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METHODOLOGY

The challenges of estimating the distribution 
of �ight heights from telemetry or altimetry 
data
Guillaume Péron1* , Justin M. Calabrese2,3, Olivier Duriez4, Christen H. Fleming2,3, Ruth García-Jiménez5, 
Alison Johnston6,7, Sergio A. Lambertucci8, Kamran Safi9 and Emily L. C. Shepard10

Abstract 

Background: Global positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use 
by aerial species, a key aspect of their ecological niche, that we need to know to manage our own use of the air-
space, and to protect those species. However, there are various sources of error in flight height data (“height” above 
ground, as opposed to “altitude” above a reference like the sea level). First the altitude is measured with a vertical error 
from the devices themselves. Then there is error in the ground elevation below the tracked animals, which translates 
into error in flight height computed as the difference between altitude and ground elevation. Finally, there is error 
in the horizontal position of the animals, which translates into error in the predicted ground elevation below the 
animals. We used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models 
to illustrate the effect of improper error management.

Results: Errors of a magnitude of 20 m appear in benign conditions for barometric altimeters and GPS vertical 
positioning (expected to be larger in more challenging context). These errors distort the shape of the distribution of 
flight heights, inflate the variance in flight height, bias behavioural state assignments, correlations with environmental 
covariates, and airspace management recommendations. Improper data filters such as removing all negative flight 
height records introduce several biases in the remaining dataset, and preclude the opportunity to leverage unam-
biguous errors to help with model fitting. Analyses that ignore the variance around the mean flight height, e.g., those 
based on linear models of flight height, and those that ignore the variance inflation caused by telemetry errors, lead 
to incorrect inferences.

Conclusion: The state-space modelling framework, now in widespread use by ecologists and increasingly often 
automatically implemented within on-board GPS data processing algorithms, makes it possible to fit flight models 
directly to the output of GPS devices, with minimal data pre-selection, and to analyse the full distribution of flight 
heights, not just the mean. In addition to basic research about aerial niches, behaviour quantification, and environ-
mental interactions, we highlight the applied relevance of our recommendations for airspace management and the 
conservation of aerial wildlife.
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Background
Describing the distribution of animals in environmental 

space is fundamental to understanding their resource 

requirements, cognitive processes, energetic strate-

gies, and ecological characteristics. �e distribution 
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of animals in horizontal space has dominated ecologi-

cal studies [1], however the vertical dimension is also 

important for flying animals, and for that matter also div-

ing and tree-climbing animals [2–5]. For example, flight 

height data document the vertical niche and community 

ecology of aerial foragers [6, 7]. Flight height data quan-

tify the flight strategies and associated energy allocation 

tactics [8, 9], and their relationships with environmental 

factors (e.g., [10]). Lastly, from an applied perspective, we 

need an accurate, error-free description of the distribu-

tion of birds and other animals in the aerosphere to avoid 

collisions with man-made structures and aircraft, in the 

current context of increasing human encroachment into 

the airspace [11, 12].

However, monitoring vertical airspace use by wildlife 

remains challenging. Ground-based surveys are limited 

in their field of vision and time window. Airborne moni-

toring (e.g., from glider planes) is logistically challeng-

ing and constrained by weather conditions. Radar-based 

methodologies are not usually specific enough to assign 

records to species (but see [13, 14]). Animal-borne track-

ing methodologies such as global positioning systems 

(GPS) and altimeters have therefore become popular to 

monitor flying species [15]. �ey record data even when 

the animals are out of sight for ground-based observers, 

over extensive, potentially uninterrupted periods of time, 

and with no uncertainty about which species or individu-

als are being monitored. For example, we can record rap-

tors soaring over the high sea at night [16]. However, the 

data that GPS and altimeters record are not error-free 

[17–20]. Usually, a few unambiguously erroneous posi-

tions are recorded beyond unpassable barriers  like the 

ground [10, 21–25], making the occurrence of errors 

particularly more obvious in flight height data than other 

movement tracking data.

Most of the research into ways to deal with sampling 

errors in positioning data has focused on horizontal 

animal movement [20, 26–28]. �ere is very little guid-

ance for ecologists about the challenges specific to ver-

tical space use data [29]. Many practitioners consider 

that vertical movement data need to be “filtered” before 

analysis, i.e., they discard some records before proceed-

ing with the analysis. �ey may discard records that are 

too far from preceding ones (as often done for horizontal 

data [27]), too far beyond impassable barriers [24, 25], or 

obtained from an unreliable configuration of the GPS sat-

ellite network [29]. Instead of discarding the more erro-

neous records, researchers have also sometimes chosen 

to reset them to plausible values [21, 23]. However, when 

applied improperly, such filters can have undesirable con-

sequences. We start by reviewing the sources of error in 

GPS and altimeter flight height data. Next, we reanalyse 

case studies into the flight height of three raptor species 

[10], and complement them with novel data from con-

trolled field trials and from simulations, in order to 

illustrate the stakes of proper error-handling in vertical 

airspace use data.

Review of the sources of error in �ight height data 

from GPS and altimeters

�roughout we refer to flight height h, which is the dis-

tance to the ground below the bird, different from flight 

altitude z. �e flight altitude denotes the distance to a 

reference altitude, often the ellipsoid, i.e., a geometri-

cally perfect (but simplistic) model of the sea level, as 

documented by the World Geodetic System (WGS84 or 

EPSG:4326). Alternatively, some GPS devices may pro-

vide the altitude relative to the empirical sea level, as 

measured at a reference point over a reference period. 

