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ABSTRACT

We introduce the challenge problem for generic video index-
ing to gain insight in intermediate steps that affect perfor-
mance of multimedia analysis methods, while at the same
time fostering repeatability of experiments. To arrive at a
challenge problem, we provide a general scheme for the sys-
tematic examination of automated concept detection meth-
ods, by decomposing the generic video indexing problem
into 2 unimodal analysis experiments, 2 multimodal analy-
sis experiments, and 1 combined analysis experiment. For
each experiment, we evaluate generic video indexing perfor-
mance on 85 hours of international broadcast news data,
from the TRECVID 2005/2006 benchmark, using a lexicon
of 101 semantic concepts. By establishing a minimum per-
formance on each experiment, the challenge problem allows
for component-based optimization of the generic indexing
issue, while simultaneously offering other researchers a ref-
erence for comparison during indexing methodology devel-
opment. To stimulate further investigations in intermediate
analysis steps that influence video indexing performance, the
challenge offers to the research community a manually an-
notated concept lexicon, pre-computed low-level multimedia
features, trained classifier models, and five experiments to-
gether with baseline performance, which are all available at
http://www.mediamill.nl/challenge/.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; I.2.6 [Artificial

Intelligence]: Learning—Concept learning

General Terms

Algorithms, Experimentation, Performance
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Video analysis, baseline, generic concept detection
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1. INTRODUCTION
The field of multimedia indexing has witnessed a rapid

growth in recent years. Fueled by ever increasing capture,
storage, and transmission capabilities, multimedia assets ha-
ve become commonplace items to record, distribute, and
share. We reached a point where users require instant access
to their expanding repositories of multimedia data. Pushed
by this demand, powerful multimedia analysis techniques
have emerged. It has yielded a proliferation of methods, of-
ten evaluated on specific and small data sets. As a result,
experiments are non-repeatable; making it hard to judge
whether approaches are truly promising. Repeatable exper-
iments, using published benchmarks, have been identified at
the latest ACM SIGMM retreat as one of the requirements
for the field to progress further [1].

In more mature fields, like computer vision, repeatable
benchmark experiments have fostered the state-of-the-art.
For problems as diverse as human gait analysis [2], color con-
stancy [3], face recognition [4], and object detection [5,6] the
availability of repeatable benchmark experiments has given
researchers an environment to measure what factors affect
performance most. Hence, it allows for an in-dept under-
standing of the problem at stake. In [2] for example, Sarkar
et al. study gait-based identification of humans on a large
data set. They decompose the problem into a number of
components, for which they provide a standard implemen-
tation. The authors quantify the quality of each component
by repeatable experiments on labeled data. By establishing
a minimum performance on each part, the authors allow for
component-based optimization of the problem, while at the
same time offering other researchers a reference for compar-
ison during methodology development. Hence, the authors
make a transition from a benchmark to a challenge prob-

lem. From [2–6] it follows that a challenge problem requires
a shared data set, a collection of repeatable experiments, a
baseline implementation, and its performance.

1.1 Multimedia Indexing Challenge Problem
To arrive at a challenge problem for multimedia indexing,

we first need shared multimedia data. A shared data set has
always been a delicate issue. Multimedia archives are frag-
mented and mostly inaccessible due to copyrights and the
sheer volume of data involved. Making it hard, often im-
possible even, for researchers world wide to share resources.
As a consequence, comparison of systems has traditionally
been difficult. To counter this trend, the American National
Institute of Standards and Technology (NIST) initiated the



TREC Video Retrieval Evaluation (TRECVID) [7, 8]. The
aim of the benchmark is to promote progress in content-
based retrieval from digital video archives via open, metrics-
based evaluation using a common large data set. Tasks in-
clude camera shot segmentation, camera motion detection,
story segmentation, semantic concept detection, and several
retrieval questions. The research community at large has
joined this initiative. TRECVID has become the de facto

data set to evaluate multimedia indexing research.
TRECVID has been of pivotal importance in assessing

complete multimedia indexing methods on their relative merit.
It has, however, not addressed the important issue of exper-
iment repeatability of intermediate analysis steps on train-
ing data. This is mainly caused by the fact that TRECVID
focuses on the final result of a multimedia processing sys-
tem, be it a shot segmentation or a ranked list of fragments
resulting from an interactive session with a video search en-
gine. In theory, the TRECVID experiments are repeatable,
but not on a system component level. Because TRECVID
ignores intermediate results, component-based optimization
and comparison during methodology development are im-
possible in practice.

Given the TRECVID data, what exactly is needed for
a challenge problem in the multimedia field? To answer
the question, we first focus on the fundamental problem in
multimedia indexing that almost all research papers in the
field address: the semantic gap [9]. This gap is defined as the
discrepancy between machine computable low-level features
on one end, and its semantic interpretation by humans on
the other end. Since a large majority of work in multimedia
research aims for bridging the semantic gap, see e.g. [10] for
a bundled collection, the raised question can be rephrased
as: what is needed to bridge the semantic gap?

