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The paper presents a comprehensive analysis of the stress field and selected triaxiality parameters near the 

crack tip for C(T) specimen dominated by the plane strain state using the finite element method. It includes some 

theoretical information about elastic-plastic fracture mechanics, the basics of the FEM modeling and presentation 

of the numerical results. The FEM analysis includes calculations with large strain assumptions. The influence of 

the external load and crack length is discussed. Additional elements of the paper are a qualitative assessment of 

the size of plastic zones and the crack tip opening displacement. 
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1. Introduction 
 

 The analysis of the fracture process of elastic-plastic materials was for a long period of time based on 

experimental research and purely theoretical considerations. Different researchers used different types of 

specimens, looking for appropriate possibilities to assess the fracture process. The sphere of experimental 

research was finally ordered, and for proper research, a number of normative documents were prepared, 

which regulate what the type of specimen, which should be used, what dimensions it should have. Examples 

include the ASTM standards [1,2], BS standards [3,4], and even the Polish Standard [5], in force for many 

years, which allows testing with less restrictions than the ASTM standards [1,2], especially that the ASTM 

standards regulate in detail the number of valid points. The basic types of specimens that find application in 

fracture mechanics to determine fracture toughness are a three-point bending specimen denoted by SEN(B) 

and a compact specimen, denoted by C(T). 

 The SEN(B) specimen geometry is more often used in the research, which can often be conditioned by 

the tooling of the testing machine, however the C(T) specimen has also found application in many aspects of 

fracture. For example, in [6-8], various researchers used the C(T) specimen to assess the cracking phenomena 

and fracture toughness of various materials. In scientific papers [9-11], the development of research methods, 

as well as the need for calibration used in experimental designs, were discussed by authors to define the method 

of determining critical fracture toughness values based on C(T) specimens. In [12] presented in 2012, Zhu and 

Joyce discussed an overview of methods for determining fracture toughness using the C(T) and SEN(B) 

specimens, alongside the C(T) geometry, indicating the need to consider the influence of geometric constraints 

in formulas approximating the equations of the J-R curves. The parameters of geometrical constraints 

mentioned in the paper [12] include the Q-stress (described as Q-parameter, which was defined by O'Dowd and 

Shih [13-14]) and the A2 parameter [15] (described also as A2 amplitude discussed by Yang et al.). It should be 

remembered, however, that both parameters – Q and A2 are determined by numerical calculations with the 

assumption of small deformations and displacements, as well as both parameters are a correction of the HRR 

solution presented in 1968 [16, 17] and improve the description of stress fields near the crack tip taking into 

account the influence of the other parts of the asymptotic solution. 
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2. Stress fields near the crack tip 
 

 A characteristic feature of the HRR solution is the singularity of stresses (Fig.1a). Stresses as they 

approach the tip of the crack tend to infinity. However, in the real structural element, the stresses in front of 

the crack tip are finite – such a distribution in numerical calculations is obtained by assuming large strains 

and large displacements (Fig.1a and Fig.1b), which in the case of stress distribution leads to reach a 

maximum of the crack opening stress at a specific distance from the crack tip [18, 19] (Fig.1a and Fig.1b), as 

mentioned in two subsequent papers [20,21]. “The value of this maximum as well as its position near the 

crack tip was used in [18] in the proposal of a modified crack criterion based on the RKR hypothesis [19]. 

The mentioned fracture criterion also uses the Q-stresses defined by O'Dowd and Shih [13, 14]. It should be 

noted that the level of maximum stresses and their position near the crack tip depends on the material 

characteristics, geometry, and external load which is also shown in [18].” [20,21]. 

 

a) 

 

b) 

 
 

Fig.1. a) The stress distribution near the crack tip for C(T) specimen – comparison the crack opening stress 

for the HRR solution (plane stress and plane strain condition) with numerical results for plane strain 

condition with assumption the small and large strains [20,21]; b) Distribution of the normal stress 

tensor components near the crack tip for C(T) specimen. 

 

2.1. Basic parameters of in-plane geometric constraints 

 

 The results of the numerical calculations arising from the relevant assumptions, leading to the 

determination of: 

 Q- stresses – it is the difference between the numerically estimated stresses and the stresses determined 

by the HRR solution, normalized by the yield point – Q=(22_FEM-22_HRR)/0 – determined for =0 

direction for normalized distance from the crack tip x=2J/0[13, 14] (small strain assumptions); 

 maximum crack tip opening o=22_max/0and their normalized position relative to the crack tip, 

denoted by o=x22_max0/J [18, 19] (large strain assumptions),  

allow to develop a full catalogue of numerical solutions that will make it possible to estimate these 

parameters without having to perform numerical calculations. In the case of a compact specimen, such a 

catalog was shown by [20,21].  