For example, in France the “NGF-IGN 1969” norm 

means that altitude is measured relative to the mean sea 

level in the port of Marseille between 1884 and 1896. 

Alternatively again, some GPS devices may measure the 

altitude relative to the geoid, which is a model of the sea 

level if it was only influenced by the local gravitational 

field and the rotation of the Earth, i.e., without the effect 

of landmasses and wind [30]. �ere are databases and 

simple formulae to convert from one system of reference 

to another, but this nevertheless represents a first poten-

tial source of error in flight height data.

Flight height above the ground is computed as

where zDEM
(

x, y
)

 is the ground altitude predicted by a 

digital elevation model (DEM) at the recorded horizontal 

position 
(

x, y
)

 , in the same system of reference as z. Errors 

in h can then be caused by errors in any of the three com-

ponents: z , zDEM , or 
(

x, y
)

 (Fig. 1). Importantly, depending 

on the application, researchers might want to study z not 

h [8, 9]. In the list below, only the first and second sources 

of error influence z. �e other three influence h but not z.

1. Error in z when z is given by a GPS

If recorded by a GPS, z is affected by the “user equiva-

lent range error” (UERE) and the “vertical dilution of pre-

cision” (VDOP) [31, 32].

�e UERE stems from diffusion and diffraction in the 

atmosphere, reflection from obstacles, and receiver noise 

[31, 32]. �e acronym UERE usually directly refers to the 

root mean squared error, but here we will use the nota-

tion σUERE instead. σUERE is usually in the order of a few 

meters and considered constant over time for a given 

device. Some GPS manufacturers specify the horizontal 

σUERE , or alternatively it can be estimated from the data 

h = z − zDEM
(

x, y
)

,
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[33]. �e σUERE is however reputedly larger in the verti-

cal axis than the horizontal axes [19, 34], meaning that 

manufacturer-provided σUERE should be considered con-

servative for vertical applications and should be used 

with appropriate caution.

�e vertical position dilution of precision factor 

(VDOP) quantifies the effect of changes in the size and 

spatial configuration of the available satellite network on 

the precision of GPS records [31, 32] (Additional file  1: 

Fig. S1). �e more satellites are available and the more 

evenly spread apart they are, the more reliable the posi-

tioning is. Some GPS manufacturers do provide a VDOP 

value for each record, but many only provide a more 

generic DOP value.

When σUERE and VDOP are known, the error-gen-

erating process can then be approximated by a Gauss-

ian process with time-varying standard deviation 

σz(t) = VDOP(t) · σUERE (Eq. 6.45 in [32]). �erefore, the 

DOP is not a direct index of precision. �e spread of the 

error distribution increases with the DOP, but the error 

on any given record is stochastic. �e DOP is therefore 

not intended to be used as a data filter (e.g., discard any 

data with DOP above a given threshold), but instead it 

should be used to model the error-generating process.

2. Error in z when z is given by an altimeter

If recorded using an altimeter, z is computed 

from the barometric pressure, using the formula 

z = c · T · log (PREF/P) [35, 36]. c is a calibration con-

stant that mostly depends on the composition of the air 

(e.g., percentage of vapour) and on the gravitational field. 

T is the air temperature in Kelvin, P is the air pressure, 

and PREF is the air pressure at an elevation of reference 

(both pressures in mbar or in Pascal). However, this for-

mula only holds when the atmosphere is at equilibrium. 

Changes in temperature, pressure, and air composition, 

i.e., the weather, alter the link between z and P. �ese 

influences are difficult to control fully because one would 

need to measure the weather variables both where the 

bird is, and at the reference elevation immediately below 

the bird. In other words, altimeters can be more accurate 

than GPS to monitor flight height, but only over short 

periods of time when the weather can be considered con-

stant and the altimeter is calibrated for that weather. One 

should ideally regularly re-calibrate the altimeters using 

direct observations of flight height and accurate meas-

ures of PREF and T. Unfortunately, field calibrations are 

rarely feasible in practice (but see [37, 38]). �e conse-

quence is that altimeters are often miscalibrated. �e 

degree of miscalibration depends mostly on the weather. 

�is generates temporal autocorrelation in the error time 

series. Over a restricted time period, the error patterns 

are thus more akin to a bias (a systematic over- or under-

estimation of flight height) than to an error in the statisti-

cal sense of a zero-mean, identically and independently 

distributed random process. Importantly, altimeter data 

still allow one to compute the derivative of flight height, 

i.e., climb rate, because the amount of bias can be con-

sidered constant over short periods of time. In the fol-

lowing (cf. “�e magnitude of vertical errors in GPS and 

altimeters” in “Results”), we will directly compare the 

errors from GPS and altimeters using controlled field 

experiments.

