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Abstract. We present one property of the Riemannian metric which is derived from
the positive power of potential functions. Then this property is applied to the study of the Γ -
convergence of energy functionals which are associated with the Euler-Lagrange p-Laplacian
equation.

1. Introduction. The singular perturbation nonconvex functionals,

Eε(v) =
∫

Ω

[
1

ε
W(v(x)) + ε|∇v(x)|2

]
dx(1)

with a nonnegative double-wells potential W , were studied by Modica and Mortola [22] in
1977. In 1987, Modica [21] applied the Γ -convergence theory to solve the minimal interface
problem in the Van der Waals-Cahn-Hilliard theory of phase transitions. Suppose that W(v) =
0 if and only if v ∈ {a, b}. It was shown in [21, 22, 24] that the Γ -limit of {Eε}ε>0 is of the
form

E0(v) =
{
βPerΩ(A) if v ∈ T ,

+∞ otherwise ,

where T = {v ∈ BV(Ω); v = χAa + (1 − χA)b, A ⊂ Ω with 0 < |A| < |Ω |} and

β = 2
∫ b

a

W 1/2(s)ds .(2)

The notation BV(Ω) and PerΩ(A) stand for the space of functions of bounded variation and
the perimeter of A in Ω , respectively. Let p > 1 and q the exponent conjugate to p, that is,
1/p + 1/q = 1, and let K be a positive integer in this whole article. Let ai (i = 1, . . . ,K) be
given points in RN and A = {ai ; i = 1, . . . ,K}. We denote by C1

pw(I) the set of piecewise

C1 curves f : I ⊂ R → RN , and we define

TF,L ≡ {g ∈ C1
pw([−L,L])| g(−L) = ai, and g(L) = aj for some i �= j } ,

TF ≡
⋃
L>0

TF,L ,(3)
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and

SF ≡
{∫ L

−L

(
W(g(s))

q
+ |g ′(s)|p

p

)
ds ; g ∈ TF

}
.(4)

Barroso and Fonseca [5], Fonseca and Tartar [16] generalize the result of Γ -convergence
to the vector-valued case for which v : Ω → RN , Ω ⊂ Rn and the equation (2) is replaced
by β = inf SF for p = 2 and K = 2. Baldo [4] in 1990 established the Γ -limit of {Fε}ε>0 for
multiple-well potential. Suppose that W(v) = 0 if and only if v ∈ {a1, . . . , aK }. The Γ -limit
of {Eε}ε>0 is essentially of the form

E0(v) =
{∑K

i,j=1 d(ai, aj )H
n−1(∂�Si ∩ ∂�Sj ∩ Ω) if v ∈ T ,

+∞ otherwise ,

where T = {v ∈ BV(Ω; RN); v = ∑K
i=1 χSi ai, with Si ⊂ Ω and |Ω − ⋃K

i=1 Si | =
0, and Si ∩ Sj = ∅, i �= j }, d(ai, aj ) = inf S(ai , aj ) and

S(ai, aj ) =
{∫ L

−L

[W(g(s)) + |g ′(s)|2]ds ; g ∈ C1
pw([−L,L]), g(−L) = ai, g(L) = aj

}
.

For more generalization of this case, see Ambrosio [1] and Sternberg [24].
The development of this type of Γ -convergence for gradient vector fields, i.e.,

{Eε(∇v)}ε>0 was studied by Jin and Kohn [18], and Conti, Fonseca and Leoni [9]. There
have been many works on the related subjects, for instance, Fonseca and Mantegazza [15],
Fonseca [14], Ambrosio, De Lellis and Mantegazza [2], Aviles and Giga [3], and DeSimone,
Kohn, Müller and Otto [11].

In this paper, we consider a family of functionals {Fε}ε>0 given by

Fε(v) =



∫
Ω

[
1

ε

W(v(x))

q
+ εp−1 |∇v(x)|p

p

]
dx if v ∈ W1,p(Ω; RN) ,

+∞ otherwise .

