
1339 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992 

Correspondence 

The Channel Capacity of a Certain Noisy Timing 
Channel 

Ira S. Moskowitz, Member, IEEE, and Allen R. Miller 

Abstract-The effect of noise upon a simple covert timing channel is 
investigated. Shannon’s information theory is used to quantify the 
resulting information flow across the channel. In particular, how a 
probabilistic response time to a query by the receiver affects the mutual 
information and channel capacity is studied. The channel capacity is 
expressed in terms of the critical probability for the mutual information 
function which is given in closed form in terms of Wright’s hypergeo- 
metric function. 

Index Terms-Channel capacity, covert channel, special functions. 

I .  INTRODUCTION 

We consider an n-user computer system, n > 2 ,  where there are 
two users designated high and low. We assume that certain proce- 
dures have been set up so that low may not read high’s files and 
high may not write its files to low. These are the no read up, no 
write down requirements of the Bell-LaPadula model [l] .  How- 
ever, it may be possible for high to covertly pass information to low 
over a communication channel that unintentionally, with respect to 
the system design, exists in the computer system. Such a means of 
communication is referred to as a covert channel. We are interested 
in the case where it is possible for high to interfere with the system 
response time to low’s input. We will only be concerned with delays 
to low’s input of a specific query designated by q. 

In this correspondence, we do not propose methods of detecting 
timing channels or of giving specifications which prevent covert 
channels [2]-[4]. Instead, we continue in the spirit of Millen [5]  by 
giving methods for quantifying the capacity of timing channels. In 
fact, the first systematic capacity analysis of timing channels can be 
found in Huskamp’s dissertation [6]. The measurement of capacity 
is necessary for certain levels of “Orange Book” certification [7], 
which is of great importance to designers of secure systems. We 
present an idealized situation that we hope will lead to further 
system-dependent analysis of similar situations. 

The communication between high (transmitter) and low (receiver) 
previously described is a covert timing channel, or more succinctly, 
a timing channel. We are taking Wray’s 181 definition of a timing 
channel as a “covert channel whose alphabet is constructed from 
different time values.” In [5], Millen discusses a simple timing 
channel where a reply takes one tick (normalized time unit) if high 
is not interfering with low, and two ticks if high is interfering. One 
tick tells the low user in Millen’s scheme to interpret the message as 
the binary number 0 and two ticks as the binary number 1. (We use 
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bold face characters for the binary numbers to avoid confusion 
later.) Millen restricted his investigations to noiseless channels. In 
this correspondence, we obtain Millen’s result as a special case. 

The noise that we will be studying will not affect the value of the 
output. The noise will only affect the timing of the output, unlike in 
[4], where the timing was irrelevant, but the symbols being passed 
were the important feature. The noise effects in our model are 
envisioned as being due to time sharing delays of the CPU and 1/0 
caused by many users contending for computing resources. We will 
refer to this as contention. Of course, it is the contention that causes 
the noise. 

The users have an a priori knowledge only of the arrival times of 
the response to the query q in the probabilistic sense given in 
Section 11. This probabilistic arrival time is the effect from the noise 
in our system. A strategy must be developed that exploits this 
knowledge if high and low are to communicate in an efficient 
manner. 

11. MATHEMATICAL ASSUMPTIONS AND DEFINITIONS 

We shall use a modified exponential distribution to model the 
uncertainty in arrival times of signals to the low user, thus general- 
izing the noiseless model of Millen [5]. Suppose that low does its 
input query q at time zero. In our noisy system the output will 
arrive via an exponential distribution starting one tick after q. If 
high is interfering with low, then the output will arrive via an 
exponential distribution starting two ticks after q. Again we are 
assuming that the responses to q are identical. It is the times at 
which responses arrive that are different. Thus, we formalize these 
ideas with the following assumptions. 

