
THE CHANGE OF VARIABLES FORMULA USING MATRIX VOLUME

ADI BEN-ISRAEL

Abstract. The matrix volume is a generalization, to rectangular matrices, of the absolute value
of the determinant. In particular, the matrix volume can be used in change-of-variables formulæ,
instead of the determinant (if the Jacobi matrix of the underlying transformation is rectangular).
This result is applicable to integration on surfaces, illustrated here by several examples.
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1. Introduction

The change-of-variables formula in the title is∫
V

f(v) dv =

∫
U

(f ◦ φ)(u) |det Jφ(u)| du (1)

where U ,V are sets in Rn, φ is a sufficiently well-behaved function : U → V , and f is integrable on
V . Here dx denotes the volume element |dx1 ∧ dx2 ∧ · · · ∧ dxn|, and Jφ is the Jacobi matrix (or
Jacobian)

Jφ :=

(
∂φi

∂uj

)
, also denoted

∂(v1, v2, · · · , vn)

∂(u1, u2, · · · , un)
,

representing the derivative of φ. An advantage of (1) is that integration on V is translated to
(perhaps simpler) integration on U .

This formula was given in 1841 by Jacobi [8], following Euler (the case n = 2) and Lagrange
(n = 3). It gave prominence to functional (or symbolic) determinants, i.e. (non–numerical)
determinants of matrices including functions or operators as elements.

If U and V are in spaces of different dimensions, say U ⊂ Rn and V ⊂ Rm with n > m, then the
Jacobian Jφ is a rectangular matrix, and (1) cannot be used in its present form. However, if Jφ is of
full column rank throughout U , we can replace |det Jφ| in (1) by the volume vol Jφ of the Jacobian
to get ∫

V
f(v) dv =

∫
U

(f ◦ φ)(u) vol Jφ(u) du . (2)

Recall that the volume of an m× n matrix of rank r is

vol A :=

√ ∑
(I,J)∈N

det2 AIJ (3)

where AIJ is the submatrix of A with rows I and columns J , and N is the index set of r × r
nonsingular submatrices of A, see e.g. [1]. Alternatively, vol A is the product of the singular values
of A. If A is of full column rank, its volume is simply

vol A =
√

det AT A (4)
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If m = n then vol Jφ = |det Jφ|, and (2) reduces to the classical result (1).
The formula (2) is well known in differential geometry, see e.g. [2, Proposition 6.6.1] and [6,

§ 3.2.3]. Although there are elementary accounts of this formula (see e.g. [3, Vol. II, Ch. IV, § 4],
[7, § 8.1] and [13, § 3.4]), it is seldom used in applications.

The purposes of this note are: (i) to establish the usefulness of (2) for various surface integrals,
(ii) to simplify the computation of the Radon and Fourier Transforms, and general integrals in Rn

(see Examples 7–9 and Appendix A below), and (iii) to introduce the functional matrix volume,
in analogy with the functional determinant.

We illustrate (2) for an elementary calculus example. Let S be a subset of a surface in R3

represented by
z = g(x, y) , (5)

and let f(x, y, z) be a function integrable on S. Let A be the projection of S on the xy–plane.
Then S is the image of A under a mapping φ

S = φ(A) , or

x
y
z

 =

 x
y

g(x, y)

 = φ

(
x
y

)
,

(
x
y

)
∈ A . (6)

The Jacobi matrix of φ is the 3× 2 matrix

Jφ(x, y) =
∂(x, y, z)

∂(x, y)
=

 1 0
0 1
gx gy

 , (7)

where gx = ∂g
∂x

, gy = ∂g
∂y

. The volume of (7) is, by (4),

vol Jφ(x, y) =
√

1 + g2
x + g2

y . (8)