Early approaches aiming to bridge the semantic gap fo-
cused on the feasibility of mapping low-level features, e.g.
color, pitch, and term frequency, directly to high-level se-
mantic concepts, like commercials [11], nature [12], and
baseball [13]. This has yielded a variety of dedicated meth-
ods, which exploit simple decision rules to map low-level
features to a single semantic concept. This specific detector
approach will fail, however, when we aim for large-scale au-
tomated annotation of video archives. It is simply unfeasible
to develop a tailor-made detector for every possible concept
one can think of. Specific methods have aided in demon-
strating the potential of semantic concept detection. For a
challenge problem, however, we urge for an alternative.

Recently, generic approaches for concept detection [14–17]
emerged as an adequate alternative for specific methods.
Generic approaches learn a wide variety of concepts from
a shared set of low-level features, often fused in various
ways [16]. In contrast to specific methods, these approaches
exploit the observation that mapping multimedia features
to concepts requires quite many decision rules. To distill
these rules, the methods make exhaustive use of machine
learning. The machine learning paradigm has proven to be
quite successful in terms of generic detection, as well as over-
all TRECVID benchmark performance. A challenge prob-
lem should aim for generic concept detection using machine
learning.

Ideally, a generic video indexing system should learn and
infer concepts from the multimedia data directly. How-
ever, the present day paradigm of choice in generic video
indexing is to learn the concept classification rules by super-

vised learning. Supervised learning requires labeled exam-
ples. Hence, annotations are a valuable resource for generic
concept detection. Moreover, when aiming for repeatability
of experiments this ground truth needs to be shared. To
cope with the demand for shared annotations in multime-
dia research, Lin et al. initiated a collaborative annotation
effort in the TRECVID 2003 benchmark [18]. Guided by
tools from Christel et al. [19] and Volkmer et al. [20] a com-
mon annotation effort was again started for the TRECVID
2005 benchmark. It has yielded a large and accurate set of
labeled examples for a lexicon of 39 concepts, taken from
a predefined concept ontology for multimedia [21, 22]. At
present, efforts to produce a manually annotated lexicon of
1,000 concepts are underway [23]. Driven by the TRECVID
benchmark various sets of annotated concepts have become
publicly available.

A challenge problem is more than just manual annota-
tions. In addition to concept examples, a challenge problem
aiming to bridge the semantic gap by means of automati-
cally detected high-level concepts requires intermediate re-
sults in the form of pre-computed low-level features, and
a supervised learner. This offers fellow researchers the op-
portunity to focus on a single aspect of the generic video
indexing problem, e.g. indexing based on visual analysis
only, or a combined effort using fused versions of visual and
textual analysis for example. In addition, researchers from
pattern recognition or information retrieval can step in with-
out the need to do expensive multimedia processing, since
they can exploit the provided low-level features. It should be
noted that in the course of the TRECVID benchmark some
groups have donated features, most notably are the camera
shot segmentation by CLIPS-IMAG [24], speech recognition
results donated by LIMSI [25] and various multimedia fea-
tures donated by Informedia [26]. In addition, all partici-
pants share their results on common test data for a limited
lexicon of typically 10 high-level concepts. To date, how-
ever, nobody has provided low-level features and detected
semantic concepts for a large lexicon on both training and
test data, while these are crucial assets for any challenge
problem.

Once a challenge problem is defined for multimedia index-
ing it allows to focus on new research frontiers. One of many
open issues is to understand why a particular technique is
suited best, or unsuited, for a specific class of semantic con-
cepts. A multimedia indexing challenge problem lays the
foundation for conceptual meta-analysis methods that in-
vestigate what strategy should be employed for a particular
class of concepts.

1.2 Contribution
We describe in this paper the challenge problem for the

automated detection of a lexicon of 101 semantic concepts
in video. The purpose of the challenge problem is to gain in-
sight in intermediate analysis steps that play a role in generic
video indexing, by providing researchers with a framework
for the systematic evaluation of video indexing components,
while at the same time ensuring repeatability of experi-
ments. To arrive at a challenge problem, we provide a gen-
eral scheme for the systematic examination of automated
concept detection methods, decomposing the generic video
indexing problem into 2 unimodal analysis experiments, 2
multimodal analysis experiments, and 1 combined analysis
experiment. For each experiment, we provide a baseline



implementation and its performance on TRECVID data.
To stimulate further investigations in factors that influence
generic video indexing performance, the challenge offers to
the research community an annotated lexicon of 101 con-
cepts, low-level multimedia features, trained classifier mod-
els, and baseline performance for the five experiments, which
are available at http://www.mediamill.nl/challenge/.

The remainder of the paper is organized as follows. We
first define the challenge problem in more detail. In sec-
tion 3, we describe the baseline algorithm, which we exploit
to learn 101 concepts in a generic fashion from low-level mul-
timedia features. We present the evaluation with baseline
performance and conceptual meta-analysis in section 4. We
wrap up in the conclusions.

2. CHALLENGE PROBLEM DEFINITION
The purpose of the challenge problem for generic video

indexing is to provide researchers with a framework for the
systematic evaluation of video indexing components. To
allow for systematic evaluation, we organize the challenge
problem as a laboratory test [27]. In such a test the variabil-
ity stemming from multimedia data, concepts, experiments,
and performance must be structured to allow for comparison
of results. To arrive at a laboratory test for the challenge
problem, we separate a multimedia archive in a training set
and a test set, using camera shots as the unit for index-
ing and evaluation, in line with the common procedure in
literature [7,8,14–17]. For each set, we provide manually la-
beled ground truth, at the shot level, in the form of a shared
concept lexicon. We define a set of experiments which in-
dex shots in the test set based on algorithms tuned on the
training set. For each concept in the lexicon this should
yield a list of shots, ranked according to detector confidence
of concept presence. To evaluate these ranked lists we use
standard measures from information retrieval. We will now
describe the challenge problem in more detail.

