
The Challenges of Staying Together While Moving Fast:
An Exploratory Study

Julia Rubin and Martin Rinard
Massachusetts Institute of Technology, USA

mjulia@csail.mit.edu, rinard@csail.mit.edu

ABSTRACT
We report on the results of an empirical study conducted with 35
experienced software developers from 22 high-tech companies, in-
cluding Google, Facebook, Microsoft, Intel, and others. The goal
of the study was to elicit challenges that these developers face, po-
tential solutions that they envision to these challenges, and research
initiatives that they think would deliver useful results.

Challenges identified by the majority of the study participants
relate to the collaborative nature of the work: the availability and dis-
coverability of information, communication, collaborative planning
and integration with work of others. Almost all participants also
addressed the advantages and disadvantages of the current “fast to
the market” trend, and the toll it takes on the quality of the software
that they are able to deliver and on their professional and personal
satisfaction as software engineers.

We describe in depth the identified challenges, supporting our
findings with explicit quotes from the study participants. We also
put these findings in context of work done by the software en-
gineering community and outline a roadmap for possible future
research initiatives.

1. INTRODUCTION
Software development is a central activity in our society. The

success of many of the most visible, prominent, and successful
organizations is founded on development efforts that produce valu-
able software or valuable services enabled by that software. The
academic software engineering community has a long history of
identification of and advocacy for a variety of software development
methodologies, goals, and practices, e.g., [6, 4, 48]. Yet, despite
decades of research in the field, software development remains an
acknowledged difficult and complex undertaking.

Motivated to better understand the problems that modern soft-
ware developers face, we conducted an exploratory study involving
software engineers from prominent, successful high-tech companies
including Google, Microsoft, Facebook, Intel, and others. Our study
is distinguished by the range of the participants, which come from
many companies and many geographical locations. Specifically, we
talked with 35 practitioners from 22 companies in four different

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3900-1/16/05.

DOI: http://dx.doi.org/10.1145/2884781.2884871

countries (see Table 1). All of the study participants are experienced
software developers, with 12 years of experience on average, and
all are actively writing code for production deployment in current
software development projects.

The study was organized as a set of semi-structured interviews,
which were designed to elicit an articulation of the most important
challenges and problems that the engineers face in their current
positions. We also asked the study participants to outline potential
solutions that they envision and research initiatives that they would
find useful.

"Move Fast, Break Things": The interviews revealed that devel-
opers are under significant pressure to deliver new functionality
and new software products quickly. This pressure comes from
their organizations, who in turn perceive themselves as involved
in intense competition, with victory going to the organization that
moves the fastest.

Many of our participants recognized that this approach works well
for their organizations. At the same time, the participants believed
that this approach often hampered their ability to deliver quality
software. In any case, “move fast, break things” is the reality that
establishes the context in which developers must operate. Within this
reality, our participants identified interaction and communication as
two of the most significant challenges they face in their work.

Interaction and Communication Challenges: Essentially all of
our participants are involved in organizationally complex software
development activities that require them to work with multiple
pieces of software developed by multiple teams both within and
outside their organizations. Given the rapid pace of software devel-
opment and the complexity of the development efforts, the following
emerged as the main concerns:

• The need for global, up-to-date, structured and easily accessi-
ble information, both internal and external to the organization.

• The ability to exchange information, at an approachable level
of abstraction, with multiple stakeholders involved in the
development effort.

• The need for effective communication, coordination and plan-
ning across teams and geographies.

• The ability to manage the complexity of software that involves
multiple components, all changing simultaneously, while con-
trolling interactions and reducing breakages associated with
their integration.

Notably, our participants are aware of the current state-of-the-art
recommendations in software engineering. Most, if not all, practice
agile development with short development iterations of about two
to three weeks. Indeed, it is clear that these short iterations and

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 982

Table 1: Demographic Information of the Interviewees
Age min=23; max=55; mean=37.5; median=39

Total experience (years) min=1; max=30; mean=11.9; median=12

Gender male=30; female=5

Education Level PhD=8; M.Sc./MA/MBA=13; B.Sc/BA=13

Companies Google=9; Microsoft=4; Facebook=2; Intel=2;
EMC=1; VMWare=1; IBM=1; Other=15

Countries USA=17; Israel=15; Japan=2; UK=1

Company size (employees) min=10; max=350,000; median=1,500

Team size (employees) min=1; max=44; mean=11.9; median=10

frequent integration help mitigate challenges related to the lack of
synchronization and efficient communication. But, as our study
indicates, many challenges still remain.

Ways to Move Forward: We outline a roadmap for possible future
research initiatives that could help mitigate the identified challenges.
These include global, integrated solutions for information manage-
ment and knowledge sharing; structured knowledge representations;
language paradigms and analysis techniques for identifying seman-
tic code dependencies; pedagogic initiatives; and novel processes
and development practices that will allow software engineers to ad-
just to the rapid speed of the market while maintaining their personal
and professional standards. We also note that, to make a difference
in practice, software engineering methods and tools have to be con-
veniently integrated into the current development processes and be
accompanied by empirical data assessing the return on investment
in their introduction.

We hope the results of our study to be useful for further focusing
the efforts of the software engineering research community and
grounding them on empirical evidence.

Paper Structure: The remainder of the paper is structured as fol-
lows. In Section 2, we describe our research methodology. We
discuss the business and organizational culture of the current high-
tech field in Section 3. Section 4 describes the identified challenges,
while in Section 5 we discuss the challenges in the context of exist-
ing work and outline future opportunities. Sections 6 and 7 discuss
our results and the related work, respectively. We conclude the paper
in Section 8.

2. RESEARCH METHODOLOGY
We now describe our selection of subjects, our approach to data

collection and analysis, and threats to the validity of our work.

2.1 Subjects
For this study, we recruited experienced software developers with

current, hands-on, development experience. More precisely, our
selection criteria were for participants to (a) have at least one year
of full-time software development experience and (b) hold a current
position that requires to actively write code. For identifying the par-
ticipants, we initially approached our network of collaborators and
colleagues who, in turn, further distributed a call for participation
in their organizational and personal networks. We interviewed each
participant and stopped recruiting new participants when we did
not hear new concerns uncovered in previous interviews but rather
repeatedly heard concerns that were already identified.

As the result of this process, we interviewed 35 software develop-
ers working at Google, Microsoft, Facebook, Intel, EMC, VMWare,
IBM and another 14 companies which the interviewees preferred not
to disclose. Prominent domains for these remaining 14 companies
include finance, healthcare, and defense. Most participants hold

the title of Software Engineer or Senior Software Engineer. A few
participants, from smaller startup companies, hold titles such as
Director of Engineering.

Table 1 presents Demographic information about the participants.
Their ages range between 23 and 55 years, with a mean of 37.5
and a median of 39 years. They have between 1 and 30 years of
full-time software development experience, with a mean of 11.9
and a median of 12 years. Only five participants are female. Eight
participants hold a PhD degree, 13 hold a Master’s level degree
and 13 hold a Bachelor’s level degree. One participant, with 10
years of experience, was entirely self-taught. The fifth and sixth
rows of Table 1 present the distribution of participants by companies
and country of employment. The last two rows of the table present
statistics about company and team sizes.

2.2 Data Collection
We conducted semi-structured interviews that included a set

of open-ended questions and took around 45 minutes (min=25;
max=80; mean=48; median=45 minutes). Each interview started
with general questions about the participant’s background. Then, the
interview revolved around three central questions. First, we asked
the participants to describe the main challenge they face in their
current project and organization. Then, we asked the same question
w.r.t. all their previous experience. Finally, we asked them to discuss
research initiatives that could be helpful in their work. We followed
up with subsequent questions that depended on the interviewees’
responses. Our goal was to identify the set of challenges they face
and understand the causes and consequences of each challenge.

