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ARTICLE

The challenge of mapping the human connectome
based on diffusion tractography
Klaus H. Maier-Hein

Tractography based on non-invasive diffusion imaging is central to the study of human brain

connectivity. To date, the approach has not been systematically validated in ground truth

studies. Based on a simulated human brain data set with ground truth tracts, we organized an

open international tractography challenge, which resulted in 96 distinct submissions from 20

research groups. Here, we report the encouraging finding that most state-of-the-art algo-

rithms produce tractograms containing 90% of the ground truth bundles (to at least some

extent). However, the same tractograms contain many more invalid than valid bundles, and

half of these invalid bundles occur systematically across research groups. Taken together, our

results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction

based on orientation information alone, which need to be considered when interpreting

tractography and connectivity results. Our approach provides a novel framework for esti-

mating reliability of tractography and encourages innovation to address its current

limitations.
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T
ractography, a computational reconstruction method based
on diffusion-weighted magnetic resonance imaging (DWI),
attempts to reveal the trajectories of white matter pathways

in vivo and to infer the underlying structural connectome of the
human brain1. Numerous algorithms for tractography have been
developed and applied to connectome research in the field of
neuroscience2 and psychiatry3. Given the broad interest in this
approach, advantages and shortcomings of tractography have
been addressed using a wide range of approaches1, 4–8. Particu-
larly, in vivo tractography of the human brain has been evaluated
by subjective assessment of plausibility9, 10 or qualitative visual
agreement with post-mortem Klingler-like dissections11, 12.
Reproducibility13 or data prediction errors14–16 have been eval-
uated in the context of tractography model verification. However,
these evaluations cannot validate the accuracy of reconstructions
due to the lack of ground truth information17. Ex vivo imaging
and tracing17–23 or physically24–30 and numerically simulated
phantoms31–34 allow validation to some extent, and in specific
circumstances such as basic fiber configurations. The nervous
system, however, is complex and precise ground truth informa-
tion on the trajectories of pathways and their origins, as well as
terminations in the human brain is lacking. This makes it hard to
obtain quantitative and comprehensive reliability estimations of
tractography and to determine which discoveries are reliable
when regarding brain connectivity in health and disease.

State-of-the-art tractography algorithms are driven by local
orientation fields estimated from DWI, representing the local
tangent direction to the white matter tract of interest1.

Conceptually, the principle of inferring connectivity from local
orientation fields can lead to problems as soon as pathways
overlap, cross, branch, and have complex geometries7, 35, 36. Since
the invention of diffusion tractography, these problems have been
discussed in schematic representations or theoretical
arguments7, 8, 37, but have not yet been quantified in brain
imaging. To determine the current state of the art in tractography,
we organized an international tractography competition
(tractometer.org/ismrm_2015_challenge). We employed
simulated DWI of a brain-like geometry as a novel reliability
estimation method that allowed for a quantitative evaluation
of the submissions based on the Tractometer connectivity
metrics38.

At the closing of the competition, we evaluated 96 distinct
tractography pipelines submitted by 20 different research groups,
in order to assess how well the algorithms were able to reproduce
the known connectivity. We also assessed essential processing
steps to pinpoint critical flaws that many current pipelines have in
common. An important positive finding is that most proposed
algorithms are able to produce tractograms containing 90% of the
ground truth bundles, recovering about one-third of their volu-
metric extent. At the same time, most algorithms produce large
amounts of false-positive bundles, even though they are not part
of the ground truth. Results do not improve when employing
higher-quality data or even using the gold standard field of local
tract orientations at high spatial resolution. The findings highlight
that novel technological and conceptual developments are needed
to address these limitations.
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Fig. 1 Overview of synthetic data set. The top row summarizes the phantom generation process. The simulated images are generated from 25 major

bundles, which are shown in the bottom part of the figure. These were manually segmented from a whole-brain tractogram of a HCP subject and include

the CC, cingulum (Cg), fornix (Fx), anterior commissure (CA), optic radiation (OR), posterior commissure (CP), inferior cerebellar peduncle (ICP), middle

cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), parieto-occipital pontine tract (POPT), cortico-spinal tract (CST), frontopontine tracts