(5)

The Euler-Lagrange equation of these functionals is the following p-Laplacian equation,

εp�pv − W ′(v)

q
= 0 in Ω ,(6)

where �pv = div(|∇v|p−2∇v). The functionals defined by Equation (1) could be regarded
as a special case of the functionals defined by Equation (5) for p = 2. The minimizer and Γ -
convergence for scalar case with a special potential W(v) = v2(1 − v)2/4 has been studied in
[8]. It follows from the important role of constants inf S(ai, aj ) in the study of Γ -convergence
of functional {Eε}ε>0 that give us a motivation to find properties of the Riemannian metric
which is derived from the positive power of potential functions. In this paper, we present
one property of this Riemannian metric and apply it to the study of the Γ -convergence of
functionals {Fε}ε>0 for which the potential is of double-well type.

Define A = {a1, . . . , aK } and let us introduce two hypothesis on the potential W below.
(H1) The potential W ∈ W1,∞

loc (RN ; R) is a nonnegative function such that W(x) = 0
if and only if x = ai for some i = 1, . . . ,K .
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(H2) Let d = min{dist(ai, aj ) ; i �= j, and i, j = 1, . . . ,K}. There exist α, δ ∈ R
with 0 < α ≤ 1 and 0 < δ < d/2 such that, if x ∈ A and y ∈ RN\A with |y − x| ≤ δ, then
α|y − x|p ≤ W(y) ≤ α−1|y − x|p.

Furthermore, let us define two sets of functions and two sets of real numbers. They are

T∞ ≡ {g ∈ C1
pw(R) ; g(−∞) = ai, and g(∞) = aj for some i �= j } ,(7)

T� ≡ {g ∈ C1
pw([−1, 1]) ; g(−1) = ai, and g(1) = aj for some i �= j } ,(8)

and

S∞ ≡
{∫ ∞

−∞

(
W(g(s))

q
+ |g ′(s)|p

p

)
ds ; g ∈ T∞

}
,(9)

S� ≡
{∫ 1

−1

(
W(g(s))1/q · |g ′(s)|

)
ds ; g ∈ T�

}
.(10)

The following theorem states one property of our Riemannian metric. We will prove it in the
next section.

THEOREM 1. Let S∞, SF and S� be the set of values defined by (9), (4) and (10),
respectively. Then

inf S∞ = inf SF = inf S� .

We will apply Theorem 1 to the Γ -convergence theory for the case of two wells, that is
K = 2, with a1 = a and a2 = b. Let Ω be an open bounded strongly Lipschitz domain of
Rn. The sets of states are defined as

A = {x ∈ Ω ; v(x) = a} , B = {x ∈ Ω ; v(x) = b} .(11)

The role of F0(v) is played by the limit problem

F0(v) =
{
(inf S�)PerΩ(A) if v ∈ BV(Ω; RN) with v(x) ∈ {a, b} a.e.

+∞ otherwise.
(12)

We will show that the functional F0 is the Γ (L1(Ω; RN))-limit of {Fε}ε>0 (denoted by
F0 = Γ (L1(Ω; RN))-limit {Fε}ε>0). This means by definition that for each v ∈ L1(Ω; RN),

(i) if vε converges to v in L1(Ω; RN), then F0(v) ≤ lim infε→0+ Fε(vε),
(ii) there exists a family {vε}ε>0 in L1(Ω; RN) such that vε converges to v in

L1(Ω; RN) and lim supε→0+ Fε(vε) ≤ F0(v).
The Γ -convergence thereom below will be proved in Section 3.

THEOREM 2. In addition to the assumptions (H1) and (H2), assume that
(H3) there exist α, C > 0 such that W(v) ≥ α|v| whenever |v| > C.

Then the functional F0 defined in (12) is the Γ (L1(Ω; RN))-limit of {Fε}ε>0 defined by (5).
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Let a, b and m be vectors in RN with m = θa + (1 − θ)b for some θ ∈ (0, 1). Define
the spaces Vm and V as follows.

Vm ≡
{
u ∈ W 1,p(Ω; RN) ;

∫
Ω

u(x)dx = |Ω |m
}

,

V ≡
{
u ∈ BV(Ω; RN) ; u(x) ∈ {a, b} a.e. and

∫
Ω

u(x)dx = |Ω |m
}

.