If high is not interfering with low, then the response time to q,  
inputted at time zero, is given by the random variable XI with 
probability density function 

and if high is interfering with low, then the response time to q is 
given by the random variable X, with probability density func- 
tion 

We model A as being inversely related to the contention. The 
parameter X can be adjusted to demonstrate different scenarios with 
regard to users contending for resources. Since the expectation of 
XI is 1 + 1 / X ,  one could estimate X by using system performance 
statistics related to mean response time. By letting X + 00 we obtain 
the same situation that Millen set up. Later we will show how the 
channel matrix gives the exact relationship between noise and X. 

The lower A, the lower the capacity; this is nothing new, noise 
reduces mutual information. Say, however, that we wish to allow 
timing channels that have a certain capacity. Thus it may be possible 
to measure the parameter A, and if X is too large, then the computer 
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itself could start up background processes to lower A so that the 
capacity falls within an acceptable region. Without a way of quanti- 
fying the capacity, this could not be done effectively. This would 
allow a system to operate at a high level of efficiency and still stay 
within security guidelines. 

Let K represent the time that the output (response signal) arrives 
after q is inputted. Without any restrictions we have that 1 I K < 
00, which can lead to a situation where low has an infinite wait for 
an output to q. Further, let K be the random variable correspond- 
ing to K .  The distribution for K is obtained by conditioning on 
whether high is interfering (denoted by Int)  or not interfering 
(denoted by Nolnt) with low’s response to q:  

P ( K  I t )  = P ( K  I t I N ~ l n t ) P ( N ~ l n t )  

+ P ( K 5  t I I n t ) P ( Z n t ) .  

Notice that the conditional probability P ( K  I t 1 Nolnt) is just 
P(  X, 5 t) and P( K I t 1 Int)  = P( A‘, 5 t). High will interfere 
with low depending on whether high wishes to send a 0 or a 1 to 
low. We assign a probability of p whenever high sends a 0 
(NoInt); therefore the probability that high will send a 1 (Znt) is 
1 - p .  Thus, 

P ( K  i t )  = P ( X ,  I t ) p  + P ( X 2  I t ) ( l  - p). 

Of course the way things stand now, high must have some feedback 
in order to know whether or not low received the output. Because of 
the probabilistic nature of the response time to q we have an 
unbounded possible response time. Thus, we must make some 
adjustments in the strategy so that a feasible and realistic communi- 
cation channel is set up between high and low. We will adopt two 
different but related strategies. Strategy 1 is the simpler of the two, 
but Strategy 2 is a more efficient use of the covert communication 
channel. 

Strategy 1: Low will input q every two ticks. High will interfere 
or do nothing. If 1 I K < 2, then low will interpret the message as 
a 0. If two ticks have gone by on low’s clock, then low will 
automatically assume that the message is a 1 and issue an interrupt 
to its previous query q before inputting its next query q. 

The reason that low must issue an interrupt, if it has not yet 
received a response to q,  is to prevent a response from “leaking” 
over into the next cycle of query and response. Say for example that 
low inputs q, two ticks go by and no response is given by the 
system, and then low again inputs q. How is low to know when it 
finally does receive a response if it is the response to the first q or 
the second q? The issuance of an interrupt after two ticks will 
prevent this situation. We assume that the interrupt stops the re- 
sponse to q from reaching the low user and that the interrupt acts 
instantaneously. 

The problem with Strategy 1 is that every cycle takes two ticks 
and the high and low user are not making the most efficient use of 
their covert communication channel. The next strategy is a much 
more efficient use of the resources available. 

Strategy 2: Low will input q as soon as it has received its 
response from the previous query provided that a response comes in 
less than two ticks. If, after two ticks, no response has arrived at 
low, then low will automatically issue an interrupt to its previous 
query q and issue its next query q. If 1 I K < 2, then low will 
interpret the message as a 0. If two ticks have gone by on low’s 
clock, then low will automatically assume that the message is a 1. 