 As indicated by the numerical calculations and conclusions given in [20,21], Q stresses depend on 

the level of external load, the geometry of the structural element (relative crack length a/W) and material 

characteristics (expressed by the work hardening exponent n and the yield stress 0). In the case of maximum 
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stresses opening the crack surfaces and their relative position with respect to the crack tip, the effect of the 

external load is not as significant as the effect of the relative crack length, however these parameters are 

significantly sensitive to the change in material properties. Figures 2 and 3 present the selected results of the 

numerical calculations for C(T) type specimens (elaborated and discussed in [20, 21]), presenting the effect 

of external load, material characteristics and relative crack length on the selected parameters of geometric 

constraints mentioned above, which were determined numerically with the assumption of small and large 

deformations in the FEM analysis, respectively. The assessment of the impact of variables (such as 

geometry, material characteristics or external load) on the level of selected parameters of the in-plane 

constraints is left to the reader and referred to [21], from which the drawings were taken, where the reader 

also finds simple approximation formulas for estimating the value of selected in-plane constraint parameters, 

without the need for tedious FEM calculations. 

 

a) b) c) 

 
 

Fig.2.The influence of the yield stress 0 (a), strain hardening exponent n (b) and relative crack length a/W(c) 

on the J-Q trajectories for compact specimens – results for the whole spectrum of the external load – 

based on [20, 21]. 

 
 

a) 

 

b) 
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Fig.3. The influence of the yield stress 0 (a), strain hardening exponent n (b) and relative crack length a/W 

(c) on the maximum crack opening stress (o=22_max/0) for compact specimens – results for the 

whole spectrum of external load  – based on [20, 21]. 
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 Similar sets of in-plane constraints measurements for many other basic geometries used in the 

studies of fracture mechanics can be found in [22-26]. In addition to theoretical considerations, assessing the 

impact of external load, geometry or material characteristics, the simplified approximation formulas were 

also given in these papers, so that the estimation of the measurement of in-plane constraints was possible 

without the need to perform the FEM calculations. 

 

2.2. Selected stress triaxiality parameters 

 

 The considerations regarding the characteristics of the state of stress near the crack tip, requires the 

isotropic material model, which allows to formulate the in terms of three invariants of the stress tensor [], 

defined by following equations [27], respectively 
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p tr
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wherein the [S] denotes the deviatoric stress tensor according to Eq.(2.4) 
 

       S p I    (2.4) 
 

where the [I] is the identity tensor; 1, 2, 3 are the principal stresses, fulfilling the following condition: 

123. The m and eff denote the mean stress and effective stress respectively, and by r we understand 

the third invariant of the stress deviator. In some scientific papers, like this article, the principal stress is 

marked by a slightly different notation, replacing the index written with Arabic notation ("1", "2" and "3") 

for indexes written with Roman notation ("I", "II" and " III "). 

 Based on the given considerations, we can define the stress triaxiality parameter, which is generally 

given in the form of dimensionless hydrostatic stress denoted by  
 

  mp

q

 
  


. (2.5) 

 

 It is a quotient of mean stresses and effective stresses, quite often used in the literature for discussion 

about ductile fracture [28, 29]. In some papers, this quantity is indicated by a quotation in the form of a 

quotient m/eff. This parameter is also often used in the discussion of the triaxiality of stresses, just like the 

Lode angle denoted as , which can be related to the normalized third stress invariant denoted as  by 

following equation 
 

   cos

3
r

3
q

 
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 
, (2.6) 

 

wherein the Lode angel range is 0/3 and the range of the normalized third stress invariant is -11. In 

some papers [27], the normalized Lode angel denoted as   is used in the following form 
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The values of the normalized Lode angle   should be included in the range -1  1 [27].  

 Bai and Wierzbicki [30] also used another definition of the Lode parameter, denoted as L, which 

may be presented in the following form 
 

  L LODE 2 1 3

1 3

2   
 

  
 (2.8) 

 

where the 1 and 3 are the maximum and the minimum principal stresses respectively. In this paper, the 

Lode parameter L will be referred to as an expression LODE. The Lode parameter may be related to the 

normalized third stress invariant  through the following relationship [27] 
 

  

 
L

2

3
2

9 L

L 3


 


. (2.9) 

 

 The parameters mentioned above can be successfully used to describe the level of triaxiality of stress near 

the crack tip [31], or calibration the constitutive equations, which was presented by Bao and Wierzbicki or Bai 

and Wierzbicki [30, 32, 33], where the yield stress denoted as yld were defined according to the next formula 
 

       
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 (2.10) 

 

where the function  p   describes the relation between effective real stress and accumulated plastic strain; 

0denotes the reference value of the triaxiality coefficient  (see Eq.(2.5) – it can be noted, that for the case 

of the uniaxial tensile test, value of the 0 is equal to 1/3 for cylindrical specimen); the parameters c, 
sc , 

axc  and m must be determined for specific material experimentally; the function  may be calculated by the 

Bai and Wierzbicki [30,32,33] formula (this function satisfies the inequality 01, and =0 for plane strain 

or pure shear states, or =1 for axial symmetry) 
 

  . sec6 464 1
6

         
. (2.11) 

 

 The possibility of applying the above-mentioned triaxiality parameters (for which some researchers 

also recognize the LODE parameter and Lode angle , or normalized Lode angle  ) makes it necessary to 

develop a method for their numerical estimation (especially the development of post-processing methods for 

numerical results) and to discuss the changes of these parameters around the crack tip. 