3. GPS horizontal error

Fig. 1 Illustration of the difference between true and recorded flight height. a True flight height above ground (htrue), and true elevation above 
ellipsoid (ztrue). b Adding the five sources of error, with circled numbers referring to headings in “Review of the sources of error”. DEM stands for 
digital elevation model. c Two tracks with the same amount of error. The bird of track 1 is flying high so all the recorded flight height data remain 
positive despite the errors. The bird of track 2 is flying low, so some of the recorded data fall below the digital elevation model
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(

x, y
)

 is also affected by a user equivalent range error 

and a dilution of precision (Fig.  1). �e horizontal 

error in 
(

x, y
)

 can thus also be described as a Gauss-

ian process with time-varying standard deviation: 

σxy(t) = 1/
√
2 · HDOP(t) · σUERE . Note that we use 

here a horizontal dilution of precision factor, HDOP. An 

often-overlooked consequence of errors in the horizontal 

position is that they introduce flaws in the link to spatially 

explicit environmental covariates [39, 40]. In particular, 

the ground elevation zDEM is extracted from a location 
(

x, y
)

 that is slightly different from the true location [24]. 

If the terrain is very rough, then the ground elevation at 

the recorded location 
(

x, y
)

 may be significantly differ-

ent from the ground elevation below the actual location 

of the bird. In the following (cf. “Horizontal errors can 

cause vertical errors” in “Results”), we will use simula-

tions to quantify the influence of horizontal errors.

4. Interpolation error in zDEM

zDEM is interpolated from discrete ground elevation 

measurements [41, 42]. �e ground elevation is measured 

at a few select locations, but it is interpolated between 

them. �e result of the interpolation is then rasterized at 

a set resolution, and the result is the DEM. �is process 

can be quite imprecise [41, 42]. At a cliff, for example, the 

ground elevation may drop by several hundred meters 

within a single pixel of the DEM.

5. Errors in DEM base data

�e original measurements from which DEMs are 

interpolated are not necessarily error-free either. �ese 

errors are assumed small relative to the other sources, 

however, there is, to our knowledge, not much informa-

tion available about the base datasets from which DEM 

are interpolated and their precision.

Materials and methods
Controlled �eld trials

To quantify the magnitude of the vertical error in altime-

ters and GPS devices, we conducted three controlled trial 

experiments.

First, we attached an “Ornitrack 25” GPS–altimeter 

unit (Ornitela) to a drone. We then flew the drone above 

the rooftop of the Max-Planck institute in Radolfzell, 

Germany, at heights ranging from 0 (drone landed on 

the rooftop) to 90 m. We conducted 6 flight sessions over 

2 days, each lasting between 15 and 140 min, collecting 

one record every 10 min for a total of 30 records, flying 

between 0 and 100 m above the rooftop. We also moni-

tored the air pressure and temperature on the rooftop, 

which we used to recalibrate the altimeter post hoc. 

Lastly, the drone carried a separate, on-board, altimeter.

In a second, separate experiment, we attached two 

“Gipsy 5” GPS units (Technosmart) to an ultra-light air-

craft, with a vertical distance of 1.8 m between the two 

units. We then flew the aircraft near Radolfzell while the 

two units simultaneously tracked its flight height, col-

lecting one record per second for a total of 11.5  h over 

5 days, flying between 0 and 243 m above ground.

�ird, we compared the vertical positions recorded by 

four different units from three different manufacturers: 

Technosmart (AxyTrek and Gipsy 5), Microwave (GPS-

GSM 20-70), and Ornitela (GPS-GSM Ornitrack 85). We 

(RG and OD) carried these units to 21 known geodesic 

points, of which the altitude was precisely documented 

by the French National Geographic Institute. �e units 

recorded their position once every minute for a total 

of 894, 934, 560, and 563 data points, keeping only the 

unit * location combinations that yielded more than 25 

fixes. We computed the bias and root mean squared 

error of the vertical measurement by comparing these 

data to the actual, known altitudes of the geodesic points. 

Importantly, the manufacturers do not use the same ref-

erence to compute the altitude: microwave uses the geoid 

(WGS 84 EGM-96 norm), whereas the others use the 

mean sea level (assumed to correspond to the local refer-

ence, meaning the NGF-IGN 1969 norm, but see below). 

We expressed all altitudes in the same norm before com-

puting biases and errors, and accounted for sampling 

effort (number of fixes) and location when comparing the 

performance of different units.

Simulations of �ight tracks

We simulated flight tracks that followed Ornstein–

Uhlenbeck processes [43]. �is is a well-studied class of 

continuous-time stochastic models, which is not spe-

cific to vertical movement or even to movement [43]. 

In the case of vertical movement, the parameters of an 

Ornstein–Uhlenbeck process represent the mean flight 

height, the variance in flight height, and the autocor-

relation time. �e mean flight height varied from 10 to 

800 m (drawn from a uniform distribution). �e variance 

in flight height varied from 10 to 750 m2 (6 values within 

this range). �e autocorrelation time varied between 0.1 

and 1.5 arbitrary time units (uniform distribution). We 

transformed the raw Ornstein–Uhlenbeck simulations 

using an atanh link as described by Péron et  al. [10] to 

enforce positive flight height. Because these are simula-

tions, we then knew both the true flight height and the 

recorded flight height, which is the true flight height plus 

an independent and identically distributed zero-mean 

Gaussian error.
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Simulations of synthetic landscapes

�e objective was to quantify the influence of horizon-

tal errors. We generated synthetic landscapes of varying 

complexity and roughness (Additional file 1: Fig. S2). We 

then transposed the flight track of a lesser kestrel Falco 

naumanni over these synthetic landscapes. �e individ-

ual originally flew over extremely flat terrain (the Crau 

steppe in France). �e data (P.  Pilard and OD, unpub-

lished) were collected every 3 min using a Gipsy 5 GPS 

unit from Technosmart, and processed through the state-

space model of Péron et al. [10] to account for real sam-

pling errors before use. We then added simulated random 

telemetry noise of controlled standard deviation.