We are assuming that there is no time lag in low deciding, when 
necessary, to input q, and that the interrupts behave as described 

for Strategy 1. Ideas similar to the communication protocol in the 
above strategies are explored more fully in the work of Lee and 
Davidson [9] where they discuss deadlines in timed synchronous 
communication. 

III. TRANSMISSION ERRORS 

There are obvious transmission errors in our strategies which 
result in noise. The results in this section and the next one hold for 
both strategies. Let X be the random variable representing the 
input to the covert communication channel, i.e., the high user, and 
let Y represent the output random variable corresponding to low. 
The channel is a discrete memoryless channel. 

Let P ( i  1 j )  be the probability of an i being received by low 
given that a j was sent by high, where i, j = 0 , l .  There are no 
errors if high sends a 1 since 2 5 K .  The low user is watching its 
clock and as soon as two ticks have gone by, low interprets the 
message as a 1 which is correct. Thus, we have 

P(l 11) = 1 and P ( 0  11) = 0 .  

However, if high wishes to send a 0, then errors can be introduced. 
If the output arrives before two ticks have elapsed there is no 
transmission error. However, if because of contention 2 5 K ,  then 
we do have an error because low will interpret the message as a 1 
when it is in fact a 0. The probability of a 0 being sent and a 0 being 
received is 

Further, the probability of a 0 being sent and a 1 being received is 

P ( 1 1 0 )  = /wAe-ql -L)dt  2 = e-’. (3) 

The channel capacity of the covert timing channel will be calculated 
in Section IV by using (l) ,  (2 ) ,  and (3). 

N. CAPACITY ANALYSIS OF STRATEGY 1 

For now we are only trying to calculate the information flow in 
units of bits per symbol. For Strategy 1 ,  the difference between bits 
per symbol and bits per tick is trivial, i.e., a factor of 1/2. 
However, for Strategy 2 there is a substantial difference and we will 
address this issue in Section V. 

As soon as the low user inputs its query q, high inputs either a 0 
or a 1. A 0 corresponds to no interference and a 1 corresponds to 
interference. The response to q is always the same for it is the time 
at which this response arrives that determines the symbol being 
passed over the channel. If the response arrives between one and 
two ticks, but not equal to two ticks, Y is set equal to 0. If the 
response has not yet arrived at two ticks, or arrives at exactly two 
ticks, then Y is set equal to 1. The channel matrix from (l), (2), 
and (3) is given by 

and shows how A influences noise in the communication channel. 
Let I( X ,  Y) and C be respectively the mutual information between 
X and Y and the channel capacity, both of which have units in bits 
per symbol. The mutual information I(  X ,  Y) expressed as a func- 
tion of p is given by 

~ ( p )  = -p log  p + e-’plog(e-’p) 

- ( 1  - p + e-”) log (1 - p + e - % ) ,  ( 5 )  
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where logarithms are computed using base 2. We have obtained (5) 
by calculating the mutual information 

I (  x ,  Y )  = H (  x )  - H Y (  x) 
as the difference between the input entropy and the equivocation 
[lo]. The capacity for this channel is the maximum of I ( p )  with 
respect to p .  Since the mutual information function I( p )  is concave 
down [ l l ,  Theorem 5.2.51 with respect to the variable p ,  it suffices 
to find the critical point < determined by the equation Z'(p) = 0. 
Thus, from (5),  we have 

~ ( p )  = - logp+e- ' Iog (e - 'p )  

so that the critical point is given by 

Since both e-' + 0 and X/(e' - 1) --t 0 as X -+ 00 we see that 

lim < =  1/2.  
h+m 

The capacity is the mutual information function evaluated at {, thus 

The critical point < quickly becomes asymptotic to 1/2. Thus, for 
h & 0, I( p )  is nearly optimized for an input probability distribution 
where both 0's and 1 ' s  are sent with equal probabilities of 1/2. 
Numerical calculations [12] show that C(X) - Z(1/2) is small and 
quickly approaches zero as h + W .  This is not surprising in light of 
a recent result of Majani and Rumsey [13] that for a binary-input 
discrete memoryless channel, Z(1/2) is at least 94.21% of the 
capacity. 