(FPT), ILF, UF, and SLF. The connectivity plot in the middle shows the phantom design. The segment positions correspond to the involved endpoint region

(from top to bottom: frontal lobe, temporal lobe, parietal lobe, occipital lobe, subcortical region, cerebellum, brain stem). The radial segment length and the

connection number in the plot are chosen according to the volume of the respective bundle endpoint region. Abbreviations: right (R) and left (L)

hemisphere, head (H) and tail (T) of each respective bundle
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Results
Data sets and submissions. Prior investigations of tractography
methodology have chosen artificial fiber geometries to construct
synthetic ground truth models26, 38. Here, we defined our models
based on the fiber bundle geometry of a high-quality Human
Connectome Project (HCP) data set that was constructed from
multiple whole-brain global tractography maps39 (Fig. 1). Following
the concepts introduced in ref. 40, an expert radiologist
(B.S.) extracted 25 major tracts (i.e., bundles of streamlines) from
the tractogram. This ground truth data set included association,
projection, and commissural tracts that have been previously
described using post-mortem anatomical and electrophysiological
methods41. In total the tracts occupy 71% of the white matter
volume in the human brain. The data set features a brain-like
macro-structure of long-range connections, mimicking in vivo DWI
clinical-like acquisitions based on a simulated diffusion signal. An
additional anatomical image with T1-like contrast was simulated as
a reference. The final data sets and all files necessary to perform the
simulation are openly available (see Data availability).

Twenty research groups with extensive expertise in diffusion
imaging from 12 countries (Fig. 2a) participated in the competi-
tion and submitted a total of 96 tractograms (see Data availability)
generated using a large variety of tractography pipelines with
different pre-processing, local reconstruction, tractography, and
post-processing algorithms (Fig. 2b, Supplementary Note 1).

Performance metrics and evaluation. The Tractometer con-
nectivity metrics38 were used for a quantitative evaluation of the
submissions. Based on the known ground truth bundles, we
calculated true positives, corresponding to the valid connection
(VC) ratio, that is, the proportion of streamlines connecting valid
end points and the associated number of valid bundles (VB),
where a bundle is a group of streamlines. We also computed false
positives, corresponding to the invalid connection (IC) ratio and
the associated number of invalid bundles (IB), as well as recon-
structed volumes, based on the bundle volumetric overlap (OL)
and volumetric overreach (OR) in percent (see “Methods” section
for details and Supplementary Figs. 1, 2 for alternative metrics).

Tractograms contained most of the ground truth bundles. The
volumetric reconstruction of the existing bundles varied greatly
from tract to tract. Figure 3a shows that identified VBs can be
arbitrarily grouped into three clusters of very hard, hard, and
medium difficulty, according to the percentage of OL. Figure 3b
shows corresponding examples that were reconstructed by dif-
ferent tractography techniques. All submissions had difficulties
reconstructing the smallest tracts, that is, the anterior (CA) and
posterior commissures (CP) that have a cross-sectional diameter
of no more than 2 mm, or one or two voxels (very hard, 0%<=

OL< 10%). A family of hard bundles was partly recovered (10%
<=OL< 50%). Bundles of medium difficulty were the corpus
callosum (CC), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus (SLF), and uncinate fasciculus (UF) with
an average of more than 50% volumetric recovery (50%<=OL
<= 100%). A Pearson product-moment correlation coefficient
was computed to assess the relationship between OL and OR (r=
0.88, p< 10–8), indicating a direct link between the probability of
reconstructing a greater portion of a tract (OL) and generating
artefactual trajectories (OR).

Figure 4 shows that on average 21 out of 25 VBs (median 23)
were identified by the participating teams with only four teams
submitting tractograms that contained an OL of more than 60%.
No submission contained all 25 VBs, but 10 submissions (10.4%)
recovered 24 VBs, and 69 submissions (71.9%) detected 23 or
more VBs (Fig. 5a). However, tractography pipelines clearly need
to improve their recovery of the full spatial extent of bundles: the
mean value of bundle volume overlap (OL) across all submissions
was 36± 16%, with an average overreach (OR) of 29± 26%
(Fig. 4c). At the level of individual streamlines, an average of
54± 23% connections were valid (Fig. 4a).