We would like to give some remarks on our works for more applications and further studies.
Remark 1. For each ε > 0, the existence of a minimizer uε of Fε on Vm can be obtained

by virtue of the direct methods in the calculus of variations.
Remark 2. Using the definition of Γ -convergence, we observe that if (i) F0 =

Γ (L1(Ω; RN)-limit{Fε}ε>0, (ii) uε is a minimizer of Fε on Vm for each ε > 0, and (iii)
uε converges to u0 in L1(Ω; RN) as ε goes to 0+, then

lim
ε→0+ Fε(uε) = F0(u0)

and u0 is a minimizer of F0 on V .
Remark 3. Another consequence is that Γ -convergence is stable under continuous per-

turbations: If {Fε}ε>0 Γ -converges to F0 in L1(Ω; RN) and the functional G is continu-
ous with respect to the L1(Ω; RN)-topology, then {Fε + G}ε>0 Γ -converges to F0 + G in
L1(Ω; RN).

Remark 4. Theorem 1 is useful for characterizing the behavior of the minimizers of
Γ -limit F0 of {Fε}ε>0 with multiple potential wells. We anticipate futher developments in
this direction in the future.

2. Riemannian metric. We divide the proof of Theorem 1 into Lemmas 3, 4 and 5 in
this section.

LEMMA 3. Let S∞ and SF be the sets defined in Equations (9) and (4), respectively.
Then inf S∞ = inf SF .

PROOF. We first prove that inf S∞ ≤ inf SF by showing

SF ⊂ S∞ .(13)

For any α ∈ SF , Equation (4) implies that there exists a function gL ∈ TF such that

α =
∫ L

−L

(
W(gL(s))

q
+ |g ′

L(s)|p
p

)
ds .

The function gL ∈ TF can be extended to g∞ ∈ T∞ by defining

g∞(s) ≡



gL(−L) if s < −L ,

gL(s) if − L ≤ s ≤ L ,

gL(L) if s > L .

(14)
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The function g∞ belongs to T∞ by Equations (3) and (7). Since W(g∞(s)) = 0 and |g ′∞(s)| =
0 for s ∈ R\[−L,L], we evaluate

α =
∫ L

−L

(
W(gL(s))

q
+ |g ′

L(s)|p
p

)
ds =

∫ ∞

−∞

(
W(g∞(s))

q
+ |g ′∞(s)|p

p

)
ds .

It follows that α is in S∞, and we get (13).
Next we show inf SF ≤ inf S∞. Now, we assume that α is in S∞. By Equation (9), there

is a piecewise C1 curve g : R → RN with g(−∞) = a = ai and g(∞) = b = aj for some
i �= j such that

α =
∫ ∞

−∞

(
W(g(s))

q
+ |g ′(s)|p

p

)
ds < +∞ .(15)

Condition (H2) implies that there exist 0 < δ < d/2 and L > 0 such that

|g(s) − a| < δ for all s ∈ (−∞,−L) and |g(s) − b| < δ for all s ∈ (L,∞) .(16)

Without loss of generality, we may assume g(s) ∈ RN\A for s ∈ R\[−L,L]. By (H2) again,
we see that

α|g(s) − a|p ≤ W(g(s)) ≤ 1

α
|g(s) − a|p for s ∈ (−∞,−L) .(17)

Using Equations (15) and (17) gives us∫ −L

−∞
|g(s) − a|pds ≤ 1

α

∫ −L

−∞
W(g(s))ds < +∞ .

It follows that ∫ L

−∞
|g(s) − a|pds < +∞(18)

by
∫ L

−L
|g(s) − a|pds < +∞. The identity |(g(s) − a)′| = |g ′(s)| and Equation (17) imply∫ L

−∞
|(g(s) − a)′|pds < +∞ .(19)

From Equations (18) and (19), the function g − a is in W1,p((−∞, L) ; RN). Similarly, the
function g − b is in W1,p((−L,∞) ; RN). It is easy to observe that for all L̃ > 0, g − a is in
W1,p((−∞, L̃) ; RN) and g − b is in W1,p((−L̃,∞) ; RN).

