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Abstract

Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors
has attracted increasing attention from researchers in electrical engineering and computer science. NTLs
cause significant harm to the economy, as in some countries they may range up to 40% of the total
electricity distributed. The predominant research direction is employing artificial intelligence to predict
whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their
impact on economies, which include loss of revenue and profit of electricity providers and decrease of the
stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a
up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the
key scientific and engineering challenges in NTL detection and suggests how they could be addressed in
the future.

Keywords: Covariate shift, electricity theft, expert systems, machine learning, non-technical losses,
stochastic processes.

1. Introduction

Our modern society and daily activities strongly de-

pend on the availability of electricity. Electrical

power grids allow to distribute and deliver electricity

from generation infrastructure such as power plants

or solar cells to customers such as residences or fac-

tories. One frequently appearing problem are losses

in power grids, which can be classified into two cat-

egories: technical and non-technical losses.

Technical losses occur mostly due to power dis-

sipation. This is naturally caused by internal electri-

cal resistance and the affected components include

generators, transformers and transmission lines.
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The complementary non-technical losses (NTL)

are primarily caused by electricity theft. In most

countries, NTLs account for the predominant part

of the overall losses as discussed in Ref. 1. There-

fore, it is most beneficial to first reduce NTLs before

reducing technical losses as proposed in Ref. 2. In

particular, NTLs include, but are not limited to, the

following causes reported in Refs. 3 and 4:

• Meter tampering in order to record lower con-

sumptions

• Bypassing meters by rigging lines from the power

source

• Arranged false meter readings by bribing meter

readers

• Faulty or broken meters

• Un-metered supply

• Technical and human errors in meter readings,

data processing and billing

NTLs cause significant harm to economies, in-

cluding loss of revenue and profit of electricity

providers, decrease of the stability and reliability of

electrical power grids and extra use of limited natu-

ral resources which in turn increases pollution. For

example, in India, NTLs are estimated at US$ 4.5

billion in Ref. 5. NTLs are simultaneously reported

in Refs. 6 and 7 to range up to 40% of the total elec-

tricity distributed in countries such as Brazil, India,

Malaysia or Lebanon. They are also of relevance in

developed countries, for example estimates of NTLs

in the UK and US that range from US$ 1-6 billion

are reported in Refs. 1 and 8.

We want to highlight that only few works on

NTL detection have been reported in the literature

in the last three to four years. Given that NTL de-

tection is an active field in industrial R&D, it is to

our surprise that academic research in this field has

dropped in the last few years.

From an electrical engineering perspective, one

method to detect losses is to calculate the energy bal-

ance reported in Ref. 9, which requires topological

information of the network. In emerging economies,

which are of particular interest due to their high NTL

proportion, this is not realistic for the following rea-

sons: (i) network topology undergoes continuous

changes in order to satisfy the rapidly growing de-

mand of electricity, (ii) infrastructure may break and

lead to wrong energy balance calculations and (iii) it

requires transformers, feeders and connected meters

to be read at the same time.

A more flexible and adaptable approach is to em-

ploy artificial intelligence (AI), which is well cov-

ered in Ref. 10. AI allows to analyze customer pro-

files, their data and known irregular behavior. This

allows to trigger possible inspections of customers

that have abnormal electricity consumption patterns.

Technicians then carry out inspections, which allow

them to remove possible manipulations or malfunc-

tions of the power infrastructure. Furthermore, the

fraudulent customers can be charged for the addi-

tional electricity consumed. However, carrying out

inspections is costly, as it requires physical presence

of technicians.

NTL detection methods reported in the literature

fall into two categories: expert systems and ma-

chine learning. Expert systems incorporate hand-

crafted rules for decision making. In contrast,

machine learning gives computers the ability to

learn from examples without being explicitly pro-

grammed. Historically, NTL detection systems were

based on domain-specific rules. However, over the

years, the field of machine learning has become

the predominant research direction of NTL detec-

tion. To date, there is no authoritative survey that

compares the various approaches of NTL detection

methods reported in the literature. We are also not

aware of any existing survey that discusses the short-

comings of the state of the art. In order to advance in

NTL detection, the main contributions of this survey

are the following:

• We provide a detailed review and critique of state-

of-the-art NTL detection research employing AI

methods in Section 2.

• We identify the unsolved key challenges of this

field in Section 3.

• We describe in detail the proposed methods to

solve the most relevant challenges in the future in

Section 4.

• We put these challenges in the context of AI re-

search as a whole as they are of relevance to many

other learning and anomaly detection problems.
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2. The State of the Art

NTL detection can be treated as a special case of

fraud detection, for which general surveys are pro-

vided in Refs. 11 and 12. Both highlight expert sys-

tems and machine learning as key methods to detect

fraudulent behavior in applications such as credit

card fraud, computer intrusion and telecommunica-

tions fraud. This section is focused on an overview

of the existing AI methods for detecting NTLs. Ex-

isting short surveys of the past efforts in this field,

such as in Refs. 3, 13, 14 and 15 only provide a nar-

row comparison of the entire range of relevant pub-

lications. The novelty of this survey is to not only

review and compare a wide range of results reported

in the literature, but to also derive the unsolved chal-

lenges of NTL detection.