 Therefore, the present paper focuses on the analysis of the stress level near the crack tip, the 

assessment of selected parameters commonly recognized as measures of stress triaxiality, as well as the 

assessment of the level of accumulated plastic strain. Numerical calculations were carried out for the case of 

plane strain state dominance (similarly to the analysis carried out in the paper by Bai et al. [27]), with the 

assumption of large deformations and a randomly chosen material model. 
 

3. Basics of Finite Element Method (FEM) modeling 
 

 In the calculations, the C(T) specimen was modeled in accordance with the ASTM standards [1, 2] 

and EPRI procedures [34]. The width of the specimen was set to W=40mm, while the relative crack length 

a/W was taken from the set a/W={0.05, 0.20, 0.70}, where a means crack length. In the calculations, the real 

stress-strain curve described by the power law Eq.(3.1) was used 
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into 20 parts together with the density of the elements towards the edge lying in the axis of the specimen. 

The edge finite elements were (5÷20) times smaller than the largest elements located in the central part of the 

arch – see Fig.4c. For each specimen, the peak area with a radius equal to approximately (1.0÷2.5)mm, was 

divided into (35÷50) finite elements (FEs), wherein the smallest FE located at the crack tip was 100 times 

smaller than the previous one (Fig.3b). This meant that, in extreme cases, the smallest FE, located just next 

to the crack tip, represented about 1/70700 or 1/101000 of the width W of the specimen, and the largest 

modeling the peak area has the size about 1/707 or 1/1010 of the specimen width [20,21]. 

 The FEM analysis was carried out with the assumption of large strains and large displacements, which is 

necessary to determine the maximum stresses opening the fracture surfaces – it guarantees the finite distribution 

of stresses near the crack tip. The FEM model was filled with nine-node Finite Elements (FEs), using the "2-D 

SOLID plane strain" type and "mixed" interpolation with nine Numerical Integration Points (NIP) [20, 21]. 

 The J-integral, referred to as the crack driving force, or the amplitude of the singular stress field near 

the crack tip, was determined using the method of virtual crack length growth [20,21]. Several integrating 

contours were defined, taking into account the principle proposed by Guo [37] for three-dimensional 

solutions, where the integration contour required for the numerical estimation of the J-integral should be 

defined as “far-field contour” [37]. This approach also guarantees the invariance of the J-integral when 

assuming the analysis of large deformations and displacements. The J-integral values obtained using virtual 

crack length growth were the same as results for calculations done using theJ-integral definition given by 

Rice [38], which was presented in [39], [20,21].   

 For the purpose of this article, in order to determine the level of limit loads, the formula (3.2), 

presented in [20,21] was used, based on numerical calculations previously performed. This formula allows to 

estimate the limit load value P0 taking into account the plasticity limit (yield stress) 0 inserted in [MPa] and 

the relative crack length a/W [21] 
 

   
2

2
0 1 2 0 3 2 0 5 6 0

a a a
P A A A A A A

W W W

                  
    

    


  (3.2) 

 

where the limit load value P0 is obtained in [kN], with the matching factor R2=0.993, using the following 

values of approximation factors: A1=-933.154, A2=10.262, A3=9612.613, A4=-5.9110-5, A5=-12986.874, A6=-

11.429 [21]. This approach was chosen due to too large differences between the known analytical solutions 

[34] and the results of numerical calculations [21]. 

 The next paragraph presents the results of numerical calculations that characterize the stress field 

near the crack tip in C(T) specimens (compact specimens). The reference to the relative values of the force 

acting on the specimen given in the chapters will refer to the cases of normalization by the value of the limit 

load determined for the purpose of this paper. 
 

4. FEM results – presentation and short analysis 
 

 The obtained numerical results were first compiled in a graphical form, composing diagrams of 

changes in the distribution of the normal components of the stress tensor for each analyzed geometry at 

different levels of external load, normalized by the limit load P0estimated according to the formula (3.2). 

Next, the level of effective stress eff/0, mean m/0was evaluated, and level of selected stress triaxiality 

parameters. Among these parameters, the quotients eff/0 and m/0 mentioned in the previous sentence can 

be distinguished, as well as the quotient of mean  and effective stresses m/eff. Some researchers believe that 

the normalized angle Lode  and the Lode parameter, determined in accordance with formulas (2.7) and 

(2.8), denoted in this paper by LODE, are also a measure of the stress triaxiality, therefore in the second part 

of this paragraph these parameters were also evaluated. 
 