2.1 Data Set

2.1.1 Multimedia Data

A publicly available archive of video data is a prerequisite
for a challenge problem. In addition to this availability re-
quirement, the archive of choice should provide a sufficiently
large research challenge. To that end, a provocative video
archive is, first of all, sizeable enough to allow for a diver-
sity of experiments. Secondly, as it is meant for multimedia
experiments, it should emphasize the multimedia nature of
the data, i.e. containing speech in addition to the visual
information. Thirdly, the videos should have a common
granularity, e.g. camera shots, to provide a standardized
basis for evaluation. The 2005 TRECVID corpus meets our
demands.

The video archive of the 2005 TRECVID benchmark is
composed of 169 hours of Arabic, Chinese, and US broadcast
news sources, recorded in MPEG-1 during November 2004
by the Linguistic Data Consortium. The training data con-
tains about 85 hours. The video archive comes together with
automatic speech recognition results and machine transla-
tions donated by a US government contractor. Where it
should be noted that both the speech recognition and ma-
chine translations yield noisy detection results. What is
more, due to the machine translation, the text is unsynchro-
nized with the visual content. Hence, the corpus provides

a challenging basis for multimedia analysis. As an aside
we note that the 2005 data will be reused in TRECVID
2006 together with new test data, assuring for researchers a
broad applicability of developed algorithms. For all videos,
the Fraunhofer Institute [28] provided a camera shot seg-
mentation. Dublin City University created a common set of
key frames [8]. The video data and key frames have been
distributed to 57 teams from academic and corporate re-
search labs, spread over 5 continents, already. The Lin-
guistic Data Consortium aims to make the official release of
the video data available for all interested parties soon [29].
The shot segmentation, automatic speech recognition re-
sults, and machine translations are available from NIST [30].
The 85 hours of training data from the TRECVID 2005 cor-
pus forms the basis for the challenge problem. We divided
this archive a priori into a non-overlapping train and test set.
The challenge train set A contains 70% of the data, and the
challenge test set B holds the remaining 30%. These sets
form the basis for our lexicon of high-level concepts.

2.1.2 Annotated Concept Lexicon

Given the TRECVID corpus, we face the task of defining
a lexicon of semantic concepts that our challenge problem
should detect. Similar to [6], we choose concepts at ran-
dom, but we take a predefined concept ontology for mul-
timedia [22] as leading example. Concepts in this ontology
are chosen based on extensive analysis of video archive query
logs. Concepts should be related to program categories, set-
ting, people, objects, activities, events, and graphics. In
addition, a primary design choice was that concepts need
to be clear by looking at a static key frame only. It has
resulted in a lexicon of 39 concepts, which formed the ba-
sis for the TRECVID 2005 common annotation effort [20].
In part, we rely on this provided ground truth. We man-
ually extend both the number of concepts and the number
of annotations by browsing the shots in the training data,
using our MediaMill video search engine [31]. To relieve the
effort, we focus on positive instances of concepts adhering
to the above categorization only. Presence of a concept was
assumed to be binary, i.e. it is visible during a shot or not.
Hence, the location of a concept in the image frame is not
taken into account. Moreover, if the concept is true for some
frame within the shot, then it was true for the entire shot.
To assure a sound basis for supervised learning, concepts
are added to the lexicon only when at least 30 positive in-
stances are identified. To limit the need for disambiguation,
only one person annotated the data. The manual annota-
tion process has yielded an incomplete, but reliable ground
truth for a lexicon of 101 semantic concepts, see Fig. 1 for
visual examples. As new concepts and names keep appear-
ing and disappearing in our world, these 101 concepts are
bound to keep changing over time. However, by fixing the
data set and concept lexicon, we allow for the systematic
examination of automated concept detection methods. We
provide statistics for the concept lexicon in overview Table 1
at the end of this paper.

2.2 Experiments
To arrive at a set of experiments for the automated index-

ing of 101 semantic concepts, we build on successful previous
work in generic concept detection, e.g. [14–17]. Similar to
this work, we perceive concept detection in video as a pat-
tern recognition problem. Given pattern ~x, part of a shot i,



Figure 1: Visual impression of the 101 semantic concepts, which we detect within the challenge problem.

the aim is to obtain a probability measure, which indicates
whether semantic concept ωj is present in shot i. In pattern
recognition, the strict definition of a probability depends on
many factors and assumptions. Hence, it can not form the
basis for comparison between different methods. Therefore,
we do not use the probability directly. Instead, we utilize
the probability as a confidence score, defined as p(ωj |~xi). To
allow for metric-based evaluation, we employ ranking oper-
ator Φ to rank all shots based on the confidence score. This
yields ranked list ρj , defined as:

ρj = Φ
“

{p(ωj |~xi)}i=1,2,...,n

”

, (1)

where n denotes the number of shots in the data set. Thus,
each experiment uses supervised learning to convert a set
of feature vectors into a ranked list of shots, ordered by
concept detection confidence. The challenge experiments
differ in the way they obtain feature vector ~xi.