The interviews were conducted in English. Three interviews
were in person and the remaining ones over Skype. All but nine
interviewees agreed to be recorded and the collected data was further
transcribed almost verbatim, only removing filler words, such as “so”
and “you know”, and breaking long sentences into shorter ones. The
additional nine interviews were summarized during the conversation.
We then shared the transcripts with each corresponding interviewee
for his or her approval or corrections. We received several minor
corrections, primarily involving the names of companies and tools,
and applied them to the transcripts.

2.3 Data Analysis
The exploratory nature of our study prompted us to use open

coding – a technique from grounded theory for deriving theoretical
constructs from qualitative analysis [15, 10]. We used open coding
to analyze the collected data, i.e., we analyzed the transcripts line
by line and detected concepts – key ideas contained in data. The
54 identified concepts were organized into 15 categories, and the
categories into two themes: collaboration-related challenges and
technical and technological challenges.

This paper reports in depth on the first theme: collaboration-
related challenges, as these were mentioned by the majority of the
participants. Technical and technological challenges were more
sparse, i.e., we did not observe any trend common to all participants
of the study. Instead, it appears that these issues are more specific to
the exact activities that each developer performs. For completeness,
we summarize these findings in the appendix of this paper.

All our findings are linked to quotes extracted from the interviews
(376 quotes in total), allowing us to ground the results we report and
attribute them to the collected data. For quality control, we sent a
draft of this paper to all interviewees, asking them to comment on
any misinterpretations that might have occurred. We addressed all
received comments, mostly related to confidentiality issues, in the
final version of the paper.

983

2.4 Threats to Validity
External validity. As in many other exploratory studies in software
engineering, our research is inductive in nature and thus might not
generalize beyond the subjects that we studied. Yet, our sample
is large enough and diverse enough to give us confidence that it
represents central and significant views. We intentionally sampled
employees of a diverse range of organizations, small and large,
across a broad range of industries. We also intentionally included
in the study software developers of different ages and a diverse set
of education and professional backgrounds. We believe that these
measures helped to mitigate this threat.

Internal validity. We might have misinterpreted participants’ an-
swers or misidentified concept and categories, introducing researcher
bias to the analysis. We attempted to mitigate this threat by sharing
both the “raw” data collected during the interviews and the result-
ing report (this paper) with the participants of the study for their
validation. We thus believe our analysis is solid and reliable.

3. "MOVE FAST, BREAK THINGS" TREND
IF YOU ARE NOT MOVING AT THE SPEED OF THE MARKET-

PLACE YOU’RE ALREADY DEAD – YOU JUST HAVEN’T STOPPED
BREATHING YET. — Jack Welch.

Out of 35 interviewees, 25 explicitly mentioned significant pres-
sure to deliver fast to the market, even at the expense of reduced
quality and accumulated technical debt. “For many of these ‘Silicon
Valley tech companies’, there is a lot of pressure to demonstrate
that your work is immediately visible and ‘impactful’: important
to the company or the industry.” 1 Facebook’s motto until April
2014 – "move fast, break things" – appears to be the norm in in-
dustry, according to participants of the study. “We are so focused
on delivering right now that there is a couple of things that suffer
in the meantime. Quality is something that suffers. As one of my
colleagues said, we are first and foremost a product company and
not a technology company, which means that sometimes we sacrifice
quality, because we are trying to get our product out, as fast as pos-
sible.” “This is all about the whole idea of MVP – a minimal viable
product. That is what many companies, in particular start-ups, do:
trying to understand what is the least level of investment and time
commitment that you can have in order to release a feature. The idea
is that you want to release something that is at a functional level,
but not necessarily has all the best features and the most spectacular
version of them. Instead, you add on to your product over time.”

We did not explicitly elicit participants’ opinion on that trend.
Yet, several, from both start-ups and large companies, believed it is
a necessity nowadays, as it allows a company to establish itself as a
market leader and achieve a competitive advantage: “My experience
is that any time you try to aim for something perfect, you miss what
you can really gain.” “You just need to live with this reality. Unless
we can stop the market; tell other companies: let’s stop for a couple
of years, until we get everything done.”

Others believed that the trend induces development standards that
are harmful in the long run: “There is an impression that getting
something out of the door is more important than getting a good
thing out of the door. Which is OK, if you happen to be building
a website that nobody’s life depends on. But it is unfortunate,
because it is a style of engineering that you become socialized to.
And you cannot conceive how to engineer any other way, without
extensive retraining. So many people have been socialized to just
cram something out into the world, with a minimal amount of
1This paper often presents direct quotes from the study participants,
as in the case above. The quotes always appear in “this style.”

consideration. They believe that you can release it and then fix it
after the fact. Regaining the skills of doing something in a way that
it has controlled failures, it is field serviceable, it is well-understood
by the user and the engineer, is a set of skills that will take a long
time to relearn.”

How to move forward? In reality, software developers have little
influence on the business strategy of organizations. Without a seri-
ous business or financial incentive, the pace of mainstream software
development is unlikely to change in the near future, because com-
panies “still get what they need”: “They believe we are doing well
enough. The engineers will manage and they always do, even under
time pressure and with insufficient resources.”

Yet, this reality has a set of consequences that the developers
perceived as negative and that disturb their ability to comply with
the companies’ demand and deliver fast to the market. It became ap-
parent from our study that most, if not all, our participants are aware
of state-of-the-art recommendations in software engineering. Also,
most practice agile development, e.g., Scrum [48], with frequent,
two to three week development cycles. However, these practices are
unable to address all challenges and there are gaps that still have
to be addressed: more than 20 participants mentioned challenges
related to the collaborative nature of work, i.e., efficient communi-
cation, synchronization, integration and information exchange, as
discussed in Section 4. “The best thing to do would be to look at
how to make sure that the products are done very quickly, they flow
out very fast, the development is very quick, but you also maintain
good inter-team communication and make sure everyone is always
on the same page. It is possible to release things quickly, and it
is also possible to make sure your teams communicate well. But
I think where most companies fail is doing both at the same time
without hindering the development cycles. So I think finding some
sort of planning model or design cycle where the speed is still there,
but you are having a lot more interaction with different teams in the
company, is something that would be very valuable.”

This situation calls for methods, tools, techniques and processes
that will help developers to thrive in a collaborative environment
and to increase quality and productivity, while mitigating the pro-
fessional and personal toll that the current software development
process takes. Towards this end, in what follows, we describe in
depth the identified challenges (Section 4) and outline some oppor-
tunities for addressing them (Section 5).

4. MAIN FINDINGS: COLLABORATION-
RELATED CHALLENGES

The vast majority of participants mentioned issues related to the
collaborative nature of the work: availability and discoverability of
documented knowledge, communication within and between teams,
coordination and integration with work produced by others. Table 2
presents the number of interviewees that raised issues in each of the
categories. Figure 1 further breaks the information down by years of
experience and education. Interestingly, we did not find any mean-
ingful correlation between the demographics of the interviewees
and the challenges that they raised. That is, the challenges described
in this paper were raised by engineers of various ages, professional
backgrounds, educations, etc.

4.1 Availability and Discoverability of Infor-
mation

4.1.1 Documentation
Developers often lack sufficient time to invest in documentation.

“It is just low priority, you need to deliver as soon as possible”.

984

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability and
Discoverability of

Information

Information Exchange Coordination and
Planning

Integration

0-5 years (8) 6-10 years (9) 11-15 years (8) 16-30 years (10)

(a) By Experience.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability and
Discoverability of

Information

Information Exchange Coordination and
Planning

Integration

Bachelor's (13) Master's (13) PhD (8)

(b) By Education.

Figure 1: Fraction of Interviewees that Raised Collaboration-Related Challenges.

Table 2: Number of Interviewees that Raised
Collaboration-Related Challenges

Category #
Availability and Discoverability of Information 20
Information Exchange 20
Coordination and Planning 23
Integration 28

However, several study participants find this lack of documentation
problematic: “Our project uses a lot of pieces which are not very
well documented. The lack of documentation is a big challenge,
and in combination with the complexity of the system, it is hard to
understand what the different pieces do. You have to dig deep into
the code to understand what is going on.”