2.1. Features

In this subsection, we summarize and group the fea-

tures reported in the literature.

2.1.1. Monthly consumption

Many works on NTL detection use traditional me-

ters, which are read monthly or annually by meter

readers. Based on this data, average consumption

features are used in Refs. 1,7,16,17 and 18. In those

works, the feature computation used can be summa-

rized as follows: For M customers {0,1, ...,M − 1}
over the last N months {0,1, ...,N − 1}, a feature

matrix F is computed, in which element Fm,d is a

daily average kWh consumption feature during that

month:

x(m)
d =

L(m)
d

R(m)
d −R(m)

d−1

, (1)

where for customer m, L(m)
d is the kWh consumption

increase between the meter reading to date R(m)
d and

the previous one R(m)
d−1. R(m)

d −R(m)
d−1 is the number of

days between both meter readings of customer m.

The previous 24 monthly meter readings are used

in Refs. 19 and 20. The features computed are

the monthly consumption before the inspection, the

consumption in the same month in the year before

the consumption in the past three months and the

customer’s consumption over the past 24 months.

Using the previous six monthly meter readings, the

following features are derived in Ref. 21: average

consumption, maximum consumption, standard de-

viation, number of inspections and the average con-

sumption of the residential area. The average con-

sumption is also used as a feature in Refs. 22 and

23.

2.1.2. Smart meter consumption

With the increasing availability of smart meter de-

vices, consumption of electric energy in short inter-

vals can be recorded. Consumption features of in-

tervals of 15 minutes are used in Refs. 24 and 25,

whereas intervals of 30 minutes are used in Refs. 26

and 27.

The 4× 24 = 96 measurements of Ref. 25 are

encoded to a 32-dimensional space in Refs. 6 and

28. Each measurement is 0 or positive. Next, it is

then mapped to 0 or 1, respectively. Last, the 32 fea-

tures are computed. A feature is the weighted sum

of three subsequent values, in which the first value

is multiplied by 4, the second by 2 and the third by

1.

The maximum consumption in any 15-minute

period is used as a feature in Refs. 29–31 and 32.

The load factor is computed by dividing the demand

contracted by the maximum consumption.

Features from the consumption time series called

shape factors are derived from the consumption time

series including the impact of lunch times, nights

and weekends in Ref. 33.

2.1.3. Master data

Master data represents customer reference data such

as name or address, which typically changes infre-

quently. The work in Ref. 22 uses the following fea-

tures from the master data for classification: location

(city and neighborhood), business class (e.g. resi-

dential or industrial), activity type (e.g. residence

or drugstore), voltage (110V or 200V), number of

phases (1, 2 or 3) and meter type. The demand con-

tracted, which is the number of kW of continuous

availability requested from the energy company and
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the total demand in kW of installed equipment of

the customer are used in Refs. 30–32. In addition,

information about the power transformer to which

the customer is connected to is used in Ref. 29.

The town or customer in which the customer is lo-

cated, the type of voltage (low, median or high), the

electricity tariff, the contracted power as well as the

number of phases (1 or 3) are used in Ref. 23. Re-

lated master data features are used in Ref. 33, in-

cluding the type of customer, location, voltage level,

type of climate (rainy or hot), weather conditions

and type of day.

2.1.4. Credit worthiness

The works in Refs. 1, 17 and 18 use the credit wor-

thiness ranking (CWR) of each customer as a fea-

ture. It is computed from the electricity provider’s

billing system and reflects if a customer delays or

avoids payments of bills. CWR ranges from 0 to

5 where 5 represents the maximum score. It re-

flects different information about a customer such

as payment performance, income and prosperity of

the neighborhood in a single feature.

2.2. Expert systems and fuzzy systems

An ensemble pre-filters the customers to select irreg-

ular and regular customers in Ref. 19. These cus-

tomers are then used for training as they represent

well the two different classes. This is done because

of noise in the inspection labels. In the classification

step, a neuro-fuzzy hierarchical system is used. In

this setting, a neural network is used to optimize the

fuzzy membership parameters, which is a different

approach to the stochastic gradient descent method

used in Ref. 16. A precision of 0.512 and an accu-

racy of 0.682 on the test set are obtained.

Profiles of 80K low-voltage and 6K high-voltage

customers in Malaysia having meter readings every

30 minutes over a period of 30 days are used in Ref.

26 for electricity theft and abnormality detection. A

test recall of 0.55 is reported. This work is related

to features of Ref. 7, however, it uses entirely fuzzy

logic incorporating human expert knowledge for de-

tection.

The work in Ref. 1 is combined with a fuzzy

logic expert system postprocessing the output of the

SVM in Ref. 7 for ~100K customers. The motiva-

tion of that work is to integrate human expert knowl-

edge into the decision making process in order to

identify fraudulent behavior. A test recall of 0.72 is

reported.

Five features of customers’ consumption of the

previous six months are derived in Ref. 21: aver-

age consumption, maximum consumption, standard

deviation, number of inspections and the average

consumption of the residential area. These features

are then used in a fuzzy c-means clustering algo-

rithm to group the customers into c classes. Sub-

sequently, the fuzzy membership values are used to

classify customers into NTL and non-NTL using the

Euclidean distance measure. On the test set, an aver-

age precision (called average assertiveness) of 0.745

is reported.