In literature, the two most common approaches to acquire
feature vector ~xi from video are unimodal and multimodal
content analysis. Considering unimodal analysis, we distin-
guish three data streams or modalities, namely the audi-
tory modality, the textual modality, and the visual one. As
speech is often the most informative part of the auditory
source, the challenge experiments focus on textual features
obtained from transcribed speech and on visual features ob-

tained from key frames. For multimodal content analysis
the visual and textual streams need to be fused at some
point. We consider two classes of fusion schemes, namely
early fusion and late fusion [16]. Naturally, the above ap-
proaches for generic video indexing may be combined. In
fact, previous work [16, 17] indicates that the optimal anal-
ysis often varies per concept. The challenge experiments
address 2 unimodal, 2 multimodal, and 1 combined analysis
approach. We sketch the data flow for all five experiments
in Fig. 2.

In the first challenge experiment we focus on a pure vi-
sual analysis of multimedia data. The challenge is to learn
semantic concepts from a visual feature vector ~vi. Despite
a wide variety of visual analysis methods proposed in liter-
ature [9], there is no consensus yet on what visual feature
representation to choose for effective generic concept detec-
tion. We therefore identify the following experiment:

• Experiment 1: Given a visual feature vector, ~vi,
learn for each of the 101 semantic concepts ωj a ranked
list ρ1

j ;

In contrast to visual analysis, textual analysis is a well un-
derstood problem. Standard techniques have proven to be
useful in a video indexing setting also, even when the text
feature vector ~ti results from noisy speech recognition [26].



Figure 2: Data flow within the proposed challenge problem for generic video indexing of 101 semantic

concepts. Experiment 1 and 2 focus on unimodal analysis, yielding a visual and a textual concept classification.

Experiment 3 and 4 employ an early and late fusion scheme respectively. The challenge problem allows for the

construction of four classifiers for each concept. In experiment 5, an optimum is selected based on combined

analysis.

Recall that apart from muddled transcripts, the text from
the TRECVID data also suffers from unsynchronized and
noisy machine translations. Under such heavy circumstances,
coping with textual data offers quite a challenge indeed. We
identify the following experiment:

• Experiment 2: Given a textual feature vector, ~ti,
learn for each of the 101 semantic concepts ωj a ranked
list ρ2

j ;

Indexing approaches that rely on early fusion first extract
unimodal features. After analysis of the various unimodal
streams, the extracted features are combined into a multi-
modal feature representation ~ei. Subsequently, early fusion
methods rely on supervised learning to classify semantic con-
cepts. Early fusion yields a truly multimedia feature repre-
sentation, since the features are integrated from the start.
Disadvantage of the approach is the difficulty to combine
features into a common representation. Moreover, early fu-
sion suffers from features with poor quality We identify the
following challenge experiment:

• Experiment 3: Given an early fusion feature vector,
~ei, learn for each of the 101 semantic concepts ωj a
ranked list ρ3

j ;

Late fusion approaches also start with extraction of uni-
modal features. In contrast to early fusion, where features
are then combined into a multimodal representation, ap-
proaches for late fusion learn semantic concepts directly
from unimodal features. Hence, the dimensionality of the
problem is reduced with the potential of easier analysis.
In general, late fusion schemes combine learned unimodal

concept detection scores into a multimodal representation
~li. Then late fusion methods rely on supervised learning to
classify semantic concepts. Late fusion focuses on the indi-
vidual strength of modalities. Unimodal concept detection
scores are fused into a multimodal semantic representation
rather than a feature representation. A disadvantage of late
fusion schemes is their expensiveness in terms of the learn-
ing effort, as every modality requires a separate supervised
learning stage. Moreover, the combined representation re-
quires an additional learning stage. We identify:

• Experiment 4: Given a late fusion feature vector, ~li,
learn for each of the 101 semantic concepts ωj a ranked
list ρ4

j ;

Given the large variety in semantic concepts, it is unlikely
that each concept requires a similar analysis approach. A
tree for example, is best detected in the visual content. In
contrast, Tony Blair at the current level of person recogni-
tion is almost exclusively detectable using text. We identify
a combined analysis experiment to gain insight in the role
of various analysis approaches on concept detection perfor-
mance. Based on the ranked lists from the previous four
challenge experiments, various combined analysis methods
can be defined, which ultimately yield an optimum combined
ranked list. Hence, given the previous four experiments, we
identify the final experiment:

• Experiment 5: Given the four ranked lists, ρ1

j , ρ
2

j , ρ
3

j ,

ρ4

j , from the previous four experiments, learn for each
of the 101 semantic concepts ωj an optimum combined
ranked list, ρ5

j ;



2.3 Performance Metric
We use average precision to determine the accuracy of

ranked concept detection results on our experiments, fol-
lowing the standard in TRECVID evaluations. The average
precision is a single-valued measure that is proportional to
the area under a recall-precision curve. This value is the av-
erage of the precision over all relevant judged shots. Hence,
it combines precision and recall into one performance value.
Let ρk = {i1, i2, . . . , ik} be a ranked version of the answer
set A. At any given rank k let R ∩ ρk be the number of
relevant shots in the top k of ρ, where R is the total number
of relevant shots. Then average precision, AP , is defined as:

AP (ρ) =
1

R

A
X

k=1

R ∩ ρk

k
ψ(lk) , (2)

where indicator function ψ(ik) = 1 if ik ∈ R and 0 otherwise.
As the denominator k and the value of ψ(ik) are dominant
in determining average precision, it can be understood that
this metric favours highly ranked relevant shots.

