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Abstract 

A number of relatively successful quark model descriptions of nuclear matter have recently 
been developed, based on a mean-field description of non~overlapping nucleons bound by the 
self-consistent exchange of (1' and w mesons. By combining one such model with a recently 
developed method of calculating structure functions for the free nucleon, we are able tc. 
make a microscopic calculation of the structure functions of finite nuclei (in the local density 
approximation). As well as providing a semi-quantitative understanding of existing data, 
the model suggests that the impulse approximation, used in many theoretical treatments of 
nucleon binding, may be quite unreliable. 

1. Introduction 

Since the discovery by the European Muon Collaboration (EMC) that the 
structure functions of nuclei do not all have the same shape (Aubert et al. 

1983a, 1983b; Bodek et al. 1983; Arnold et al. 1984), there has been considerable 
further investigation. On the experimental side some features of the data, like 
the apparently dramatic increase in the sea with mass number, have become 
much less distinct. Other new features such as shadowing at small x have become 
apparent. However, the outstanding feature of the data, namely the softening 

of the valence quark distribution below x = 0·7 (at which point Fermi motion 
takes over) has not changed much (Ashman et al. 1988; Benvenuti et al. 1987; 

Dasu et al. 1988). 

While one would eventually like a unified theoretical treatment of all the 
features of the EMC data, in this work we shall be concerned only with the 

softening of the valence quark distribution, which is possibly its most surprising 
feature. Early attempts to understand this aspect of the data were based upon 
conventional ideas like nucleon binding, calculated in the impulse approximation 

(IA) (see e.g. Akulinichev et al. 1985; Akulinichev and Shlomo 1986; Dunne 

and Thomas 1986; Uchiyama and Saito 1988). Other ideas included a possible 
enhancement of the cloud of virtual pions around a nucleon in a nucleus (Llewellyn 
Smith 1983; Ericson and Thomas 1983; Berger et al. 1985). More exotic proposals 
included the possibility of multi-quark clusters (Krzywicki 1976; Pirner and Vary 
1981; Saito and Uchiyama 1985) and quark percolation through the nucleus 
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(Nachtmann and Pirner 1984). Extensive work has also been put into the idea 

that the nucleon may swell in the nucleus (dynamical rescaling, Close et al. 
1985). Here we extend to nuclei the same technique that has been successfully 

used to calculate free nucleon structure functions for the MIT bag model (Jaffe 

1983; Signal and Thomas 1989; Schreiber et al. 1990, 1991). 

In an earlier investigation (Thomas et al. 1989) we used the Guichon (1988) 

model in which nuclear matter consists of non-overlapping bags bound in the 

mean-field approximation (MFA) by the self-consistent exchange of scalar (0") 
and vector (w) mesons. Our results emphasised that the EMC effect provides 

information on the momentum and energy distribution of quarks in nuclei. In 

particular, the usual impulse approximation based on nuclear binding was shown 

to significantly overestimate the suppression of the nuclear valence quarks because 

of the neglect of the binding of the quarks that are spectators to the hard 

collision. This conclusion remains valid in the present work which is significantly 

more sophisticated. Moreover we shall see that it is possible to quantitatively 

understand the experimental data for finite nuclei in this treatment. 

Because it is the energy and momentum distribution of quarks that matters, 

one needs a quark model for nuclear matter. At the present stage of development 

such models are necessarily quite crude. Here we use both the Guichon model 

and a further development along the lines of the Boguta (1981) model-which 

enables us to fit not only the binding energy and saturation density of nuclear 

matter, but also its surface energy and thickness. 

In order to apply these models to finite nuclei we use the local density 

approximation 

(1) 

Here 12 is the nuclear density distribution, f(y,p) accounts for Fermi motion 

and q~) is the twist-2 quark distribution of the bound nucleon. Each of these 

components of the calculation will be described in the following sections, beginning 

with the nuclear models. Then we briefly review the calculation of twist-2 quark 

distributions for free nucleons, before explaining how it all comes together to 

give q~) in the penultimate section. In the final section we present the results 

and discuss them together with some ideas for further work. 