Tractograms contained more invalid than valid bundles. Across
submissions, 36± 17% of the reconstructed individual streamlines
connected regions that were not actually connected. The fraction of
streamlines not connecting any endpoints was 10± 15%. Even
though not part of the ground truth, these streamlines often occur
in dense, structured, and coherent bundles. Submitted tractograms
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contained an average of 88± 58 IBs, which is more than four times
the amount of VBs they contained on average (Fig. 4b). This
demonstrates the inability of current state-of-the-art tractography
algorithms to control for false positives. Forty-one of these IBs
occurred in the majority of submissions (Fig. 5, Supplementary
Fig. 3). Overall average precision on the bundle level was 23± 9%
(recall 85± 15%, specificity 93± 5%). Submissions with at least 23

VBs showed no fewer than 37 IBs (mean 88± 39, n= 69). Sub-
missions with 23 or more VBs and a volumetric bundle overlap of
>50% identified between 99 and 204 IBs.

The bundles illustrated in Fig. 5b were systematically found by
81–95% of submissions without being part of the ground truth.
Interestingly, several of these invalid streamline clusters exhibited
similarities in anatomical location to bundles known or
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previously debated in tractography literature, such as the frontal
aslant tract (FAT)42, the arcuate fasciculus (AF)43, the inferior
frontal occipital fasciculus (IFOF)44, the middle longitudinal
fasciculus (MdLF)45, the extreme capsule fasciculus46, the super-
ior fronto-occipital fasciculus (SFOF)44, 47, and the vertical
occipital fasciculus (VOF)48. These findings suggest that evidence
for the existence of tracts should not be taken solely from
tractography at its current state but complemented by other
anatomical and electrophysiological methods.

Higher image quality may improve tractography validity. To
confirm that our findings revealed fundamental properties of
tractography itself and are not related to effects of our specific
phantom simulation process, we ran two independent imple-
mentations of deterministic streamline tractography (Supple-
mentary Note 2) directly on the ground truth field of fiber
orientations (Fig. 6), that is, without using the diffusion-weighted
data at all. This experiment was repeated for multiple resolutions
(2, 1.75, 1.5, 1.25, 1.0, 0.75, and 0.5 mm). This setup was, thus,
independent of image quality, artifacts, and many other influ-
ences from specific pipeline configurations and the phantom
generation process. Based on the ground truth orientations, the
tractography pipelines achieved overlap scores (76± 6%) that
were previously unreached at similar levels of overreach
(29± 8%). VC ratios were between 71 and 82%. However, the
tractograms still contained 102± 24 IBs (minimum 73).

Methodological innovation may improve tractography validity.
Our results show that the geometry of many junctions in the
simulated data set is too complex to be resolved by current trac-
tography algorithms, even when given a perfect ground truth field
of orientations. Thus, the problems seem to relate to essential
ambiguities in the directional information (Fig. 7). They persisted
in supplementary experiments performed to test the potential of

currently available anatomical constraints and global tractography
approaches (Supplementary Note 2), in which none of the addi-
tionally ran methods surpassed the challenge submissions in
bundle detection performance (Supplementary Fig. 4).

We further investigated the ambiguities tractography encounters
in the synthetic phantom as well as in an in vivo data set. In the
temporal lobe, for example, multiple bundles overlap and clearly
outnumber the count of fiber orientations in most of the voxels. As
illustrated in Fig. 8, single fiber directions in the diffusion signal
regularly represent multiple bundles (see also Supplementary
Movie 1). Such funnels embody hard bottlenecks for tractography,
leading to massive combinatorial possibilities of plausible config-
urations for connecting the associated bundle endpoints as sketched
in Figs. 7c and 8c. Consequently, for the real data set as well as the
synthetic phantom, dozens of structured and coherent bundles pass
through this bottleneck, exhibiting similar fiber counts (cf.
Supplementary Figs. 5, 6) and a wide range of anatomically
reasonable geometries as illustrated in Supplementary Movie 2. A
tractogram based on real HCP data exhibits a whole family of
theoretically plausible bundles going through the temporal lobe
bottleneck even though, locally, the diffusion signal often shows
only one fiber direction (cf. Fig. 8d). Methodological innovation will
be necessary to resolve these issues and better exploit additional
information sources that complement the local orientation fields
estimated from DWI.