4.1. Analysis of the stress field near crack tip 
 

 Conducting numerical calculations using the assumption of large strains and displacements leads to a 

finite stress distribution through the tip of the crack (Figs 5 and 6). As it approaches the crack tip, normal stresses 



The characteristics of selected triaxiality measures ... 59 

increase, reaching a maximum in a specified place. It should be noted that the highest maximum value is achieved 

by normal stresses opening the surface of the crack (denoted by zz), and the lowest stress yy coinciding with the 

direction of the crack – the value of this maximum is less than the maximum value of zz stresses by about 150%. 

 The maximum of the xx stresses, acting in the direction of thickness, takes the intermediate value 

between the maximum zz and yy, generally smaller than the maximum zz by about 75%. The physical 

position of this maximum varies with the increasing external load – the higher the level of external load, the 

farthest from the crack tip is the maximum stress (Fig.5). It should be noted that the maximum for 

consecutive normal stresses denoted as zz, yy and xx does not occur in the same physical distance (compare 

Fig.5). Farthest from the crack tip is the maximum of the crack opening stress. 

 In Fig.5, next to the distribution of the normal components of the stress tensor, it is also shown how 

the level of average stresses (denoted by m) and the effective stresses eff are changed. The mean stress m, 

like the normal components, along with approaching the crack tip also reach the maximum (this is nothing 

extraordinary, it results directly from the nature of the distribution of normal components) – the physical 

location of this maximum in relation to the crack tip increases with the increase of the external load. 

The effective stresses, however, reach the highest value near the crack tip, then along with the distance from 

it, their value decreases to the value equal to the yield point and remains at such a level in the entire range 

covered by the plastic zone, which is the result of action of the external load. It can therefore be said that the 

place where for the direction =0 the value of the effective stresses eff is falling below the value of the yield 

point is the end point of the plastic zone in the mentioned direction. At the external load level P/P0=0.75, the 

length of the plastic zone for the direction =0 is approximately 12% of the specimen width (Fig.5). The 

increase of the external load to the level P/P0=1.25 means the increase of the plastic zone length for the 

direction =0 to at least 5% of the width of the specimen denoted as W. 

 Figure 6 presents the changes in stress tensor components, average stresses and effective stresses listed in 

Fig.5, plotted against the normalized distance from the crack tip denoted by . As it can be seen, in the considered 

range of external loads (P/P0 = {0.75, 1.00, 1.25}), the level of maximum stress opening the surfaces of the crack 

and other normal stress tensor components do not change with the increasing external load. The maximum value 

of the stress opening the fracture surfaces for the C(T) specimen with the relative crack length a/W=0.05 is 

approximately zz=3.750, while the maximum stress value yy acting in the direction =0 is equal to 

yy=2.500, and the maximum value of the stresses acting in the thickness direction is equal to xx=3.000. 

 In the case of C(T) specimen with the relative crack length a/W=0.20, the maximum values of the 

successive normal components of the stress tensor is zz=3.900, yy=2.500 and xx=3.150, whereas for 

a specimen with a relative crack length a/W = 0.70, the maximum values are at the level of zz=3.800, 

yy=2.450 and xx=3.00. It can therefore be said that for a given material specification, the maximum 

value of successive normal components of the stress tensor is very slightly sensitive to the change in crack 

length. This confirms the conclusions given in the previous paper [25, 26]. The analysis of Fig.6 also proves 

the fact that the maximum value of the average stresses m, is generally equal to the maximum stress value in 

the thickness direction, denoted by xx and is equal to 3.000, 3.150 and 3.100 for specimens 

characterized by relative crack length a/W equal to 0.05, 0.20 and 0.70, respectively.  

 Consideration of the distribution of normal components of the stress tensor presented in Fig.6 as a 

function of the normalized distance from the crack tip denoted by  is required to determine the maximum 

stress values opening the crack surfaces zz and their normalized position relative to the crack tip, which is 

required to estimating the real fracture toughness using the selected fracture criteria – e.g. papers [18,25,26]. 

As it can be seen, the increase in external load is accompanied by a slight reduction in the normalized distance 

of the maximum stresses opening the crack surfaces to the crack tip – for the considered material 

characteristics, this value is around =1.00. This is, therefore, twice a smaller distance than what O'Dowd and 

Shih [13, 14] have suggested as a place for measuring the Q stresses. The normalized distance of the maximum 

mean stresses from the crack tip for the considered geometry and material configuration is also =1.00. 

 

 
 



60                                                                                        M.Graba 

 

a) 

 

b) c) 

d) 

 

e) f) 

g) 

 

h) i) 

 

Fig.5. The stress distribution near the crack tip for C(T) specimen dominated by plane strain, 

estimated for direction =0, for the selected physical distance from the crack tip (denoted as 

r) and three levels of external load P/P0={0.75, 1.00, 1.50}: a,b,c) for C(T) with a/W=0.05; 

d,e,f) for C(T) with a/W=0.20; g,h,i) for C(T) with a/W=0.70. 
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Fig.6. The stress distribution near the crack tip for C(T) specimen dominated by plane strain, estimated for 

direction =0, for the selected normalized distance from the crack tip (denoted as =r0/J) and three 

levels of external load P/P0={0.75, 1.00, 1.50}: a,b,c) for C(T) with a/W=0.05; d,e,f) for C(T) with 

a/W=0.20; g,h,i) for C(T) with a/W=0.70. 
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4.2. Analysis of the selected stress triaxiality parameters 

 

 Figures 7 and 8 present the distributions of the estimated principal stresses –denoted as I, II and 

III, together with the set of changes of effective stresses and mean stresses, respectively in the function of 

the physical distance from the crack tip and the normalized distance, denoted by . In many scientific 

papers, the main stresses are mentioned, and they are used to estimate various parameters of stress triaxiality, 

however, their distributions are rare or not discussed at all. 