2. The Nuclear Model 

Our admittedly simple model of nuclear matter is based upon the. MIT bag 

model (Chodos et al. 1974) in its simplest form-without gluonic or pionic 

corrections. However, following Guichon (1988), we add a coupling between the 

quarks and isoscalar scalar (0") and vector (w) mesons. Neglecting nucleon overlap 

(except inasmuch as this is the true origin of these mesons) we regard each 

nucleon bag as the source of mean scalar and vector fields, if and w respectively. 

In order to calculate the strength of this source, however, we solve the usual 

Dirac equation for the valence quark wave function including the coupling to 

these mesons. Clearly we have to carry out this solution self-consistently. 

The model just described does give a reasonable value for the nuclear 

compressibility K, when the coupling constants 9u and 9w are adjusted to 
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reproduce the saturation energy and density of nuclear matter. We shall show 

some results using this model below. However, it is unsatisfactory for our purposes 

in several ways. Firstly, the well known problems of centre of mass (c.m.) motion 

are ignored in the model just described. Secondly, the large value of the mean 

vector field required is problematic (e.g. Yazaki 1990). 

In order to deal with the first problem we self-consistently correct for the 

effect of spurious c.m. motion on the energy of the nucleon (bound or free) as 

suggested by Fleck et al. (1990). As they discovered, this alone reduces the value 

of w required. However, it can be reduced even further by (generalising Boguta 

1981) adding some higher order terms to the scalar field part of the underlying 

Lagrangian, specifically terms in 0'3 and 0'4. The two extra parameters so 

introduced (b and c respectively) can be adjusted to reproduce the surface energy 

and thickness of nuclear matter. Within this model (which has independently 

been developed by Dey et al. 1991) the total energy per nucleon for nuclear 

matter is given by 

where 'Y = 4 (the degeneracy factor), p is the baryon density, mw and m q are 

the meson masses and w and if are the w and 0' mean field values. The effective 

nucleon mass miV includes the c.m. correction as in Fleck et al. (1990). Using the 

linear boundary condition for the nucleon bag in nuclear matter, its stationary 

condition (dmiV/dR = 0) and the self-consistency condition dE/dii = 0, we can 

obtain the eigenvalue of the lowest quark state, the strength of the 0' field and 

the bag radius R in nuclear matter. The coupling constants, the compressibility 

and the effective nucleon mass in our model are listed in Table 1. 

Thble 1. Coupling constants, compressibility K and effective. nucleon mass m iv at saturation 
density 0.15 fm-3 

The first row is for the Guichon (1988) model, the second is for the present full calculation. 

The coupling constants of the u and w mesons to nucleons, Ou and Ow, and the self-coupling 

constants for the u meson are b and c. Here Ou, Ow, K and miV are quoted in MeV. The 
free bag radius Ro is 0·6 fm and the free nucleon mass is fixed at 939 MeV 

Guichon 

Full 
240·1 

53·0 

175·5 

3·0 

b 

0·0 

0·8372 

3. Calculating Nucleon Structure Functions 

0·0 

9·480 

K 

230 

140 

748 

884 

In recent years there have been a number of attempts to relate the quark 

models that have been so widely used in spectroscopic studies to data in the deep 

inelastic regime (Signal and Thomas 1989; Schreiber et al. 1990, 1991; Benesh 

and Miller 1989). It has been apparent for a long time that the sensible way 

to approach this is to use the models to calculate twist-2 parton distributions 

at some (a priori unknown) low momentum scale (J1.2) (Cabibbo and Petronzio 

1977). At such a scale one knows that the valence quarks carry a sizeable 

fraction of the nucleon momentum. One can then evolve these distributions to 

higher values of Q2, where the twist-2 piece dominates, using perturbative QeD. 
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A specific advantage of the approach developed at the University of Adelaide 

(see also a recent paper by Meyer and Mulders 1991) is that it guarantees the 

correct support for the calculated quark distributions. 

Starting from the usual expression for the twist-2 quark distribution (Jaffe 

1983): 

(3) 

where mN is the mass of the nucleon, the field operator 1/1+(0) is (1 + Ci.3)1/1(0)/2 
and 1/1(0) destroys a quark at r = o. The coordinate (- is (Zj 0, 0, -z) so that 

the action of the two field operators is separated by a distance on the light-cone. 