Statistical analysis of processing steps. Effects of the methodo-
logical setup of the different submissions on the results were
investigated in a multivariable linear mixed model and revealed the
influence of the individual processing steps on the tractography
outcome (Table 1). The choice of tractography algorithm, as well as
the post-tracking filtering strategy and the underlying diffusion
modeling had a strong effect on overall scores, revealing a clear
tradeoff between sensitivity and specificity (Supplementary Note 3).
Manual editing of tractograms following anatomical priors had a
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negative impact on the number of VBs identified (mean effect: 3.8
± 2.6 bundles) and on the bundle overlap (mean effect: −15± 11%).
However, such techniques showed a positive impact on the average
bundle overreach (mean effect: −16± 9%). Notably, Team 3 post-
processed the tractograms using clustering, reaching 92% validly
connecting streamlines keeping only the larger clusters.

Discussion
We assessed current state-of-the-art fiber tractography approa-
ches using a ground truth data set of white matter tracts and
connectivity that is representative of the challenges that may
occur in human in vivo brain imaging. Advanced tractography
strategies in combination with current diffusion modeling

techniques successfully recovered most VBs, covering up to 77%
of their volumetric extent. This result demonstrates the capability
of current methods and teams to adequately handle numerous
artifacts in DWI and overcome local crossing situations during
tract reconstruction. However, tractography also produced thick
and dense bundles of plausible looking streamlines in locations
where such streamlines did not actually exist. When focusing on
the 64 bundles that were systematically recovered by the majority
of submissions, 64% of them were in fact absent from the ground
truth. Current tractography pipelines, and even tracking of the
ground truth fiber orientations on high-resolution images, pro-
duce substantial amounts of false-positive bundles. The employed
simulation-based approach cannot quantify the effects related to
in vivo connectivity in an absolute sense; that is, our results do
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not mean that anyone who is doing tractography should expect
the reported VB-to-IB and coverage-to-overreach ratios. How-
ever, the presented findings do expose the degree of ambiguity
associated with whole-brain tractography and show that the
computational problem of tractography goes far beyond the local
reconstruction of fiber directions1, 7 and issues of data quality.
Our findings, therefore, present a core and open challenge for the
field of tractography and connectivity mapping in general.

Previous studies have reported high invalid-connection ratios
under simplified conditions26, 38 (www.tractometer.org), and some
of the underlying ambiguities in tractography have been discussed
using schematic representations and theoretical arguments1, 7, 8, 37.
Regions of white matter bottlenecks have been discussed in the
past35 and have been highlighted as critical with respect to tracto-
graphic findings36. The current results reveal the consequences of
such limitations under more complex conditions as might be found
in human brain studies in vivo, addressing important questions that
previously remained speculative. The findings were derived from a
brain-like geometry that encompasses some of the major known
long-range connections and covers 71% of the white matter. Future
versions of the phantom are planned to include additional bundles
such as the middle and inferior temporal projections of the AF, the
MdLF, and the IFOF, as well as smaller U-fibers, medial forebrain
fibers, deep nuclei, and connections between them. In addition,
more advanced diffusion modeling methods will allow generating
even more realistic DWI signals, potentially simulated at increased
spatial and q-space resolutions49.

