best model gave a RMSE ∼

90 km/s and cc ∼ 0.58.

The hourly averaged solar wind speed was predicted using SVR in Liu et al. (2011). Several case studies were
presented focusing either on CME arrival or coronal hole high-speed streams, but overall a certain degree
of one-step persistence seemed to dominate the results. Indeed, the fact that a persistence model yields an
excellent performance in short-term predictions has been known for long. This has to do with the fact that
solar wind variations occur on average on long time scales and that sudden variations are relatively rare.
Hence, when averaged over long time periods the performance calculated by means of simple metrics such
as RMSE is not sensitive to large errors in predicting sudden changes of speed.

A simple statistical model (not machine learning) based on the construction of conditional probability den-
sity functions (PDF) has been presented in Bussy-Virat and Ridley (2014) and later refined in Bussy-Virat
and Ridley (2016). The PDF model is based on past speed values and slope (i.e., if the speed is increasing or
decreasing) and it outputs a probabilistic prediction by linearly combining the prediction based on the PDF
and the actual speed observed one solar rotation ago. The PDFmodel was shown to perform equal or better
than the persistence model for all times up to 5-day prediction (the further out the prediction, the better the
model), with an error ranging from RMSE ∼ 66 to RMSE ∼ 90 km/s.

Inspired by themodel ofWintoft and Lundstedt (1997), Yang et al. (2018) have developed a NN-basedmodel
that predicts solar wind speed 4 days in advance. The Potential Field Source Surface (PFSS) model was
used to derive seven attributes, to which they added the solar wind speed 27 days in the past. Once again, a
persistence model provides a very strong baseline. Indeed, a prediction based solely on the past solar wind
speed (approximately one solar rotation in the past), yields already a correlation coefficient cc ∼ 0.5 and a
RMSE ∼ 95 km/s. The final model results in cc ∼ 0.74 and RMSE ∼ 68 km/s, which is probably the state of
the art, as of today.

Other works that have tackled the problem of solar wind velocity predictions are Dolenko et al. (2007),
Innocenti et al. (2011), and Liu et al. (2011).

5.6. Recapitulation—Solar Images

The first thing that appears evident by reviewing the literature of machine learning techniques applied to
forecast of solar flares, CMEs, and solarwind prediction is that solar images are rarely used directly as inputs.
Indeed, with the exception of Huang et al. (2018), all the presented works use solar images (magnetograms
and extreme ultra violet images) to extract features that are either hand-crafted (physics-based) or auto-
matically extracted via predefined filters. One might wonder whether this choice is simply dictated by the
computational cost of processing images and having a large dimensional input in machine learning algo-
rithms. As highlighted by the FLARECAST project (Florios et al., 2018), machine learning techniques have
been shown to give better performance than statistical methods. Thismotivates the quest formore advanced
and accurate techniques. The three problems discussed in the last section, however, are profoundly differ-
ent in nature. The imbalanced nature of solar flares data makes it hard to judge the generality of the results.
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In this respect, it has to be noticed that almost exclusively SDO images have been used. Despite the wealth
of information and the high resolution provided by SDO, an open question remains of whether 8 years of
data (i.e., less than a solar cycle) are adequate to train, validate, and test a machine learning model. They
are probably not, and it will be worth to try combining SDO and SOHO images to have a larger data set.
This is not straightforward, since the instruments are different, and it would require some careful prepro-
cessing. Regarding CMEs propagation and solar wind speed forecast, it seems that simple empirical models
are still hard to beat and that adding complexity in terms of machine learning algorithms often does not
pay off. However, it is also true that advanced (computationally demanding) machine learning techniques,
such as deep learning, have not been tried yet. This certainly seems to be a field where the combination
of physics-based models, such as MHD propagation simulations, and machine learning models might be
successfully integrated in a gray-box approach.

5.7. Other SpaceWeather-Related Areas

There are several other areas where machine learning has been applied in a less systematic way but that are
nonetheless promising for a data-driven approach. Plasmaspheric electron density estimation has been pro-
posed in Zhelavskaya et al., 2017 (2017, 2018). Concerning the ionosphere-thermosphere region, ionospheric
scintillation has been modeled in Jiao et al. (2017), Lima et al. (2015), Linty et al. (2019), McGranaghan
et al. (2018), and Rezende et al. (2010). The estimation of maps of total electron content (TEC) has been
tackled in Acharya et al. (2011), Habarulema et al. (2007), Habarulema et al. (2009), Hernandez-Pajares
et al. (1997), Leandro and Santos (2007), Watthanasangmechai et al. (2012), Wintoft and Cander (2000), and
Tulunay et al. (2006). The foF2 parameter (which is the highest frequency that reflects from the ionospheric
F2-layer) has been studied in Oyeyemi et al. (2005), Poole and McKinnell (2000), and Wang et al. (2013),
and thermosphere density in Choury et al. (2013) and Pérez et al. (2014).