Raptor case studies

We reanalysed the data from Péron et al. [10], where the 

field procedure, data selection, and data analysis proce-

dures are described in full. Briefly, we studied three spe-

cies of large soaring raptors: Andean condors Vultur 

gryphus (five juveniles, 1692 individual days of monitor-

ing, 15 min interval), Griffon vultures Gyps fulvus (eight 

adults, 2697 individual days, 1–5  min interval), and 

Golden eagles Aquila chrysaetos (six adults, 3103 individ-

ual days, 6–10 min interval). After applying the analyti-

cal procedure, for each data point, we could compare the 

corrected position, an estimate of the true position, to the 

recorded position, which was affected by the sources of 

errors we listed under “Background”.

For the condors, we selected the period between 11:00 

and 15:00, which concentrates condor activity and there-

fore flight time, and discarded other records. For the vul-

tures, we selected the period between 09:00 and 16:00. 

For the eagles, we selected the period between 08:00 

and 17:00 and, because a lot of time is spent motionless 

in this species even during their core activity period, we 

further removed all the records that were less than 15 m 

from the previous record. We acknowledge the arbitrary 

nature of this data selection and emphasize that it is not 

necessary or even recommended to apply such filters 

before analysis. We, however, stress that in the context 

of the present study, the case studies perform an illustra-

tive function, meaning that we use them to highlight the 

effect of improper error-handling, at least during the par-

ticular time periods that we selected for analysis because 

we consider them relevant for biological inference, and 

that the same analytical procedures can indiscriminately 

be applied to other time frames.

Collision risk

In several instances, we will illustrate the potential effect 

of improper data-handling on management recommen-

dations by estimating the risk of collision with wind tur-

bines as the proportion of records between 60 and 180 m 

above ground (assuming no behavioural adjustment in 

the presence of wind turbines). Collision risk estimated 

from GPS tracks is increasingly used to make recommen-

dations about the choice of locations for new turbines, or 

to schedule the operation of existing ones. We expected 

that the estimated collision risk would depend on flight 

parameters (mean flight height, variance in flight height), 

on the magnitude of errors, and on error-handling. For 

example, a large variance in flight height might lead to a 

high collision risk even if the mean flight height is beyond 

the collision zone. Improperly handled errors may lead 

to positions being erroneously recorded in the collision 

zone when the birds actually flew outside of it, and vice 

versa. �e same type of thinking could be applied to 

other types of collision risk, e.g., antennas, utility lines, 

buildings with bay windows, except that the collision 

zone would be at a different height.

Results
The magnitude of vertical errors in GPS and altimeters

During the first controlled field trial (with the drone), 

DOP values between 1.2 and 1.6 indicated that the con-

figuration of the satellite network was reliable through-

out. Nevertheless, 6.7% of the GPS flight height records 

were below the rooftop height, i.e., obviously errone-

ous. For the altimeter, with default settings, 10% of the 

records were below the rooftop height. �e default set-

tings of the altimeter therefore did not correspond to 

the atmospheric conditions during the experiment. �e 

standard deviation of the difference between the recali-

brated altimetry and the GPS data was 22 m, between the 

recalibrated altimetry and default-setting altimetry it was 

14 m, and between the recalibrated altimetry and the on-

board drone altimeter it was 19 m. �is means that, with 

default settings, the altimeters had approximately the 

same precision as the GPS.

During the second controlled field trial (with two GPS 

units attached to the same aircraft), in 35% of cases, the 

lower unit was erroneously recorded above the higher 

unit. �e standard deviation of the difference between 

the heights recorded by the two units was 7.1  m. �e 

highest of the two units recorded 3% of negative flight 

heights. �e lowest unit recorded 13% of negative flight 

heights.

During the third controlled field trial (with GPS units 

carried to a geodesic point of precisely known alti-

tude), the mean absolute bias of the vertical measure-

ment was 27  m on average across units and locations. 

�e root mean squared error ranged from 14 to 42  m 

depending on the unit, with a small effect of location. 

However, the within-session standard deviation ranged 

only to 28 m, suggesting that a bias in the sea level ref-

erence point (probably incorrectly assumed to follow 
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the French norm) inflated the RMSE. �e average bias 

ranged between − 17 and + 12 m depending on the unit, 

after correcting for significant location effect, but with-

out effect of altitude. Overall, this means that different 

brands of GPS devices yield different rate of error in their 

altitude measurements, which can impair the compari-

son of datasets collected by different devices. We thereby 

recommend accommodating the device-specificity of the 

error-generating process at the data analysis step, and 

also that the devices record their VDOP at each record 

(cf. “Statistical solution” below). Further investigation 

or communication with manufacturers should decipher 

whether this stems from different fix acquisition proce-

dures (e.g., satellite detection) or different post-process-

ing algorithms, and should also make clear which sea 

level reference point different manufacturers are using.