Studying code only is, however, often insufficient: “There are
several undocumented invariants in the system. Some are manifested
as assertions in code. When I make a change, I want to understand
whether an invariant is an inherent, essential part of the design or
whether it can be modified if needed.” “You can see the check-ins,
you can see the code of the whole program, where people decided
to do things in a certain way, but there is no ‘why’. You only see the
results. There is no rationale.”

To overcome this problem, “anytime you really need a question
answered, you have to figure who built it and go ask that person. Of
course, you will receive a lot of information, but it is also a waste of
time. And if that person has to answer questions, they really need
time.” When the person responsible for that undocumented code
leaves the organization, valuable information is lost: “The code is
so old that no one really remembers exactly how it works anymore.”
“Just last week I answered a question from my previous project. One
person had a question and nobody there knew the answer. And that
is a relatively new project; that decision was made around a year
ago. Luckily, I still remember and I am still in the organization. But
if not, you might revert the decision and get burned over the same
problem again.”

Even when documentation is available, it is often obsolete: “You
never know if it is updated, because things change so rapidly that
a feature could be working in one way, and changes happen, and
no one is going to update that documentation.” “Even if people do
write why they do something, when they change the design, nobody
goes back and changes the design documents.”

In some cases, the documentation is incomprehensible: “Our
projects last for 10 or 15 years. Documents are available, but they
are hard to read. They are written 15 years ago and they use a kind

of vocabulary that you do not understand completely, because it is
vocabulary of some specific project.” “People who are writing code
forget about what is obvious to them, because they have just been
thinking about it and writing that code for so long. Things that are
so obvious for the people who have written the code that they do
not even bear mentioning, might not be obvious at all for someone
who reads the code later.”

4.1.2 Information scattering
Numerous participants mentioned issues related to information

scattering, i.e., lack of global, cumulative and up-to-date informa-
tion sources for design and code changes: “We are trying to develop
summaries, to keep track of what is going on, etc. But for now we
do not have a very structured way for doing that, and no central
repository for keeping the summaries.” “In the rapid pace of soft-
ware development, keeping a huge repository of documents is not
something that answers it.”

Many changes are described in commit messages of configuration
management systems: “People describe their changes in check-in
messages, but in a check-in you cannot draw a figure. Also, there
are many check-ins for a design change. So, every check-in has
some small descriptions, but one does not have any centralized place
to see why you did all these changes.”

Instead of looking for design changes, developers then have to
analyze bug fixes: “You have to remember that somebody made a
change to fix some bug, and search for the bug commit message.
Maybe there the developer wrote why they decided to change the
design. But to find it, you have to go roundabout. You cannot say:
why does this thing work in this way?”

Another participant also noted that commit messages are too gran-
ular and are usually oriented towards the code that has changed
rather than the “high-level human interface” which provides oper-
ational information: “I am rather looking for something like ’Hey,
I have changed the database schema. You might have to delete
your local database and recreate it.”’ Such information is rather
distributed via e-mail, which is an additional contributor to infor-
mation scattering: “Most of the organizations that I have seen so
far rely on email too much. It is not searchable, it is not accessible
to everybody, and once I leave the organization, all my email gets
deleted. It is not a good medium.”

Yet another challenge is a variety of versions, each requiring its
own documentation: “If you want to understand the design of the
system, it often happens that one feature is documented in version
18, but it relies on a feature that is documented in version 15. So you

985

need to go back and read the design of version 15. But the design
document of version 15 relates to the system in version 15, which is
different from what you have in version 18.”

Participants noticed that, similar to internal information, external
information is often scattered in many different places, such as
tutorials, APIs, and FAQ pages: “You do not have a full picture
on what is going on. You need to search in different places to
figure that out.” Some external, customer-facing, information is
hard to find: “Because we work with healthcare data, there are
limitations, primarily around how we use the software to process
the data. Amazon would tell you that ‘yes, you can use the Elastic
MapReduce on healthcare data’. But the documentation and the
patterns that you can find online are not sufficient.”

4.1.3 Finding experts and know-how
Finding experts and expert opinion on a particular problem is also

challenging. One participant, working in a very large organization,
mentioned that he knows for sure that there are people within the
organization that are experts in a particular topic, but it is unclear
how to find them: “We develop a driver for AIX: an IBM operating
system. IBM is not very open about the documentation for AIX
and there is not much information on the Internet. We know that
there are people in our organization that develop for AIX, we just
cannot find them. And if you do find somebody, then you want to
find somebody with an experience that is relevant to what you are
trying to develop. If you work on a physical driver of storage, you
do not need somebody that developed a UI for AIX.”

Much information is nowadays available online: “Right now,
when people are looking for an answer to a technical problem, they
search on Google, and a good resource is something like Stack-
Overflow, which can tell you how to solve a code problem.” Yet,
this source of information has some deficiencies: “Searching and
reading there takes a lot of time. You need to open each thread, read
it and understand if the solution fits or not. Then you need to try it
and see if it works. And sometimes solutions are simply not there.”

The information is unstructured and difficult to navigate: “If you
want to know ‘I have data with these characteristics, or a system
that has these needs, what third party tool should I use? Who else
has done what I am looking to do?’, the solutions here are very
bad, it is very hard to find that information.” In addition, particular
problems, e.g., related to equipment tested under NDA, cannot be
freely shared online. Thus, information about failures in such cases
is often unavailable.

Finding best practices and advice from academic literature is
another problem that was brought up by a number of participants:
“[I would like] to find approaches that are going to work, given
a specific set of criteria. It would be great if someone could say
‘One, two, three, here. These are the approaches that work for you’.”
“Architecture, optimal splitting of your code base, is probably a very
old problem. How do I find the optimal way of doing that?”

4.2 Information Exchange
Another challenge, mentioned by 20 participants, is communica-

tion with various stakeholders involved in the project and efficient
information exchange between multiple parties.

4.2.1 Interpreting information
Different people might have a different interpretation for the same

piece of information: “People have different technical backgrounds,
as well as different constraints, and all these result in different
perspectives on both the problem as well as on the solution.” “You
can ask someone to do something, you can think that you have
written the best spec that you have ever written in your life and

you will still get a different piece of code. If you ask for a feature
and there are three real core pieces to said feature, each person will
weigh the value of each part of that feature differently. And then,
when they implement it, they may optimize for one over the other,
not consider the general case well enough or just misunderstand
what the general case likely is.” Participants mentioned that such
misinterpretations can cause them to lose time re-implementing
features again and again.

4.2.2 Speaking lingua franca: multidisciplinary teams
Information exchange becomes even more complicated when

team members have different technical backgrounds, expertise and
roles in the project: “Our team is not just comprised of software
engineers; we actually have a lot of medical people who are working
at the company. The ability to do knowledge transfer effectively is,
I think, our hardest challenge.”

In some cases, participants envisioned solutions that would allow
to translate the information from a representation that is convenient
for one stakeholder to that of another, but such solutions cannot
work in the general case: “Even the non-technical people are on the
spectrum of technicality, so I can imagine a biostatistician coding in
R, and then a compiler translates R into Python. I probably would
not like it and I bet the code would not be very good, but I can
imagine a solution like that existing. If you also have a medical
person, a genuinely medical person like a medical doctor, who
does not write code at all, then it is much harder to think of a
technical solution.”

Related is the problem of communication between developers and
product managers, and between product managers and customers: “I
need to work with researchers, engineers and product managers, and
act as the person that understands all the technical constraints and is
able to communicate them to all the parties involved. The harder part
here is to be able to communicate problems and solutions between
different levels of technical abstractions. Different backgrounds
lead to different views.”

Several participants mentioned that product and program man-
agers do not necessarily get to the bottom of all technical consid-
erations: “A product manager defines it at a very high level. Then
issues come up during the development time and we need to change
the specification. The idea that is in the product manager’s head
might appear different to the developer.” “People who specify the
requirements do not know what they are asking for. Sometimes, I
think, they just do not speak the right language.” As a consequence,
solutions are often underspecified, or, even worse, are specified
incorrectly: “They think things can work one way, but the client’s
network configuration makes that impossible, so they do not under-
stand the requirements.” “Even when we think we have got it so
clear, and that we know what we need to do, half-way through we
change course on something.”