6. New Trends inMachine Learning

A somewhat different interpretation of machine learning with respect to what has been discussed until
now divides its applications into two fields. On one side, machine learning can be used to accelerate and
automate a number of tasks that are very well understood and mastered by human intelligence. Supervised
classification is a typical example, where the advantage of “teaching” a machine how to distinguish objects
stays in the ability of classifying them in an automatic, faster, and possibly more accurate way than it would
have been done by humans. On the other side, machine learning can be used for knowledge discovery, that
is, to truly deepen our understanding of a given system, by uncovering relationships and patterns not readily
identifiable. A remarkable example is in algorithms learning how to play games without knowledge of any
preprogrammed rule, using techniques that belong to a subfield of machine learning called reinforcement
learning (RL), which is orthogonalwith respect towhat has been discussed in section 3. A reference textbook
is Sutton and Barto (2018). The most famous example is now AlphaGO, which has defeated Lee Sedol, the
world champion in the game of Go. This might not sound so extraordinary (particularly to non-Go players,
like myself). After all it was already clear in 1997, with the defeat of Chess master Kasparov from DeepBlue
(IBM), that computers could beat human masters in complex games (although it has to be noted that Deep-
Blue and AlphaGO are technically very different, with the latter not being specifically preprogrammed).
However, what has happened in the AlphaGo-Seidol game was something that will stay in the annals of AI.
The computer played (at least one time) a move that was simply not understood by the experts. It was at
first believed to be a mistake, until it became clear that the software had actually discovered a new strategy
that the collective intelligence accumulated in thousands of years of playing had not yet considered. This is
knowledge discovery at its finest (see Holcomb et al., 2018; Metz, 2016, for an account of the now famous
Move 37).

Obviously, many applications live in between the two fields of discovery and automation, and machine
learning is moving at such a fast pace that more and more applications and ideas will be unveiled in the
coming decade. In this section we describe three new ideas in machine learning that we believe will soon
become tools for scientific discovery in physics.

Physics-informed NNs. We have described how a gray-box approach combines data-driven machine learn-
ing with physics-based simulations (see section 3). The field of scientific computing, that is, the ability of
numerically solving equations, is the backbone of numerical simulations. It has solid roots in half a cen-
tury of discoveries in computer science and in the even longer history of numerical analysis. As such, it
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is a discipline that, so far, seems to be immune to machine learning. However, recent works have investi-
gated how to solve differential equations by using deep NNs (see, e.g., Raissi & Karniadakis, 2018; Rudy
et al., 2017). The underlying idea is that a NN constructs a nonlinear map between inputs and outputs
that, as complex as it might be, is analytically differentiable. Hence, one can enforce a set of equations
to be very accurately satisfied on a given number of points in a computational domain. This idea does
not differ very much from mesh-less grid methods, that expand the function of interest into a basis (for
instance, using RBFs; see, e.g., Fasshauer, 1996; Liu, 2002). The main difference resides in the fact that
NNs offer a much richer set of basis, in terms of functions that can be represented. Examples have been
shown where fluid equations, such as the Burgers equation, can be solved accurately, even reproduc-
ing shocks (Raissi et al., 2017) and free parameters to be estimated from data (Raissi et al., 2017). Being
able to solve partial differential equations with machine learning probably does not exclude the need
to solve the same equations with standard methods, and the two approaches need to be understood as
complementary. However, it is worth investigating in which situations an expensive physics simulation
(for instance, the MHD expansion of the solar wind) might be substituted by a quicker machine learning
approximation.