V. CAPACITY ANALYSIS FOR STRATEGY 2 

If we do a bit per symbol analysis of both strategies, they are 
identical. However, if we do a bit per tick analysis they are quite 
different. This is due to the fact that low will issue its next query q 
as soon as it has received a response form its last query, provided 
that no more than two ticks have elapsed from the issuance of the 
former query. If E[ TI is the average time it takes to send a symbol 
across the channel, then the mutual information of a discrete memo- 
ryless channel, in bits per tick, is defined by 

Here we are using the notational convenience that the subscript t 
means units are given in bits per tick. 

It would seem natural to try to maximize It to get the actual 
channel capacity in units of bits per tick. Verdb [14, Theorem 21 
studied the capacity in units of bits per unit cost C, of a memoryless 
(stationary) channel. Let b[ XI be the cost function associated with 
the input random variable X .  Then Verd6's theorem states that 

(7) 

where the supremum is taken over different probability measures for 
X with the alphabet of X fixed. 

Of course E [ b [ X ] ] ,  the expected value of b [ X ] ,  is given in 
units of unit cost per symbol. If the cost function is the time it takes 
to send symbols, then we can replace E [ b [ X ] ]  by E [ T ] .  Combin- 

ing (6) and (7) we can express the capacity per unit time as the 
supremum of the mutual information per unit time: 

I (  x ,  Y )  c, = sup ~ = sup I , .  
x E[TI x 

Note that the optimizing process over X involves I( X ,  Y )  and 
E [ T ]  simultaneously. Obviously one would not want to code the 
message by just minimizing time because we would lose information 
by not using enough different symbols. 

The actual distribution of the query response random variable T 
is governed by the distributions XI, X,,  and Strategy 2. For time 
values less than o?e tick or greater than two ticks the probability 
density function f ( t )  of T is zero since the response can never 
arrive at those times. For time values greater than or equal to one 
tick and strictly less than two ticks the behavior of T is governed by 

In order to obtain the probability density function f^(f), we 
calculate the derivative of the associated cumulative distribution 
function F( t )  = P( T I t ) .  Hence, F'( t )  = f( t )  and by condition- 
ing we see that 

f,(t). 

P ( T 5 t )  = P ( T < t ) O ) P ( O ) + P ( T < t  Il )P(l) .  

Now if 1 

P ( l  5 T I  t )  = P ( l  5 T I  t I O)P(O) + P ( l  5 T S  f I l )P( l )  

t < 2, 

= P(1 I XI 5 t ) p  + P ( l  I x, 5 t ) ( l  - p )  

and, since two ticks is the cut-off time, 
m m 

P ( T =  2)  = p  J he-N7Y-1)d19 + ( 1  - p ) /  Xe-x.'"-2)dlY 
2 2 

= e-'p + 1 - p .  

Therefore, we have 

P ( T >  2)  = 0 ,  

~ ( ~ = 2 ) = e - ' p + l - p ,  

< T s  t )  = p  X e - N . " J - ' ) d d ,  1 < t < 2 ,  il' 
P ( T 5  1 )  = 0 .  

Hence, the density function of T is given by 

f ( t )  = s ( t  - 2 ) [  pe-' + 1 - P ]  + h e - N ' - ' ) p x , l . 2 ) ( t ) ,  

where 6(.)  is the Dirac delta function and x, , , * ) ( * )  is the character- 
istic (or indicator) function of the interval 11,2). To find the 
expected value of T ,  since 

E [ T ]  = J m  $ ( t )  d t ,  
- m  

we see that 
.m 
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and on performing the two integrations we obtain 

When A is infinite there is no contention and hence the channel is 
noiseless. In this case, the channel matrix (4) becomes 

) = (A 3. i p(0  11) p(1  11) 

) = t 3 i p ( 0  11) p(1  11) h = O  

p(0  I O )  p(1 10) 

Further, from (9) the expectation is given by 

E [  2-1 h = m  = 2 - p .  