2.3. Neural networks

Neural networks are loosely inspired by how the

human brain works and allow to learn complex

hypotheses from data. They are well described

for example in Ref. 34. Extreme learning ma-

chines (ELM) are one-hidden layer neural networks

in which the weights from the inputs to the hidden

layer are randomly set and never updated. Only the

weights from the hidden to output layer are learned.

The ELM algorithm is applied to NTL detection in

meter readings of 30 minutes in Ref. 35, for which

a test accuracy of 0.5461 is reported.

An ensemble of five neural networks (NN) is

trained on samples of a data set containing ~20K

customers in Ref. 20. Each neural network uses

features calculated from the consumption time se-

ries plus customer-specific pre-computed attributes.

A precision of 0.626 and an accuracy of 0.686 are

obtained on the test set.

A self-organizing map (SOM) is a type of un-

supervised neural network training algorithm that is

used for clustering. SOMs are applied to weekly

customer data of 2K customers consisting of me-

ter readings of 15 minutes in Ref. 24. This al-

lows to cluster customers’ behavior into fraud or

non-fraud. Inspections are only carried out if cer-
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tain hand-crafted criteria are satisfied including how

well a week fits into a cluster and if no contractual

changes of the customer have taken place. A test ac-

curacy of 0.9267, a test precision of 0.8526, and test

recall of 0.9779 are reported.

A data set of ~22K customers is used in Ref. 22

for training a neural network. It uses the average

consumption of the previous 12 months and other

customer features such as location, type of customer,

voltage and whether there are meter reading notes

during that period. On the test set, an accuracy of

0.8717, a precision of 0.6503 and a recall of 0.2947

are reported.

2.4. Support vector machines

The Support Vector Machines (SVM) introduced in

Ref. 36 is a state-of-the-art classification algorithm

that is less prone to overfitting. Electricity customer

consumption data of less than 400 highly imbal-

anced out of ~260K customers in Kuala Lumpur,

Malaysia are used in Ref. 17. Each customer has

25 monthly meter readings in the period from June

2006 to June 2008. From these meter readings, daily

average consumption features per month are com-

puted. Those features are then normalized and used

for training in a SVM with a Gaussian kernel. In

addition, credit worthiness ranking (CWR) is used.

It is computed from the electricity provider’s billing

system and reflects if a customer delays or avoids

payments of bills. CWR ranges from 0 to 5 where 5

represents the maximum score. It was observed that

CWR is a significant indicator of whether customers

commit electricity theft. For this setting, a recall of

0.53 is achieved on the test set. A related setting is

used in Ref. 1, where a test accuracy of 0.86 and a

test recall of 0.77 are reported on a different data set.

SVMs are also applied to 1,350 Indian customer

profiles in Ref. 25. They are split into 135 differ-

ent daily average consumption patterns, each having

10 customers. For each customer, meters are read

every 15 minutes. A test accuracy of 0.984 is re-

ported. This work is extended in Ref. 28 by encod-

ing the 4×24 = 96-dimensional input in a lower di-

mension indicating possible irregularities. This en-

coding technique results in a simpler model that is

faster to train while not losing the expressiveness of

the data and results in a test accuracy of 0.92.

Consumption profiles of 5K Brazilian industrial

customer profiles are analyzed in Ref. 29. Each

customer profile contains 10 features including the

demand billed, maximum demand, installed power,

etc. In this setting, a SVM slightly outperforms K-

nearest neighbors (KNN) and a neural network, for

which test accuracies of 0.9628, 0.9620 and 0.9448,

respectively, are reported.

The work of Ref. 28 is extended in Ref. 6 by in-

troducing high performance computing algorithms

in order to enhance the performance of the previ-

ously developed algorithms. This faster model has a

test accuracy of 0.89.

A data set of ~700K Brazilian customers, ~31M

monthly meter readings from January 2011 to Jan-

uary 2015 and ~400K inspection data is used in Ref.

16. It employs an industrial Boolean expert system,

its fuzzified extension and optimizes the fuzzy sys-

tem parameters using stochastic gradient descent de-

scribed in Ref. 37 to that data set. This fuzzy system

outperforms the Boolean system. Inspired by Ref.

17, a SVM using daily average consumption features

of the last 12 months performs better than the expert

systems, too. The three algorithms are compared to

each other on samples of varying fraud proportion

containing ~100K customers. It uses the area under

the (receiver operating characteristic) curve (AUC),

which is discussed in Section 3.1. For a NTL propor-

tion of 5%, it reports AUC test scores of 0.465, 0.55

and 0.55 for the Boolean system, optimized fuzzy

system and SVM, respectively. For a NTL propor-

tion of 20%, it reports AUC test scores of 0.475,

0.545 and 0.55 for the Boolean system, optimized

fuzzy system and SVM, respectively.

2.5. Genetic algorithms

The work in Refs. 1 and 17 is extended by using a

genetic SVM for 1,171 customers in Ref. 18. It uses

a genetic algorithm in order to globally optimize

the hyperparameters of the SVM. Each chromosome

contains the Lagrangian multipliers (α1, ...,αi), reg-

ularization factor C and Gaussian kernel parameter

γ . This model achieves a test recall of 0.62.