3. BASELINE IMPLEMENTATION
We provide a baseline implementation for each experiment

using standard algorithms from literature. By establish-
ing a minimum performance on each experiment, the chal-
lenge problem allows for component-based optimization of
the generic indexing issue, while at the same time offering
other researchers a reference for comparison during index-
ing methodology development. Note that researchers may
compare against the entire system or its components. The
implementation of our baseline algorithm is structured ac-
cording to the data flow sketched in Fig. 2. We will now
briefly explain the components of the algorithm.

3.1 Supervised Learner
We choose from a large variety of supervised machine

learning approaches to obtain confidence measure p(ωj |~xi).
The Support Vector Machine (SVM) framework [32] has
proven to be a solid choice [15–17]. Here we use the LIB-
SVM implementation [33] with radial basis function. The
usual SVM method provides a margin in the result. We
prefer Platt’s conversion method [34] to achieve a confidence
score. SVM classifiers thus trained for ωj , result in an esti-
mate p(ωj |~xi, ~q), where ~q are parameters of the SVM. The
influence of the SVM parameters on concept detection is sig-
nificant [35]. We obtain good parameter settings by using
an iterative search on a large number of SVM parameter
combinations. We measure average precision performance
of all parameter combinations and select the combination
that yields the best performance, ~q∗. Here we use a 3-fold
cross validation on train set A to prevent overfitting of pa-
rameters. The result of the parameter search over ~q is the
improved model p(ωj |~xi, ~q

∗), contracted to p∗(ωj |~xi).

3.2 Visual Feature Extraction
Visual feature extraction is based on the method described

in [36]. In short, the procedure first extracts a number of
color invariant texture features per pixel. Based on these
features, it labels a set of predefined regions in a key frame
image with similarity scores for a total of 15 low-level visual
concepts, like road, sky, water body, and so on. This yields
a 15-bins histogram, where each bin represents a similar-
ity score to one of the 15 regional concepts. We vary the

size of the predefined regions to obtain a total of 8 con-
cept occurrence histograms that characterize both global
and local color-texture information. We concatenate the
histograms to yield a 120-dimensional visual feature vector
per key frame, ~vi. To learn semantic concepts, ~vi serves as
the input for the supervised learner.

3.3 Textual Feature Extraction
In the textual modality, we learn the association between

transcribed speech and concepts, see [17]. We map the Chi-
nese and Arabic story level machine translations to shot level
using linear interpolation. To learn the relation between ut-
tered speech and concepts, we connect stemmed and stopped
words to shots. We make this connection within the tempo-
ral boundaries of a shot. We derive a vocabulary of uttered
words that co-occur with concept ωj using the shot-based
annotations of the training data. For each concept ωj , we
learn a separate vocabulary, Λωj , as the uttered words are
specific for that concept. Since a news anchor or reporter
often mentions indicative words just before or after a con-
cept is visible, we stretch the shot boundaries by inclusion of
the previous and next shot on each side. For feature extrac-
tion we compare the text associated with the stretched shot
with Λωj . This comparison yields a text vector ~ti for shot
i, which contains the histogram of the words in association
with ωj . To learn semantic concepts, ~ti serves as the input
for the supervised learner.

3.4 Early Fusion
For the early fusion experiment, we combine the feature

vectors resulting from visual feature extraction and textual
feature extraction. We adopt the method proposed in [16],
using vector concatenation to unite the features ~vi and ~ti.
After feature normalization, we obtain early fusion vector
~ei. To learn semantic concepts, ~ei serves as the input for
the supervised learner.

3.5 Late Fusion
We again follow [16] for the late fusion experiment. Recall

that late fusion requires two supervised learning stages. We
consider the size of the used sets an implementation issue.
Therefore, we split train set A into two sets: A1 and A2,
each containing 50% of the data. We utilize set A1 to ob-
tain a confidence score after visual analysis, i.e. p∗(ωj |~vi),
and a confidence score resulting from textual analysis, i.e.
p∗(ωj |~ti). We concatenate p∗(ωj |~vi) with p∗(ωj |~ti), into late

fusion vector ~li. Then ~li serves as the input for the super-
vised learner, which learns semantic concepts on set A2.

3.6 Combined Analysis
Each of the four previous experiments results in an opti-

mized ranking per concept. We measure average precision
performance according to 3-fold cross validation, for each
concept and each experiment, on set A. Similar to [17], we
select per concept the experiment that maximizes perfor-
mance on training data:

ρ
5

j = max
`

AP (ρ1

j ), AP (ρ2

j ), AP (ρ3

j ), AP (ρ4

j )
´

. (3)

4. BASELINE PERFORMANCE
We establish a baseline performance for each of the five

challenge experiments using the baseline algorithm. The



Table 1: Overview of the the challenge problem for automated concept detection in multimedia, showing 101

concepts and the percentage of positively labeled examples used for the training set and the test set, together

with average precision results for the five challenge experiments on test data. Concepts are ordered based

on the training samples used for learning.