�ese controlled field trials, along with other similar 

reports [22, 34], highlight that even in benign conditions, 

GPS and altimeter data are sufficiently error-prone to 

tamper with ecological inference in many cases (range of 

the standard deviation of the error: 4–50  m). �e issue 

is only suspected to be more acute in operational con-

ditions when the DOP is larger, the terrain rougher, the 

weather more variable, and there are more obstacles to 

signal diffusion than in controlled field trials. Further-

more, the rate of error depended on the brand of the unit 

and on the location, which can be of importance when 

comparing across studies.

Horizontal errors can cause vertical errors

In the synthetic landscape simulations, the frequency of 

negative flight height records increased with the standard 

deviation of both the horizontal and vertical telemetry 

error (Additional file 1: Fig. S2a), and with the landscape 

roughness and complexity (Additional file  1: Fig. S2b). 

However, the various sources of errors acted in a mul-

tiplicative way, so that even when the telemetry noise 

was small (SD of 1 m), the error in h could be large (SD 

of 20  m; Additional file  1: Fig. S2c; darkest grey curve). 

Perhaps unexpectedly, when the horizontal error was 

large, the error in the height above ground tended to be 

independent of the vertical error in the GPS (on average 

across all simulations; Additional file 1: Fig. S2c; lightest 

grey curve). �is means that the effect of the horizontal 

error in the GPS can supersede the effect of the vertical 

error, if the terrain is rough. Even in the absence of any 

vertical error, the horizontal error was indeed routinely 

sufficient to cause 10–20% of the data points to be below 

ground (Additional file 1: Fig. S2a).

Errors in�ate the recorded variance in �ight height

In the simulations of flight tracks, errors in h inflated 

the variance in the distribution of recorded flight 

heights, i.e., the variance in the true flight height was 

consistently lower than the variance in the recorded 

flight height (Fig.  2). In the raptor case studies, we 

obtained the same result, with the caveat that we did 

not have access to the true flight height, but we could 

instead use the corrected flight heights (Fig. 2).

Indeed, if the vertical movement and error processes 

were independent, the total variance in flight height 

would exactly correspond to the sum of the movement 

and sampling variances (e.g., [44]; see also [45] and 

references therein). When the vertical movement and 

error processes are not fully independent, the total ver-

tical variance is still larger than the vertical movement 

variance. In other words, the total vertical variance is 

a biased estimate of the vertical movement variance 

that confounds telemetry errors with rapid movements. 

�e animals would appear more vertically mobile and 

with a more spread-out distribution in the aerosphere 

than they actually are. �is type of issue is potentially 

quite widespread in other areas of movement ecology 

that pertain to horizontal movement as well, e.g., in 

behavioural assignment exercises that use movement 

variances (daily displacements, turning angles, etc.) to 

determine the behavioural state of animals.
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Fig. 2 Comparison between the standard deviation of the recorded 
flight height (y-axis) and of the corrected flight height (x-axis), 
assumed to represent the true flight height, in three species of 
large soaring raptors. Each point stands for one bird over its entire 
monitoring period. The state-space model that we used to correct 
the flight heights, and in particular its robustness to variation in 
sampling resolution across populations, is explained in Péron et al. 
[10]. The diagonal line shows where the points should be if the 
recorded flight heights were error-free
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Negative �ight height records provide useful information

In this section we focus on negative records, i.e., 

unrealistically low records, but the same logic can be 

applied to unrealistically high records. Negative flight 

height records are more likely to occur when animals 

are near the ground, either perched or flying. If we 

remove the negative records [29], perching and low 

flight are under-sampled in the final dataset [21]. To 

illustrate this point, we used a GPS-tracked flight path 

from a migrating juvenile osprey (Pandion haliae-

tus) as it crossed the sea between the Italian mainland 

and Corsica [16]. During a portion of that sea cross-

ing, its Ornitela GPS unit recorded flight heights that 

oscillated between − 2 and − 7  m below the sea level 

(Additional file  1: Fig. S3, inset). �e amplitude of the 

oscillation suggested that the bird followed the swell 

of the waves. �e complete sequence (Additional file 1: 

Fig. S3) depicts a progressive loss of altitude as the bird 

glided towards firm ground, and a period of active flap-

ping flight (as per the accelerometry record) very low 

above the waves once the bird had lost all of its accu-

mulated potential energy before reaching firm ground. 

�ese negative flight height records documented a crit-

ical time period. First, the risk of having to make a sea 

landing were clearly much greater in the few minutes 

when the osprey was flying low over the waves, com-

pared to the rest of the sea crossing when the bird was 

often soaring high [16]. In addition, when flying low, 

the bird had no other choice than to flap and therefore 

expend energy; whereas when higher above the sea, the 

bird had the option to soar and therefore spare energy. 

It is critical that negative flight height records like these 

are maintained, even if, instead of a fully interpretable 

high-resolution sequence like in this example, there are 

just a few isolated negative flight height records in a 

low-resolution dataset.

In addition, if we only kept the records with positive 

flight height, we would obtain a biased sample of the 

distribution of flight height. Both in simulations and 

in the raptor case studies, discarding negative flight 

height records led to the overestimation of the mean 

flight height in the remaining dataset, the underesti-

mation of the variance in flight height, the introduc-

tion of a right skew in the distribution of flight height, 

and the overestimation of the collision risk (Fig.  3). 