A data set of ~1.1M customers is used in Ref.

38. The paper identifies the much smaller class
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of inspected customers as the main challenge in

NTL detection. It then proposes stratified sampling

in order to increase the number of inspections and

to minimize the statistical variance between them.

The stratified sampling procedure is defined as a

non-linear restricted optimization problem of min-

imizing the overall energy loss due to electricity

theft. This minimization problem is solved using

two methods: (1) genetic algorithm and (2) simu-

lated annealing. The first approach outperforms the

other one. Only the reduced variance is reported,

which is not comparable to the other research and

therefore left out of this survey.

2.6. Rough sets

Rough sets give lower and upper approximations of

an original conventional or crisp set. The first ap-

plication of rough set analysis applied to NTL de-

tection is described in Ref. 39 on 40K customers,

but lacks details on the attributes used per customer,

for which a test accuracy of 0.2 is achieved. Rough

set analysis is also applied to NTL detection in Ref.

23 on features related to Ref. 22. This supervised

learning technique allows to approximate concepts

that describe fraud and regular use. A test accuracy

of 0.9322 is reported.

2.7. Other methods

Different feature selection techniques for customer

master data and consumption data are assessed in

Ref. 33. Those methods include complete search,

best-first search, genetic search and greedy search

algorithms for the master data. Other features called

shape factors are derived from the consumption time

series including the impact of lunch times, nights

and weekends on the consumption. These features

are used in K-means for clustering similar consump-

tion time series. In the classification step, a decision

tree is used to predict whether a customer causes

NTLs or not. An overall test accuracy of 0.9997 is

reported.

Optimum path forests (OPF), a graph-based clas-

sifier, is used in Ref. 31. It builds a graph in

the feature space and uses so-called “prototypes”

or training samples. Those become roots of their

optimum-path tree node. Each graph node is classi-

fied based on its most strongly connected prototype.

This approach is fundamentally different to most

other learning algorithms such as SVMs or neural

networks which learn hyperplanes. Optimum path

forests do not learn parameters, thus making training

faster, but predicting slower compared to parametric

methods. They are used in Ref. 30 for 736 cus-

tomers and achieved a test accuracy of 0.9021, out-

performing SMVs with Gaussian and linear kernels

and a neural network which achieved test accuracies

of 0.8893, 0.4540 and 0.5301, respectively. Related

results and differences between these classifiers are

also reported in Ref. 32.

A different method is to estimate NTLs by sub-

tracting an estimate of the technical losses from

the overall losses reported in Ref. 27. It models

the resistance of the infrastructure in a temperature-

dependent model using regression which approxi-

mates the technical losses. It applies the model to

a data set of 30 customers for which the consump-

tion was recorded for six days with meter readings

every 30 minutes for theft levels of 1, 2, 3, 4, 6, 8 and

10%. The respective test recalls in linear circuits are

0.2211, 0.7789, 0.9789, 1, 1, 1 and 1, respectively.

2.8. Summary

A summary and comparison of models, data sets and

performance measures of selected work discussed in

this review is reported in Table 1. The most com-

monly used models comprise Boolean and fuzzy ex-

pert systems, SVMs and neural networks. In addi-

tion, genetic methods, OPF and regression methods

are used. Data set sizes have a wide range from 30

up to 700K customers. However, the largest data set

of 1.1M customers in Ref. 38 is not included in the

table because only the variance is reduced and no

other performance measure is provided. Accuracy

and recall are the most popular performance mea-

sures in the literature, ranging from 0.45 to 0.99 and

from 0.29 to 1, respectively. Only very few publi-

cations report the precision of their models, ranging

from 0.51 to 0.85. The AUC is only reported in one

publication. The challenges of finding representa-

tive performance measures and how to compare in-

dividual contributions are discussed in Sections 3.1

and 3.6, respectively.
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Table 1. Summary of models, data sets and performance measures (two-decimal precision).