 As we can see, the maximum of the principal stresses I for the considered geometry should be 

identified with zz stresses opening the crack surfaces. Minimum principal stresses, denoted by III, in close 

proximity to the crack tip (=01) should be identified with the yy stresses determined for the direction =0, 

after which their value is equal to the xx stresses, which are measured in the direction of specimen thickness. 

 The analysis of Fig.8 shows that in the close vicinity of the crack tip (in the range of normalized 

distance =(06)), the distribution of principal stresses for the considered range of external loads takes the 

form described above. As mentioned above, the maximum level of mean stress m, practically isn’t sensitive 

to a change in the external load, as well as to a very small extent depending on the relative crack length. This 

value is usually three times the yield point (or 1015% more). Some researchers used mean stresses to 

evaluate the real fracture toughness using the proper fracture criterion [40], and also this quantity was 

suggested by O'Dowd [13, 14] as the basis to estimate the Q stress, as a substitute for the crack opening 

stress – due to the inclusion of the mean stresses, the fact of triaxiality of stresses in structural elements 

dominated by a plane strain, or characterized by triaxility of strains and stresses is taken into account. 

 Figures 9 and 10 present numerically determined changes in the maximum principal stresses I/0 

for the direction =0 (as said above, the distribution in the considered range of normalized distances is 

identified with the distribution of stress opening the fracture surfaces), the triaxiality parameter of stress 

m/eff (indicated by some as – see formula (2.5)), effective stresses (their distribution sometimes allows to 

properly interpret the size of the plastic zone), the accumulation of plastic deformations aps and the LODE 

parameter, estimated according to formula (2.8). The maximum value of the triaxiality of stress m/eff 

depends very little on the level of the external load and is practically insensitive to the crack length – its 

approximation is equal to m/eff=2.65 (Figs 9 and 10). 

 The physical position of this maximum in relation to the crack tip, together with the increase in the 

external load, increases, for the three considered levels of external load, the maximum is the case of C(T) 

specimen characterized by the shortest crack (Fig.9). On the other hand, considering the position of the 

maximum of the triaxiality of stresses in relation to the crack tip in normalized coordinates (Fig.10), it should 

be noted that with the increase of the external load, the value of the normalized position of the maximum 

parameter m/eff decreases, striving to reach a value set at around =1.75 for specimens containing very 

short cracks (a/W 0.05) and =1.25 for the remaining cases (a/W=0.20 and a/W=0.70). 

 The external load has a very significant effect on the distribution of the LODE parameter near the crack 

tip (Figs 9 and 10). As we know, the LODE parameter value changes in the range LODE=-1; 1 [32, 33]. The 

MES analysis carried out proves this (Fig.9) and shows changes along with the increasing external load. 

Starting from the crack tip, the value of the LODE parameter in its close vicinity oscillates around a value equal 

to zero, after which it drops to the value -1, then almost linearly increases to the value equal to 1, after which it 

drops again. In the range of the physical distance from the crack tip r=0; 2mm considered in Fig.9, the graph 

presenting the changes of the LODE parameter is characterized by two extremes. As we can see, the location of 

these extremes changes – they move physically away from the crack tip, as the external load increases (Fig.9). 

 It can therefore be unequivocally stated that the changes of the LODE parameter as a function of the 

physical distance from the crack tip, strongly depends on the external load. A comparison of the following 

combinations from Fig.9, for the same external load and different relative crack lengths, indicates that the 

distribution of the LODE parameter as a function of the physical distance from the crack tip is also strongly 

dependent on the relative crack length. The greater the level of external load, the further extreme of the 

LODE parameter changes relative to the physical position relative to the crack tip (i.e., the extreme of the 

LODE parameter lie further from the crack tip). 



