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Abstract

Background: Identifying differentially expressed genes (DEG) is a fundamental step in studies that perform genome

wide expression profiling. Typically, DEG are identified by univariate approaches such as Significance Analysis of

Microarrays (SAM) or Linear Models for Microarray Data (LIMMA) for processing cDNA microarrays, and differential

gene expression analysis based on the negative binomial distribution (DESeq) or Empirical analysis of Digital Gene

Expression data in R (edgeR) for RNA-seq profiling.

Results: Here we present a new geometrical multivariate approach to identify DEG called the Characteristic Direction.

We demonstrate that the Characteristic Direction method is significantly more sensitive than existing methods for

identifying DEG in the context of transcription factor (TF) and drug perturbation responses over a large number of

microarray experiments. We also benchmarked the Characteristic Direction method using synthetic data, as well as

RNA-Seq data. A large collection of microarray expression data from TF perturbations (73 experiments) and drug

perturbations (130 experiments) extracted from the Gene Expression Omnibus (GEO), as well as an RNA-Seq study that

profiled genome-wide gene expression and STAT3 DNA binding in two subtypes of diffuse large B-cell Lymphoma,

were used for benchmarking the method using real data. ChIP-Seq data identifying DNA binding sites of the perturbed

TFs, as well as known drug targets of the perturbing drugs, were used as prior knowledge silver-standard for validation.

In all cases the Characteristic Direction DEG calling method outperformed other methods. We find that when drugs are

applied to cells in various contexts, the proteins that interact with the drug-targets are differentially expressed and

more of the corresponding genes are discovered by the Characteristic Direction method. In addition, we show that the

Characteristic Direction conceptualization can be used to perform improved gene set enrichment analyses when

compared with the gene-set enrichment analysis (GSEA) and the hypergeometric test.

Conclusions: The application of the Characteristic Direction method may shed new light on relevant biological

mechanisms that would have remained undiscovered by the current state-of-the-art DEG methods. The method is

freely accessible via various open source code implementations using four popular programming languages: R, Python,

MATLAB and Mathematica, all available at: http://www.maayanlab.net/CD.

Background

Genome-wide transcriptional profiling, the parallel mea-

surement of the expression of tens of thousands of

genes, is a powerful tool which, for example, aids in the

development of clinical biomarkers for disease diagnosis,

reveals the heterogeneity of histologically identical can-

cers, and sheds light on diverse biological mechanisms.

After estimating the relative or absolute expression level

of all transcripts, the next step is to test statistical

hypotheses [1]. Typically, these hypotheses are con-

cerned with the difference between two biological condi-

tions, for example, normal verses diseased tissue, or

perturbed verses unperturbed cells. One of the most im-

portant aims of such tests is to identify the genes which

are mostly responsible for the difference between the

biological states under investigation, the so called differ-

entially expressed genes (DEG).

Genes do not function in isolation but are part of a

complex regulatory and functional network, and this can

be reflected in the significant observed correlations be-

tween their expression levels. However, the most widely

used methods for identifying DEG are univariate; typically
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tests are performed gene-by-gene without regarding gene-

gene statistical dependencies. The fold-change, an early

approach that is not recommended by statisticians but still

popular among experimental biologists due to its simpli-

city, does not take into account the variance which arises

from biological and experimental sources, and as such the

fold-change measure does not offer any estimate of confi-

dence [2,3]. Because of this, the fold-change is regarded as

an insufficient statistic for identifying DEG [3,4]. Other

univariate methods include, Welsh’s t test, Significance

Analysis of Microarrays (SAM) [5], and Linear Models for

Microarray Data (limma) [6], and, in the case of high-

throughput sequencing data, differential gene expression

analysis based on the negative binomial distribution

(DESeq2) [7]. However, since there are significant statis-

tical dependencies between the expression levels of most

genes, multivariate approaches may be more appropriate

for genome-wide profiling analyses that identify DEG; for

example, multivariate analysis is able to find significant

differential expression in cases where there is no marginal

differential expression for individual genes (Figure 1).

There have been a number of attempts to apply multi-

variate analyses to identify DEG [8,9]. For example, Lu

et al. [10] proposed an application of Hotellings T2 test,

which is a multivariate generalization of Welsh’s t-test.

However, these approaches remain little-used because

they are sensitive to the fact that typically microarray or

RNA-Seq gene expression profiles have fewer samples

than genes. A small sample size compared to the dimen-

sionality of the measured variables brings difficulties to

the analysis [11]. A significant step towards the reso-

lution of such problems was the realization that variance

shrinkage improves statistical power [5,12,13]. Also,

methods that directly attempt to identify differentially

expressed gene-sets as opposed to individual genes have

been developed [14-19]. In addition, to increase statis-

tical power, these approaches also attempt to facilitate

biological interpretation, which can be challenging when

faced with a long list of DEG [15,20].