Ref. Model #Customers Accuracy Precision Recall AUC NTL/theft proportion

1 SVM (Gauss) < 400 0.86 - 0.77 - -

7 SVM + fuzzy 100K - - 0.72 - -

16 Bool rules 700K - - - 0.47 5%

16 Fuzzy rules 700K - - - 0.55 5%

16 SVM (linear) 700K - - - 0.55 5%

16 Bool rules 700K - - - 0.48 20%

16 Fuzzy rules 700K - - - 0.55 20%

16 SVM (linear) 700K - - - 0.55 20%

17 SVM < 400 - - 0.53 - -

18 Genetic SVM 1,171 - - 0.62 - -

19 Neuro-fuzzy 20K 0.68 0.51 - - -

22 NN 22K 0.87 0.65 0.29 - -

23 Rough sets N/A 0.93 - - - -

24 SOM 2K 0.93 0.85 0.98 - -

25 SVM (Gauss) 1,350 0.98 - - - -

27 Regression 30 - - 0.22 - 1%

27 Regression 30 - - 0.78 - 2%

27 Regression 30 - - 0.98 - 3%

27 Regression 30 - - 1 - 4-10%

29 SVM 5K 0.96 - - - -

29 KNN 5K 0.96 - - - -

29 NN 5K 0.94 - - - -

30 OPF 736 0.90 - - - -

30 SVM (Gauss) 736 0.89 - - - -

30 SVM (linear) 736 0.45 - - - -

30 NN 736 0.53 - - - -

33 Decision tree N/A 0.99 - - - -
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3. Challenges

The research reviewed in the previous section indi-

cates multiple open challenges. These challenges do

not apply to single contributions, rather they spread

across different ones. In this section, we discuss

these challenges, which must be addressed in order

to advance in NTL detection. Concretely, we discuss

common topics that have not yet received the neces-

sary attention in previous research and put them in

the context of AI research as a whole.

3.1. Class imbalance and evaluation metric

Imbalanced classes appear frequently in machine

learning, which also affects the choice of evalua-

tion metrics as discussed in Refs. 40 and 41. Most

NTL detection research do not address this property.

Therefore, in many cases, high accuracies or high re-

calls are reported, such as in Refs. 17, 22, 23, 31 and

38. The following examples demonstrate why those

performance measures are not suitable for NTL de-

tection in imbalanced data sets: for a test set contain-

ing 1K customers of which 999 have regular use, (1)

a classifier always predicting non-NTL has an accu-

racy of 99.9%, whereas in contrast, (2) a classifier

always predicting NTL has a recall of 100%. While

the classifier of the first example has a very high ac-

curacy and intuitively seems to perform very well, it

will never predict any NTL. In contrast, the classifier

of the second example will find all NTL, but triggers

many costly and unnecessary physical inspections

by inspecting all customers. This topic is addressed

rarely in NTL literature, such as in Refs. 20 and 42,

and these contributions do not use a proper single

measure of performance of a classifier when applied

to an imbalanced data set.

3.2. Feature description

Generally, hand-crafting features from raw data is a

long-standing issue in machine learning having sig-

nificant impact on the performance of a classifier,

as discussed in Ref. 43. Different feature descrip-

tion methods have been reviewed in the previous

section. They fall into two main categories: fea-

tures computed from the consumption profile of cus-

tomers, which are from monthly meter readings, for

example in Refs. 1, 7, 16–22 and 23, or smart me-

ter readings, for example in Refs. 6, 24–32, and 33,

and features from the customer master data in Refs.

22, 23, 29–32 and 33. The features computed from

the time series are very different for monthly meter

readings and smart meter readings. The results of

those works are not easily interchangeable. While

electricity providers continuously upgrade their in-

frastructure to smart metering, there will be many

remaining traditional meters. In particular, this ap-

plies to emerging countries.

There are only few works on assessing the statis-

tical usefulness of features for NTL detection, such

as in Ref. 44. Almost all works on NTL detection

define features and subsequently report improved

models that were mostly found experimentally with-

out having a strong theoretical foundation.

3.3. Data quality

In the preliminary work of Ref. 16, we noticed

that the inspection result labels in the training set

are not always correct and that some fraudsters may

be labelled as non-fraudulent. The reasons for this

may include bribing, blackmailing or threatening of

the technician performing the inspection. Also, the

fraud may be done too well and is therefore not

observable by technicians. Another reason may be

incorrect processing of the data. It must be noted

that the latter reason may, however, also label non-

fraudulent behavior as fraudulent. Handling noise is

a common challenge in machine learning. In super-

vised machine learning settings, most existing meth-

ods address handling noise in the input data. There

are different regularization methods such as L1 or

L2 regularization discussed in Ref. 45 or learning

of invariances allowing learning algorithms to bet-

ter handle noise in the input data discussed in Refs.

46 and 47. However, handling noise in the training

labels is less commonly addressed in the machine

learning literature. Most NTL detection research use

supervised methods. This shortcoming of the train-

ing data and potential wrong labels in particular are

only rarely reported in the literature, such as in Ref.

19, which uses an ensemble to pre-filter the training

data.
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3.4. Covariate shift

Covariate shift refers to the problem of training data

(i.e. the set of inspection results) and production

data (i.e. the set of customers to generate inspections

for) having different distributions. This fact leads to

unreliable NTL predictors when learning from this

training data. Historically, covariate shift has been a

long-standing issue in statistics, as surveyed in Ref.

48. For example, The Literary Digest sent out 10M

questionnaires in order to predict the outcome of the

1936 US Presidential election. They received 2.4M

returns. Nonetheless, the predicted result proved to

be wrong. The reason for this was that they used

car registrations and phone directories to compile a

list of recipients. In that time, the households that

had a phone or a car represented a biased sample of

the overall population. In contrast, George Gallup

only interviewed 3K handpicked people, which were

an unbiased sample of the population. As a con-

sequence, Gallup could predict the outcome of the

election very well.

For about the last fifteen years, the Big Data

paradigm followed in machine learning has been

to gather more data rather than improving models.

Hence, one may assume that having simply more

customer and inspection data would help to detect

NTL more accurately. However, in many cases, the

data may be biased as depicted in Fig. 1.