Automatic machine learning. There is a certain dichotomy in essentially all the NN works commented in
this review. While, on one hand, by resorting to NNs, one surrenders any hope to describe the problem
at hand by means of a clear, intelligible input-output relationship (and the use of a black-box machinery
is indeed an abundant criticism), on the other hand, it still seems that the typical work does not exploit
in full the capability of NNs, by resorting to the most simple architecture, the multilayer feed-forward
network. In a sense, a certain degree of understanding on how the network works and the ability to grasp
it graphically is still preserved. In passing, the reader might have noticed that we have (intentionally) not
included here the typical graph of a NN. Such a visual explanation of NNs can be found in the majority
of papers in this review.
Of course, the main reason to use simple networks might simply be the computational cost of training
and comparing different architectures. Still, from the perspective of seeking the best nonlinear map that
describes data using aNN, there are no particular reasons to stick to a simple, human-intelligible network.
Based on this premise, a recent trend called auto-ML goes in the direction of automatically searching
for the most performing architecture, and to optimize a certain number of hyperparameters. From a
mathematical perspective, this is again an optimization problem, even though the search space is now
discrete (e.g., number of neurons). Hence, promising techniques use genetic algorithm to make different
networks compete, in search of the most performing one for a given task (Hutter et al., 2019).
In the field of Space Weather, auto-ML might be particularly effective when dealing with different sub-
systems, such as the radiation belts, the ring current, and the solar wind, which have both internal
dynamics and external interactions between them. Being able to explore themost efficient graph connec-
tions among neurons pertaining to different physical domains might result in a better ability of encoding
the complex Sun-Earth interactions.

Adversarial training. A major weakness of NNs is that they are vulnerable to adversarial examples. In the
context of image classification, for example, an adversarial example is an image that has been produced
by applying a small perturbation to an original image. That perturbation can be tailored in such away that
causes the algorithm to misclassify the image. A straightforward way of generating adversarial examples
has been proposed in Goodfellow et al. (2015). If we denote with x, y, and L(x, y) the original input, the
target output, and the loss function, respectively, then a new input

x′ = x + �sign
(
∇xL(x, �)

)
(5)

(where � is a small value) will result in a larger loss function than the one calculated on the original input
x. Simply put, the adversarial example perturbs the input in the “right” direction to increase the loss.
Taking into account adversarial examples makes a machine learning model more robust and generaliz-
able. An important application of the idea of adversarial examples are Generative Adversarial Networks
that can be used to artificially generate inputs hence augmenting data or filling gaps in the data. A recent
example of the use of Generative Adversarial Networks in space physics is the generation of TEC maps
(Chen et al., 2019).
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7. Conclusions

More than a decade ago, in a review paper of that time, Lundstedt (2005) pointed out that physics-based
models were under development but that it could have taken as long as 10 years for those models to really
be useful for forecasting. The prediction was spot on, as only recently forecasters have started to use more
systematically global simulations to forecast geomagnetic activity (see, e.g., Kitamura et al., 2008; Liemohn
et al., 2018; Pulkkinen et al., 2013; Welling et al., 2017). On the other hand, early adopters of machine learn-
ing (even before the term was widely used) have encouraged the physics community to look more closely
at machine learning techniques, also at least a decade ago. For instance, Karimabadi et al. (2007) have
prototyped a machine learning technique to automatically discover features such as flux transfer events
(Karimabadi et al., 2009).

Figure 4 suggests that the field has now reached some degree of recognition within the space physics and
SpaceWeather community. Forecasting based onmachine learning techniques is certainly not yet themain-
stream approach, but there is no reason to doubt that it will becomemore andmore predominant within the
next decade. My personal prediction is that, in particular, the gray-box approach that we have tried to high-
light and comment several times in this reviewwill slowly take the place ofmore conventional physics-based
models.

A certain skepticism surrounding the use of machine learning in physics is undeniable. The main argu-
ment revolves around the fact that we (supposedly) do not still understand why certain machine learning
techniques work, and this is in stark contrast to our perfect understanding of physics laws (Newton's,
Navier-Stokes, Maxwell's, etc.) and their assumptions and limitations. In reality, physics-based models fail
at least as often as empirical models in SpaceWeather forecasting, for the simple reasons that their assump-
tions can usually be checked only a posteriori and that they still rely on several empirical (data-derived)
parameterizations.

This review is definitely not the place to discuss in length one or the other thesis. However, we would like
to briefly mention that research on the mathematical foundations of machine learning and its connection
with physics is a growing and intense area. The reader interested in the theme of why machine learning
works so well in physics and why deep learning often works better than shallow learning should consult,
for example, Lin et al. (2017) and Poggio et al. (2017).

Going back to the field of Space Weather predictions, we would like to conclude with a list of challenges
that we envision will be tackled within the next decade and that we encourage the community to address.
Whether or not this research will result in better forecasting capabilities is hard to say, but we are pretty
confident that it will at least result in a better understanding and acquired knowledge of the Sun-Earth
system.