In order to preserve the correct support for the quark distribution we insert 

a complete set of intermediate states between the field operators (Signal and 

Thomas 1989) and carry out the z-integral using translational invariance before 

making any approximation. For the nucleon itself and for the intermediate states 

we use translationally invariant Peierls-Yoccoz states. These will be two-quark 

(with mass in the region of 3/4 m) and three-quark one anti-quark (with mass of 

order 5/4 m) states. In the calculation of the anti-quark distribution q(2)(X,J1.2) 

(for which 1/1 and 1/1t are interchanged in equation 3) the dominant contribution 

is from a four-quark intermediate state (again with mass of order 5/4 m). 
One novel feature of this calculation is that it is quite clear that the nucleon has 

an intrinsic sea--even in a model with just valence quarks, like the three-quark 

bag. Furthermore, as a result of the Pauli Exclusion Principle, this intrinsic sea 

will not be flavour symmetric (Signal and Thomas 1989). Indeed we will find 

more d-d pairs in the sea. (This is because with two spins and three colours one 

can insert d-quarks into five different Is-states in a proton bag, whereas there 

are only four states available for u-quarks.) Clearly an asymmetry such as this 

will have important consequences for the Gottfried sum-rule (Signal et al. 1991j 

Melnitchouk et al. 1991). 

The dominant piece of the. valence quark distribution calculated from equation 

(3) is that involving a two-quark intermediate state. This term is controlled by 

two parameters, the bag radius and the mass. For the latter it is important to 

take into account the effect of gluon exchange, which raises the mass of a pair 

of quarks with spin 1 and lowers that of a spin 0 pair so that the resultant 

splitting is 200 MeV (Close and Thomas 1988). Rather than using the model 

for the contribution to the valence distribution from 3q-ij intermediate states, 

we simply use a phenomenological term of similar shape [say (1 - xf] with a 

normalisation chosen to ensure that we have three valence quarks. Under QCD 

evolution, this phenomenological term moves to small x so that there is no 

significant uncertainty for Q2 < 5 Ge V2 and x < 0·1. It is also worth noting 

that at small x we are sensitive to long-distance physics [the important values 

of Z in equation (3) are roughly up to order (mx)-l] which is difficult to handle 

in any phenomenological quark model, so it will be difficult to do any better in 

the near future. 

In Fig. 1 we show a comp~ison between the valence quark distribution of 

the proton calculated for a bag radius of 0·8 fm and various phenomenological 

fits which will be loosely referred to as 'data'. A priori we have no way to 
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Fig. 1. The valence quark distribution, XF3, calculated (Schreiber et al. 
1990) for the bag model with a radius of 0·8 fm. The solid curves are 
calculated at the bag scale, p,2, and evolved to 10 Ge V2 • For comparison 

we show the fits to world data by Duke and Owens (1984) and Martin et 
al. (1988). 
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Fig. 2. Valence quark distributions, as in Fig. 1, but for R = 0·6 fm. We 

also show the fits of Diemoz et al. (1988) and Eichten et al. (1986)-from 

Schreiber et al. (1991). 

1.0 

7 

specify the bag scale J-t. Instead it is determined by seeing how far one must 

evolve until the agreement with 'data' at 10 Ge y2 is optimal. Clearly the overall 

description of the 'data' is rather good. Only at very large Values of x (>0·7) 

is there a significant difference. At such values the struck quark will have a 

momentum greater than 1 Ge Y / c and one would expect to have to include the 
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effect of correlations. There is an additional uncertainty associated with the use 

of leading order QCD, which may be less reliable for higher moments and hence 

large x. 