4.2.3 Politics and bureaucracy
Several participants mentioned that internal politics often take

time and energy. “You constantly have to discuss and convince other
people, until everybody agrees and is happy with the decision. It
feels like you have a responsibility but no organizational power to
act on it. That takes energy.” “At this stage, the organization is too
political. It takes a lot of effort to push an idea forward. It takes a
lot of energy to argue with people just for the sake of argument. The
environment is very competitive, and some people speak out their
opinions just in order to speak out.”

Politics and miscommunications can cause developers to lose
valuable time: “I have had to redo the same feature multiple times
because of disagreements between management. The feature itself

986

was not complicated, but getting multiple parties to agree on a
specific implementation was a challenge.” “One thing I have seen
a lot of is that there are some people who are very proud of the
code that they write. Even if someone objects to the way they have
written a certain piece of code, their pride will stop them from being
convinced to do it differently.”

Some participants, especially from smaller start-up companies,
noted that building good interpersonal relationships and healthy
communication channels often gets a low priority: “Start-ups do
that at the expense of the long-term stability of the company with
respect to inter-team relationships and communication. That stuff
just goes ignored in the start-up style, because the product is more
important. But if you leave that kind of relationship too long, that
will eventually cause major problems down the line. Just making
sure that everyone is in sync, everyone is on the same page, everyone
is working well together and everything is in harmony is important.”

4.3 Coordination and Planning
As much as 23 participants mentioned the challenge of coordina-

tion with local and remote colleagues.

4.3.1 Coordination between teams
Lack of efficient communication and coordination between differ-

ent development teams is a challenge that was brought up multiple
times: “When collaborating on your own team, there is very good
communication, we sit together, we have a lot of social interaction.
There is encouragement to brainstorm a lot. Every team is very
much united. However, I realized that we really do not have any
good structure for collaboration between teams. Whenever we had
to collaborate with another team, we faced a lot of resistance, frus-
tration, conflicts that had to be escalated and resolved by higher
management, etc.”

Isolation and lack of information exchange between different
development teams tend to affect planning, delivery quality and
speed in a negative manner: “The biggest challenges that I have
seen so far is that different development teams have very different
ways of doing things. It is very complicated to actually work well
with the teams because they all do things in different ways. And
then once you have done something, if there has not been any real
communication between teams in advance, you could easily have
to redo the whole thing, because a different team disagrees with
how it has been implemented.” “The product you are going to build
works as part of a system. There is a big barrier to overcome here
because you need that domain knowledge to be successful. So you
could think that you are doing something really, really well, but you
are actually making it really difficult for the teams. And they could
be making it difficult for you because they are not considering the
technical difficulties they are introducing to your part.”

Such problems appear to be more prominent in smaller compa-
nies that recently experienced growth and thus did not adjust their
practices to the newer realities. Several participants noted that these
challenges can probably be attributed to the “growth pain” of the
companies: “We are not at a point anymore where we are working
in silos. We achieved what we could in that way, and now a lot of
our projects are interdisciplinary, so to speak, between groups. We
need to shift our organizational structure, so that we have someone
who will negotiate with multiple teams and will make sure that each
team is aware of where their involvement is required.”

The need is for technical, rather than high-level, managerial coor-
dination between teams: “It just has to be a sort of liaison between
the teams. That is, a person whose role is to communicate effectively.
The person does not need to be from the management but rather
somebody technical who knows what is going on in that process.

That way, there is at least some knowledge about what is happening
[in other teams].” “Because program managers are not developers,
they do not know exactly what [a specific problem] means. It really
ends up being the developers that need to negotiate that with each
other. And obviously, as developers, we have other high priority
issues to deal with in our own team.”

4.3.2 Collaborative scheduling
Teams do not get any time allocation for helping others and

contributing to their tasks: “When projects are being planned, they
do not take into account that you will need that other team’s time.
That other team also has their own roadmap for the year. They
do not have time to help you. And you are blocked because you
need them. There is no way that you can make progress, otherwise.
Even if you do the work, our code bases are pretty much divided
according to the teams. So it really ends up being that you need to
write code in some other team’s collection. And they still need to
do the reviews. They still need to help you with the architecture,
because you need to do something in their code base. That creates a
lot of conflicts. As a result, anytime you have to collaborate with
another team, you have to go and beg them for their time. Their
time is not accounted for in the planning of the project.”

From the other end, interrupts and context switches are some of
the major pain points that came up often: “When you are switching
between tasks, you lose a lot of energy. And it also costs energy to
get back to the same task later on. Context switches are time and
energy consuming.” Interrupts do not come only from demands of
other teams, but also from supporting the released products: “Things
that are coming from support burden, be it feature requests or bug re-
ports. These can take a lot of energy, to the point that working on any
new task or new products becomes difficult.” “Better specialization
and separation of tasks would help to improve productivity.”

4.3.3 Coordination across locations
Coordination problems become even more acute when teams are

distributed across multiple locations: “Time zone differences are
difficult. Coordinating people that are in different time zones is a
nightmare.” “Time differences, language differences, and the lack
of physical access to people we work with make us less productive.”

There are two main sources of this frustration. The first one is
coordination of work tasks: “Our day is their night and the other way
around. To get stuff done you need to be available in late hours, to
talk to people verbally and not via email, as when you communicate
over written media the communication is always slower, sometimes
ambiguous.” “I check my code in, go home, and get their feedback
only on the following day. I reply, they see it after I go home and so
on. If I stay up until midnight and work with them online, it works
well. Otherwise, the cycle is very long.” “If all the parties were
assembled in the room together at the time of problem formulation,
I believe it would mitigate most of iteration cycles I underwent. The
distribution of engineers between India, Singapore and California
that may all be working on the same project, make it challenging to
keep synchronized. The manager of the project I was on was located
in California, I have never met him. One of the other engineers that
would conduct code reviews was located in India.” Interestingly,
these challenges were brought up by the interviewees from the US,
Israel and Japan, so the problem is not specific to any particular
geographic location.

The second source of frustration is more personal. With all the
available technology, such as email, chats and video conferences,
several participants still feel that personal connection is important.
“A lot builds up on personal relationships. It might sound funny, but
that is true. If you know the person, he will do things faster for you,

987

because he feels uncomfortable to ignore you.” “You need to know
people personally, in order to get something out of that.”

One participant addressed the lack of investment in team build-
ing activities: “If everybody is committed to the same goal and
everybody knows each other well, productivity can go up and the
24h work can happen. It is a psychological issue. Today, I can
say that our team does not really know people in Seattle well. Our
communication is problem-based. That is, we contact them if there
is a problem and there is no other day-to-day communication. As
the results, the work is not flowing that well. It is always easier to
approach a person that you know well than some remote person that
you barely know.”

4.4 Integration
The most mentioned (by 28 out of 35 participants) was the chal-

lenge of integration: building a large system while controlling inter-
actions between all its different parts. Code rarely exists in isolation,
but rather integrates with a set of internal and external components
and frameworks. Dependence on artifacts developed by other teams
can introduce unwanted behaviors or even break the system when
the code of other teams changes in an unexpected manner. To a
large extent, it appears that the limited communication, coordination
and information exchange between the teams, as discussed above,
could be one of the major contributors to this problem.

Teams also break each other’s code because systems are complex,
yet developers lack sufficient time to invest in designing their solu-
tion and evaluating different alternatives: “In a perfect world, where
I had an infinite amount of time, if I would create a piece of software,
I would first create a design document and have it reviewed. From
there, I would probably build a prototype or a proof of concept, to
show it is going to work. And then, once we got it working and
things are the way they are supposed to, rebuild it all but meant for
production.” Yet, another participant mentioned that “you do not
get as much time to become comfortable with what you have to do
before you go ahead and build the actual product. The typical cycle
for design to implementation here is about two weeks. So you really
do not get that much time to spike on what you need to do. You just
have to jump straight into it.”