The characteristics of selected triaxiality measures ... 63 

a) 

 

b) c) 

d) 

 

e) f) 

g) 

 

h) i) 

 

Fig.7. The principal stress distribution near the crack tip for C(T) specimen dominated by plane strain, 

estimated for direction =0, for the selected physical distance from the crack tip (denoted as r) and 

three levels of external load P/P0={0.75, 1.00, 1.50}: a,b,c) for C(T) with a/W=0.05; d,e,f) for C(T) 

with a/W=0.20; g,h,i) for C(T) with a/W=0.70. 
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a) 

 

b) c) 

d) 

 

e) f) 

g) 

 

h) i) 

 

Fig.8. The principal stress distribution near the crack tip for C(T) specimen dominated by plane strain, 

estimated for direction =0, for the selected normalized distance from the crack tip (denoted as 

=r0/J) and three levels of external load P/P0={0.75, 1.00, 1.50}: a,b,c) for C(T) with a/W=0.05; 

d,e,f) for C(T) with a/W=0.20; g,h,i) for C(T) with a/W=0.70. 
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a) 

 

b) c) 

d) 

 

e) f) 

g) 

 

h) i) 

 

Fig.9. The comparison of the maximum principal stress (I/0), the effective stress (eff/0), the triaxiality 

parameter (m/eff), the LODE parameter and the accumulated plastic strains distributions near the 

crack tip for C(T) specimen dominated by plane strain, estimated for direction =0, f or the selected 

physical distance from the crack tip (denoted as r)and three levels of external load P/P0={0.75, 1.00, 

1.50}: a,b,c) for C(T) with a/W=0.05; d,e,f) for C(T) with a/W=0.20; g,h,i) for C(T) with a/W=0.70. 
 

 The assessment of changes in the distribution of the LODE parameter as a function of the normalized 

position relative to the crack tip, denoted by  (Fig.10), leads to the following conclusions. With the increase 

of the external load, the minimum of the LODE parameter moves closer to the crack tip and for external load 
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P/P0=1.25 it is at the level of =3. The influence of the relative crack length on the normalized position  of 

this minimum is observable for external loads P/P0<1.00. 

 

a) 

 

b) c) 

d) 

 

e) f) 

g) 

 

h) i) 

 

Fig.10. The comparison of the maximum principal stress (I/0), the effective stress (eff/0), the triaxiality 

parameter (m/eff), the LODE parameter (LODE) and the accumulated plastic strains (aps) 

distributions near the crack tip for C(T) specimen dominated by plane strain, estimated for direction 

=0, for the selected normalized distance from the crack tip (denoted as =r0/J) and three levels of 

external load P/P0={0.75, 1.00, 1.50}: a,b,c) for C(T) with a/W=0.05; d,e,f) for C(T) with a/W=0.20; 

g,h,i) for C(T) with a/W=0.70. 
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a) 

 

b) c) 

d) 

 

e) f) 

 

Fig.11. The comparison of the selected parameters of the stress and strain fields (aps, LODE, eff/0, m/eff) 

near the crack tip for C(T) specimen characterized by a different relative crack length and three 

different levels of the external load P/P0: a,b,c) graphs relative to the physical position r; d,e,f) 

graphs relative to normalized distance from the crack tip =r0/J. 
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 Figure 11 presents a comparison of four parameters characterizing stress and strain fields near the 

crack tip (normalized effective stresses eff/0, stress bias parameter m/eff, LODE parameter and 

accumulated plastic strain aps) for C(T) specimens with a different relative crack length, for three external 

load levels considered in this paper. The diagrams were drawn both in relation to the physical distance from 

the crack tip denoted by r, as well as in relation to the normalized distance from the crack tip denoted as , 

calculated according to the expression =r0/J. 

 As it can be seen, the relative crack length practically does not affect the level of accumulated plastic 

strain aps, normalized effective stresses, and the triaxiality parameter of stresses denoted as m/eff. This 

phenomenon is observed regardless of the level of considered external load. However, the significant effect 

of the relative crack length on the level and nature of changes the LODE parameter is visible – depending on 

the level of external load, the extremes of the LODE parameter are shifted and the value of which changes 

within the range -1,1. 
 A similar comparison is presented in Fig.12, where, next to the normalized mean stresses m/0 and 

maximum principal stresses I/0, the changes in the Tz parameter defined by Guo Wanlin [37] are presented 

(this is the ratio of the stress measured in the direction of thickness xx and sums of normal stresses opening 

the crack surfaces zz and stresses operating in the direction =0 denoted as yy, Tz=xx/(zz+yy). When 

assessing the change of the above mentioned values in relation to the physical distance from the crack tip, 

one can notice a significant effect of the relative crack length on the distribution of mean and maximum 

principal stresses – for the shortest cracks (a/W=0.05), distributions m/0=f(r) and I/0=f(r) are the lowest. 

Curves representing changes in the Tz – Tz=f(r) parameter behave similarly. 

 An analysis of the same distributions relative to the normalized distance from the crack tip denoted 

by  indicates a slight effect of the relative crack length on these values – differences for extreme curves 

change by about 1025%, depending on the choice of the point near the crack tip. It can be noted that the 

value of the Tz parameter in close proximity to the crack tip, up to the location of the maximum of the stress 

opening the fracture surfaces, oscillates around the value of 0.5, characteristic for the domination of the plane 

strain state, which was marked in [37]. As we move away from the crack tip, the value of the Tz parameter 

decreases, striving for a value equal to the Poisson ratio assumed in the this paper and analysis as 0.3. The 

speed of these changes depends on the level of external load – the higher the external load, the further from 

the crack tip, the Tz parameter reaches a value equal to Poisson's ratio. 