Substituting (8) in (2) we get the well-known formula∫
S

f(x, y, z) ds =

∫
A

f(x, y, g(x, y))
√

1 + g2
x + g2

y dx dy , (9)

giving an integral over S as an integral over its projection in the xy–plane.
The simplicity of this approach is not lost in higher dimensions, or with different coordinate

systems, as demonstrated below by eleven elementary examples from calculus and analysis.
• Example 1 concerns line integrals, in particular the arc length of a curve in Rn.
• Example 2 is an application to surface integration in R3 using cylindrical coordinates.
• Examples 3–4 concern integration on an axially symmetric surface (or surface of revolution)
in R3. In these integrals, the volume of Jφ contains the necessary information on the surface
symmetry.
• Example 5 shows integration on an (n− 1)–dimensional surface in Rn.
• The area of the unit sphere in Rn, a classical exercise, is computed in Example 6.
• Example 7 uses (2) to compute the Radon transform of a function f : Rn → R.
• Example 8 computes an integral over Rn as an integral on Rn−1 followed by an integral on R.
• Example 9 applies this to the computation of the Fourier transforms of a function f : Rn → R.
• The last two examples concern simplex faces in Rn. Example 10 is the generalized Pythagoras
theorem. Example 11 computes the largest face of the n–dimensional regular simplex.

These examples show that the full rank assumption for Jφ is quite natural, and presents no real
restriction in applications.

The solutions given here should be compared with the “classical” solutions, as taught in calculus.
We see that (2) offers a unified method for a variety of curve and surface integrals, and coordinate
systems, without having to construct (and understand) the differential geometry in each application.
The computational tractability of (2) is illustrated in Appendix A.
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A blanket assumption: Throughout this paper, all functions are continuously differentiable as
needed, all surfaces are smooth, and all curves are rectifiable.

2. Examples and applications

If the mapping φ : U → V is given by

yi = φi(x1, x2, · · · , xn) , i ∈ 1, m

we denote its Jacobi matrix Jφ by

∂(y1, y2, · · · , ym)

∂(x1, x2, · · · , xn)
=

(
∂φi

∂xj

)
, i ∈ 1, m , j ∈ 1, n (10)

the customary notation for Jacobi matrices (in the square case).

Example 1. Let C be an arc on a curve in Rn, represented in parametric form as

C := φ([0, 1]) = {(x1, x2, · · · , xn) : xi := φi(t) , 0 ≤ t ≤ 1} (11)

The Jacobi matrix Jφ(t) =
∂(x1, x2, · · · , xn)

∂t
is the column matrix (φ′i(t)), and its volume is

vol Jφ =

√√√√ n∑
i=1

(φ′i(t))
2 .

The line integral (assuming it exists) of a function f along C ,
∫
C

f , is given in terms of the volume

of Jφ as follows ∫
C

f =

∫ 1

0

f(φ1(t), · · · , φn(t))

√√√√ n∑
i=1

(φ′i(t))
2 dt . (12)

In particular, f ≡ 1 gives
arc length C =

∫ 1

0

√√√√ n∑
i=1

(φ′i(t))
2 dt . (13)

If one of the variables, say a ≤ x1 ≤ b, is used as parameter, (13) gives the familiar result

arc length C =

∫ b

a

√√√√1 +
n∑

i=2

(
dxi

dx1

)2

dx1 .

Example 2. Let S be a surface in R3 represented by

z = z(r, θ) (14)

where {r, θ, z} are cylindrical coordinates

x = r cos θ (15a)

y = r sin θ (15b)

z = z (15c)

The Jacobi matrix of the mapping (15a),(15b) and (14) is

∂(x, y, z)

∂(r, θ)
=

 cos θ −r sin θ
sin θ r cos θ

∂z
∂r

∂z
∂θ

 (16)

see also (A.4), Appendix A. The volume of (16) is

vol Jφ =

√
r2 + r2

(
∂z

∂r

)2

+

(
∂z

∂θ

)2

= r

√
1 +

(
∂z

∂r

)2

+
1

r2

(
∂z

∂θ

)2

, (17)
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see also (A.7), Appendix A. An integral over a domain V ⊂ S is therefore∫
V

f(x, y, z) dV =

∫
U

f(r cos θ, r sin θ, z(r, θ)) r

√
1 +

(
∂z

∂r

)2

+
1

r2

(
∂z

∂θ

)2

dr dθ . (18)

Example 3. Let S be a surface in R3, symmetric about the z–axis. This axial symmetry is
expressed in cylindrical coordinates by

z = z(r) , or
∂z

∂θ
= 0 in (16)–(18).