Fig. 1. Example of spatial bias: The large city is close to the

sea, whereas the small city is located in the interior of the

country. The weather in the small city undergoes stronger

changes during the year. The subsequent change of electric-

ity consumption during the year triggers many inspections.

As a consequence, most inspections are carried out in the

small city. Therefore, the sample of customers inspected

does not represent the overall population of customers.

One reason is, for example, that electricity sup-

pliers previously focused on certain neighborhoods

for inspections. Concretely, the customers inspected

are a sample of the overall population of customers.

In this example, there is a spatial bias. Hence, the in-

spections do not represent the overall population of

customers. As a consequence, when learning from

the inspection results, a bias is learned, making pre-

dictions less reliable. Aside from spatial covariate

shift, there may be other types of covariate shift in

the data, such as the meter type, connection type,

etc.

To the best of our knowledge, the issue of covari-

ate change has not been addressed in the literature on

NTL detection. However, in many cases it may lead

to unreliable NTL detection models. Therefore, we

consider it important to derive methods for quanti-

fying and reducing the covariate shift in data sets

relevant to NTL detection. This will allow to build

more reliable NTL detection models.

3.5. Scalability

The number of customers used throughout the re-

search reviewed significantly varies. For example,

Refs. 17 and 27 only use less than a few hundred

customers in the training. A SVM with a Gaussian

kernel is used in Ref. 17. In that setting, training is

only feasible in a realistic amount of time for up to a

couple of tens of thousands of customers in current

implementations as discussed in Ref. 49. A regres-

sion model using the Moore-Penrose pseudoinverse

introduced in Ref. 50 is used in Ref. 27. This model

is also only able to scale to up to a couple of tens of

thousands of customers. Neural networks are trained

on up to a couple of tens of thousands of customers

in Refs. 20 and 22. The training methods used in

prior work usually do not scale to significantly larger

customer data sets. Larger data sets using up to hun-

dreds of thousands or millions of customers are used

in Refs. 16 and 38 using a SVM with linear kernel or

genetic algorithms, respectively. An important prop-

erty of NTL detection methods is that their computa-

tional time must scale to large data sets of hundreds

of thousands or millions of customers. Most works

reported in the literature do not satisfy this require-

ment.
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3.6. Comparison of different methods

Comparing the different methods reviewed in this

paper is challenging because they are tested on dif-

ferent data sets, as summarized in Table 1. In many

cases, the description of the data lacks fundamental

properties such as the number of meter readings per

customer, NTL proportion, etc. In order to increase

the reliability of a comparison, joint efforts of dif-

ferent research groups are necessary. These efforts

need to address the benchmarking and comparability

of NTL detection systems based on a comprehensive

freely available data set.

4. Suggested Methodology

We have reviewed state-of-the-art research in ma-

chine learning and identified the following sug-

gested methodology for solving the main research

challenges in NTL detection:

4.1. Handling class imbalance and evaluation
metric

How can we handle the imbalance of classes and

assess the outcome of classifications using accurate

metrics?

Anomaly detection problems are particularly im-

balanced, meaning that there are much more train-

ing examples of the regular class compared to the

anomaly class. Most works on NTL detection do

not reflect the imbalance and simply report accura-

cies or recalls, for example in Refs. 17, 22, 23, 31

and 38. This is also depicted in Table 1. For NTL

detection, the goal is to reduce the false positive rate

(FPR) to decrease the number of costly inspections,

while increasing the true positive rate (TPR) to find

as many NTL occurrences as possible. In Ref. 16,

we propose to use a receiver operating characteristic

(ROC) curve, which plots the TPR against the FPR.

The area under the curve (AUC) is a performance

measure between 0 and 1, where any binary classi-

fier with an AUC > 0.5 performs better than random

guessing. In order to assess a NTL prediction model

using a single performance measure, the AUC was

picked as the most suitable one in Ref. 16.

All works in the literature only use a fixed NTL

proportion in the data set, for example in Refs.

17, 20, 22, 23, 31, 38 and 42. We think that it is

necessary to investigate more into this topic in order

to report reliable and imbalance-independent results

that are valid for different levels of imbalance. This

will allow to build models that work in different re-

gions, such as in regions with a high NTL ratio as

well as in regions with a low occurrence of NTLs.

Therefore, we suggest to create samples of different

NTL proportions and assess the models on the entire

range of these samples. In the preliminary work of

Ref. 16, we also noticed that the precision usually

grows linearly with the NTL proportion in the data

set. It is therefore not suitable for low NTL propor-

tions. However, we did not notice this for the recall

and made observations of non-linearity similar to re-

lated work in Ref. 27, as depicted in Table 1. With

the limitations of precision and recall, the F1 score

did not prove to work as a reliable performance mea-

sure.

Furthermore, we suggest to derive multi-criteria

evaluation metrics for NTL detection and rank cus-

tomers that cause a NTL with a confidence level, for

example models related to the ones in introduced in

Ref. 51. For example, the criteria we suggest to

include are the costs of inspections and possible in-

creases in revenue.

4.2. Feature description and modeling temporal
behavior

How can we describe features that accurately reflect

NTL occurrence and can we self-learn these features

from data? NTL of customers is a set of inherently

temporal events where for example a fraud of cus-

tomers excites themselves or other related customers

to commit fraud as well. How can we extend tempo-

ral processes to model the characteristics of NTL?