There are currently two main principle technologies to

perform whole-genome transcriptional profiling: micro-

arrays and RNA-Seq. The later has a number of advan-

tages such as greater dynamic range, and an ability to

measure previously unknown transcripts. The RNA-Seq

technology also presents some challenges such as poten-

tial non-uniform read coverage and transcript length

biases, and recently there has been a flurry of publica-

tions approaching these important issues [21-24]. One of

the differences between microarray and RNA-Seq data is

that microarrays result in continuous measures of expres-

sion, often log-normally distributed, whereas RNA-Seq

data results in positive integer read counts with discrete

probability distributions. For this reason, established

methods of differential expression analysis for microarray

data are not immediately transferable to RNA-Seq data

but this challenge can be overcome as demonstrated by

Soneson et al. [25] who showed how to transform RNA-

Seq counts to continuous values. The approach we shall

take here relies on minimal assumptions about the dis-

tributions of the data and should apply to RNA-Seq,

microarray or any other similar situation where the di-

mensionality of the data far exceeds the sample size.

We propose a new multivariate approach called the

Characteristic Direction which is better able to identify

Figure 1 Illustration of a case where there is no marginal differential expression of individual genes, however in the multivariate

setting the differential expression becomes clear. Projecting the data onto the appropriate direction in this case leads to a clear separation

between the classes.
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DEG than univariate approaches including the methods:

fold change, SAM, the Welch’s t test, LIMMA and

DESeq. Our approach naturally incorporates a regularization

scheme to deal with the problem of dimensionality, and

also provides an intuitive geometrical picture of differential

expression in terms of a single direction. We show how this

geometrical picture reliably characterizes the differential

expression and also leads to some natural extensions of the

approach such as improved gene-set enrichment analysis. In

addition, we take advantage of a neat mathematical trick to

make the Characteristic Direction method fast to compute.

Previous attempts to validate expression analyses have

tended to rely on simulated data due to the general lack

of ground truth with which to compare the results when

applying the methods to real data. However, simulated

data can only contain a simplified reproduction of the

rich structure of expression data and so can only provide

an incomplete picture of the effectiveness of the method

under investigation. We benchmarked our method using

simulated data, but we also developed original methods

to benchmark DEG calling using real data (Figure 2).

Firstly, we extracted a large number (73) of gene expres-

sion microarray profiles from the Gene Expression

Omnibus (GEO) before and after the perturbation of in-

dividual TF. We then used ChIP-Seq data, which pro-

vides information on the DNA binding sites of the TFs

to provide prior information by which we were able to

evaluate the Characteristic Direction method and make

comparisons to other approaches. We are aware that tar-

get genes for a TF, as determined by ChIP-Seq, does not

necessarily mean that the binding is functional. However,

identifying more DEG from a list of putative target genes

determined by ChIP-Seq can be used as a silver standard

to compare DEG calling methods. In a similar way, we

were also able to do this for drug perturbations (130) in

combination with knowledge about the drug targets and

their known protein-protein interactions. For validation

and evaluation of the Characteristic Direction method

ability to identify DEG from RNA-Seq data, there are

currently fewer available studies from including set up

similar test-beds, mostly because the technology is

newer and cost prevents many studies from including

more than two repeats. However, we did find an ideal

study that measured binding sites for the TF STAT3 and

relevant RNA-Seq expression data in the same cells.

Apart from being able to assess the analysis methods,

these results are interesting in themselves as they show

that we are able to infer information about TF and drug

perturbations from expression data. For example, we

find that proteins that are known to interact with the TFs

and the drug targets tend to be also within the DEG.

Finally, we show how a natural extension of the Charac-

teristic Direction method can be used to perform po-

tentially improved gene-set enrichment analysis. We

Figure 2 Schematic of the validation pipeline: 1) Expression data from a large number of experiments with control vs. perturbation

samples; 2) The various approaches to differential expression are used to rank genes in order of significance; 3) Prior knowledge gene

lists, for example genes associated with ChIP-Seq binding sites of the perturbed TF, are identified in the ranked list and the cumulative

distribution is calculated; 4) The perturbation of the cumulative distribution from uniform is examined. Large deviations from zero, on the

scale of φ, indicate significant prioritization of the prior knowledge genes. Also, the AUC distributions are examined across the various methods.
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compared enriched terms for DEG identified in human

cancer stem cells and show that the Characteristic Direc-

tion enrichment method recovers more relevant Gene

Ontology (GO) terms as compared with GO terms recov-

ered by the hypergeometric test, or GSEA.

Methods
Computing the characteristic direction and identifying

differentially expressed genes

Classification approaches, for example those that predict

clinical outcome from gene expression data, are inher-

ently multivariate as they use the structure of the gene

expression profiles as a whole in order to distinguish be-

tween biological conditions or classes. Our approach is

to repurpose linear classification methods in order to

characterize differential expression and identify DEG.

We use a linear classification scheme, which defines a

separating hyper-plane; the orientation of which we

show can be interpreted to identify DEG. We also find

that the direction normal to the separating hyper-plane

provides a simple geometrical conceptualization of the

differential expression, which naturally leads to exten-

sions of the approach, such as a new formulation of gene

set enrichment analysis.