These developments, however, will not resolve the fundamental
ambiguities which tractography faces and thus will only have a
limited effect on the main findings of our study. We showed that
false-positive bundles occur at similar rates even when using the
maximal angular precision of the signal, that is, using ground
truth orientations. These findings confirm those shown in pre-
vious studies5 and relate to the fundamental problem formulation

in tractography: inferring connectivity from local orientation
fields. Increasing the anatomic complexity of the phantom by
adding more bundles most likely will even lead to further
increased false-positive rates. The construction process of the
current phantom resembles a potential limitation, since it
involves tractography itself and thus raises self-validation issues.
This aspect should be considered in direct method comparisons
as there may exist a possible bias toward algorithms that are
similar to the algorithm used for phantom generation. This
caveat, however, has only a very limited effect on our general
findings. It can be expected that the identified limitations of
tractography will become even more pronounced in phantoms of
higher anatomic complexity that might be achievable by involving
independent methods such as polarized light imaging50. In
summary, our observations confirm the fundamental ill-posed
nature of the computational problem that current tractography
approaches strive to solve.

Accordingly, substantial methodological innovations will be
necessary to resolve the problem of IBs. Several directions of
current research might improve the specificity of tractography.
Streamline filtering techniques can optimize the signal prediction
error in order to reduce tractography biases14, 16, 51. They are part
of the more general trend to integrate non-local information, as
well as advanced diffusion microstructure modeling that goes
beyond the raw directional vectors52–58. Recent advances in
machine-learning-driven tractography also show great potential
in improving the specificity of tractograms59, 60. Future versions
of our phantom will be generated with multiple b-values, better
signal-to-noise ratio (SNR), and fewer artifacts to further
encourage research in these directions.

In addition, tractography should increasingly employ reliable
anatomical priors from ex vivo histology, high-resolution post-
mortem DWI61, or complementary electrophysiology for optimal
guidance. While manual or automated clean-up of streamlines
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may help (as demonstrated by our results showing decreased
overreach at the expense of VB detection and volumetric recon-
struction), the real challenge is our limited knowledge of the
anatomy to be reconstructed. Currently, post-mortem dissection
with Klingler’s method reveals the macroscopic organization of
the human brain white matter11, 62–64, although this method
shares some of the mentioned limitations of tractography in
complex fiber configurations or near the cortex. In the future, the
community will have to gain further insights into the underlying
principles of white matter organization and increasingly learn
how to leverage such information for tractography1, 65, 66.

Potential advances achieved in tractography will have an
important impact on graph-analytical studies of the structural
connectome2, 67. The hitherto demonstrated diagnostic or pre-
dictive capability of such analyses (e.g., in psychiatric settings)
should not let us overlook which aspects of tractography are
reliable and which are not. One of the present findings is parti-
cularly relevant for the field of connectomics: the traditional
metrics that require streamlines to exactly end in head or tail
regions of a bundle are far too restrictive for bundle dissection
and connectivity assessment. None of the submissions generated
exact streamlines that perfectly overlap with ground truth bundles
and dilated endpoint masks. This finding is in line with previous
reports, which found termination of tracts in the gray matter
(GM) to be inaccurate5 and highlights an important limitation of
approaches that use a voxel-wise definition of parcellations on the
T1 image for selecting relevant streamlines. Future versions of our
phantom will include ground-truth parcellations of the white
matter/GM cortical band to encourage further developments for
tackling these problems and extend the evaluation method to
apply to graph theory metrics.

Despite any limitations, DWI is currently the only tool to map
short and long-range structural brain connectivity in vivo and is
essential for comparing brains, detecting differences, and simu-
lating brain activity39. Our findings should foster the develop-
ment of novel tractography methods that are carefully evaluated
using the present approach. The most important goal for the next
generation of tractography algorithms is an improved ability to

reconstruct the full spatial extent of existing tracts while better
controlling for false-positive connections. A tighter integration of
anatomical priors, advanced diffusion microstructure modeling,
and multi-modality imaging should help to resolve ambiguities in
the signal and overcome current limitations of tractography57, 58.
Fundamentally, there is an urgent need for methodological
innovation in tractography in order to advance our knowledge of
human white matter anatomy and build anatomically correct
human connectomes1, 7.