Most research on NTL uses primarily informa-

tion from the consumption time series. The con-

sumption is from traditional meters, such as in Refs.

1, 16, 17, 19 and 20, or smart meters, such as in

Refs. 6, 25–27, 30, 32 and 33. Both meter types will

co-exist in the next decade and the results of those

works are not easily interchangeable. Therefore, we

suggest to shift to self-learning of features from the
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consumption time series. This topic has not been ex-

plored in the literature on NTL detection yet. Deep

learning allows to self-learn hidden correlations and

increasingly more complex feature hierarchies from

the raw data input as discussed in Ref. 52. This

approach has lead to breakthroughs in image analy-

sis and speech recognition as presented in Ref. 53.

One possible method to overcome the challenge of

feature description for NTL detection is by finding a

way to apply deep learning to it.

In a different vein, we believe that the neigh-

borhood of customers contains information about

whether a customer may cause a NTL or not. Our

hypothesis is confirmed by initial work described in

Ref. 21, in which also the average consumption of

the residential neighborhood is used for classifica-

tion of NTL. We have shown in Ref. 44 that features

derived from the inspection ratio and NTL ratio in a

neighborhood help to detect NTL.

A temporal process, such as a Hawkes process

described in Ref. 54, models the occurrence of an

event that depends on previous events. Hawkes pro-

cesses include self-excitement, meaning that once an

event happens, that event is more likely to happen

in the near future again and decays over time. In

other words, the further back the event in the pro-

cess, the less impact it has on future events. The

dynamics of Hawkes processes look promising for

modeling NTL: Our first hypothesis is that once cus-

tomers were found to steal electricity, finding them

or their neighbors to commit theft again is more

likely in the near future again and decays over time.

A Hawkes process allows to model this first hypoth-

esis. Our second hypothesis is that once customers

were found to steal electricity, they are aware of in-

spections and subsequently are less likely to commit

further electricity theft. Therefore, finding them or

their neighbors to commit theft again is more likely

in the far future and increases over time as they be-

come less risk-aware. As a consequence, we need to

extend the Hawkes process by incorporating both,

self-excitement in order to model the first hypothe-

sis, as well as self-regulation in order to model the

second hypothesis. Only few works have been re-

ported on modeling anomaly detection using self-

excitement and self-regulation, such as faulty elec-

trical equipment in subway systems reported in Ref.

55.

The neighborhood is essential from our point of

view as neighbors are likely to share their knowl-

edge of electricity theft as well as the outcome of

inspections with their neighbors. We therefore want

to extend this model by optimizing the number of

temporal processes to be used. In the most triv-

ial case, one temporal process could be used for

all customers combined. However, this would lead

to a model that underfits, meaning it would not be

able to distinguish among the different fraudulent

behaviors. In contrast, each customer could be mod-

eled by a dedicated temporal process. However, this

would not allow to catch the relevant dynamics, as

most fraudulent customers were only found to steal

once. Furthermore, the computational costs of this

approach would not be feasible. Therefore, we sug-

gest to cluster customers based on their location and

then to train one temporal process on the customers

of each cluster. Finally, for each cluster, the con-

ditional intensity of its temporal process at a given

time can then be used as a feature for the respec-

tive customers. In order to find reasonable clusters,

we suggest to solve an optimization problem which

includes the number of clusters, i.e. the number of

temporal processes to train, as well as the sum of

prediction errors of all customers.

4.3. Correction of spatial bias

Previous inspections may have focused on certain

neighborhoods. How can we reduce the covariate

shift in our training set?

The customers inspected are a sample of the

overall population of customers. However, that sam-

ple may be biased, meaning it is not representa-

tive for the population of all customers. A reason

for this is that previous inspections were largely fo-

cused on certain neighborhoods and were not suf-

ficiently spread among the population. This issue

has not been addressed in the literature on NTL

yet. All works on NTL detection, such as Refs.

1, 16, 17, 20, 22, 23, 31, 33, 38 and 42, implicitly as-

sume that the customers inspected are from the dis-

tribution of all customers. Overall, we think that the

topic of bias correction is currently not receiving the
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necessary attention in the field of machine learning

as a whole. For about the last ten years, the paradigm

followed has been labeled in Ref. 56: “It’s not who

has the best algorithm that wins. It’s who has the

most data.” However, we are confident to also show

that having more representative data will help rather

than just having a lot of more data for NTL detec-

tion.

Bias correction has initially been addressed in

the field of computational learning theory, see Ref.

57, which also calls this problem covariate shift,

sampling bias or sample selection bias in Ref. 58.

For example, one promising approach is resampling

inspection data in order to be representative for the

overall population of customers. This can be done

by learning the hidden selection criteria of the deci-

sion whether to inspect a customer or not. Covariate

shift can be defined in mathematical terms as intro-

duced in Ref. 58:

• Assume that all examples are drawn from a distri-

bution D with domain X ×Y ×S,

• where X is the feature space,

• Y is the label space

• and S is {0,1}.