Suppose we have gene expression data from a number

of samples N, in which the expression of p genes is mea-

sured, and then let each expression profile sample form

a row of the matrix X (a N × p matrix). For generality at

this point we shall consider the case where each of the

expression samples comes from one of K classes belong-

ing to the set G. In linear discriminant analysis (LDA)

the log-ratio of class posteriors P (G|X), is written as fol-

lows (see Additional file 1 for a derivation),

log
PrðG ¼ kjX ¼ xÞ

PrðG ¼ ljX ¼ xÞ
¼ log

πk

πl

−
1

2
μk−μl
� �T

Σ−1 μk−μl
� �

þxTΣ−1 μk−μl
� �

ð1Þ

where, πk, is the class mean, and it is assumed that both

classes have the same covariance matrix, Σ. Then the

orientation of the separating hyper-plane (between clas-

ses k and l) is defined by the normal p-vector, in the

third term on the right hand side, that we label b,

b ¼ Σ−1 μk−μl
� �

: ð2Þ

The estimation, from the data, of the terms in this

equation is explained in the Additional file 1. Below we

will interpret the direction of the p-vector, b, as the dir-

ection in expression space that best characterizes the

differential expression, and show how the components

of this vector can be used to identify differentially

expressed genes. However, first we note a few potential

issues: the calculation involves the inverse of a very large

p × p matrix which is not only expensive to compute

but also the elements must be estimated from a rela-

tively small sample-size (p >> N), which means that the

matrix is singular and this leads to large variance in the

results even when using the generalized inverse.

The issue of singularity and large variance can be tack-

led with a regularization procedure, for example, the co-

variance matrix can be shrunk to the scalar variance as

follows,

Σ̂ γð Þ ¼ γΣ̂þ 1−γð Þσ2Ip;with γϵ 0; 1½ � ð3Þ

where Σ̂ is the estimated covariance matrix, and σ2 is

the scalar covariance (see Additional file 1 for elabor-

ation). The inclusion of a constant on the diagonal re-

solves the singularity problem, and the modulation of

the off-diagonal terms helps to reduce noise arising from

the estimation of covariance from few samples.

The problem of computational expense is efficiently

overcome with the singular-value decomposition trick

[26-28] which also admits a solution in the limit of zero

shrinkage by working in the subspace spanned by the data,

rather than the full expression space (see the Additional

file 1). The normalized vector b̂ contains only information

about the direction of the normal to the separating hyper-

plane. The components of b̂ are the direction cosines, and

their magnitude quantifies the degree of alignment of the

direction to axes corresponding to each gene. The sign of

each component can be interpreted as the sign of the con-

tribution of each gene to the differential expression. An-

other way to picture this interpretation of gene

significance is to consider the identity,

X

p

i¼1

b̂2i ≡1 ð4Þ

Then the contribution of each b̂21 to this sum can be

interpreted as quantifying the relative contribution of

each component to the total differential expression giv-

ing the significance of the corresponding gene. The

above interpretation provides a quantitative measure of

the relative, but not absolute, significance of each gene

to the differential expression, and as such can be used to

rank the genes in order of significance. However, we also

want to identify a shortlist of significant DEGs. This

could be done completely within the framework we have

outlined by using a L1 regularization scheme in place of

that used in the shrinkage equation above; such a pen-

alty results in automatic feature selection because many

components fall to zero; the genes corresponding to the

features retained would then comprise the DEGs. An al-

ternative method to deriving a significance threshold is

described below.
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Generating synthetic data

We generate synthetic normalized expression data which

incorporates multivariate structure. The multivariate

structure of real biological expression data is not fully

known, we therefore use a simple approach which incor-

porates some of the best established properties of such

data: 1) large number of features (genes) with a relatively

small number of samples; 2) significant dependencies be-

tween the expression levels of the genes, leading to di-

mensionality which is much smaller than the number of

features. In addition to these properties we require con-

trol over the number and identity of genes which are dif-

ferentially expressed between two datasets. There are a

number of ways that datasets with these properties may

be generated, but we chose the simplest, with the fewest

free parameters. In a nutshell, we use a multi-variate

normal distribution distributed throughout a random

subspace of the full expression space, the dimension of

which reflects the dimension of the dataset. By ensuring

that this subspace spans a predefined vector of differen-

tially expressed genes we can perturb the mean of the

normal distribution, preserving the covariance matrix, to

generate data with pre-defined differentially expressed

genes. An explicit description of the algorithm follows:

The parameters input into the synthetic data gener-

ation algorithm are: the total number of genes on the

array, p, the total number of differentially expressed

genes, nd, the dimension of the data sets, D, the number

of samples in each class, N, and a scale parameter which

controls the magnitude of the difference between the

“control” and “perturbed” data sets, Δ. First we deter-

mine which genes are to be differentially expressed and

in which direction – this is done by generating a random

unit p-vector with nd non-zero components, correspond-

ing to the differentially expressed genes. We refer to this

vector as m̂ . This vector, when normalized, provides the

seed for the generation of a set of D isotropic random

orthonormal vectors which provide a basis for a random

subspace of expression space. This is generated by itera-

tively generating a random isotopic vector bi at step i,

then calculating that part of bi which is parallel to the

subspace spanned by the previously generated vectors

{bj |j < i},

bi;∥ ¼
X

i−1

j¼1

bi:bj
� �

bj ð5Þ

This is then subtracted from bi, resulting in a new vec-

tor which is perpendicular to the previous members of

the set; this is normalized before being included in the

set and moving on to the next iteration. The result is a

set of orthonormal basis vectors for an isotropic sub-

space of dimension D which also includes the pre-

defined vector of differentially expressed genes. For each

class: “control” and “perturbed” we next generate ran-

dom data within this subspace by drawing from a multi-

dimensional normal distribution. To do this we must

first define the mean and covariance matrices for each

class. If, for simplicity, we assume linearity, then we may

think of our random subspace as being the Principal

Component space, and the data should be uncorrelated

in this space, so we set the off diagonal elements of the

covariance matrix to be zero and it only remains to de-

termine the variances. We do this in such a way as to re-

flect a general property of biological expression data

where the first principal component captures the most

variance, and subsequent principal component capture

successively smaller variances. We model this property

very simply by setting the variance in the ith, principal

component direction to be equal to e-(i-1), such that the

variance in the first principal direction is 1, and in the

second e-1 etc. We assign the same covariance matrix to

both the “control” and “perturbed” samples. We choose

the mean of the “control” samples to be zero, and the

mean of the “perturbed” samples to reflect the pre-

defined differentially expressed genes by setting it equal

to m̂ scaled by Δ to control the magnitude of the differ-

ence between the “control” and “perturbed” expression

data. An illustration of the synthetic data generated in a

low-dimensional space with the parameters p = 3, nd =

2, D = 2, N = 3, and Δ = 3.0 with gene 1 and 3 chosen

to be differentially expressed, is shown in Figure 3.

These parameters were chosen to give an impression of

the structure of the data in higher dimensions, and to

result in a clear difference between the two classes of

samples.

Estimating significant DEG applied to the synthetic data

The Characteristic Direction method is represented by a

vector in expression space, each component of which

corresponds to a gene. We interpret this vector by tak-

ing the square of each component to be a measure of

the importance of the corresponding gene in the differ-

ential expression; the larger the squared component the

more significant the gene. In order to determine the ap-

propriate threshold above which to accept genes as dif-

ferentially expressed we derive a null distribution for the

ranks of the squared components as follows:

Given a null hypothesis that there are no differentially

expressed genes we would like to compare the distribu-

tion of squared component values to those that would

be expected under the null hypothesis. One way to gen-

erate the null distribution would be to use permutations

of the data, which would require sample sizes to be large

enough to permit a sizable number of permutations. An

alternative which does not require such large sample size

is to use the same multivariate normal model of the

data distribution used in the classification calculation to
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generate the null distribution. Under the null hypothesis

we assume that there is no difference between the two

classes of samples and that they both derive from a

multivariate normal distribution with covariance matrix:

Σ, the same as used in the classification calculation, and

mean m0. We use the following algorithm to generate

the null distribution of ranked squared coefficients:

1. Generate two random sample means by drawing

from the multivariate student t distribution with

N - 1 degrees of freedom and find their difference.

2. Calculate the null characteristic direction bnull = Σ
-1
Δm

3. Calculate b2
null

and rank the components into

descending order of magnitude

4. Repeat steps 1–3 100 times, and take the mean, to

give b2
null

To compare the real distribution the null we take the ra-

tio: b2=b2null. The simplest and most conservative approach

would be to accept into the set of differentially expressed

genes all those genes for which the ratio: b2

b2null
> 1. A less

conservative method to derive the threshold from the data

is to consider the inflection in the curves which can be

isolated with the cumulative distributions.

Performing characteristic direction enrichment analysis

The geometrical picture of differential expression as a

single direction obtained by the Characteristic Direction

naturally leads to some extensions. The natural distance

measure for two directions is the cosine distance, or

equivalently, the angle between the two directions. In

this way we can picture the similarity between two bio-

logical perturbations as the alignment between two di-

rections (Figure 4a). Furthermore, a gene-set defines a

subspace within expression space; we can use the angle

subtended between this subspace and the direction char-

acterizing the differential expression, the first principal

angle (Figure 4b), as a quantitation of the significance of

a pre-defined gene set for the differential expression. In

the Additional file 1 we derive the appropriate null-

distribution with which to compare this subtended

angle, and with such a statistical test we can identify

significantly differentially expressed gene-sets. In the

Results section we compare this new method of enrich-

ment analysis to existing methods such as gene set en-

richment analysis (GSEA) [29,30] and find a suggestion

that this new enrichment analysis leads to the inference

of more relevant biological processes.

Results

Benchmarking the characteristic direction method with

transcription factor perturbations followed by microarray

genome-wide expression profiling

We collected 73 experiments from GEO (Additional file 1:

Table S1) which contain expression data for control verses

TF perturbation with at least three biological replicates in

each of these classes. The TF perturbations consisted of

knockdowns (32), knockouts (29), over-expressions (5),

and other types of perturbation (7) such as partial muta-

tions for example. A complete list with the details about

these experiments can be found in the Additional file 1.

We extracted processed expression values from the SOFT

files downloaded from the GEO database. For each experi-

ment, we compared control and perturbed classes with

four different methods: the fold change, Welsh’s t test,

SAM, and the geometrical approach described above

which we shall refer to as the “characteristic direction” ap-

proach. Each experiment and method pair resulted in a

ranked list of all genes on the particular array chip in

order of their estimated significance in the differential

expression.