The volume (17) thus becomes

vol Jφ = r
√

1 + z′(r)2 (19)

with the axial symmetry “built in”. An integral over a domain V in a z–symmetric surface S is
therefore ∫

V

f(x, y, z) dV =

∫
U

f(r cos θ, r sin θ, z(r)) r
√

1 + z′(r)2 dr dθ .

Example 4. Again let S be a z–symmetric surface in R3. We use spherical coordinates

x = ρ sin φ cos θ (20a)

y = ρ sin φ sin θ (20b)

z = ρ cos φ (20c)

The axial symmetry is expressed by
ρ := ρ(φ)

showing that S is given in terms of the two variables φ and θ. The volume of the Jacobi matrix is
easily computed

vol
∂(x, y, z)

∂(φ, θ)
= ρ

√
ρ2 + (ρ′(φ))2 sin φ

and the change of variables formula gives∫
V

f(x, y, z) dV =

∫
U

f(ρ(φ) sin φ cos θ, ρ(φ) sin φ sin θ, ρ(φ) cos φ) ρ(φ)

√
ρ(φ)2 + (ρ′(φ))2 sin φ dφ dθ

(21)

Example 5. Let a surface S in Rn be given by

xn := g(x1, x2, . . . , xn−1) , (22)

let V be a subset on S, and let U be the projection of V on Rn−1, the space of variables (x1, . . . , xn−1).
The surface S is the graph of the mapping φ : U → V , given by its components φ := (φ1, φ2, . . . , φn) ,

φi(x1, . . . , xn−1) := xi , i = 1, . . . , n− 1

φn(x1, . . . , xn−1) := g(x1, . . . , xn−1)

The Jacobi matrix of φ is

Jφ =



1 0 · · · 0 0
0 1 · · · 0 0

0 0
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1

∂g

∂x1

∂g

∂x2

· · · ∂g

∂xn−2

∂g

∂xn−1


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and its volume is

vol Jφ =

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

(23)

For any function f integrable on V we therefore have∫
V

f(x1, x2, · · · , xn−1, xn) dV =

∫
U

f(x1, x2, · · · , xn−1, g(x1, x2, · · · , xn−1))

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

dx1dx2 · · · dxn−1

(24)

In particular, f ≡ 1 gives the area of V

∫
V

1 dV =

∫
U

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

dx1dx2 · · · dxn−1 (25)

Example 6. Let Bn be the unit ball in Rn, Sn the unit sphere, and an the area of Sn. Integrals
on Sn, in particular the area an, can be computed using spherical coordinates, e.g. [12, § VII.2],
or the surface element of Sn, e.g. [11]. An alternative, simpler, approach is to use the results of
Example 5, representing the “upper hemisphere” as φ(Bn−1), where φ = (φ1, φ2, · · · , φn) is

φi(x1, x2, · · · , xn−1) = xi , i ∈ 1, n− 1 ,

φn(x1, x2, · · · , xn−1) =

√√√√1−
n−1∑
i=1

x2
i .

The Jacobi matrix is

Jφ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−x1

xn

−x2

xn

· · · −xn−1

xn


and its volume is easily computed

vol Jφ =

√√√√1 +
n−1∑
i=1

(
xi

xn

)2

=
1

|xn|
=

1√
1−

∑n−1
i=1 x2

i

. (26)

The area an is twice the area of the “upper hemisphere”. Therefore, by (26),

an = 2

∫
Bn−1

dx1dx2 · · · dxn−1√
1−

∑n−1
i=1 x2

i

, (27)

which is easily integrated to give

an =
2 π

n
2

Γ
(

n
2

) , (28)
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using well-known properties of the beta function

B(p, q) :=

∫ 1

0

(1− x)p−1 xq−1 dx ,

and the gamma function Γ(p) :=

∫ ∞

0

xp−1 e−x dx .