Methods
Generation of ground truth fiber bundles. The set of ground truth long-range
fiber bundles was designed to cover the whole human brain and features many of
the relevant spatial configurations, such as crossing, kissing, twisting and fanning
fibers, thus representing the morphology of the major known in vivo fiber bundles.
The process to obtain these bundles consisted of three steps. First, a whole-brain
global tractography was performed on a high-quality in vivo diffusion-weighted
image. Then, 25 major long-range bundles were manually extracted from the
resulting tractogram. In the third step, these bundles were refined to obtain smooth
and well-defined bundles. Each of these steps is detailed in the following
paragraphs.

We chose one of the diffusion-weighted data sets included in the Q3 data
release of the HCP39, subject 100307, to perform whole-brain global fiber
tractography52, 68. Among other customizations, the HCP scanners are equipped
with a set of high-end gradient coils, enabling diffusion encoding gradient strengths
of 100 mTm−1. By comparison, most standard magnetic resonance scanners
feature gradient strengths of about 30 to 40 mTm−1. This hardware setup allows
the acquisition of data sets featuring exceptionally high resolutions (1.25 mm
isotropic, 270 gradient directions) while maintaining an excellent SNR. All data sets
were corrected for head motion, eddy currents and susceptibility distortions and
are, in general, of very high quality69–73. Detailed information regarding the
employed imaging protocols as well as the data sets themselves may be found on
http://humanconnectome.org.

Global fiber tractography was performed using MITK Diffusion74 with the
following parameters: 900,000,000 iterations, a particle length of 1 mm, a particle
width of 0.1 mm, and a particle weight of 0.002. Furthermore, we repeated the
tractography six times and combined the resulting whole-brain tractograms into
one large data set consisting of over five million streamlines. The selected
parameters provided for a very high sensitivity of the tractography method. The
specificity of the resulting tractogram was of lesser concern since the tracts of
interest were extracted manually in the second step.

Bundle segmentation was performed by an expert radiologist using manually
placed inclusion and exclusion regions of interest (ROI). We followed the concepts
introduced in ref. 40 for the ROI placement and fiber extraction. Twenty-five
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bundles were extracted, covering association, projection, and commissural fibers
across the whole brain (Fig. 1): CC, left and right cingulum (Cg), Fornix (Fx),
anterior commissure (CA), left and right optic radiation (OR), posterior
commissure (CP), left and right inferior cerebellar peduncle (ICP), middle cerebellar
peduncle (MCP), left and right superior cerebellar peduncle (SCP), left and right
parieto-occipital pontine tract (POPT), left and right cortico-spinal tract (CST), left
and right frontopontine tracts (FPT), left and right ILF, left and right UF, and left
and right SLF. As mentioned in the “Discussion” section, the IFOF, the MdLF, as
well as the middle and inferior temporal projections of the AF were not included.

After manual extraction, the individual long-range bundles were further refined
to serve as ground truth for the image simulation as also shown in Fig. 1. The
original extracted tracts featured a large number of prematurely ending fibers and
the individual streamlines were not smooth. To obtain smooth tracts without
prematurely ending fibers, we simulated a diffusion-weighted image from each
original tract individually using Fiberfox (www.mitk.org33). Since no complex fiber
configurations, such as crossings, were present in the individual tract images and no
artifacts were simulated, it was possible to obtain very smooth and complete tracts
from these images with a simple tensor-based streamline tractography.
Supplementary Fig. 7 illustrates the result of this refining procedure on the left CST.

Simulation of phantom images with brain-like geometry. The phantom
diffusion-weighted images (Supplementary Movie 3) were simulated using Fiberfox

(www.mitk.org33), which is available as open-source software. We employed a
four-compartment model of brain tissue (intra and inter-axonal), GM, and cere-
brospinal fluid (CSF)33. The parameters for simulation of the four-compartment
diffusion-weighted signal were chosen to obtain representative diffusion properties
and image contrasts (compare75 for details on the models). The intra-axonal
compartment was simulated using the stick model with a T2 relaxation time of 110
ms and a diffusivity of 1.2 × 10-9m2 s−1. The inter-axonal compartment was
simulated using the zeppelin model with a T2 relaxation time of 110 ms, an axial
diffusivity of 1.2 × 10-9m2 s−1 and a radial diffusivity of 0.3 × 10-9m2 s−1. The GM
compartment was simulated using the ball model with a T2 relaxation time of 80
ms and a diffusivity of 1.0 × 10-9m2 s−1. The CSF compartment was also simulated
using the ball model with a T2 relaxation time of 2500 ms and a diffusivity of 2.0 ×
10-9m2 s−1.