Figure 3 Illustration of the structure of the synthetic data with parameters: p = 3, nd = 2, D = 2, N = 3, and Δ = 3.0. The differentially

expressed genes are gene1 and gene3. The two different colors of points indicate the two classes of samples: “control” and “perturbed”.
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To evaluate the ability of each method to prioritize

DEG we used ChIP-Seq data reporting DNA binding

sites for the each TF from one of two databases: ChEA

[31] and ENCODE [32]. There is little overlap between

these databases and so they constitute independent vali-

dations (see Additional file 1). Using this data we derived

lists of genes which are associated with each TF by the

identification that the TF bind to these genes’ promoters.

Then, by assuming that genes from these lists are more

likely to be regulated by the perturbed TF than the com-

plementary genes, we reasoned that the degree to which

an analysis method prioritizes the ChIP-Seq derived

genes is a measure of its effectiveness. In addition, in a

similar way we used lists of genes/proteins which are

known to physically interact with each TF. We reasoned

that genes for which their protein product physically in-

teracts with the TF are more likely to be differentially

expressed after the TF perturbation. As a final compari-

son, we examined the priority given to the perturbed TF

itself, since it is known that many TF tend to auto-

regulate their expression.

We took two approaches to examining and displaying

the distributions of the rankings of these gene lists by

the various methods: the cumulative distribution func-

tion over all experiments; and the distribution of the

area under the curve (AUC) scores from each experi-

ment. Before proceeding, we describe these two methods

in more detail. Expression data from each experiment Ej,

with a total number of genes pj, is analyzed for

differential expression, according to one of the methods

described above, resulting in rankings for each gene

which are scaled by pj to give rji, the scaled rank of gene

i in experiment j, such that a value of rji = 0 is taken by

the most significant gene in experiment Ej and rji = 1 is

taken by the least significant gene. For each experiment

we have a corresponding subset of genes Sj which may,

for example, consist of genes which are putative target

genes of the TF that was knocked down in the specific

experiment, as determined by an independent ChIP-Seq

experiment. We examine the rankings of the genes Sj.

The set of rank values of the genes Sj corresponding to

experiment Ej are identified for all j,

A ¼ [j;k∈Sjrjk ð6Þ

Then the cumulative distribution function of A, which

we label D(r), is examined. If the gene sets Sj contain

genes which are neither preferentially significant or in-

significant then we expect a uniform distribution and

D rð Þ ¼ r ð7Þ

Any significant deviation from this indicates that the

gene sets are significant in the differential expression

analysis, therefore we examine D(r) - r for significant de-

viations from zero in order to evaluate the various

methods. A significant positive value corresponds to the

genes in Sj being concentrated at the smaller scaled

ranks and therefore having greater significance than a

Figure 4 Illustration of gene set enrichment with the characteristic direction concept. a) Similarity between two perturbations can be

interpreted as the angle subtended between two characteristic directions. b) Gene set enrichment analysis can be formulated as the principal

angle between the characteristic direction and the subspace spanned by the genes in a gene set.
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uniform random distribution. The entire process is visu-

alized in Figure 2.

Random fluctuations from zero are to be expected and

we can estimate the scale for these fluctuations, φ, by a

premise similar to that behind the Kolmogorov-Smirnov

test (see the Additional file 1 for details). When plotting

D(r) - r we also include a right-hand scale to the plots

which have the values scaled by φ to give an impression

of how the deviation compares to what might be ex-

pected from random fluctuations under the null hypoth-

esis of a uniform distribution of rankings. Values >> 1

on this scale indicate significant non-uniformity in the

distribution of ranks.

Hence, this method allows us to visually and quantita-

tively compare the perturbation of cumulative distribu-

tion functions from uniform, D(r) - r, for each ranking

method and each gene list type (Figure 5a-d). Apart

from Figure 5a, which shows that all the methods are

equally able to identify the TF directly perturbed in each

experiment, the relative performance of the methods are

quite consistent across the gene lists. The Characteristic

Direction method prioritizes genes in the differential ex-

pression which are also associated with the perturbed

TF in ChIP-Seq data, and also genes which interact with

the TF, and it does so to a significantly higher degree

than the other methods (Kolmogorov-Smirnov test p

values comparing all the distributions can be found in

Additional file 1: Tables S3 to S6). Limma is the next

best performing method by this measure, followed by

SAM and Welsh’s t test. The fold change method does

not seem to successfully prioritize the gene list. We also

found that the degree of shrinkage has little effect on the

rankings generated by the Characteristic Direction ap-

proach and thus choose a representative value (y = 1).