Concept Train (%) Test (%) 1 2 3 4 5 Concept Train (%) Test (%) 1 2 3 4 5

1 People 77.67 75.87 0.831 0.817 0.890 0.840 0.840 52 Table 0.75 0.52 0.073 0.006 0.037 0.060 0.073

2 Face 64.15 62.37 0.895 0.737 0.892 0.890 0.890 53 Tower 0.75 0.63 0.057 0.009 0.023 0.033 0.057

3 Overlayed text 36.33 34.30 0.669 0.533 0.642 0.666 0.669 54 Basketball 0.69 0.34 0.382 0.219 0.179 0.239 0.382

4 Outdoor 32.68 38.33 0.688 0.579 0.709 0.691 0.691 55 Y. Arafat 0.62 0.88 0.026 0.072 0.034 0.013 0.072

5 Entertainment 19.64 12.55 0.166 0.179 0.257 0.146 0.179 56 Chair 0.60 0.58 0.486 0.101 0.261 0.467 0.486

6 Indoor 19.59 21.20 0.593 0.460 0.592 0.606 0.592 57 Explosion 0.53 1.04 0.098 0.038 0.078 0.046 0.038

7 Studio 13.66 14.20 0.636 0.490 0.664 0.651 0.664 58 Food 0.50 0.83 0.287 0.085 0.188 0.170 0.287

8 People walking 13.61 16.83 0.353 0.294 0.338 0.296 0.338 59 Bus 0.43 0.64 0.013 0.007 0.009 0.005 0.007

9 Urban 11.78 8.80 0.222 0.178 0.195 0.201 0.195 60 Snow 0.41 0.53 0.085 0.018 0.045 0.004 0.085

10 Crowd 11.48 16.12 0.480 0.288 0.490 0.440 0.490 61 Fire weapon 0.35 0.52 0.121 0.013 0.060 0.047 0.121

11 Sky 10.77 11.38 0.478 0.218 0.496 0.463 0.496 62 Tennis 0.34 0.56 0.448 0.195 0.299 0.397 0.397

12 Government leader 9.35 7.87 0.213 0.213 0.222 0.236 0.213 63 Prisoner 0.33 0.22 0.047 0.027 0.051 0.004 0.051

13 Violence 8.07 9.75 0.317 0.301 0.334 0.237 0.334 64 News paper 0.31 0.27 0.375 0.000 0.121 0.384 0.375

14 Road 7.76 6.60 0.195 0.138 0.212 0.188 0.195 65 E. Lahoud 0.30 0.15 0.289 0.080 0.115 0.196 0.289

15 Vehicle 7.61 8.53 0.221 0.167 0.271 0.190 0.271 66 J. Kerry 0.29 0.01 0.000 0.012 0.002 0.001 0.000

16 Building 6.86 11.16 0.316 0.154 0.233 0.291 0.154 67 House 0.29 0.36 0.023 0.004 0.007 0.009 0.004

17 Male 5.71 2.38 0.086 0.034 0.068 0.069 0.086 68 Government building 0.27 0.19 0.011 0.038 0.079 0.002 0.002

18 Anchor 5.09 4.85 0.631 0.201 0.620 0.618 0.631 69 Religious leader 0.27 0.23 0.043 0.026 0.035 0.041 0.026

19 Car 4.87 5.93 0.252 0.118 0.246 0.215 0.252 70 Fish 0.27 0.12 0.489 0.068 0.408 0.312 0.489

20 Meeting 4.53 4.86 0.257 0.158 0.211 0.257 0.257 71 Duo-anchor 0.26 0.18 0.634 0.022 0.108 0.287 0.634

21 Female 4.38 2.11 0.086 0.020 0.061 0.068 0.086 72 Golf 0.25 0.31 0.091 0.007 0.042 0.143 0.091

22 Military 4.14 6.58 0.217 0.206 0.235 0.203 0.235 73 I. Allawi 0.21 0.02 0.000 0.030 0.002 0.000 0.000

23 Vegetation 3.87 4.64 0.183 0.051 0.161 0.150 0.183 74 Bicycle 0.20 0.04 0.006 0.454 0.223 0.733 0.454

24 Sports 3.76 2.61 0.304 0.267 0.231 0.308 0.304 75 Court 0.20 0.30 0.093 0.041 0.030 0.052 0.041

25 Monologue 3.10 2.33 0.094 0.051 0.074 0.081 0.094 76 G. Bush sr. 0.20 0.01 0.000 0.000 0.000 0.000 0.000

26 Graphics 2.89 3.48 0.365 0.275 0.379 0.367 0.365 77 Football 0.20 0.39 0.048 0.016 0.020 0.043 0.016

27 Corporate leader 2.57 1.30 0.016 0.020 0.014 0.018 0.020 78 Cycling 0.18 0.03 0.042 0.950 0.888 0.608 0.950

28 Waterscape 2.31 1.89 0.150 0.079 0.134 0.142 0.134 79 Bird 0.18 0.23 0.724 0.577 0.761 0.743 0.724

29 People marching 1.93 4.13 0.228 0.087 0.267 0.109 0.267 80 Drawing & Cartoon 0.17 0.38 0.265 0.207 0.181 0.191 0.207

30 Soccer 1.67 0.29 0.503 0.000 0.079 0.372 0.503 81 Horse 0.16 0.02 0.000 0.000 0.000 0.000 0.000

31 Mountain 1.64 1.01 0.141 0.022 0.092 0.157 0.141 82 Dog 0.14 0.38 0.225 0.012 0.103 0.019 0.012

32 G. Bush jr. 1.61 0.54 0.062 0.065 0.040 0.060 0.062 83 Night fire 0.14 0.05 0.526 0.001 0.249 0.000 0.526

33 Office 1.56 1.75 0.077 0.024 0.045 0.037 0.024 84 Horse racing 0.12 0.02 0.000 0.000 0.000 0.000 0.000