 Figure 13 in the form of isoline diagrams shows the distribution of effective stresses (Figs 13a-c) and 

accumulated plastic strains (Figs 13d-f) for three C(T) specimens differing in the relative crack length 

a/W={0.05,0.20, 0.70} at the moment when the external load reaches the value equal to the limit load. The 

yield strength assumed in the numerical calculations was 0=500MPa and it can be identified with the green 

color on the insulations shown in Figs 13a-c. The distribution of effective stresses, referred to the yield point, 

allows a visual assessment of the size of the plastic zone when the external load is equal to the limit load. 

 It can be noticed that only in the case of a specimen with a very long crack (a/W=0.70 - Fig.13c) the 

plastic zone in front of the crack tip covers all the uncracked ligament of the specimen – for this crack length 

the most visually largest crack opening displacement is observed (Fig.13f, drawings 13d-f were made on the 

same scale). In the case of C(T) specimens containing very short and short cracks (a/W=0.05 and a/W=0.20 

respectively), an increase of the plastic zone around the crack tip is observed, and then further in the 

direction and place of the external load application (Fig.13a and Fig.13b). For these two geometries, there is 

no coverage of the entire uncracked section of the specimen through the plastic zone. In both cases – very 

short and short cracks, there is a significant crack opening displacement (Fig.13d and Fig.13e), however the 

highest level of accumulated plastic strains at the crack tip is observed for a specimens containing a very 

long crack (a/W=0.70) – Fig.13f. In this paper, the assessment of the crack opening displacement is carried 

out in a qualitative manner. Quantitative analysis, combined with a qualitative description will be presented 

soon in the next paper. 
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a) 

 

b) c) 

*

d) 

 

e) f) 

 

Fig.12. The comparison of the selected parameters of the stress fields (I/0, m/0, Tz) near the crack tip for 

C(T) specimen characterized by a different relative crack length and three different levels of the 

external load P/P0: a,b,c) graphs relative to the physical position r; d,e,f) graphs relative to 

normalized distance from the crack tip =r0/J. 
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a) d) 

b) e) 

c) f) 

 

 

Fig.13  The distribution of the effective stress eff  and accumulated plastic strains for C(T) specimens dominated 

by plane strain (calculations for large strain assumptions) for material characterized by n=10, 

0=500MPa, E=206GPa, =0.3: a,b,c) the eff  stresses distribution for C(T) specimen characterized by 

a/W={0.05, 0.20, 0.70} respectively; d,e,f)  aps strains distribution for C(T) specimen characterized by 

a/W={0.05, 0.20, 0.70} respectively (all results for external load P/P0=1.00). 

 

5. Summary 
 

 The paper presents an abbreviated characterization of the selected measures of the stress triaxiality 

for a compact specimen dominated by a plane strain state. Apart from short theoretical deliberations devoted 

to the description of stress fields near the crack tip, based on the results presented in [20,21], the basic 

measures of in-plane constraints used to assess the actual fracture toughness (Q stresses [13,14], maximum 

crack opening stresses[25, 26]), are discussed, as well as the formulas allowing to estimate the selected 

measures of stress triaxiality, which are discussed in [27, 30-33]. 

 In the next step, the basics of FEM modeling were briefly characterized, based on the considerations 

given in [20,21]. In the considerations based on the numerical calculations, an elastic-plastic material was 

assumed, characterized by hardening exponent n=10 and the ratio of the yield point and Young's modulus 

0/E=0.00243, with the Poisson coefficient =0.3. Specimens characterized by three relative crack lengths 

were analyzed – among them one can distinguish very short, short and very long cracks (a/W={0.05, 0.20, 

0.70} respectively). The numerical analysis was carried out with the assumption of finite deformations, 

which guarantees the elimination of singularities of stresses near the crack tip. A quality assessment (as well 

as in some places of the paper by quantitative assessment) of the selected parameters was performed on the 

distribution of normal components of stress tensor, distribution of effective stresses, distribution of mean 
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stresses as well as principal stresses (whose estimation is necessary for the analysis of selected parameters of 

stress triaxiality). Then, the selected values of stress triaxiality were subjected to the analysis and qualitative 

evaluation, among which the LODE parameter, triaxiality coefficient denoted as m/eff, the Tz parameter, as 

well as the accumulated plastic strains can be mentioned. 

 The performed analysis indicated some important conclusions. The highest value among the normal 

components of the stress tensor is reached by the stress opening the crack surfaces indicated by zz. In view 

of the assumption of the finite strain in FEM analysis, the normal components of stress tensor at a certain 

distance from the crack tip reach the maximum – generally after exceeding the external load at 75% of the 

limit load, the value of this maximum does not depend on the external load level, however with the increase 

of external load, this maximum physically moves away from the crack tip. When assessing the normalized 

location of the stress maximum denoted as=r0/J, it should be noted that if the external load increases 

above the limit load, it also does not depend on the external load. 