Benchmarking the characteristic direction method with

drug perturbations followed by microarray genome-wide

expression profiling

Next we collected 130 experiments from GEO (Additional

file 1: Table S2) consisting of control verses FDA approved

Figure 5 Comparison of the distributions of the scaled rankings of the gene sets for the various methods for the TF (a-d) and drug (e-f)

perturbations. Each sub-plot shows the deviation of the cumulative distribution from uniform of the rankings of each gene set and analysis method,

(a) the TF perturbed by each experiment; b) genes associated with binding sites of the TF as measured in ChIP-Seq experiments from ChEA; c) the

genes interacting with the TF or the gene that encodes the TF; d) genes associated with binding sites of the TF as measured in ChIP-Seq experiments

from ENCODE; The perturbation of the cumulative distribution of the rankings of (e) drug targets, and (f) genes that their protein product are known

to interact with the drug targets.
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drug perturbed samples, with at least three biological rep-

licates in each sample. The genes were ranked in the same

way as in the previous subsection, using the same

methods. Due to the different mechanisms of action be-

tween TFs and drugs, instead of using ChIP-Seq for valid-

ation we assessed the rankings of known drug targets, and

separately, genes which are known to have their protein

products directly physically interact with those drug tar-

gets using known protein-protein interactions available

from the NCBI Gene database and drug targets from

DrugBank [33]. We assess the prioritization of the genes

with the DEG calling methods in the same way as for the

TFs otherwise. It should be noted that ChIP-Seq data in-

forms the validation with relatively unbiased and objective

data whereas the knowledge of drug targets is rather more

biased and incomplete. In addition, it is not known

whether targeting a drug target with a drug will alter the

mRNA expression of the target. So we do not expect to

see the same strength of signal in this form of validation

as compared with the validation for TF perturbation

followed by expression with ChIP-Seq prior data. The per-

formance of each method seems to be in the same relation

as for the TFs, with the characteristic direction giving

higher priority to the genes encoding drug targets of the

relevant drugs and genes which their products interact

with those targets (Figure 5e-f) (Kolmogorov-Smirnov test

p-values comparing all the distributions can be found in

Additional file 1: Tables S7 and S8).

Comparing the characteristic direction method to DESeq

In a recent study Hardee et al. [34] studied the relation-

ship between differential STAT3 binding and differential

gene expression in two subtypes: germinal center B-cell-

like (GCB) and activated B-cell-like (ABC) of diffuse

large B-cell lymphoma (DLBCL). The Illumina Genome

Analyzer IIx high-throughput sequencing platform was

used to perform ChIP-Seq experiments identifying the

DNA binding of the TF STAT3 and also RNA-Seq ex-

periments were performed on eight patient-derived cell

lines: four from each subtype of DLBCL. The binding of

STAT3 was studied because deregulation of this TF is

known to be an important discriminant between the two

subtypes of cancer. The ChIP-Seq data was condensed

into 10337 binding regions (BR) for each cell line and

the authors identify differential binding of STAT3

between the two subtypes using DESeq analysis. In

addition, the authors identify differentially expressed

genes, again using DESeq. One of the central findings of

their work is that there is a strong relationship between

the differential binding of STAT3 and the differential

gene expression between the two subtypes of BLBCL.

Stated another way, genes associated with binding re-

gions which are differentially bound by STAT3 also tend

to be identified as differentially expressed. This study

provides an opportunity to compare the performance of

the Characteristic Direction approach in the setting of

deep sequencing technologies to one of the most popu-

lar differential expression methods in the field (DESeq).

To do this, we repeated the differential analysis of both

the ChIP-Seq data and the RNA-Seq data, but where the

authors used DESeq, we use the Characteristic Direction;

we then re-examined the association between differential

STAT3 binding and differential gene expression. Taking

the top 500 genes associated with differential STAT3

binding as determined by the Characteristic Direction

and DESeq respectively, we examined the distribution of

the DEG in the same way as we did for the TFs (Figure 6).

We see that the Characteristic Direction results in a

higher ranking of the genes associated with differential

binding of STAT3. More genes associated with differential

binding of STAT3 are recovered from the differential

expression analysis when the Characteristic Direction

method was used. The result further demonstrates the

greater apparent degree of consistency between DNA

binding data and differential expression analysis uncov-

ered when using the Characteristic Direction.

Benchmarking the characteristic direction method with

synthetic data

We used the following parameters to generate synthetic

data as described in the Methods: p = 104, nd = 2 × 103,

as these are of the same order of magnitude of whole

genome profiles and we used Δ = 0.3 as this resulted in

Figure 6 Distribution of the top 500 genes associated with

differential STAT3 binding in the ranked list of differentially

expressed genes as determined by DESeq or the characteristic

direction.
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data for which it was not too difficult and not too easy

to identify the differentially expressed genes. We re-

peated each simulation 10 times. We investigated two

different values of the sample size (3 and 10) as these

are two common sample sizes found in GEO datasets,

and we also examined two different values for the di-

mensionality (10 and 20). The resulting ROC curves

show that the characteristic direction outperforms the

other methods in recovering the differentially expressed

genes from the synthetic data (Figure 7).

Estimating significant DEG applied to the synthetic data

In many cases prioritization of differentially expressed

genes is not the only aim – a discrete list of genes which

are to be regarded as differentially expressed is required.