34 Screen 1.53 1.90 0.101 0.063 0.058 0.121 0.063 85 River 0.10 0.09 0.310 0.710 0.654 0.098 0.710

35 Flag 1.26 1.12 0.189 0.029 0.120 0.166 0.189 86 Racing 0.09 0.12 0.029 0.176 0.175 0.004 0.176

36 Truck 1.16 1.02 0.038 0.019 0.042 0.038 0.019 87 Candle 0.08 0.10 0.011 0.057 0.080 0.001 0.057

37 Map 1.16 1.21 0.476 0.220 0.313 0.407 0.476 88 Cartoon 0.08 0.21 0.259 0.671 0.278 0.285 0.671

38 Smoke 1.13 2.14 0.250 0.103 0.366 0.149 0.250 89 Drawing 0.08 0.17 0.293 0.011 0.044 0.026 0.293

39 Animal 1.00 0.91 0.209 0.204 0.199 0.239 0.199 90 Tank 0.08 0.08 0.008 0.003 0.011 0.004 0.008

40 Weather 0.99 1.25 0.405 0.730 0.701 0.566 0.730 91 Swimming pool 0.08 0.10 0.003 0.001 0.001 0.002 0.001

41 Aircraft 0.99 0.94 0.073 0.033 0.115 0.030 0.115 92 Beach 0.08 0.06 0.027 0.001 0.065 0.007 0.065

42 Police/security 0.92 0.77 0.012 0.053 0.082 0.017 0.053 93 Waterfall 0.07 0.08 0.381 0.011 0.415 0.001 0.011

43 Flag USA 0.92 0.94 0.227 0.036 0.157 0.184 0.227 94 Motorbike 0.05 0.16 0.006 0.029 0.007 0.005 0.006

44 Grass 0.90 0.59 0.064 0.004 0.028 0.054 0.064 95 T. Blair 0.05 0.26 0.005 0.031 0.015 0.048 0.048

45 Cloud 0.87 1.54 0.117 0.042 0.078 0.129 0.117 96 B. Clinton 0.05 0.21 0.004 0.010 0.189 0.002 0.189

46 Split screen 0.86 0.60 0.630 0.100 0.321 0.566 0.630 97 H. Nasrallah 0.05 0.19 0.006 0.068 0.004 0.001 0.006

47 Desert 0.81 1.44 0.103 0.032 0.093 0.052 0.032 98 C. Powell 0.05 0.47 0.010 0.022 0.085 0.008 0.010

48 Natural disaster 0.81 0.93 0.055 0.091 0.139 0.084 0.091 99 A. Sharon 0.04 0.19 0.050 0.019 0.035 0.001 0.050

49 Boat 0.78 0.54 0.096 0.109 0.083 0.020 0.109 100 H. Jintao 0.03 1.03 0.030 0.023 0.044 0.018 0.023

50 Tree 0.78 0.84 0.124 0.011 0.063 0.087 0.124 101 Baseball 0.01 0.41 0.003 0.066 0.003 0.011 0.003

51 Charts 0.76 0.51 0.327 0.301 0.254 0.355 0.327 Mean 0.216 0.147 0.201 0.191 0.237

Ground Truth Challenge ExperimentsChallenge Experiments Ground Truth

baseline performance serves to illustrate the minimum re-
sult that is expected from any unimodal, multimodal, or
combined video analysis method. For each experiment, we
report the average precision per concept on test set B in
Table 1.

4.1 Experiment Results
The baseline indicates that for 45 out of 101 concepts a

visual only analysis with experiment 1 yields the best per-
formance. Visual analysis is especially effective for concepts
that often appear in uniform settings, e.g. sports like tennis,
basketball, and soccer, or studio setting related concepts such
as anchor, split screen, and duo-anchor. The baseline im-
plementation for experiment 1 performs moderate for sparse
concepts such as candle and beach. Learning from few ex-
amples is a general problem, however, which negatively in-
fluences all challenge experiments.

The text-based analysis in experiment 2 yields the best
performance for 14 concepts only. This is not surprising
as the text resulting from speech recognition and machine
translations is of disputable quality. Text analysis does work
for concepts that are transcribed with a specific and limited
vocabulary. In such cases as weather, detection is there-
fore relatively easy based on textual content only. A tex-
tual analysis is often the best guess for sparse concepts, e.g.
baseball, Hassan Nasrallah, and motorbike. In these cases a
single word, e.g. a persons name, can be an important dis-
tinguishing feature. Note, however, that the difference with
the other experiments is marginal.