The latter result was because negative records mostly 

occurred when the bird was flying below the colli-

sion zone, and thus removing negative records led to 

under-sample safe periods of time. Note that this par-

ticular result pertains to the wind turbine application 

Fig. 3 Removing the negative recorded flight heights introduces biases in the distribution of the remaining flight heights. Left group of panels: in 
simulations, where the true flight height is known. Right group of panels: in the raptor case studies, where the corrected flight height is assumed 
to represent the true flight height. In all panels, the x-axis features the variance in the true (or corrected) flight height. The y-axis features the 
percentage bias in a mean flight height; b collision risk (proportion of time spent between 60 and 180 m above ground); c variance in flight height; 
and d skewness of the distribution of flight height. A percentage bias of + 10% means that the focal quantity is 10% larger after we remove the 
negative records
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case only; in other types of collision risk, e.g., build-

ings and utility lines, the collision zone starts closer to 

the ground.

The simulations nicely complemented the raptor case 

studies by (1) eliminating any debate about whether 

the corrected flight heights in the raptor case studies 

were trustworthy or not (in the simulations, the true 

flight heights are exactly known) and (2) increasing the 

range of flight behaviours, since the raptors tended to 

exhibit lower percentage of time near the ground (in 

part because we purposely tried to exclude time spent 

perched) and different distributions of the sampling 

error. The amount of bias appeared highly dependent 

on the underlying flight behaviour and error distribu-

tion, and therefore not easy to predict and account for 

without appropriate error-handling methodology.

Additionally, there are many other major conse-

quences of discarding negative flight heights. One is 

the disruption of the expected balance of positive and 

negative errors in the remaining data. Negative flight 

height records only arise when the error is negative, 

and so removing them introduces a bias towards posi-

tive errors, thereby disrupting the shape of the distri-

bution of errors in the remaining data. Yet, we need 

the full range of errors to fit the statistical solution that 

we support (cf. “Discussion”). Another, unrelated con-

sequence is the disruption of the sampling schedule 

of the remaining data. Many movement analyses are 

critically sensitive to the sampling schedule, and there-

fore their outcome will not be the same after remov-

ing the negative records. Lastly, and perhaps most 

importantly, negative flight height records can help 

fit the models that separate the error and movement 

processes, because they are unambiguously erroneous 

and can be informed as such in the model-fitting pro-

cedure (cf. “Statistical solution” in “Discussion”). Some 

authors have applied less stringent filters, such as 

removing only the most negative flight height records 

and removing an equal amount of extremely positive 

flight height records. While the effect on the remain-

ing distribution, and on the balance of negative and 

positive errors is supposedly weaker than if removing 

all of the negative records, we warn that the remaining 

records are still affected by the same error process that 

generated the records that were deemed too errone-

ous to keep, thus the issues from the previous section 

(“Errors inflate the recorded variance in flight height”) 

still need to be addressed. In addition, these extremely 

erroneous records are potentially the most informative 

regarding the shape of the error distribution (cf. “Sta-

tistical solution” in “Discussion”).

The mean �ight height is not su�cient to describe 

the distribution of �ight heights

Flight height datasets are often reduced to a single sum-

mary metric, the mean flight height and its variation with 

environmental and individual covariates [29, 46–49]. �is 

decision is mostly based on the ease of implementing 

spreadsheets, linear models, moving averages, or spline 

models. In this section, we instead call for approaches 

that describe the full distribution of flight heights in 

the aerosphere, not only the mean flight height. To jus-

tify this call, we again focus on collision risk estimation. 

Indeed, if the variance in flight height is large enough, 

a proportion of time may be spent in the collision zone 

even if the mean flight height is outside the collision 

zone. In simulations, the proportion of time spent in 

the collision zone indeed depended on both the mean 

and the variance in flight height (Fig. 4a, b). In the rap-

tor datasets, the estimated probability of flying in the 

collision zone did not decrease much for the individuals 

whose mean flight height was estimated above the col-

lision zone (Fig.  4c). Similarly, the individuals that had 

an estimated mean flight height well below the collision 

zone were predicted to spend about 20% of their time in 

the collision zone (Fig. 4c). We strongly recommend that 

collision risk forecasts should not be based on the fixed 

effects of linear models, but instead on the full distribu-

tion of flight heights—a recommendation that will likely 

hold for all studies into vertical airspace use.

Discussion
Statistical solutions

Our results illustrate how the improper treatment of 

vertical errors in telemetry data can flaw the inference 

about the use of the aerosphere by flying animals. To 

avoid these issues, the state-space model framework [50] 

(Fig. 5) has a structure that is naturally aligned with the 

challenges of sampling errors in vertical space-use data. 

A state-space model is a stochastic model describing 

the changes over time in a state variable (here, the true 

flight height), when that variable is imperfectly observed 

(here, the recorded flight height). �ere is a “state pro-

cess”, separated from an “observation process” (Fig.  5). 