We next use the synthetic data described above in order

to demonstrate an approach for setting a threshold that

would determine significant differential expression. Un-

less stated otherwise, all results in this section are aver-

aged over three datasets. We first create a synthetic

dataset where the number of differentially expressed

genes is either 0, 500, 1000 or 2000. The set of genes we

aim to identify as differentially expressed genes are those

with particularly large squared components. However, by

plotting the ranked squared components for each gene it

is not clear where it would be appropriate to apply a

threshold (Figure 8a). By applying the method that cre-

ates a null distribution for these ranked components,

based on the null hypothesis that there are no differentially

expressed genes, as described in the Methods (Figure 8b),

we notice that when there are no differentially expressed

genes the scaled components are uniformly distributed,

with no components standing out (Figure 8c). However,

when there are differentially expressed genes we observed

a peak with a width which reflects the number of differen-

tially expressed genes in the synthetic data (Figure 8c). By

examining these curves we should be able to see whether

there are any differentially expressed genes at all and if so

how many; we therefore take the approach of allowing the

data to decide the threshold as described in the Methods

using two types of thresholds: one stringent and the other

less stringent.

The points on the curve which are closest to the top

left corner capture more of the total differential expres-

sion with fewer genes. We label a new coordinate: s.

which is perpendicular to the diagonal, and plot its value

for each of the synthetic datasets (Figure 8d). The peaks

of these curves correspond to the inflections in the

curves in Figure 8c. Their height indicates the degree of

differential expression – values which are a significant

fraction of unity indicate a significant differential expres-

sion (Figure 8e). Note that this criterion is satisfied by

all the synthetic datasets shown with the exception of

the dataset with no differentially expressed genes. The

position of the peak may also be taken as the threshold

for acceptance into the set of differentially expressed

genes. Finally, we indicate the position of the thresholds

on ROC curves to demonstrate that we have indeed

found good thresholds for identifying DEG (Figure 9).

The sets of differentially expressed genes thus identified

Figure 7 ROC curves comparing the various DEG ranking methods for the ability to identify DEG from synthetic data created by the

following parameters: p = 104, nd = 2 × 103, and ∆=0.3; the remaining parameters are as indicated in the figure panels.
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have sensible values of the false and true positive rates

while also having the advantage that they are derived

from the data itself rather than from the application of

an arbitrary threshold.

Characteristic direction enrichment analysis

In the case study presented in this section we attempt to

compare the various biological contexts that emerge

when examining differentially expressed genes identified

from mRNA profiling of CD44+ CD24-/low breast can-

cer cells as compared with normal breast epithelium tis-

sue. The data used in this case study for evaluation and

validation comes primarily from a study that profiled

and compared normal breast epithelium tissue obtained

from reduction mammoplasties and highly tumorigenic

breast cancer cells isolated from tumors (ESA+ CD44+

CD24-/low Lin-) [35]. The various approaches to iden-

tify DEGs from this dataset may provide different

Figure 8 Deciding where to place the cutoff using synthetic data. a) Sorted squared characteristic direction components for the various

synthetic datasets. Dashed lines indicate the top 500, 1000, and 2000 genes. b) The null ranked squared coefficient distribution for the synthetic

datasets. c) The ratio of the ranked squared coefficient distribution for the synthetic datasets to the null distribution assuming no difference

between the classes. Dashed lines indicate the top 500, 1000, and 2000 genes. d) The cumulative distribution of the ratio between the squared

coefficient distribution and the null distribution. The variable, s, which is indicated with an arrow, measures the distance perpendicular to the

diagonal. e) The value of s for each of the synthetic datasets. The dashed lines indicate the top 500, 1000, and 2000 genes.
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pictures of the biological mechanisms which are relevant

to the disease. When comparing CD44+ CD24-/low

breast cancer stem cells with normal breast epithelium

tissue we expect to detect biological processes such as

cell motility, cell proliferation, wound healing [36], and

extra cellular matrix (ECM) remodeling which are

known to be up-regulated in cancer stem cells and are

activated in aggressive tumors.

One commonly used approach to obtain a picture of

the biology from the analysis of differential expression is

the evaluation of the DEG for enrichment given previ-

ously annotated gene sets. Gene Set Enrichment Ana-

lysis (GSEA) mentioned in the introduction, is one of

the most popular approaches to accomplish this task. A

more basic and widely used approach is to use Welsh’s t

test, or SAM, to identify differentially expressed genes

and then apply the Hypergeomtric test to examine en-

richment of gene sets deriving from various gene-set li-

braries or the Gene Ontology [37]. We can use these

methods, as well as the characteristic direction approach

to evaluate and compare significant biologically mean-

ingful gene sets. We first manually construct six subsets

of GO biological processes corresponding to the six hall-

mark characteristics of cancer as defined by Hanahan

and Weinberg [38]: 1) regulation of cell proliferation; 2)

evasion of growth suppression; 3) resisting cell death; 4)

enabling replicative senescence; 5) induction of angio-

genesis; and 6) enabling invasion and metastasis [38,39].