APIs between different parts of the system are, in some cases,
not defined well: “It is easy to say but hard to implement. Good
interfaces are hard to implement because code is complex, the archi-
tecture is complex. When you design the APIs, you do not always
think about all related stuff. The second reason is that many time we
are in a hurry, want to do things fast. So we define the APIs quickly
and say ’let’s start working, see later if we need to make changes’.”

Frequent changes in APIs cause developers to lose time: “We
get the information, we get the update, but we have to modify our
project as well, which is not that great.” Yet, changes in the APIs
are the easiest to detect and, while several participants mentioned
that such changes can slow them down, the majority of problems
relate to “semantic” changes: “We are aware of the dependencies.
It is rarely a syntactic problem. There are always changes where
their effect is not predicted by the changer, not predicted by the
product leader, but may affect some feature in a specific state. There
is always some implicit behavior that someone relies on, and others
may change it.” “You are doing something, and somebody on the
other side of the system does something completely different. You
get a butterfly effect – as in the chaos theory, when a butterfly flaps
its wings on the other side of the project it can produce a hurricane
on another.” Good solutions for identifying semantic dependencies
between components are missing in practice.

The integration problem is even more challenging for developers
working in safety-critical, financial and other sensitive domains,

who spend extra effort on analyzing the runtime behavior of all
third-party components, so that their behavior can be predicted and
modeled: “There are things that we ship with, that we did not build,
that we do not strictly control. We have external systems and we
have other teams, and we consider their systems to be similar in
terms of external systems: they are external to us. But we limit
their change and we have probes around them so that we can see
if they are behaving in odd ways. That is, every time that we in-
troduce a new component that we do not control into the system,
we build hosted probes around it. We run it in a limited capacity to
get some sense of what its “normal” is. It is sort of an expanding
set of interlocking circles, where you have domain knowledge and
you have background knowledge, and you have these interpersonal
relationships. And the overlap of all of that determines how well you
can reason through or construct experiments for determining the be-
havior that violates your implicit model of how the system should be
behaving. But where possible, we prefer to build things ourselves.”

5. A ROADMAP OF EXISTING RESEARCH
AND FUTURE OPPORTUNITIES

In this section, we relate the identified challenges to existing
work. We then contrast this work to solutions proposed by the
study participants and derive recommendations for future research
directions. We invite the community to join in analyzing the results
of this study, exploring the applicability of existing solutions, and
proposing novel approaches that mitigate the identified challenges.

5.1 Existing Research
A line of work on facilitating information discoverability includes

work by Moreno at al., as well as Martie at al., who propose so-
lutions for improving code search capabilities [36, 34]. There are
also approaches that aim to reduce information overhead in issue-
tracking systems [2, 8] and in change management systems [41].
Sorbo et al. [49] consider approaches to classify the content of
development emails according to their purpose.

Mockus and Herbsleb propose a solution for facilitating expert
identification [35] by using data from change management systems
to locate people with desired expertise. Recommender systems also
attempt to tackle the problem of expert identification [45].

Several existing works propose approaches for better code man-
agement, which include summarizing and explaining code [43], API
usage [36, 42, 39], managing integration conflicts [38], and commits
in version control systems [27, 1, 32, 37].

The global software engineering community has considered top-
ics related to increasing developer awareness when working on large
code bases [12, 16, 21, 25, 50, 17, 47]. For example, Calefato and
Lanubile [7] present a tool that augments Application Lifecycle
Management platforms with social awareness. The tool facilitates
the establishment of interpersonal connections by allowing the de-
velopers to disclose personal interests and contextual information.

Some solutions to geographic, temporal, cultural, and linguistic
distance suggested in the literature are non-technical and include
frequent site visits, assignment of dedicated people responsible for
multi-site and multi-stakeholder collaboration, and suggestions to
capture implicit knowledge and make it explicit [40, 30].

Agile methods [4] encourage teamwork, frequent inspection and
adaptation, rapid delivery and a business approach that aligns devel-
opment with customer needs and company goals. Extreme program-
ming [3] and Scrum [48] are probably the most widely known and
used methodologies based on the agile principles. Later works also
look at how agile practices are used in large and globally-distributed
software projects [24].

988

5.2 Future Opportunities
Processes. Our data suggests that developers are largely aware of
the current, state-of-the-art development processes recommended
by the software engineering community. One participant shared
a successful synchronization experience, which was inspired by
Scrum and was practiced in his previous company: “We had to
produce a demo for each developed feature and show it to the product
managers. The product managers then said whether it is working
as expected, or whether there are problems that they can spot in the
solution. We had to do an actual formal demo for each feature. There
was a dedicated day where all completed features were demonstrated.
The developers received feedback and that was very helpful. It
helped to reduce the gap in understanding and we were able to catch
many issues with that process.” Yet, despite this positive experience,
a similar process is not practiced in his current company.

Future studies are needed to explore why practices that are shown
to be successful in some organizations are not employed by others.
Moreover, several participants of our study mentioned that compa-
nies often employ customized versions of known practices, adapting
them to the need of a particular organization. While such adaptations
are indeed encouraged by agile methods, it may be time to conduct
more detailed studies aiming at identifying characteristics of orga-
nizations that use certain practices and provide specific, tailored
recommendations to organizations with different characteristics.

There is also a need for development processes that put more
focus on psychological aspects of interaction and communication
between people: “The organization should engineer the situation
in a way where you feel as you should communicate with people,
rather than you are being forced to.” More research on optimal
development processes that take both development speed and human
factors into account is needed.

Knowledge management. Solutions that automatically produce
human readable, concise documents are needed in practice. Such
solutions should be able to define and adapt the presentation style to
the background and communication pattern of each reader.

In addition, there is a need for a central repository that captures
the most up-to-date information for an organization and/or a project.
Unlike several existing works that promote information gathering
from one or only a few sources, such a repository should integrate
information from all available sources, including code, commits,
emails, available documentation, and bug reports. The repository
should be able to present the information to stakeholders according
to their format preferences. It should also be integrated with tools
and development environments, making information collection au-
tomated. Information inconsistencies and conflicts, if they arise,
should be reported to the user, at the corresponding abstraction level.

As suggested by one of the participants of the study, devising a
structured way to describe problems and their solutions in crowd-
sourced repositories such as StackOverflow would increase their
usefulness and reduce search time: “It would be good to create a
format of a problem description / solution, so that people can easily
find what they need.” Such structured repositories would be ben-
eficial both internally, within an organization, and externally, for
experts across different organizations. The knowledge should be
cataloged and sliced by categories, e.g., technical solutions, archi-
tectural patterns, tool availability: “It has to be very convenient to
use. Some problems are at a very high conceptual level, and some
are very technical, with very technical solutions. It is difficult to
merge all that into the same base framework.”

Integrating information sharing capabilities into development
environments was, again, perceived as a useful feature that is miss-
ing in practice: “Ideally, my development environment should be

integrated with the community. If I obtain an error, it could automat-
ically search for similar issues in, say, StackOverflow, because my
development environment already knows the exact context of the
problem: the type and version of the development environment, the
error message, the location of the error, etc. It should also allow me
to automatically publish the solution when I find it. That would save
time and increase the availability and accessibility of the solutions.”

Integration and integrability. Providing technical solutions that
minimize the “butterfly effect”, i.e., surprising behaviors during
integration, appears to be a useful research direction. Effective mod-
ularization and componentization can help mitigate the problem,
but do not eliminate it completely. Providing increased visibility
into and/or guarantees regarding interactions between different parts
of the system (by, for example, program analyses potentially aug-
mented with formal specifications) is one potential direction.

There is also a need to devise recommendations for an efficient
logical division between the teams, as well as a division between
their code bases, that respects social and geographical constraints
and allows each team to “actually go and concentrate on their work
for a particular period of time without needing to coordinate con-
stantly with another team.”