Example 7 (Radon transform). Let Hξ,p be a hyperplane in Rn represented by

Hξ,p :=

{
x ∈ Rn :

n∑
i=1

ξi xi = p

}
= {x : <ξ,x>= p} (29)

where ξn 6= 0 in the normal vector ξ = (ξ1, · · · , ξn) of Hξ,p (such hyperplanes are called non–
vertical). Then Hξ,p is given by

xn :=
p

ξn

−
n−1∑
i=1

ξi

ξn

xi (30)

which is of the form (22). The volume (23) is here

vol Jφ =

√√√√1 +
n−1∑
i=1

(
ξi

ξn

)2

=
‖ξ‖
|ξn|

(31)

The Radon transform (Rf)(ξ, p) of a function f : Rn → R is its integral over the hyperplane
Hξ,p, see [4],

(Rf)(ξ, p) :=

∫
{x: <ξ,x> = p}

f(x) dx . (32)

Using (30)–(31), the Radon transform can be computed as an integral in Rn−1

(Rf)(ξ, p) =
‖ξ‖
|ξn|

∫
Rn−1

f

(
x1, · · · , xn−1,

p

ξn

−
n−1∑
i=1

ξi

ξn

xi

)
dx1dx2 · · · dxn−1 (33)

See (A.15) and (A.17), Appendix A, for Radon transform in R2, and (A.20) for R3.

In tomography applications the Radon transforms (Rf)(ξ, p) are computed by the scanning
equipment, so (33) is not relevant. The issue is the inverse problem, of reconstructing f from its
Radon transforms (Rf)(ξ, p) for all ξ, p. The inverse Radon transform is also an integral, see e.g.
[4],[12], and can be expressed analogously to (33), using the method of the next example.

Example 8. Consider an integral over Rn,∫
Rn

f(x) dx =

∫
Rn

f(x1, x2, · · · , xn) dx1dx2 · · · dxn (34)

Since Rn is a union of (parallel) hyperplanes,

Rn =
∞⋃

p=−∞

{x : <ξ,x>= p} , where ξ 6= 0 , (35)

we can compute (34) iteratively: an integral over Rn−1 (Radon transform), followed by an integral
on R, ∫

Rn

f(x) dx =

∞∫
−∞

dp

‖ξ‖
(Rf)(ξ, p) (36)
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where dp/‖ξ‖ is the differential of the distance along ξ (i.e. dp times the distance between the
parallel hyperplanes Hξ,p and Hξ,p+1). Combining (33) and (36) we get the integral of f on Rn,∫

Rn

f(x) dx =
1

|ξn|

∞∫
−∞


∫

Rn−1

f

(
x1, · · · , xn−1,

p

ξn

−
n−1∑
i=1

ξi

ξn

xi

)
dx1dx2 · · · dxn−1

 dp (37)

see (A.21), Appendix A, for integration over R3.
It is possible to derive (37) directly from the classical change-of-variables formula (1), by changing

variables from {x1, · · · , xn−1, xn} to {x1, · · · , xn−1, p :=
n∑

i=1

ξixi}, and using

det

(
∂(x1, · · · , xn−1, xn)

∂(x1, · · · , xn−1, p)

)
=

1

ξn

.

An advantage of our development is that it can be used recursively, i.e. the inner integral in (37)
can again be expressed as an integral in Rn−2 followed by an integral in R, etc.

Example 9 (Fourier transform). In particular, the Fourier transform (Ff)(ξ) of f is the integral

(Ff)(ξ) := (2 π)−n/2

∫
Rn

e−i <ξ,x> f(x) dx =

(2 π)−n/2

∫
Rn

f (x1, · · · , xn) exp

{
−i

n∑
k=1

ξk xk

}
dx1dx2 · · · dxn .

(38)

For ξn 6= 0 we can compute (38) analogously to (37) as

(Ff)(ξ) =
(2π)−n/2

|ξn|

∞∫
−∞

e−ip


∫

Rn−1

f

(
x1, · · · , xn−1,

p

ξn

−
n−1∑
i=1

ξi

ξn

xi

)
n−1∏
k=1

dxk

 dp . (39)

The Fourier transform of a function of n variables is thus computed as an integral over Rn−1 followed
by an integral on R. The inverse Fourier transform of a function g(ξ) is of the same form as (38),

(F−1g)(x) := (2 π)−n/2

∫
Rn

ei <x,ξ> g(ξ) dξ , (40)

and can be computed as in (39).