Early fusion in experiment 3 obtains the best performance
for 28 concepts. Early fusion works particularly well for
concepts that have many positively labeled training sam-
ples, like people, outdoor, and studio. When both visual and
textual analysis perform well in isolation, their early fusion
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Figure 3: Selected concept-clusters that require special attention. Performance for ’easy’ concepts needs

to be raised to 1.0. Average precision of face-related concepts lacks behind, given the number of available

training examples. Person x is problematic still. When concepts appear in commercials it could result in a

misleading indication of indexing performance.

combination often yields good results also. Apparently, for
concepts like people marching, military, and natural disas-

ter the visual and textual features complement each other.
In contrast, when one of the modalities yields bad indexing
performance, due to poor quality text features for example,
the combination may suffer. This is especially hurting the
early fusion performance for concept soccer.

In experiment 4, late fusion is the best performer for 14
concepts. Similar to early fusion, video indexing using late
fusion performs well when both modalities yield reasonable
performance in isolation, e.g. indoor. In contrast to early
fusion, late fusion is able to account for bad unimodal con-
cept detection results by exploiting its first learning stage.

For concepts such as mountain, screen, and news paper, late
fusion learns to reduce the influence from the weak perform-
ing textual modality, yielding an optimal late fusion result.
However, this is not always the case, indicating existence
of a trade off between unimodal analysis performance and
the number of examples used for training in the two learning
stages of late fusion. We conclude from these results that an
additional learning stage doesn’t necessarily have a positive
effect on performance.

The baseline implementation of combined analysis exper-
iment 5 selects the best indexing approach for 50 out of 101
concepts. When we take the mean of the average precision
over 101 concepts, this experiment yields the best overall



result. However, for more than half of the concepts the
cross-validation performance on the training set is not the
optimal estimator for test set performance. This indicates
that much is to be gained when researchers employ more
advanced techniques for the combination method.

4.2 Conceptual MetaAnalysis
The results in Table 1 provide ample opportunity for con-

ceptual meta-analysis. We restrict ourselves here to four
clusters of concepts that, in our view, require special atten-
tion. In Fig. 3, we highlight 25 selected concepts, clustered
according to the number of training samples used and their
average precision performance.

In general, the number of training samples has a positive
effect on concept detection performance for all experiments.
When the annotated samples include more than 5% of the
training data it almost always results in a reasonable per-
formance. For concepts such as face, outdoor, and weather,
performance has even reached a robust level already. It is
not a coincidence that these concepts appear often in eval-
uations of video indexing methods. A grand challenge for
frequently appearing concepts is to raise the average preci-
sion performance towards 1.0, to allow for practical utility
of video indexing technology in applications where (almost)
perfect performance is required

In contrast to the concept face, semantically related con-
cepts such as female and monologue perform quite bad still.
This is surprising given the relative large amount of train-
ing examples available. It might indicate that visual and
textual features are not the most discriminative features for
these concept classes. In contrast, features related to the
characteristics of the human voice, or features related to the
recording circumstances might be better suited. More re-
search is needed to accurately classify face-related concepts
based on visual and/or textual features.

A special class of concepts is person x, i.e. named persons.
A person x index is useful for video retrieval applications,
but their detection is currently problematic. This is caused
by sparseness and the high variability in the visual modality.
Our experiments indicate that for the baseline a text-based
analysis yields the most successful approach. In general,
however, performance is disappointing for all baseline ex-
periments. An obvious improvement would be the inclusion
of face recognition techniques.

When a concept appears in a commercial, it may result
in a misleading indication of performance. In such cases as
river and cycling, performance is quite good based on a rela-
tively small number of training examples. When we analyze
results the reason is easily resolved: these concepts appear
in commercials. In this case indexing boils down to (near)
copy detection. Obviously, this is not what generic video in-
dexing methods should aim for. How to handle commercials
is an open issue in multimedia indexing research that needs
to be dealt with as a separate problem.

5. CONCLUSIONS
In this paper, we present the challenge problem for auto-

matic indexing of 101 semantic concepts in video. The chal-
lenge problem provides multimedia researchers with an ex-
perimental environment to measure the influence of individ-
ual video indexing system components and their combined
usage. We identify five challenge experiments, by decom-
posing the generic video indexing problem into a visual-only,

textual-only, early fusion, late fusion, and combined analysis
experiment. We provide a baseline implementation for each
experiment together with baseline results. By establishing
a minimum performance on each experiment (Table 1), the
challenge problem allows for component-based optimization
of the generic indexing issue, while simultaneously offering
other researchers a reference for comparison during indexing
methodology development. Hence, it allows to gain insight
in factors that affect performance of multimedia analysis
methods, while at the same time fostering repeatability of
experiments.

The challenge offers to the research community a man-
ually annotated lexicon containing 101 semantic concepts,
pre-computed low-level multimedia features, trained classi-
fier models, and baseline experiment performance for five
pre-cooked experiments on 85 hours of publicly available
TRECVID 2005 video data. Fellow multimedia indexing re-
searchers may use the challenge problem by replacing one or
more components of the baseline implementation (Fig. 2) for
one or more of their own algorithms. In addition, the base-
line concept detection can be a valuable resource for (inter-
active) video retrieval experiments. We anticipate that the
availability of the challenge problem will greatly facilitate
the reliable evaluation of generic multimedia indexing algo-
rithms, and make it easier for researchers in the multimedia
indexing field to compare their algorithms. Furthermore,
our challenge lowers the threshold for researchers from other
disciplines to enter the field of multimedia analysis.
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