Education. Some knowledge gaps pointed out by the participants
of the study could be addressed by software engineering educators.
These gaps mainly involve testing, debugging and the collaborative
work experience: “I think that there are things that we can do in
the area of software engineering education. Students who come out
of school do not have a lot of good experience working on testing.
They do not have a good experience working on cross-functional
teams or on projects that require a lot of people to work together and
coordinate deadlines. Or documentation: students do not know how
to write a design doc, they don’t know how to maintain code or read
other people’s code, they have never done that.” “Teaching people
how to debug software that they have written and how to make error
signaling methods, like logs and alarms and such, and monitoring,
that are meaningful. Building things into your program that make it
easier to figure out when something is wrong.”

Empirical evidence. Several participants highlighted the lack of
empirical data which justifies (or refutes) investment in software
engineering processes and tools, in terms of business revenue. Such
empirical evidence can help to steer industry into a more rigid and
“scientific” approach to software development: “You can’t really
split actual causes from just circumstantial evidence. What I would
like to have is more data. I have no idea how that can be done. How
do you even compare a team and say, ‘This team is more productive
than that one?’ I don’t know. But what I would like to have is more
data. If there are good metrics for deciding how many tests should
I have? Is it generally better to release daily? Weekly? And why?
Even just empirical data, but if it has a strong statistical significance,
it’s great. I want to be able to advocate for something based on data.
I do not want to argue with people based on feeling.”

The participants also noted that productivity is often hard to
measure and quantify in terms of revenue: “The bottom line is that
the company still gets the results they need. They might get them
not as fast as it would happen otherwise, but I guess it is sufficient.”
“That is how companies operate. They do not see far enough to
realize that they could invest some resources and, as the result, make
the developers more productive and get more out of them.” As a
result, productivity-improvement solutions are difficult to introduce:
“If there was research that showed how good tools can improve
productivity you could influence executives to focus on that more.”

A concluding remark. We noticed that convenience and availability
are the best incentives for developers to adopt new engineering

989

practices or methodologies: “Discipline does not scale. The way to
achieve robustness is to shape your processes in a way that it is hard
to break things. Discipline cannot be expected from people for long.
I think there should be a technological change that would also drive
process changes.” We conclude that, to make a difference in practice,
software engineering methods and tools have to be conveniently
integrated into the current development processes. Moreover, the
introduced approaches have to be accompanied by empirical data
measuring the return on investment induced by their adoption.

6. DISCUSSION
The participants in this study work for some of the most successful

software development organizations in the world. While they are
clearly under significant time pressure and often feel stressed and
frustrated with various aspects of their jobs, the fact remains that this
approach has enabled their organizations to become extraordinarily
successful. Given their success with this approach, what would
motivate these organizations to change?

We believe that a major change can occur only when current
development practices stop paying off for the organizations. One
such potential change catalyst would be consumer refusal to ac-
cept the flawed, complex, or reduced quality software that these
methods can deliver. One of our participants identified a market,
in the software-driven agriculture domain, in which this is already
happening: “Agricultural technology is really fascinating because
modern American farmers – there are very few of them and they
are mostly supported by machines. Increasingly, farmers are buying
tractors from the 1970s. And they are buying tractors from the
1970s not because the 1970s were some sort of golden age of tractor
development. But it was the last era in which computers did not
sit extensively inside of the tractors. Say the farmer buys a brand
new tractor with an onboard computer device, and it works amazing:
it can detect exactly what parts of the field needs water, it is an
incredible robot. But as soon as it breaks, their farm is dead. You
will have to wait for someone to fly out from the city, to fix the
computer inside of the robot tractor. And farmers do not appreciate
that. But it is possible to build a robot tractor that does not have
these faults. It is possible to do all the preliminary work that you
need.” In the software domain, consumers might, similarly, opt
for companies that provide simpler yet more reliable software as a
deliberate strategy.

Security vulnerabilities and privacy violations comprise another
potential change catalyst. Our participants were not happy with the
quality of the software that the “move fast, break things” approach
enabled them to produce. To the extent that security vulnerabilities
become a serious enough concern, a need for more secure soft-
ware could motivate companies to place a higher priority on more
principled development practices that make it possible to avoid
such vulnerabilities, or at least to minimize their frequency. The
visibility and negative publicity of recent security breaches involv-
ing, for example, Ashley Madison [54], Sony [56] and the United
States Government [55], highlights how this issue is becoming
increasingly important.

One of our participants identified a specific project that was un-
successful due to negative public perception around the area of
privacy after significant engineering effort by a major company:
“Being more careful upfront and imagining what are the perceptions
or misunderstandings that can arise, and then trying to decide if
those trade-offs are worthwhile [would be better]. It felt for a while
that the push was always to do whatever is going to be the most
viral, whatever would help the product to grow the fastest, and not
necessarily careful enough about the risks.” Losing money on un-
successful projects may eventually motivate organizations to take a

more principled approach to software development.
Insurance for losses caused by data breaches, security vulnera-

bilities, and other problems associated with poor software quality
has only recently started to become available. Experience in other
industries shows that underwriters can force significant changes in
industry practice by requiring companies to meet certain standards
as a precondition for issuing coverage [52]. It is therefore possi-
ble to envision scenarios in which underwriters force companies to
move away from their current "move fast, break things" approach to
software development.

Until such changes happen, we believe that the most productive
immediate direction for the software engineering research com-
munity revolves around helping developers to continue to move
fast (or even faster) while breaking less, rather than attempting to
convince organizations to slow down and produce better quality
software. Identification of practices that enable companies to pro-
ceed at a rapid software development pace and maintain a high level
of quality is needed. Given the extent to which development in
these organizations involves extensive interactions between multiple
teams and rapidly changing pieces of software, we would expect
such practices to focus on helping teams work together better in a
complex, rapidly evolving ecosystem.

7. RELATED WORK
Below, we outline empirical studies and agenda-setting papers

that discuss communication-related challenges. Unlike many earlier
works that focus on a particular development practice or lifecycle
stage, our study had an open nature; the fact that our participants
have chosen to highlight communication-related challenges empha-
sizes their importance in practice. Our work thus provides further
validation to some of the earlier findings and ideas in this area. It
also identifies additional challenges not covered by previous work
and proposes possible future research directions.

Organizational factors. Lavallée and Robillard [29] investigate
the relationship between organizational factors and the quality of the
produced software. The study is based on ten months of observation,
during mandatory weekly status meetings, in a large telecommuni-
cations company. The authors identified ten organizational factors,
such as internal and external dependencies, work under pressure and
human resource planning, that negatively affect software quality.

Hannay and Benestad [18] study productivity threats in agile
development projects by conducting 13 interviews with members
of 11 different projects within a single organization. The authors
identify ten problem areas, including the presence of excessive
dependencies within a system

Mark et al. [33] discuss the cost of interrupted work. The authors
report that, surprisingly, people completed interrupted tasks in less
time with no difference in quality. That is, people compensate for
interruptions by working faster, but at the price of experiencing
more stress, higher frustration, time pressure, and effort.

Organizational structure. Herbsleb [20] lists several collabo-
ration-related challenges in his research agenda for global, dis-
tributed and multi-site development organizations. Among the iden-
tified challenges are the need for tools that support better communi-
cation via virtual co-location. Other authors document collaboration
and communication challenges in global development teams, show-
ing that organizational culture, structure, and support has an effect
on the quality of the produced software [11].

Lack of alignment between the structure of a software system and
the social boundaries of the development organization (cf. Conway’s
law [9]) is also linked by earlier works to problems of interaction,
collaboration and ultimately quality in software projects [22, 28].

990

Knowledge management. The knowledge management commu-
nity documents several problems related to availability and discov-
erability of information [46, 13]. In particular, these works note that
expert identification is a common problem in knowledge management.

Robillard et al. [44] conduct a field study of API learning obsta-
cles, identifying the lack of learning resources, such as documenta-
tion, as the most severe one.