Using Fiberfox, one set of diffusion-weighted images and one T1-weighted
image were simulated. The final data sets as well as all files needed to perform the
simulation are available online (see Data availability).

The acquisition parameters that we report below were chosen to simulate
images that are representative for a practical (e.g., clinical) setting, specifically a
5–10-min single shot echo-planar imaging scan with 2 mm isotropic voxels, 32
gradient directions, and a b-value of 1000 s mm−2. The chosen acquisition setup
represents a typical scenario for an applied tractography study and embodies a
common denominator supported by the large majority of methods. Since
acquisitions with higher b-values, more gradient directions and fewer artifacts are
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Fig. 8 Bottlenecks and the fundamental ill-posed nature of tractography. a Visualization of six ground truth bundles converging into a nearly parallel funnel

in the bottleneck region of the left temporal lobe (indicated by square region). The bundles per voxel (box “# Valid bundles”) clearly outnumber the peak

directions in the diffusion signal (box “# Signal peaks”). b Visualization of streamlines from a HCP in vivo tractogram passing through the same region. c

Exemplary IBs that have been identified by more than 50% of the submissions, showing that tractography cannot differentiate between the high amount of

plausible combinatorial possibilities connecting different endpoint regions (see Supplementary Movie 1). d Automatically QuickBundle-clustered

streamlines from the in vivo tractogram going through the temporal ROI. The clustered bundles are illustrated in different shades of green. These clusters

represent a mixture of true-positive and false-positive bundles going through that bottleneck area of the HCP data set (see Supplementary Movie 2)
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beneficial for tractography, we additionally report a least upper bound tractography
performance under perfect image quality conditions using a data set that directly
contains ground truth fiber orientation information at high spatial resolution with
no artifacts (Fig. 6 and Supplementary Note 2).

The parameters are a matrix size of 90 × 108 × 90, echo time (TE) 108 ms, dwell
time 1 ms; T2′ relaxation time 50 ms. The simulation corresponded to a single-coil
acquisition with constant coil sensitivity, no partial Fourier and no parallel
imaging. Phase encoding was posterior-anterior. Two unweighted images with
posterior-anterior/anterior-posterior phase encoding were also generated.

Since Fiberfox simulates the actual k-space acquisition, it was possible to
introduce a number of common artifacts into the final image. Complex Gaussian
noise was simulated yielding a final SNR relative to the mean white matter baseline
signal of about 20. Ten spikes were distributed randomly throughout the image
volumes (Fig. 9a). N/2 ghosts were simulated (Fig. 9b). Distortions caused by B0
field inhomogeneities are introduced using an existing field map measured in a real
acquisition and registered to the employed reference HCP data set (Fig. 9c). Head
motion was introduced as random rotation (±4° around z-axis) and translation
(±2 mm along x-axis) in three randomly chosen volumes. Volume 6 was rotated by
3.36° and translated by −1.74 mm, volume 12 was rotated by 1.23° and translated
by −0.72 mm, and volume 24 was rotated by −3.12° and translated by −1.55 mm.

The image with the T1-like contrast was generated at an isotropic resolution of
1 mm, an SNR of about 40 and no further artifacts as an anatomical reference.

Performance metrics and evaluation. The groups submitted sets of streamlines
(see Data availability) and a brief description of their methods which is available in
Supplementary Note 1. Potential operator-dependent errors were not taken into
account but these are likely to have contributed to the quality of the final results.
Probabilistic tractography techniques were preprocessed with a user-defined
uncertainty threshold that each group decided independently before submission.