7.1. Future Challenges inMachine Learning and SpaceWeather

The information problem. What is the minimal physical information required to make a forecast? This prob-
lem lies at the heart of the failure or success of any machine learning application. If the features chosen
as input do not contain enough information to set up the forecasting problem as physically meaning-
ful in terms of cause-effect, the machine learning task is hopeless. Even though our understanding of
the underlying physics of most Space Weather problems can help in formulating a well-posed task, this
remains an open challenge in many applications. For instance, is it sufficient to use solar images from
magnetograms and extreme ultraviolet channels to be able to predict solar flares? The approach that uses
tools from information theory should help answer some of these questions, even if they provide rather
qualitative indications.

The gray-box problem. What is the best way to make an optimal use of both our physical understanding,
and our large amount of data in the Sun-Earth system? The models that are routinely used in Space
Weather forecasting are inevitably approximated and rely on the specification of several parameters that
are often not observable. An example is the diffusion coefficients in the quasi-linear approach for the
Earth's radiation belts. An appropriate popular aphorism in statistics is that all models are wrong, some
are useful (Box, 1979). The physics-based models employed in predicting solar wind propagation and
CME arrival time are not competitive with respect to empirical models (Riley et al., 2018). How do we
incorporate a gray-box approach in Space Weather modeling? Learning from other geophysical fields,
promising approaches seem to be Bayesian data assimilation and parameter estimation. In turn, these
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approaches open the problem of running ensemble simulations in a reasonable amount of time, which
results in the surrogate problem (see below). On the other hand, non-Bayesian approaches to solve an
inverse problem, based on deep learning, might be equally promising.

The surrogate problem. What components in the Space Weather chain can be replaced by an approx-
imated black-box surrogate model? What is an acceptable trade-off between lost of accuracy and
speed-up? For instance, in scientific computing and uncertainty quantification, several methods have
been devised to combine a few high-accuracy simulations with many low-accuracy ones to quickly scan
the space of nonobservable input parameters. These methods take the name of multifidelity models
(Fernández-Godino et al., 2016; Forrester et al., 2007). On the other hand, is it possible to devise surrogate
models that enforce physical constraints, such as conservation laws, hence reducing the search space of
allowed solutions?

The uncertainty problem. Most Space Weather services provide forecast in terms of single-point predictions.
There is a clear need of understanding and assessing the uncertainty associated to these predictions.
Propagating uncertainties through the Space Weather chain from solar images to L1 measurements to
magnetospheric and ground-based observations is a complex task that is computationally demanding.
The Uncertainty Quantification community has devised methods to estimate uncertainties in ways that
are cheaper than brute force, and the Space Weather community should become well versed in these
techniques. The mainstream approach is called nonintrusive, and it boils down to collecting an ensemble
of runs using a deterministic model and estimating uncertainties from the statistics of the ensemble. The
two difficulties of this approach (that is essentially aMonte Carlomethod) are in selecting how to scan the
input parameter space to produce the ensemble and how to estimate the probability associated with each
individual input parameter. More details on these problems can be found in Camporeale et al. (2019).

The too often too quiet problem. Space weather data sets are typically imbalanced: many days of quiet con-
ditions and a few hours of storms. This poses a serious problem in any machine learning algorithm that
tries to find patterns in the data. It is also problematic for definingmeaningfulmetrics that actually assess
the ability of a model to predict interesting events. On one hand, the problem will automatically allevi-
ate with more and more data being used for machine learning. On the other hand, it raises the question
about whether it is appropriate to augment the available data with synthetic data that hopefully do not
degrade the information content of the data set. Something that will be worth pursuing in the future is
to use simulation data in the machine learning pipeline.

The knowledge discovery problem. Finally, the problem thatmany physicists care themost aboutwhen think-
ing about using machine learning. How do we distill some knowledge from a machine learning model
and improve our understanding of a given system? How do we open the black-box and reverse-engineer
a machine learning algorithm? As already mentioned, this is now a very active area of research in the
computer science and neuroscience departments. Ultimately, a machine learning user is faced with the
problem of focusing either on the make it work, or on the make it understandable. We believe that this
is a dilemma too well known to Space Weather scientists, being a discipline rooted in physics but with a
clear operational goal. We also think that a systematic machine learning approach to SpaceWeather will,
in the long term, benefit both the forecasting and the science behind it.

In conclusion, the argument behind the push of better understanding what is going on in the black box
is simple: How can we trust an algorithm that we do not have full control of? However, as pointed out
from Pierre Baldi, we trust our brain all the time, yet we have very little understanding of how it works
(Castelvecchi, 2016).