Example 10. (The generalized Pythagorean theorem, [10]). Consider an n–dimensional
simplex

∆n :=

{
(x1, x2, · · · , xn) :

n∑
i=1

ai xi ≤ a0 , xi ≥ 0 , i ∈ 1, n

}
, (41)

with all aj > 0 , j ∈ 0, n. We denote the n + 1 faces of ∆n by

F0 :=

{
(x1, x2, · · · , xn) ∈ ∆n :

n∑
i=1

ai xi = a0

}
(42a)

Fj := {(x1, x2, · · · , xn) ∈ ∆n : xj = 0} , j ∈ 1, n (42b)

and denote their areas by A0 , Aj respectively. The generalized Pythagorean theorem (see [10])
states that

A2
0 =

n∑
j=1

A2
j (43)
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We prove it here using the change of variables formula (2). For any j ∈ 1, n we can represent the

(largest) face F0 as F0 = φ{j}(Fj) where φ{j} = (φ
{j}
1 , · · · , φ

{j}
n ) is

φ
{j}
i (x1, x2, · · · , xn) = xi , i 6= j ,

φ
{j}
j (x1, x2, · · · , xn) =

a0

aj

−
∑
i6=j

ai

aj

xi .

The Jacobi matrix of φ{j} is an n× (n− 1) matrix with the ith unit vector in row i 6= j, and(
−a1

aj

, −a2

aj

, · · · , −aj−1

aj

, −aj+1

aj

, · · · , −an−1

aj

, −an

aj

)
in row j. The volume of the Jacobi matrix of φ{j} is computed as

vol Jφ{j} =

√√√√1 +
∑
i6=j

(
ai

aj

)2

=

√∑n
i=1 a2

i

a2
j

=
‖a‖
|aj|

where a is the vector (a1, · · · , an). Therefore, the area of F0 is

A0 =

∫
Fj

(
‖a‖
|aj|

) ∏
i6=j

dxi =

(
‖a‖
|aj|

)
Aj , j ∈ 1, n (44)

∴

∑n
j=1 A2

j

A2
0

=

∑n
j=1 |aj|2

‖a‖2

and the generalized Pythagorean theorem (43) reduces to the ordinary Pythagorean theorem

‖a‖2 =
n∑

j=1

|aj|2 .

Example 11. The simplex (41) with aj = 1 for all j ∈ 0, n is the n–dimensional regular simplex

∆n :=

{
(x1, x2, · · · , xn) :

n∑
i=1

xi ≤ 1 , xi ≥ 0 , i ∈ 1, n

}
. (45)

The area A0 of its largest face

F0 =

{
(x1, · · · , xn) :

n∑
i=1

xi = 1 , xi ≥ 0 , i ∈ 1, n

}
. (46)

in given by (44) as

A0 =
√

n Vn−1

where Vn−1, the volume of the (n− 1)–dimensional regular simplex, is

Vn−1 =
1

(n− 1)!
, see e.g. [9, § 47] .

Therefore

A0 =

√
n

(n− 1)!
. (47)

Note that A0 → 0 as n → ∞, although the side faces of the unit cube (of which the face F0 is a
“diagonal section”) have areas 1.
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Appendix A: Illustrations with Derive.

The integrations of this paper can be done symbolically. We illustrate this for the symbolic package
Derive, [5], omitting details such as the commands (e.g. Simplify, Approximate) and settings
(e.g. Trigonometry:=Expand) that are used to obtain these results.

The Jacobi matrix is computed by the function

JACOBIAN(u, α) := VECTOR(GRAD(um− , α), m−, DIMENSION(u)) (A.1)

found in the Derive utility file VECTOR.mth.
Example: Define the surface as a function of r and θ,

Z(r, θ) := (A.2)

as in Example 2. Then

JACOBIAN([r ∗COS(θ), r ∗SIN(θ), Z(r, θ)], [r, θ]) (A.3)

gives (16),  COS(θ) −r ∗SIN(θ)
SIN(θ) r ∗COS(θ)

∂Z(r, θ)

∂r

∂Z(r, θ)

∂θ

 (A.4)

The volume of an (n + 1)× n matrix of full rank is computed by

VOL(a) := SQRT(SUM(DET(DELETE ELEMENT(a, k−))2, k−, 1, DIMENSION(a)))) (A.5)

For example,
VOL(JACOBIAN([r ∗COS(θ), r ∗SIN(θ), Z(r, θ)], [r, θ])) (A.6)

gives (17), √
r2 ∗
(

∂Z(r, θ)