State-space models are routinely used to correct for posi-

tioning errors in satellite-tracking data (chap. 6 in [32]), 

including in wildlife studies [20, 26, 33, 51–53]. Impor-

tantly, these applications are not to be confused with 

another application of state-space models to movement 

data, when the focal state variable is a “behavioural state” 

whose Markovian transitions drive changes in movement 

rates [8, 9, 54]. Indeed, when the objective is, like in this 

study, to correct for positioning errors, the state variable 

is the position itself.
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In studies of flight height, the movement model can 

be set up such that the state variable always stays above 

zero. �en, if the recorded flight height is − 7  m, the 

model “knows” that the error was at least 7 m [22], as for 

example was the case in the osprey example (Additional 

file  1: Fig. S3). Actually, the presence of unambiguously 

erroneous records makes flight height studies better-

suited to apply state-space models than many studies into 

horizontal space use by animals. Indeed, even when in 

theory the model is estimable, sometimes only a subset 

of the parameters of a state-space model are separately 

estimable, a phenomenon called “weak identifiability” 

that occurs when the sampling variance largely exceeds 

the process variance. An example of weak identifiability 

is when the difference between two classes of individuals 

are larger than the differences within the classes [55]. In 

addition, there are large statistical correlations between 

variance parameters in a movement model [52], making 

it extra difficult to accurately separate movements and 

errors in sparse datasets. In that context, unambiguously 

erroneous records, such as negative flight heights, repre-

sent an additional source of information [20]. �ey can 

help separate the process and sampling variances [10] 

and solve issues of weak identifiability.

As a perspective, we stress that there are also ways to 

obtain unambiguously correct records. �ese records 

could in theory perform a role similar to that of unam-

biguously erroneous records. For example, sometimes the 

position of the animals can be confirmed, e.g., at a docu-

mented feeding site, a nest, or by an incidental ground-

based sighting. �ose records can be matched to the 

GPS track, yielding an exact measure of the local error. 

Animal-borne devices may also include a transponder 

designed to signal passage near strategically placed emit-

ters (e.g., [56]). �is type of validation data is routinely 

used in other applications of the GPS technology [32]. 

Lastly, the state-space framework is naturally conducive 

to the joint analysis of multiple sources of error-prone 

Fig. 4 The variance in flight height influences the percentage of time spent in the collision zone of a wind farm (grey area, between 60 and 180 m). 
a Four simulated tracks (where the true flight height is known) with the same mean flight height (200 m) but different variances (10, 50, 100, and 
250 m2). b More extensive simulations. Each point corresponds to one simulated track with a different mean flight height. c Same as (b) but using 
real datasets collected from three raptor species, where the corrected flight height is assumed to represent the true flight height. Each symbol 
stands for an individual over its entire monitoring period

True height

at �me t

Recorded height

at �me t

Observa�on 

error

Movement

process
True height

at �me t+1

Recorded height

at �me t+1

Movement

process

Observa�on 

error

Fig. 5 Schematic overview of the principles of a state-space model 
as applied to the correction of sampling errors in flight height data. 
The movement (or state) process accounts for the distribution of true 
flight heights. The observation process introduces sampling errors of 
various origins (cf. “Review of the sources of error” in “Background”) 
and yields the recorded flight heights. It also accounts for the 
sampling schedule. By fitting this model to recorded flight height 
time series, we can retrospectively compute the corrected flight 
height, an estimate of the true flight height
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data (e.g., [57]). In flight height studies, it is therefore 

possible to jointly analyse GPS and altimeter data, or 

multiple GPS streams coming from the same animal. �is 

double-data approach is expected to help with statistical 

covariance issues, but cannot be expected to fully resolve 

all identifiability issues [58], which only error-free valida-

tion data can do.

We should eventually stress that several wildlife GPS 

manufacturers already use a state-space model as part 

of the on-board data pre-processing algorithm, i.e., the 

released data have already been corrected by a propri-

etary state-space algorithm which may furthermore 

rely on proprietary validation data (Ornitela staff, pers. 

comm.). From our experience, in wildlife applications, 

these pre-processing algorithms are only applied during 

“bursts” of high-frequency data acquisition, not when 

the users request a more traditional low-frequency data 

acquisition schedule. Importantly, the data may not be 

pre-processed across bursts. �e error from the first 

location of a burst is then carried over the entire burst 

sequence. Flight height tracks affected by this issue 

would exhibit a staircase-shaped profile. Overall, this 

type of data pre-processing trades a lower error variance 

against a larger error autocorrelation. Additional state-

space modelling of the released pre-processed data can 

deal with this type of error autocorrelation, but the mod-

els need to be custom-made, i.e., are not routinely imple-

mented in software. Perhaps more worryingly, some 

commercially available GPS units apparently simply trun-

cate the recorded height at zero above sea level (pers. 

obs.). We call for a more open approach to these data 

manipulations, including making the raw, unprocessed 

GPS records available, in addition to any pre-processed 

data, and with a formal description of the pre-processing 

algorithm. Indeed manufacturers may not be aware of the 

specificties of vertical animal movements. Vertical move-

ments are faster and less temporally autocorrelated than 

horizontal movements, and they depend on specific envi-

ronmental covariates [10], making it necessary that end 

users obtain the unprocessed flight height data to param-

eterize the most ecologically relevant models.

We also acknowledge that the fitting of state-space 

models to space use data still requires relatively rare sta-

tistical skills. Nevertheless, there are already several free, 

open-source computing environments to fit state-space 

models to vertical (and horizontal) movement data, and 

thereby estimate the most likely movement track as a by-

product of the estimated parameters, similarly to how 

the individual values would be computed in a generalized 

mixed model with individual random effects:

• �e crawl [33] and ctmm [59] packages for R com-

pute the likelihood of the state-space model using a 

Kalman filter. �is algorithm is fast, but requires all 

the model processes to be Gaussian or approximately 

Gaussian (no truncation or constraint, no excess 

extreme values, no excess kurtosis or skew).