We then performed enrichment analyses for genes in-

volved in these GO biological processes, using the DEG

obtained with each of the methods and compared

the resulting picture of the biology that develops in

each case (Figure 10). In the case of the characteristic

direction, enrichment was calculated using the geomet-

rical concept of the principal angle described above (see

Additional file 1 for more detail). In the case of Welsh’s

t test and SAM a representative FDR threshold was set,

resulting in a set of DEG and the significance of the

overlap of the DEG with GO biological process gene sets

was evaluated with the hypergeometric test with an FDR

threshold of 10%. We also include the results of using

GSEA [15], though we found it necessary to increase the

FDR threshold to the rather larger size of 60% in this

case in order to observe a comparable number of sig-

nificant processes. We observe complete agreement

between all the methods in the GO categories of mono-

nuclear cell proliferation (GO: 0032943) and response to

estrogen stimulus (GO: 0043627); cell proliferative pro-

cesses are known to be fundamental to carcinogenesis

and estrogen signaling is known to play a significant role

in breast cancer. The characteristic direction approach

with principal angle enrichment finds more processes to

be significant in the differential expression in all the hall-

mark categories. It is possible that this is because this

approach leads to a clearer picture of the differential ex-

pression, however, it would require further exploration

before a more categorical statement can be made on this

matter.

Discussion and conclusions

We have described a new multivariate approach to dif-

ferential expression which is better able to identify DEG

while also addressing the issues associated with the high

dimensionality of expression data. The Characteristic

Direction approach uses the orientation of the separat-

ing hyperplane from a linear classification scheme, linear

Figure 9 ROC curves for the synthetic datasets with points indicating the FPR and TPR values at the various thresholds. Red points

show the values for the more conservative threshold value of b^2=b_null^2 and the black points indicate the values correspond to the peak of

the curves in Figure 8.
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Figure 10 (See legend on next page.)
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discriminant analysis, to define a direction which charac-

terizes the differential expression. This results in a simple,

highly-regularized characterization which is appropriate

for genome-wide expression analysis. We compared the

performance of this approach to established univariate ap-

proaches, with real and synthetic data. The validation

scheme in the context of TF and drug perturbations is in

itself valuable for benchmarking both computational and

experimental methods. Extracting a large number of con-

trol verses perturbation expression datasets from GEO

and prioritizing the genes with the various methods, we

were able to show that the Characteristic Direction ap-

proach prioritizes genes which are associated with the

binding sites of the perturbed TF and targets of drugs re-

spectively; and it does so to significantly greater degree

than a selection of popular methods. We took advantage

of the opportunity to use independent prior knowledge

datasets to validate our method. It is established that bind-

ing and unbinding of transcription factors to the pro-

moters of genes is, in general, used for gene expression

regulation. However, it is also clear that binding to the

promoter does not necessarily result in differential expres-

sion. This is especially true when considering different cel-

lular contexts. In most cases of our validation scheme the

ChIP and array do not come from the same cell lines.

However, there is some correlation/overlap between DEG

after TF knockdowns and TF putative binding based on

ChIP for the same TF in most cases. We do not know the

true positives but we know that more overlap is likely due

to a more accurate method to identify the DEG. We name

this a silver standard for validation as it is not as good as a

gold standard but it is good enough to compare DEG call-

ing methods. The fact that we were able to recover genes

associated with the binding sites of the perturbed TF is in-

teresting on its own as it reveals a relation between DNA

interactions identified by ChIP-Seq experiments and

mRNA levels from expression profiling. Similarly, the abil-

ity of the method to identify a clear relationship between

drug targets and the differential expression of their inter-

actors in a systematic way is also noteworthy because for

many drugs we do not know the targeted pathways while

differential expression signatures are readily available. For

the RNA-Seq validation we used a single study which

compares differential binding of a TF, to differential ex-

pression, in the context of high-throughput sequencing.

We found a stronger apparent relationship between differ-

ential binding and differential expression when using the

Characteristic Direction approach as compared to the

DESeq method. Like all statistical methods, the Character-

istic Direction method works best when there are many

repeats of the same condition. In principle, the method re-

quires at least two repeats, but at least three repeats are

needed for practical applications. The microarray and

RNA-seq data used for validation of the method always

had at least three repeats for each condition. It is true that

in most RNA-seq studies so far investigators do not have

that many repeats (1 or 2), but this is likely to change as

the cost of such experiments rapidly drops. To make the

Characteristic Direction method accessible, we imple-

mented it in Python, R, MATLAB and Mathematica.

Readers that are interested in applying the method to their

own data should refer to the open source scripts and ex-

amples available at: http://www.maayanlab.net/CD.

Availability and requirements

Implementations of the method are provided in Python,

R, MATLAB, and Mathematica freely available at: http://

www.maayanlab.net/CD.

Additional file

Additional file 1: The Characteristic Direction: A Geometrical

Approach to Identify Differentially Expressed Genes.
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Figure 10 Comparison of hallmark GO biological processes identified as significant in the differential expression of tumorigenic verses

normal samples by enrichment of the significant genes called by various the methods. Results of GSEA [15,30] analysis are included for

comparison. Colored boxes indicate that the GO category is identified as significant with an FDR of 10% (60% for GSEA), and deeper red colors

have a smaller mean rank of the gene set, corresponding to more up-regulation of the set, while deeper blue colors have a larger mean rank,

corresponding to more down-regulation of the set. The GO categories are sub-categorized corresponding to the six hallmark characteristics of

cancer as indicated in the inset box. The seventh category is included to evaluate the significance of the hypoxia GO category.
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