The Tractometer definition of a VC is extremely restrictive for current
tractography algorithms, as it requires streamlines (1) not to exit the area of the
ground truth bundle at any point and (2) to terminate exactly within the endpoint
region that is defined by the dilated ground truth fiber endpoints (Supplementary
Figs. 8, 9)38. Hence, we adopted an alternative definition with less stringent criteria

based on robust shape distance measures76 and clustering between streamlines77, as
detailed in Supplementary Note 4. The bundle-specific thresholds were manually
configured to account for bundle shape and proximity to other bundles. The
following distances were used, with identical distances on both sides for lateralized
bundles: 2 mm for CA and CP; 3 mm for CST and SCP; 5 mm for Cingulum; 6 mm
for Fornix, ICP, OR, and UF; 7 mm for FPT, ILF, and POPT; 10 mm for CC, MCP,
and SLF. The full script used to run this bundle recognition implementation was
based on the DIPY library78 (www.dipy.org) and is available online
(Supplementary Software 1).

Once VCs are identified, the remaining streamlines can be classified into ICs
and non-connecting streamlines. The details of this procedure are described in
Supplementary Note 4. We clustered the remaining invalid streamlines using a
QuickBundles-based clustering algorithm77. The best matching endpoint regions
for each resulting cluster were identified by majority voting of the contained
streamlines. If multiple clusters were assigned to the same pair of regions, they were
merged. Streamlines that were not assigned to any cluster or that fell below a length
threshold were labeled as non-connecting.

On the basis of this classification of streamlines, the following metrics were
calculated:

1. VC ratio: Number of VCs/total number of streamlines (percentage between 0
and 100).

2. VB: For each bundle that has at least one valid streamline associated with it,
this counter is incremented by one (integer number between 0 and 25).

3. IB: With 25 bundles in the ground truth, each having two endpoint regions,
there are 1275 possible combinations of endpoint regions. Taking the 25 VBs
out of the equation, 1250 potential IBs remain (integer number between 0 and
1250).

4. Overlap: Proportion of the voxels within the volume of a ground truth bundle
that is traversed by at least one valid streamline associated with the bundle.
This value shows how well the tractography result recovers the original
volume of the bundle (percentage between 0 and 100).

5. Overreach: Fraction of voxels outside the volume of a ground truth bundle
that is traversed by at least one valid streamline associated with the bundle

a b c

Fig. 9 Illustration of artifacts included in the synthetic data set. Exemplary illustration of the spike (a), N/2 ghost (b), and distortion artifacts (c) contained

in the final diffusion-weighted data set. Supplementary Movie 3 gives an impression of the complete synthetic data set provided

Table 1 Summary of the statistical analysis

Green cells indicate a significant positive influence (p< 0.05) and red cells indicate a significant negative impact (p< 0.05). Numbers indicate the estimated mean effect on the metric and its standard

deviation. The first column of the table represents the different parts of the processing pipeline that we have grouped into categories. The other columns represent the metrics: VC valid connections, VB

valid bundles, IB invalid bundles, OL overlap, OR overreach
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over the total number of voxels within the ground truth bundle. This value
shows how much the VCs extend beyond the ground truth bundle volume
(percentage between 0 and 100). This value is always zero for the traditional
definition of a VC, but can be non-zero for the non-stringent criteria we
adopted in our study.

Following previously defined criteria of evaluation79, our study is mainly about
accuracy with respect to the reference, rather than reproducibility or robustness of
tractography.

Statistical multi-variable analysis. Effects of the experimental settings were
investigated in a multivariable linear mixed model. The experimental variables
describing the methods used for the different submissions were included as fixed
effects (Fig. 2b). The VC ratio, the VB count, the IB count, the bundle overlap
percentage, and the bundle overreach percentage were modeled as dependent
variables, each of which is used for the calculation of a separate model. The
submitting group was modeled as a random effect. The software SAS 9.2, Proc
Mixed, SAS Institute Inc., Cary, NC, USA, was used for the analysis.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files. The
ISMRM 2015 Tractography Challenge data sets and the submitted tractograms are
available under doi.org/10.5281/zenodo.572345 and doi.org/10.5281/
zenodo.840086, respectively.
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