On the other hand, the agreement with 'data' for calculations with a bag 

radius of 0·6 fm is essentially perfect (see Fig. 2). The improvement at large x is 

a consequence of the higher average momentum in the smaller cavity. Certainly it 

would be tempting to conclude that 0·6 fm is preferred. We choose not to draw 

that conclusion at this stage in view of the problems just cited. Instead we are 

content to observe that a bag with a radius in the range 0·6 to 0·8 fm gives a 

very good representation of the 'data'. Particularly for the calculations at 0·6 fm, 

the bag scale is rather low (e.g. 0·26 GeV in Fig. 2). For AQCD = 0·2 GeV, 

as used here, this gives a rather large value of a s (p,2). Other phenomenological 

studies have used similar values in perturbative calculations of QCD evolution 

(Gluck et al. 1990), but we would be more comfortable withp, closer to 0·7 or 

0·8 GeV. This does seem to be a likely, desirable consequence of including the 

pionic corrections needed to preserve chiral symmetry (Thomas 1991). 

4. Nuclear Structure Functions 

With both the quark-based nuclear model and a successful technique for 

calculating structure functions explained, we are ready to evaluate (1) to get the 

twist-2 nuclear structure function in the local density approximation (LDA). For 

the nuclear density distributions PA, we use the phenomenological fits tabulated 

in Barrett and Jackson (1977). Fermi motion is treated through convolution of 

the quark distribution in the nucleon with the non-relativistic nucleon momentum 

distribution fey, p) appropriate to nuclear matter at density P (Llewellyn Smith 

1983; Bickerstaff and Thomas 1989): 

~ 3 ) 
P = 6n2PF • (5 

Finally, q~) (x, p, p,2) is the twist-2 valence quark distribution of the nucleon 

bag, bound in nuclear matter of density p, and seen with resolution p,2. The 

scale p,2 is taken to be the same as that deduced by comparison with world 

data for a free nucleon of the same radius (when p -+ 0) (Signal and Thomas 

1989; Schreiber et al. 1990, 1991). In this way we omit any possible residual 

dynamical rescaling. In order to compare with actual nuclear data, the calculated 

distribution qA is evolved (Schreiber et al. 1990), using leading order QCD, to 

Q2 = 10 GeV2. Finally, since it is usually F,f that is shown (rather than the 

valence distribution), we add a phenomenological sea quark distribution (Buras 

and Gaemers 1978) that (as apparently required by the data) is the same as in 

the free nucleon (apart from Fermi motion). 

At the heart of the calculation is the twist-2 distribution q~) (x, p, p,2). This 

is calculated at twelve values of the density between 0 and 1· 2po (nuclear 

matter density) and twenty values of x between zero and one. Standard spline 
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interpolation is then used to generate the value at arbitrary values of (x, p). 
Every step of this calculation has been tested independently and, as an overall 

check, two independent programs were written for the full calculation. For given 

parameters the final results are accurate to better than 1%. 

Following the successful approach developed in Adelaide (Signal and Thomas 

1989; Schreiber et al. 1990, 1991) for the free nucleon, we write the dominant 

piece of the twist-2 valence quark distribution for a bag, self-consistently bound 

in nuclear matter at density p, as 

where IN) is the quark-level wave function of the bound nucleon; for which we 

use the Peierls-Yoccoz technique to construct a zero-momentum eigenstate. The 

field operator ,¢+(O) is (1 + Ci.3),¢(0)/2, where '¢(O) destroys a quark at r = o. 
Lastly, In=2,p) is the wavefunction of the nucleon bag, in the medium, with 

one quark removed-again the Peierls-Yoccoz approximation is used to make a 

momentum eigenstate. Inside the delta-function, mN is the total energy of the 

bound nucleon, while P~=2 is the plus component (Po + pz) of the 4-momentum 

of the bound di-quark bag. The inclusion of the binding of this residual pair is 

the crucial difference from the usual IA. Clearly it is easy to test the accuracy 

of the latter by replacing I n=2,p) and P~=2 by the forms used in calculating 

the free nucleon structure function. 
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Fig. 3. EMC ratios (Fe/D) for the present full calculation (solid), the 

IA (dashed) and the Guichon model (dotted). The free bag radius is 

Ro = 0·6 fm and the cut-off momentum pc is 1·3 fm -1. 

5. Results and Discussion 

At last we are in a position to present the results. In Fig. 3 the solid curve 

is our complete calculation for the ratio of the structure functions of Fe and D 

(at 10 GeV2), for the case where the free bag radius, Ro, is 0·6 fm. (The lack 
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Fig. 4. Cut-off momentum dependence of Fe/D for Ro = 0·6 fm. The 

solid curve is for pc = 1· 3 fm -1, while the dotted curve involves no cut-off. 

of sensitivity to Ro is illustrated later.) For comparison we also show the most 

recent data from EMC, BCDMS and SLAC (Ashman et al. 1988; Dasu et al. 