∂r

)2

+

(
∂Z(r, θ)

∂θ

)2

+ r2 (A.7)

In Example 3 the surface is symmetric about the z-axis, and we use Z(r) instead of Z(r, θ) in (A.6)

VOL(JACOBIAN([r ∗COS(θ), r ∗SIN(θ), Z(r)], [r, θ])) (A.8)

to get (19),

|r| ∗
√

Z ′(r)2 + 1 (A.9)
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For example, the volume associated with the surface z = 1/r

VOL(JACOBIAN([r ∗COS(θ), r ∗SIN(θ), 1/r], [r, θ])) gives

√
r4 + 1

|r|
(A.10)

The surface area of z = 1/r is 2π times the integral of (A.10). In particular, the surface area from
r = 1 to r = 100

2 ∗ π ∗INT
[
SQRT(r4 + 1)

|r|
, r, 1, 100

]
gives 3.14142524131 × 104

Consider now the Radon Transform in R2. A line

a x + b y = p (A.11)

can be solved for y

y =
p

b
− a

b
x

if b 6= 0. Then

VOL(JACOBIAN
([

x,
p

b
− a

b
x
]
, [x]
)

gives

√
a2 + b2

|b|
(A.12)

in agreement with (31). The Radon transform (33) is then computed by

RADON AUX(f, x, y, a, b, p) :=

INT(LIM(f, y, p/b− a/b ∗ x), x,−∞,∞) ∗SQRT(a2 + b2)/|b|
(A.13)

For example, the Radon transform of e−x2−y2
,

RADON AUX(EXP(−x2 − y2), x, y, a, b, p) is
√

π EXP

[
− p2

a2 + b2

]
(A.14)

The function (A.13) requires b 6= 0. We modify it for lines with b = 0 (i.e. vertical lines) as follows

RADON(f, x, y, a, b, p) :=

IF(b = 0, INT(LIM(f, x, p/a), y,−∞,∞), RADON AUX(f, x, y, a, b, p))
(A.15)

The Radon transform of e−x2−y2
w.r.t. a vertical line

RADON(EXP(−x2 − y2), x, y, a, 0, p) gives
√

π EXP

[
−p2

a2

]
which is (A.14) with b = 0.

An alternative way is to normalize the coefficients of the lines (A.11), say a = cos α and b = sin α.
The Radon transform is then

RADON NORMAL AUX(f, x, y, α, p) :=

INT(LIM(f, y, p/SIN(α)− COT(α) ∗ x), x,−∞,∞)/ABS(SIN(α))
(A.16)

provided α 6= 0. The following function treats α = 0 separately

RADON NORMAL(f, x, y, α, p) :=

IF(α = 0, INT(LIM(f, x, p), y,−∞,∞), RADON NORMAL AUX(f, x, y, α, p))
(A.17)

For example, the Radon transform of

f(x, y) :=

{
1 if 0 ≤ x, y ≤ 1
0 otherwise

is computed by

RADON NORMAL(CHI(0, x, 1) ∗CHI(0, y, 1), x, y, α, p) (A.18)
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giving

SIGN(COS(α)− p) ∗
[

p

SIN(2α)
− 0.5

SIN(α)

]
+

|p|
SIN(2α)

(A.19)

The Radon transform in R3 is computed w.r.t. a plane

a x + b y + c z = p

as follows (ignoring the case c = 0),

RADON 3(f, x, y, z, a, b, c, p) :=

INT(INT(LIM(f, z, p/c− a/c ∗ x− b/c ∗ y), x,−∞,∞), y,−∞,∞) ∗SQRT(a2 + b2 + c2)/|c|
(A.20)

Finally, an integral over R3 is computed, using (37) as follows:

INT 3(f, x, y, z, a, b, c) :=

INT(RADON 3(f, x, y, z, a, b, c, p), p,−∞,∞)/SQRT(a2 + b2 + c2)
(A.21)

For example, the integral over R3 of f(x, y, z) = ex+y+z−x2−y2−z2
,

INT 3(EXP(x + y + z − x2 − y2 − z2), x, y, z, a, b, c) gives π3/2 e3/4
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