When the contention is maximized, X is zero. Therefore, the 
channel matrix (4) becomes 

p ( 0  10) p(1 10) 

Thus, we see that low cannot infer at all whether high sent a 0 or a 
1. In fact, low will only receive the symbol 1. Applying L’H6pital’s 
rule twice shows that the last term of (9) is 3/2 as X -+ 0, so that 

E [  TI h=O = 2 .  

We now express the mutual information in terms of bits per tick. 
From (5 ) ,  (6),  and (9) we get 

- p  log p + e-’p log ( e - ” )  
- ( 1  - p + e - l p )  log ( 1  - p + e-’p) 

2 ( p e - ’ + 1 - p ) + p ( l - e - ” )  (; - + -  ::I:) 4 ( P )  = 

( 10) 

and from (8) the channel capacity as a function of X is given by 

- p  log p + e-’p log (.Pip) 
- ( 1  - p + e-’p) log (1  - p + e-”)  

2 ( p e - h +  1 - p )  + p ( l  - e - ’ ) ( .  + --I e x -  1 

c,( A) = sup 
X 1 e h - 2  ’ 

When X is equal to zero or OD, define Ct(X) by its limiting values. 
Thus, C,(X) is a continuous function for X E  [0, 031 and we may 
write 

c, ( 1) 
- p  log p + e-’p log ( e - ” )  

2 ( p e - h  + 1 - p >  + p(1- e-’) ( 
- ( 1  - p + e -” )  log ( 1  - p + e -” )  

+-I e h -  1 

max - - 
P @ ,  1 1  1 e x - 2  ‘ 

VI. EXACT RESULT FOR THE CHANNEL CAPACITY OF 

STRATEGY 2 

Since I , (p ) ,  given by ( lo ) ,  is a nonnegative differentiable func- 
tion for p ~ ( 0 ,  1) and its values are zero at the boundary of the 
interval, it suffices to find a unique critical point, pc E (0, l ) ,  for 
then we know that Zl(pc) = C,(A). 

Taking the derivative of Z,(p) with respect to p and setting it 
equal to zero, we arrive at (after some algebraic simplification) 

( 1 1 )  x I n  x + ( y  - u ) I n ( l  - y p )  - y In p = 0 ,  

where 

x = e - h ,  y = 1 - x ,  2u = 1 + y/ln x .  

Exponentiating both sides of (1 1) and setting 

r E x - x ’ Y p  

r l  + ( x x y y ) ’ / Y r  - 1 = 0.  

We recall the Wright function [15] defined by 

Y 
7’- 

y - U ’  

we obtain 

and the definition of the Pochhammer symbol 

r(x+ n) 
(A), = - 

r ( X )  ’ 
where r(z) is the Gamma function and n is an integer. For 
conciseness in what follows we shall write \k for , q i .  

In [16], Miller showed that Mellin’s result [17] concerning the 
roots of trinomial equations could be extended to include positive 
non-integer exponents as well. In particular, we have the following. 

For w > 1 ,  the unique positive root of the transcendental equation 

tu + p t  - 1 = 0 
is given by 

provided that 

I p I  < w / ( w  - l ) l - l ’w .  (13) 

To apply this result to (12)  we must verify that the inequality (13) 
is satisfied. Considering 9 as a function of y E [0, 11, it is easy to 
show that 4/3 5 9 5 2. Further, since 

( x x y J y Y 5  1 ,  x , y E [ O , l ] ,  

and 

min ( 9  - l ) ’”- ’q  = 1.755 > 1 ,  
4/3 5 1 5 2  

we see that 

(xxyy)”.’  < ( q  - 1 y 9 ,  x ,  Y E  [o, 1 1 .  