Appendix A: Neural Networks: A Short Tour With SomeMath and No Biology

A NN is a powerful and elegant way of approximating a complex nonlinear function as a composition of
elementary nonlinear functions. In its simplest form, a NN takes a multidimensional input argument x =

{x1, x2, … , xNi} of dimension Ni and outputs a single scalar y, by applying the following mapping:

�(x) =
q∑

i=1

wi�

(
Ni∑

�=1

ai�x� + bi

)
, (A1)

where �(·) is a continuous nonlinear function (in jargon called activation function). Historically, activation
functions were chosen as sigmoids, that is, with lims→∞�(s) = 1 and lims→−∞�(s) = 0. Modern NN use
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a REctified Linear Unit (RELU) or some modifications of it as an activation function. A RELU � holds
�(s) = max(0, s). In equation (A1),wi and aij represent weights, and b is a so-called bias vector. Effectively,w,
a, and b represent free parameters that need to be optimized. A NN represented by equation (A1) is called a
single hidden-layer feed-forward network. In simple words, the input vector goes first through a linear trans-
formation by the weights a and the bias vector b (this can be represented as a matrix-vector multiplication).
The new vector resulting from such transformation is then fed into the activation function. This operation is
repeated q times (each time with different weights a and biases b), and in turn the q results of �(·) are again
linearly combined through the weight vector w. The number q is a free parameter, in jargon called number
of neurons. Equation (A1) might look as a cumbersome mathematical construct and not an intuitive way of
defining an approximation for a given nonlinear function. However, the theory of NN has a strong mathe-
matical foundation, in the proof that equation (A1) can approximate any continuous function with arbitrary
precision, for q large enough (Cybenko, 1989). A practical way of understanding NN, especially when com-
pared to more traditional methods, is that the superposition of activation functions provide a much richer
basis function, being optimized (through the fine-tuning of the free parameters) to the nonlinear function
that is approximated. An open question remains on how to judiciously choose the values for the weights and
biases. This is done through training using backpropagation. First, a cost function needs to be chosen (see
section 3.1) that measures the distance between the observed and predicted output values. The optimization
problem that the NN seeks to solve is to minimize a given cost function. Because equation (A1) is analytical,
one can compute the derivative of the cost function with respect to each weight, by a simple application of
the chain rule of differentiation. Once these derivatives are computed, an iterative gradient descent method
can be applied.

What is Deep Learning? The output of equation (A1) can be used as an input to another set of activation
functions (not necessarily with the same functional form), which then can be fed to yet another layer and
so on. In this way one can construct a multilayer NN by a simple concatenation of single layers. It is said
that the network grows in depth, hence Deep Learning. Going back to the basis function interpretation, the
advantage of going deep is that the family of functional forms that can be represented becomes much larger,
giving the network a larger expressive power. The downside, of course, is that the number of weights also
increases and the related training cost and overfitting problems.

What is a Convolutional Neural Network (CNN)? The structure described above constitutes what is called a
dense layer. When the input is highly dimensional, like in the case of an image where each pixel represents
an input, dense layers can rapidly result in a too large number of weights. One solution is to replace the
matrix-vector multiplication in equation (A1) to a convolution operation. In this case, a discrete filter (for
instance, a 3× 3matrix) is introduced and the unknown weights to be optimized are the entries of the filter.
The filtered input (i.e., the image convolved with the filter) is then fed to an activation function, similarly
to a standard NN. Also, a convolutional layer is often part of a deep network, where the output of a layer is
fed as the input of the next layer. By using CNN, there are two advantages. First, the number of weights is
reduced and input independent, with respect to a dense layer network. Second, the application of a filtering
operation is particularly well posed when dealing with images. In fact, filtering can extract spatial features
at a given characteristic scale, while retaining spatial transformation invariance (such as translation or rota-
tion invariance). Moreover, the repeated application of filters can process the input image on a number of
different scales and different levels of feature abstraction.
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Valach, F., Revallo, M., Bochníček, J., & Hejda, P. (2009). Solar energetic particle flux enhancement as a predictor of geomagnetic activity
in a neural network-based model. Space Weather, 7, S04004. https://doi.org/10.1029/2008SW000421

Vanajakshi, L., & Rilett, L. R. (2007). Support vector machine technique for the short term prediction of travel time. In 2007 ieee, Intelligent
vehicles symposium (pp. 600–605). IEEE.

Vandegriff, J.,Wagstaff, K., Ho, G., & Plauger, J. (2005). Forecasting spaceweather: Predicting interplanetary shocks using neural networks.
Advances in Space Research, 36(12), 2323–2327.
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