• �e TMB package for R [60] approximates the like-

lihood of the state-space model using the automatic 

differentiation algorithm with Laplace approxima-

tion. �at approach makes computing times shorter 

than the next option, while still allowing for flexible 

modelling such as non-Gaussian errors [26], custom 

link functions [10], or multiple data streams.

• �e Monte Carlo Markov Chain Bayesian framework 

[61–63] generates parameter distributions that itera-

tively converge towards the solution. �is option is 

the most flexible in terms of nonlinearities and non-

Gaussian features, such as truncated distributions 

[20], but the computing time can be prohibitive for 

large datasets.

Data requirements and data quality checks

�e state-space model-fitting procedure simply 

require  the h or z time series  along with the  times-

tamps [10, 26, 33]. �e interval between records needs 

to be sufficiently short that the effect of the temporal 

autocorrelation is visible, which in practice for raptors 

means an interval below 1  h and ideally below 30  min 

[10]. �e observation error must not largely exceed the 

movement variance, otherwise the state-space model 

is likely to become unidentifiable. In practice, research-

ers may therefore find the following rough data quality 

checks useful: check that the median interval duration is 

< 1 h (ideally < 30 min), that the number of fixes per day 

is > 4, and that the proportion of records with negative 

flight height is < 50%. In addition, if there are very short 

intervals (< 1 min) we recommend incorporating into the 

movement model some temporal autocorrelation in the 

vertical velocity, in addition to temporal autocorrelation 

in the vertical position.

If available, the VDOP or other metrics of triangulation 

reliability can predict the observation error in the state-

space model, using a log-linear link between the stand-

ard deviation of the observation error and the VDOP, 

which should help with model fitting. Similarly, in case 

the researchers know for sure that there was no error 

on some of the records, they can fix the error parameter 

to zero for these records, which should also help with 

model fitting. On the other hand, the information that 

some recorded values are impossible is coded up using 

adequate link functions [10] and would thereby automat-

ically inform the model about the minimum magnitude 

of the error on the involved records. Lastly, for a better 

fit to the data, environmental covariates that are expected 
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to correlate with movement velocity or movement behav-

iour can also be incorporated using linear links with the 

movement model parameters (autocorrelation time, dif-

fusion rate).

Conclusion
Improper error-handling methodologies yield a flawed 

picture of aerial niches. For example, discarding negative 

flight height records artificially truncates the observed 

distribution of flight heights (Fig. 3), and focusing on the 

mean flight height alone (for example when using linear 

models) does not fully describe the aerial niche (Fig. 4). 

While these observations are quite intuitive, bad prac-

tices remain common enough that it was important to 

stress these issues and illustrate them thoroughly. On the 

other hand, not addressing the occurrence of errors at all 

would artificially spread-out the observed distribution of 

flight heights (Fig.  2), leading for example to increased 

observed vertical overlap between species and individu-

als, which can modify the inference about community 

processes. Improper error-handling procedures would 

also tamper with the quantification of behaviour and 

flight strategies, by increasing or decreasing the observed 

vertical velocity, and interfere with behavioural state 

assignments. Lastly, errors may covary with environ-

mental covariates. GPS positioning accuracy decreases 

with terrain roughness [19]. �ereby, selectively discard-

ing records based on the number of available satellites or 

the dilution of precision would lead to biased sampling 

of terrain roughness. Wind speed decreases near the 

ground [64]. Discarding negative flight height records 

(that predominantly occur near the ground) would lead 

to misrepresent the relationship to wind speed.

Regarding applied consequences, we focused on dem-

onstrating how improper methods would imperfectly 

quantify the time spent by GPS-tracked raptors in the 

rotor-swept zone of wind turbines (Fig.  3b). �ere are 

many other human–wildlife conflicts for the use of the 

aerosphere, for example bird strikes near airports and 

disturbance of wildlife by drones and other recreational 

aircraft. Regarding bird strikes, GPS-based predic-

tive models of bird flight height (e.g., Péron et al. [10]) 

might help plan ahead the operation of airports. �e 

state-space class of model that we advocate is actually 

already used, in real time, to exploit bird activity data 

from radar monitors and generate a warning system for 

airport managers [65]. Regarding recreational aircraft 

and drones, analysing bird-borne GPS tracks may help 

reveal the effect of the disturbance, which is expected 

to increase in frequency as drones in particular become 

more popular [66]. �e recommendations we made 

about the effect of errors on the estimation of aerial 

niche overlaps and the quantification of behaviours 

seem particularly relevant in this context.

In conclusion, the issue of properly handling errors in 

flight height data is key to any aeroecology study. We 

strongly advise against ad-hoc “data quality” filters, and 

against statistical tools that only document variation in 

the mean flight height instead of the full distribution of 

flight height. Our proposed statistical framework based 

on state-space models and the analysis of the full distri-

bution of flight heights requires interdisciplinary work 

between experts in flight behaviour and experts in data 

analysis, and the emergence of interface specialists, but 

the insights and the applied decisions based on those 

insights are expected to be more reliable.
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