Therefore, the previous result may be applied and we arrive at the 
following. 

The channel capacity for 0 < X < 03 is 

-pc log pc + e-%, log ( 
- ( 1  - pc + e-’pC) log (1 - pc + e-’pC) 

C,(V = 

where the critical probability for the mutual information function 

. (14) 
X X ’ Y  

9 
p c =  -* 
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Let us consider the two boundary cases. When h = 0, there is 
infinite noise and (10) is identically equal to zero. Therefore, the 
channel capacity is zero and the critical probability is of no concern. 
When X = 03, there is no noise which is the situation that Millen 
studied. 

Millen used Shannon’s [ 101 approach that employed finite-dif- 
ference equations to show that 

We will show this by analyzing the limiting behavior of (14) as 
A --t 03. In this case, we have 

so that 

( -  
( 2 k ) !  

( -  1 ) * k + ’  

(2k + l ) !  

Since 1/ r(l - k )  vanishes for k 2 1, 

we arrive at 

2P,+ 1 -- - l F o [ - l / 2 ; - ;  - 1/41, 
2 

where F, is a generalized hypergeometric function. Since 
- a  

, F , [ a ; - ;  z ]  = (1 - 2 )  , 
we have that 

- I +  6 
2 ’  Pc = 

and now after some algebraic manipulation we deduce 

- 1 +  6 1 + &  
4 (  ) = b ( +  

Thus, we have obtained Millen’s result (15) as a special case. As we 
did for Strategy 1, numerical calculations also show that for Strat- 

egy 2 the channel capacity C, and the mutual information Zr 
evaluated at the limiting value of ( -  1 + 6 ) / 2  are quite close for 
all values of X 

VII. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

We have shown how to incorporate noise into the capacity 
calculations of certain timing channels. Strategy 1 is rather simplis- 
tic, but it is a necessary step to understanding Strategy 2 .  In 
addition, Strategy 1 is useful if there is no feedback to high. 

In future work, we shall relax the restriction that the responses 
arrive at 1 or 2 ticks and allow variable response times. We can 
always normalize the lesser time value to 1 tick so we will investi- 
gate the situation where the responses arrive at 1 or p ticks, (3 being 
variable. The noise in the channel decreases with increasing 0 but 
the time required to send the symbol 1 across the channel increases. 
Thus, we have an optimization problem for the capacity with respect 
to p.  

At present, in Strategy 2 we allow low to instantaneously inter- 
rupt its query. An interesting alternate scenario would permit some 
delay in the interrupt. Also, the necessity of an interrupt could be 
mitigated by using a series of distinct queries whose responses are 
known and inputted in a cyclically repeating order. 
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On the Capacity Region of the Discrete Additive 
Multiple-Access Arbitrarily Varying Channel 

John A. Gubner, Member, IEEE 

Abstract-The discrete additive multiple-access arbitrarily varying 
channel (AVC) with two senders and one receiver is considered. Neces- 
sary and sufficient conditions are given for its deterministic-code aver- 
age-probability-of-error capacity region under a state constraint to have 
a nonempty interior. In the case that no state constraint is present, the 
capacity region is characterized exactly. In the case of the noiseless 
mod-2 adder AVC using state constraint function I ( $ )  = s and subject 
to a state constraint L less than or equal to 0.13616917, the capacity 
region is shown to be a 45-degree triangle whose legs have length 
1 - h(L) ,  where h denotes the binary entropy function. 

Index Terms- Additive channel, multiple-access, arbitrarily varying 
channel, state constraint, capacity region. 