Examples (x,y,s) are drawn independently from

D. s = 1 denotes that an example is selected,

whereas s = 0 does not. The training is performed

on a sample that comprises all examples that have

s = 1. If P(s|x,y) = P(s|x) holds true, we can imply

that s is independent of y given x. In this case, the

selected sample is biased but the bias only depends

on the feature vector x. This bias is called covariate

shift. An unbiased distribution can be computed as

follows:

̂D(x,y,s) := P(s = 1)
D(x,y,s)

P(s = 1|x) . (2)

Spatial point processes surveyed in Ref. 59 build

on top of Poisson processes. They allow to exam-

ine a data set of spatial locations and to conclude

whether the locations are randomly distributed in

a space or if they are skewed. Eq. (2) requires

P(s= 1|x)> 0 for all possible x. In order to compute

this non-zero probability for spatial locations x, we

suggest to use and amend spatial point processes in

order to reduce the spatial covariate shift of inspec-

tion results. This will in turn allow to train more

reliable NTL predictors.

4.4. Scalability to smart meter profiles of
millions of customers

How can we efficiently implement the models in or-

der to scale to Big Data sets of smart meter readings?

Experiments reported in the literature range from

data sets that have up to a few hundred customers

in Refs. 1, 27 and 30 through data sets that have

thousands of customers in Refs. 24 and 29 to tens

of thousands of customers in Refs. 19 and 22.

The world-wide electricity grid infrastructure is cur-

rently undergoing a transformation to smart grids,

which include smart meter readings every 15 or 30

minutes. The models reported in the literature that

work on smart meter data use only very short periods

of up to a few days for NTL, such as in Refs. 24–26

and 27. Future models must scale to millions of cus-

tomers and billions of smart meter readings. The

focus of this objective is to perform the computa-

tions efficiently in a high performance environment.

For this, we suggest to redefine the computations to

be computed on GPUs, as described in Ref. 60, or

using a map-reduce architecture introduced in Ref.

61.

4.5. Creation of a publicly available real-world
data set

How can we compare different models?

The works reported in the literature describe a

wide variety of different approaches for NTL detec-

tion. Most works only use one type of classifier,

such as in Refs. 1, 22, 24 and 27, whereas some

works compare different classifiers on the same fea-

tures, such as in Refs. 29, 31 and 35. However, in

many cases, the actual choice of classification algo-

rithm is less important. This can also be justified by

the “no free lunch theorem” introduced in Ref. 62,

which states that no learning algorithm is generally

better than others.

We are interested in not only comparing classifi-

cation algorithms on the same features, but instead
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in comparing totally different NTL detection mod-

els. We suggest to create a publicly available data set

for NTL detection. Generally, the more data, the bet-

ter for this data set. However, acquiring more data

is costly. Therefore, a tradeoff between the amount

of data and the data acquisition costs must be found.

The data set must be based on real-world customer

data, including meter readings and inspection re-

sults. This will allow to compare various models re-

ported in the literature. For these reasons, it should

reflect at least the following properties:

• Different types of customers: the most common

types are residential and industrial customers.

Both have very different consumption profiles.

For example, the consumption of industrial cus-

tomers often peaks during the weekdays, whereas

residential customers consume most electricity on

the weekends.

• Number of customers and inspections: the num-

ber of customers and inspections must be in the

hundreds of thousands in order to make sure that

the models assessed scale to Big Data sets.

• Spread of customers across geographical area: the

customers of the data set must be spread in order

to reflect different levels of prosperity as well as

changes of the climate. Both factors affect elec-

tricity consumption and NTL occurrence.

• Sufficiently long period of meter readings: due

to seasonality, the data set must contain at least

one year of data. More years are better to reflect

changes in the consumption profile as well as to

become less prone to weather anomalies.

5. Conclusion

Non-technical losses (NTL) are the predominant

type of losses in electricity power grids. We have

reviewed their impact on economies and potential

losses of revenue and profit for electricity providers.

In the literature, a vast variety of NTL detection

methods employing artificial intelligence methods

are reported. Expert systems and fuzzy systems are

traditional detection models. Over the past years,

machine learning methods have become more pop-

ular. The most commonly used methods are sup-

port vector machines and neural networks, which

outperform expert systems in most settings. These

models are typically applied to features computed

from customer consumption profiles such as average

consumption, maximum consumption and change

of consumption in addition to customer master data

features such as type of customer and connection

type. Sizes of data sets used in the literature have a

large range from less than 100 to more than one mil-

lion. In this survey, we have also identified the six

main open challenges in NTL detection: handling

imbalanced classes in the training data and choos-

ing appropriate evaluation metrics, describing fea-

tures from the data, handling incorrect inspection

results, correcting the covariate shift in the inspec-

tion results, building models scalable to Big Data

sets and making results obtained through different

methods comparable. We believe that these need to

be accurately addressed in future research in order to

advance in NTL detection methods. This will allow

to share sound, assessable, understandable, replica-

ble and scalable results with the research commu-

nity. In our current research we have started to ad-

dress these challenges with the methodology sug-

gested and we are planning to continue this research.

We are confident that this comprehensive survey of

challenges will allow other research groups to not

only advance in NTL detection, but in anomaly de-

tection as a whole.
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