Hansen [19] reports on how “weak ties” enable knowledge sharing
between different organizational units, based on a network study of
120 new-product development projects. Results indicate that weak
interunit ties seem to impede the transfer of complex knowledge.

Storey et al. [51] examine the role of social media in software
engineering. Their results indicate that developers value social
media, but traditional channels, e.g., face-to-face communication,
are still considered crucial.

Whitehead [53] presents a list of goals and directions for im-
proving collaboration in software engineering. These include tight
integration between web and desktop development environments,
broader participation of end users in the development process, cap-
turing argumentation surrounding design rationale and use of mas-
sively multiplayer online game technology as a collaboration medium.

Education. Begel and Simon [5] report on an in-situ case study that
monitored software developers in their first six months at Microsoft.
They discuss possible changes for the onboarding program and
university curricula, e.g., familiarizing students with working on
an existing large codebase in a collaborative manner, rather than
working on greenfield projects.

Hewner and Guzdial [23] investigate what game developers look
for in new graduates. The results show that game companies are
looking for programmers who can not only solve algorithmically
challenging problems, but can also write and debug code in an ef-
ficient manner and are able to work with others. Lethbridge [31]
reports on a survey on what knowledge is important for a software
professional. Topics with the largest knowledge gap include ne-
gotiation, leadership, management, ethics and professionalism and
requirements gathering and analysis.

Relationship between industry and academia. Several works [26,
14] explore means and information needs for successful transfer of
technology from academia to industry. Among the findings are
the need for information regarding the impact of technologies on
product quality, cost, development time, and the preferred sources of
information, such as colleagues, textbooks, and industry workshops.

8. CONCLUSION
Given the central role that software plays in virtually every aspect

of our society, software development is now a critical engineering
activity. Our study indicates that developers in the most successful
software development organizations operate in a complex, fast-
paced environment that prioritizes development speed over software
quality and presents developers with multiple interaction, communi-
cation, and information challenges. The “move fast, break things”
trend has delivered results for the organizations and therefore shapes
the reality in which developers operate. Productive research direc-
tions will focus on preserving or enhancing the development speed
while improving the ability of developers to rapidly find relevant
information and communicate effectively.

Acknowledgments. We thank all participants of the study
for their time and willingness to share insights with us and the
research community. We are also grateful to Leif Singer and to
the anonymous reviewers for their valuable comments on earlier
versions if this paper.

APPENDIX: Technical and Technological
Challenges
We now provide a brief overview of several technical and techno-
logical issues mentioned by the study participants. In contrast to the
interaction and communication issues, which were largely consistent
across the participant group, no set of technical and technological
issues arose consistently within the group. Instead, it appears that
such issues are much more specific to the activities that each devel-
oper performs. For completeness, we give a concise list of these
issues below.

Missing code analysis solutions and development environment
enhancements:

1. Static analysis for enhancing the contextual information and
error messages provided to the developer.

2. Static analysis for visualizing “where the thing that is going
to be injected comes from” in injection-based frameworks.

3. Debugging support for injection-based frameworks.
4. Debugging, reasoning about and tracking flows across lan-

guages, e.g., when Java, JavaScript and XML are involved.
5. Dependency analysis for Python as well as for bash scripts.
6. Support around XML tooling.

Languages and language extensions:
1. A language that provides a better memory management solu-

tion, as “current garbage collectors are still not good enough,
especially for low-latency systems”.

2. Explicit support for low-latency processing in the commonly
used languages, such as C++, or, alternatively, having exten-
sive set of libraries that implement such support.

Run-time solutions:
1. Efficient run-time monitoring for systems with high-availability

and reliability requirements.
2. Modeling and predicting behaviors, as well as possible fail-

ures, of highly-available and reliable systems.
3. Approaches for recreating concurrency-related failures (be-

sides repeated runs).
4. Solutions for introducing updates into a running system that

cannot be stopped for an upgrade “even for a few seconds”.

Tools:
1. Tools for performance measurement that adapt to different

precision levels.
2. Tools for recording all user activities together with their asso-

ciated data, so that interactions with the tool can be recreated
in the lab in a reliable manner.

3. Reliable systems for simulating highly-distributed environ-
ments on a local machine.

Others:
1. A new data encoding for supporting large-scale low-latency

data processing in an efficient manner.
2. Storage and computation models for large systems. Systems

that scale up and scale out very well in load and data size.
3. Approaches for eliciting meaningful early feedback for large-

scale systems with very long launching time and time-to-
production.

4. Approaches for simplifying complex system and dividing
them into the “right” set of components.

5. Approaches for supporting legacy software and outdated tech-
nologies.

6. Approaches for developing and validating software that runs
on multiple target operating systems and environments.

7. Advances in security.
8. Solutions for context-awareness.

991

9. REFERENCES
[1] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping

Developers Help Themselves: Automatic Decomposition of
Code Review Changesets. In Proc. of the 37th International
Conference on Software Engineering (ICSE’15), pages
134–144, 2015.

[2] O. Baysal, R. Holmes, and M. W. Godfrey. No Issue Left
behind: Reducing Information Overload in Issue Tracking. In
Proc. of the 22nd International Symposium on Foundations of
Software Engineering (FSE’14), pages 666–677, 2014.

[3] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[4] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, et al. Manifesto for Agile Software
Development, 2001.

[5] A. Begel and B. Simon. Novice Software Developers, All over
Again. In Proc. of the International Computing Education
Research Workshop (ICER’08), pages 3–14, 2008.

[6] B. W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(5):61–72, 1988.

[7] F. Calefato and F. Lanubile. SocialCDE: a Social Awareness
Tool for Global Software Teams. In Proc. of the 9th Joint
Meeting on the Foundations of Software Engineering
(ESEC/FSE’13), pages 587–590, 2013.

[8] Y. C. Cavalcanti, I. do Carmo Machado, P. A. da Mota
Silveira Neto, E. S. de Almeida, and S. R. de Lemos Meira.
Combining Rule-based and Information Retrieval Techniques
to Assign Software Change Requests. In Proc. of the 29th
International Conference on Automated Software Engineering
(ASE’14), pages 325–330, 2014.

[9] M. E. Conway. How Do Committees Invent? Datamation,
14(4):28–31, 1968.

[10] J. Corbin and A. Strauss. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
Sage Publications, Inc., 3rd edition, 2008.

[11] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in
the Wild: Why Communication Breakdowns Occur. In Proc.
of the 2nd International Conference on Global Software
Engineering (ICGSE’07), pages 81–90, 2007.

[12] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. M.
Drucker, and G. G. Robertson. Code Thumbnails: Using
Spatial Memory to Navigate Source Code. In Proc. of the
2006 Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’06), pages 11–18, 2006.

[13] K. C. Desouza, A. Chattaraj, and G. Kraft. Supply Chain
Perspectives to Knowledge Management: Research
Propositions. J. Knowledge Management, 7(3):129–138, 2003.

[14] P. Diebold and A. Vetro. Bridging the Gap: SE Technology
Transfer into Practice: Study Design and Preliminary Results.
In Proc. of the International Symposium on Empirical
Software Engineering and Measurement (ESEM’14), pages
52:1–52:4, 2014.

[15] B. Glaser and A. Strauss. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Observations (Chicago,
Ill.). Aldine de Gruyter, 1967.

[16] C. Godart, P. Molli, G. Oster, O. Perrin, H. Skaf-Molli, P. Ray,
and F. A. Rabhi. The ToxicFarm Integrated Cooperation
Framework for Virtual Teams. Distributed and Parallel
Databases, 15(1):67–88, 2004.

[17] C. Gutwin, R. Penner, and K. A. Schneider. Group Awareness
in Distributed Software Development. In Proc. of the 2004

Conference on Computer Supported Cooperative Work
(CSCW’04), pages 72–81, 2004.

[18] J. E. Hannay and H. C. Benestad. Perceived Productivity
Threats in Large Agile Development Projects. In Proc. of the
International Symposium on Empirical Software Engineering
and Measurement (ESEM’10), 2010.