1988; Benvenuti et al. 1987). Clearly the calculation provides a semi-quantitative 

description of the data. Notice that one cannot use the local density approximation 

for deuterium. Instead we use a conventional convolution model allowing for 

8 MeV binding and recoil (Bickerstaff and Thomas 1989; Dunne and Thomas 

1986). The nucleon momentum distribution in D is given by the Paris potential 

(Lacombe et al. 1981). For the present our calculation of the nuclear structure 

functions includes no nucleon momenta higher than about 1· 3 fm -1. Therefore 

we have also imposed a cut-off (Pc) at 1·3 fm- 1 in the deuteron momentum 

wavefunction. That this only affects the EMC ratio at large x is shown in Fig. 4 

where the dotted curve shows the ratio with no cut-off in the deuteron part of 

the calculation. The Guichon model which was discussed above predicts the ratio 

shown by the dotted curve in Fig. 3 which is not quite as good. 

From the phenomenological point of view it is important to know whether our 

earlier conclusion about the inaccuracy of the IA remains true. The dashed curve 

in Fig. 3 shows the effect of ignoring the interaction of the residual two-quark 

bag with the nucleus. Clearly it dramatically overestimates the EMC effect. On 

physical grounds this makes good sense. Deep inelastic scattering measures the 

energy-momentum distribution of the struck quark, not the struck nucleon. 

In Fig. 5 we illustrate the sensitivity of the results to the radius of the free 

bag-it is not strong. Finally, in Fig. 6, we show the prediction of the full model 

for the A-dependence of the EMC ratio. In general agreement with experiment, 

we find that as the atomic number increases the ratio is deeper for middle x and 

more enhanced for large x. However, as we have already remarked for Fe, the 

depth for large nuclei is not great enough. 

Let us now briefly summarise our conclusions and comment on what remains 

to be done. It is very satisfying that a quark-level description of nuclear matter, 

together with the local density approximation and a microscopic method of 
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Fig. 5. Bag radius dependence of the ratio Fe/D for Pc = 1·3 fm-1. The 

solid and dashed curves are for Ro = 0·6 and 0·8 fm respectively. 
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Fig. 6. lllustration of the dependence on atomic number with Ro = 0·6 fm 
and pc = 1·3 fm -1. The dot-dashed, solid and dashed curves are for 

carbon, iron and gold respectively. 
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calculating twist-2 structure functions, does give a reasonable fit to the EMC data 

on Fe. Although it is disappointing in some ways that the impulse approximation 
fails, we have seen that there is a sound physical reason for this failure, namely 

that it effectively assigns the binding of an entire nucleon to a single struck 

quark. On the positive side we can be sure that nuclear deep inelastic scattering 

does tell us about the binding of quarks in nuclei. 

Of course, having achieved this much one necessarily wants much more. One 

would like to go beyond the local density approximation, which would require 

a quark model for the structure of finite nuclei. It is also unsatisfactory to be 
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limited to a mean-field approximation for non-overlapping bags. Even though a 

and w exchange may be viewed, at least partly, as a macroscopic treatment of 

more complicated short-distance processes (perhaps involving quark and gluon 

exchange), one would like to do better. 

The MIT bag model is also a fairly crude representation of nucleon structure. 

One should explore the consequences of using more sophisticated models-e.g. 

with a more reasonable surface, a better treatment of c.m. motion and perhaps 

a pion cloud. [The latter might eventually help us understand why there is no 

evidence for an enhancement in the pion field of the nucleus in recent Drell-Yan 

data (Garvey 1991).] As we have explained elsewhere (Schreiber et al. 1991; 

Thomas 1991), we are limited to leading order QCD unless the model used has 

a well defined connection to QCD. 

Finally, our analysis has not yet had anything new to say about the nuclear sea 

or shadowing at small x. Eventually one may hope to understand all the features 

of the data within a single unified theory. That is the long-term challenge. 
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