I. INTRODUCTION 

A general multiple-access arbitrarily varying channel (AVC) with 
two senders and one receiver is a transition probability W from 
X x Y x S into Z, where X,  Y, S ,  and Z are finite sets, each 
containing at least two elements. We interpret W( z I x ,  y, s)  as the 
conditional probability that the channel output is z E Z given that the 
channel input symbol from sender 1 is x E X,  the channel input 
symbol from sender 2 is y E Y, and that the channel state is s E S .  
When block codes of length n are used, we say the AVC is subject 
to state constraint L if the state-selection mechanism can generate 
only those state sequences s = ( s1 , * . a ,  s,) that satisfy a time-aver- 
age constraint of the form 

where I is a given nonnegative constraint function defined on S and 
satisfying min,l(s) = 0. Note that if L 2 max,l(s), then all state 
sequences s satisfy (1); in this case we say that the state constraint 
is not present, or inactive. 

Definition (Additive A VC): Let G be a finite nontrivial commu- 
tative group. Suppose that X = Y = Z = G. We say that W is an 
additive AVC if 

W ( z I x , y , s )  = V , ( z - x - y ) ,  

for some transition probability V from S into G. 
General multiple-access AVC's subject to a state constraint have 

been studied in [6]. There, both forward and converse results were 
proved that enable one to give inner and outer bounds on the 
capacity region. To obtain meaningful inner bounds, one must 
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exhibit input probability distributions for which certain inequalities 
are nonvacuous. We show that for the additive AVC such input 
distributions always exist. 

In the absence of state constraints, we exactly characterize the 
capacity region of the additive AVC. 

In the special case of the noiseless mod-2 adder AVC with 
I( s) = s and state constraint L 5 0.13616917, the capacity region 
is shown to be a 45" triangle whose legs have length 1 - h ( L ) ,  
where h denotes the binary entropy function defined in Theorem 3 .  

Additive AVC's with one sender and one receiver were consid- 
ered in [4, Section VI, but under the assumption that the channel 
symbols come from a finite subset of R d  rather than a finite 
commutative group G. This is in contrast to the results of [4, 
Section IV] concerning a restricted form of additive AVC called a 
group adder AVC, which is an additive AVC for which S = G and 
V J t )  = p ( t  - s) for some probability distribution p on G. In an 
earlier paper [3, Section IV] Csiszhr and Narayan analyzed the 
single-user noiseless mod-2 adder AVC. 

II. STATEMENT OF RESULTS 

In order to state our results, we need the following notation. Let 
9 ( S )  denote the set of probability distributions on S .  For r E 9(S),  
let rV denote the distribution on G defined by ( r V ) ( t )  = 
C,r(s)V,(t). Let H ( r V )  denote the entropy of rV. Let 

Note that if L 2 max,I(s), then gL(S) = O(S). We now state our 
main results. 

Theorem 1: The deterministic-code average-probability-of-error 
capacity region under state constraint L of an additive multiple- 
access AVC V has a nonempty interior, if and only if there is no 
r E @(S)  such that rV is the uniform distribution on G. Further- 
more, the capacity region is always contained in the 45" triangle, 

{ ( R , ,  R , )  : R ,  2 0 ,  R ,  2 0 ,  

and R I  + R ,  5 log IG I - max H ( r V ) } ,  (2) 
rcgL(S)  

where I G I denotes the cardinality of the set G. 
Remark: Since G L ( S )  is compact and since H is continuous, 

W 9 L ( S )  

if and only if there is no rE @(S)  such that rV is the uniform 
distribution on G. 

logIGI > max H ( r V ) ,  (3) 

Theorem 2: In the absence of state constraints, the capacity 
region of the additive multiple-access AVC V is always given by 
(2), where @(S) is replaced by 9(S).  

Proof: Theorem 2 follows from Theorem 1 ,  the preceding 
Remark, ([7, Theorem 1, p. 2141, which says that if the determin- 
istic-code average-probability-of-error capacity region has a 
nonempty interior, then it is equal to the random-code average- 
probability-of-error capacity region), and [6, Section IV], which 
shows that the random-code average-probability-of-error capacity 
region of the additive AVC is given by (2). We give an independent 
proof in Section V. 0 
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