 The above-mentioned statements indicate the fact that in the considered external loads range, the 

level of maximum stresses opening the fracture surfaces and their normalized location relative to the crack 

tip do not depend on the relative crack length, which confirms the conclusions given in [25, 26]. As the 

numerical analysis has shown, the stresses that open the fracture surfaces should be identified with the 

maximum principal stresses. The selected measures of the triaxiality of stress discussed in the paper – LODE 

parameter, Tz parameter and the stress triaxiality parameter m/eff (determined by some researchers as  [27, 

30, 32, 33]), depend on the level of external load, relative crack length and position in relation to the crack 

tip. The analysis of the isolines presenting the distribution of effective stresses allows to assess the position 

and size of the plastic zone. As numerical analysis showed, the full coverage of the uncracked ligament of 

the specimen for external load equal to the limit load was observed for C(T) specimens characterized by a 

very long crack (a/W=0.70), while for specimens containing very short and short cracks (respectively 

a/W=0.05 and a/W=0.20), the plastic zone grows in close proximity to the crack tip and the areas identified 

with the places of application of the external load. 

 Summing up, conducting a comprehensive numerical analysis should include not only analysis of 

stress or strain tensor distributions, but also an assessment of geometric constraint parameters, stress 

triaxiality parameters, assessment of accumulated plastic deformations, and level of plastic zones. The 

analysis should be carried out in a quantitative and qualitative manner. In addition, the level of the J-integral 

or crack opening displacement can be assessed, and all the drawn conclusions can be used in the correct 

description of mechanical fields, predicting the real fracture toughness (using the appropriate fracture 

criterion) or assessing the strength of the structure containing some defect, using the FAD (Failure 

Assessment Diagrams) or CDF (Crack Driving Force) diagrams [34-36]. 
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Nomenclature 

 
 ASTM  – American Society Testing Materials 

 A2 – A2 parameter, described also as A2 amplitude defined by Yang et al. 

 a – crack length 

 a/W – relative crack length 

 B – specimen thickness 

 BS – British Standard 

 b – length of the uncracked ligament (b=W-a) 

 C(T) – compact specimen 

 CC(T) – center cracked plate in tension 
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 E – Young’s modulus 

 EPRI  – Electric Power Research Institute 

 ESIS  – European Structural Integrity Society 

 FAD – Failure Assessment Diagram 

 FE – Finite Element 

 FEM – Finite Element Method 

 FITNET – European FITness-for-service NETwork 

 HMH – Huber-Misses-Hencky hypothesis  

 HRR – Hutchinson-Rice-Rosengren 

 J – J-integral 

 J-R – J-R curves (graphical presentation of the change of the J-integral as a function of the crack 

growth length da) 

 L, LODE  – Lode parameter 

 MCOS – Maximum Crack Opening Stress 

 n – strain hardening exponent in the Ramberg-Osgood relationship 

 P – external load 

 P0 – limit load 

 Q – Q-stress parameter defined by O’Dowd and Shih, the measure of the in-plane constraints for 

elastic-plastic materials 

 RKR – Ritchie-Knott-Rice 

 R-O – Ramberg - Osgood 

 r – physical distance from the crack tip, polar coordinate 

 rw – radius of the crack tip in the finite element model 

 SEN(B) – single edge notched cracked plate in bending 

 SEN(T) – single edge notched cracked plate in tension 

 Tz – stress triaxiality parameter defined by GuoWanlis as xx/(yy+zz) 

 vLL – load line displacement 

 W – specimen width 

 x22_max –physical location of the maximum stress opening the crack surfaces 

 x, y, z – Cartesian coordinates – x is the coordinate in the direction of the specimen thickness 

  – constant in the Ramberg-Osgood relationship 

  – strain on stress-strain curve 

 0 – strain corresponding to the yield stress (0=0/E) 

 aps – accumulated plastic strain 

 m – strain corresponding to the ultimate tensile strength 

  – Poisson’s ratio 

 – polar coordinate 

 – Lode angel 

  –normalized Lode angel 

 [] – stress tensor 

 [S] –deviatoricstress tensor 

 [I] –identity tensor 

  –dimensionless hydrostatic stress triaxiality parameter 

 0 –reference value of the triaxiality parameter dented as  

  –stress on stress-strain curve 

 1, 2,3 –principal stresses, also denoted as I, II, III 

 0 – yield stress 

 eff – effective stresses calculated according to the HMH hypothesis 

 ij – stress tensor 

 22_FEM – crack opening stress determined using FEM 

 22_HRR – crack opening stress determined using HRR solution 

 22_max – maximum of the crack opening stress  

 m – normal stresses 

 yld – yield stress defined by Wierzbicki and Bai 
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 xx, yy, zz – normal components of the stress tensor 

  p   – relation between effective real stress and accumulated plastic strain 

  – normalized distance from the crack tip, calculated as =r·J/0 

 0 – normalized positon near the crack tip of the MCOS for saturate state 

 0 – normalized maximum opening crack stress for saturate state 
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