[19] M. T. Hansen. The Search-transfer Problem: the Role of Weak
Ties in Sharing Knowledge across Organization Subunits.
Administrative science quarterly, 44(1):82–111, 1999.

[20] J. D. Herbsleb. Global Software Engineering: the Future of
Socio-technical Coordination. In Proc. of the International
Conference on Software Engineering (ICSE’07), Track on the
Future of Software Engineering (FOSE), pages 188–198,
2007.

[21] J. D. Herbsleb and R. E. Grinter. Architectures, Coordination,
and Distance: Conway’s Law and beyond. IEEE Software,
16(5):63–70, 1999.

[22] J. D. Herbsleb and R. E. Grinter. Splitting the Organization
and Integrating the Code: Conway’s Law Revisited. In Proc.
of the 21st International Conference on Software Engineering
(ICSE’99), pages 85–95, 1999.

[23] M. Hewner and M. Guzdial. What Game Developers Look for
in a New Graduate: Interviews and Surveys at One Game
Company. In Proc. of the Technical Symposium on Computer
Science Education (SIGCSE’10), pages 275–279, 2010.

[24] S. Jalali and C. Wohlin. Agile Practices in Global Software
Engineering - A Systematic Map. In Proc. of the 5th
International Conference on Global Software Engineering
(ICGSE’10), pages 45–54, 2010.

[25] C. Jang, C. Steinfield, and B. Pfaff. Virtual Team Awareness
and Groupware Support: an Evaluation of the TeamSCOPE
System. Int. J. Hum.-Comput. Stud., 56(1):109–126, 2002.

[26] A. Jedlitschka, M. Ciolkowski, C. Denger, B. G. Freimut, and
A. Schlichting. Relevant Information Sources for Successful
Technology Transfer: a Survey Using Inspections as an
Example. In Proc. of the International Symposium on
Empirical Software Engineering and Measurement
(ESEM’07), pages 31–40, 2007.

[27] D. Kawrykow and M. P. Robillard. Non-essential Changes in
Version Histories. In Proc. of the 33th International
Conference on Software Engineering (ICSE’11), pages
351–360, 2011.

[28] I. Kwan, M. Cataldo, and D. Damian. Conway’s Law
Revisited: The Evidence for a Task-Based Perspective. IEEE
Software, 29(1):90–93, 2012.

[29] M. Lavallée and P. N. Robillard. Why Good Developers Write
Bad Code: an Observational Case Study of the Impacts of
Organizational Factors on Software Quality. In Proc. of the
International Conference on Software Engineering (ICSE’15),
volume 1, pages 677–687, 2015.

[30] L. Layman, L. Williams, D. Damian, and H. Bures. Essential
Communication Practices for Extreme Programming in a
Global Software Development Team. Information & Software
Technology, 48(9):781–794, 2006.

[31] T. C. Lethbridge. What Knowledge Is Important to a Software
Professional? Computer, (5):44–50, 2000.

[32] Y. Li, J. Rubin, and M. Chechik. Semantic Slicing of Software
Version Histories. In Proc. of the 30th International
Conference on Automated Software Engineering (ASE’15),
pages 686–696, 2015.

[33] G. Mark, D. Gudith, and U. Klocke. The Cost of Interrupted
Work: More Speed and Stress. In Proc. of the Conference on

992

Human Factors in Computing Systems (CHI’08), pages
107–110, 2008.

[34] L. Martie, T. D. LaToza, and A. van der Hoek. CodeExchange:
Supporting Reformulation of Internet-Scale Code Queries in
Context (T). In Proc. of the 30th International Conference on
Automated Software Engineering (ASE’15), pages 24–35,
2015.

[35] A. Mockus and J. D. Herbsleb. Cataldo. In Proc. of the 24th
International Conference on Software Engineering (ICSE’02),
pages 503–512, 2002.

[36] L. Moreno, G. Bavota, S. Haiduc, M. D. Penta, R. Oliveto,
B. Russo, and A. Marcus. Query-based Configuration of Text
Retrieval Solutions for Software Engineering Tasks. In Proc.
of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’15), pages 567–578, 2015.

[37] K. Muslu, L. Swart, Y. Brun, and M. D. Ernst. Development
History Granularity Transformations. In Proc. of the 30th
International Conference on Automated Software Engineering
(ASE’15), pages 697–702, 2015.

[38] H. V. Nguyen, M. H. Nguyen, S. C. Dang, C. Kästner, and
T. N. Nguyen. Detecting Semantic Merge Conflicts with
Variability-aware Execution. In Proc. of the 10th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE’15), pages 926–929, 2015.

[39] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen.
Recommending API Usages for Mobile Apps with Hidden
Markov Model. In Proc. of the 30th International Conference
on Automated Software Engineering (ASE’15), pages
795–800, 2015.

[40] J. Noll, S. Beecham, and I. Richardson. Global Software
Development and Collaboration: Barriers and Solutions.
Inroads, 1(3):66–78, 2010.

[41] R. Padhye, S. Mani, and V. S. Sinha. NeedFeed: Taming
Change Notifications by Modeling Code Relevance. In Proc.
of the 29th International Conference on Automated Software
Engineering (ASE’14), pages 665–676, 2014.

[42] G. Petrosyan, M. P. Robillard, and R. D. Mori. Discovering
Information Explaining API Types Using Text Classification.
In Proc. of the 37th International Conference on Software
Engineering (ICSE’15), pages 869–879, 2015.

[43] S. Rastkar, G. C. Murphy, and A. W. J. Bradley. Generating
Natural Language Summaries for Crosscutting Source Code
Concerns. In Proc. of the 27th International Conference on
Software Maintenance (ICSM’11), pages 103–112, 2011.

[44] M. P. Robillard and R. DeLine. A Field Study of API
Learning Obstacles. Empirical Software Engineering,
16(6):703–732, 2011.

[45] M. P. Robillard and R. J. Walker. An Introduction to
Recommendation Systems in Software Engineering. In
Recommendation Systems in Software Engineering, pages
1–11. 2014.

[46] I. Rus and M. Lindvall. Guest Editors’ Introduction:
Knowledge Management in Software Engineering. IEEE
Software, 19(3):26–38, 2002.

[47] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír: Raising
Awareness among Configuration Management Workspaces. In
Proc. of the 25th International Conference on Software
Engineering (ICSE’08), pages 444–454, 2003.

[48] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. Pearson, 2002.

[49] A. D. Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta,
G. Canfora, and H. C. Gall. Development Emails Content
Analyzer: Intention Mining in Developer Discussions (T). In
Proc. of the 30th International Conference on Automated
Software Engineering (ASE’15), pages 12–23, 2015.

[50] I. Steinmacher, A. P. Chaves, and M. A. Gerosa. Awareness
Support in Global Software Development: Systematic Review
Based on the 3C Collaboration Model. In Proc. of the 16th
International Conference on Collaboration and Technology
(CRIWG’10), pages 185–201, 2010.

[51] M.-A. D. Storey, L. Singer, B. Cleary, F. M. F. Filho, and
A. Zagalsky. The (R) Evolution of Social Media in Software
Engineering. In Proc. of the International Conference on
Software Engineering (ICSE’14), Track on the Future of
Software Engineering (FOSE), pages 100–116. ACM, 2014.

[52] M. Twain. Life on the Mississipi. 1883. Chapter 15.
[53] J. Whitehead. Collaboration in Software Engineering: a

Roadmap. In Proc. of the International Conference on
Software Engineering (ICSE’07), Track on the Future of
Software Engineering (FOSE), pages 214–225, 2007.

[54] Wikipedia. Ashley Madison Data Breach. https://en.wikipedia
.org/wiki/Ashley_Madison_data_breach.

[55] Wikipedia. Office of Personnel Management Data Breach.
https://en.wikipedia.org/wiki/Office_of_Personnel_Manage
ment_data_breach.

[56] Wikipedia. Sony Pictures Entertainment Hack. https://en.wiki
pedia.org/wiki/Sony_Pictures_Entertainment_hack.

993