By the theorem on partition of unity [23], there exists a function γ : R → R in C∞
c with

0 ≤ γ ≤ 1, γ (s) = 1 on [−1, 1] and γ (s) = 0 on R\(−2, 2). Let us define a sequence of
functions {gk}∞k=1 by

gk(s) ≡



γ (s/k)g(s) + (1 − γ (s/k))a if s < 0 ,

g(s) if s = 0 ,

γ (s/k)g(s) + (1 − γ (s/k))b if s > 0 .

(20)
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Note that for k > L, we have

gk(s) =



a if s < −2k ,

g(s) if − k ≤ s ≤ k ,

b if s > 2k ,

(21)

and hence gk ∈ T∞. We claim that

lim
k→∞

∫ 2k

−2k

(
W(gk(s))

q
+ |g ′

k(s)|p
p

)
ds =

∫ ∞

−∞

(
W(g(s))

q
+ |g ′(s)|p

p

)
ds .(22)

We divide the proof into the two parts

lim
k→∞

∫ 2k

−2k

W(gk(s))ds =
∫ ∞

−∞
W(g(s))ds and lim

k→∞

∫ 2k

−2k

|g ′
k(s)|pds =

∫ ∞

−∞
|g ′(s)|pds .

It is equivalent to show that

lim
k→∞

∫ ∞

−∞
W(gk(s))ds =

∫ ∞

−∞
W(g(s))ds and lim

k→∞

∫ ∞

−∞
|g ′

k(s)|pds =
∫ ∞

−∞
|g ′(s)|pds ,

since W(gk(s)) = 0 and g ′
k(s) = 0 for all |s| ≥ 2k and k ∈ N by Equation (21).

Let L > 0 be given. By Equation (20), we have gk(s)−a = γ (s/k)(g(s)−a) for s < 0.
By the inequality 0 ≤ γ ≤ 1 and Condition (H2), we have

W(gk(s)) ≤ 1

α
|gk(s) − a|p ≤ 1

α
|g(s) − a|p on (−∞,−L) ,(23)

for each k ∈ N . By the continuity of the potential W and the convergence gk → g on R as
k → ∞, we have

W ◦ gk → W ◦ g on R as k → ∞ .(24)

Applying the Lebesgue Dominated Convergence Theorem and by Equations (24) and (23),
we get

lim
k→∞

∫ −L

−∞
W(gk(s))ds =

∫ −L

−∞
W(g(s))ds .(25)

A similar argument gives us

lim
k→∞

∫ ∞

L

W(gk(s))ds =
∫ ∞

L

W(g(s))ds .(26)

If k > L, by Equation (21), we get gk(s) = g(s) for −L ≤ s ≤ L. Hence we have∫ L

−L

W(gk(s))ds =
∫ L

−L

W(g(s))ds .(27)

By combining Equations (25), (26) and (27), we get the equality

lim
k→∞

∫ ∞

−∞
W(gk(s))ds =

∫ ∞

−∞
W(g(s))ds .

Since γ ∈ C∞
c (R), there exists a constant M such that |γ ′(s)| ≤ M for all s ∈ R. A sim-

ple calculation shows that, if s < 0, then g ′
k(s) = (1/k)γ ′(s/k)(g(s)−a)T +γ (s/k)g ′(s), and

|g ′
k(s)| ≤ M|g(s)−a|+|g ′(s)| on (−∞, 0). This also implies |g ′

k(s)|p ≤ 2p max{Mp|g(s)−
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a|p, |g ′(s)|p} on (−∞, 0). It is easy to show g ′
k converges to g ′ on R as k go to ∞. By the

fact that g − a is in W1,p(R; RN) and by Lebesgue’s Dominated Convergence Theorem, we
conclude that

lim
k→∞

∫ 0

−∞
|g ′

k(s)|pds =
∫ 0

−∞
|g ′(s)|pds .

Similary, limk→∞
∫ ∞

0 |g ′
k(s)|pds = ∫ ∞

0 |g ′(s)|pds. Hence

lim
k→∞

∫ ∞

−∞
|g ′

k(s)|pds =
∫ ∞

−∞
|g ′(s)|pds .

Thus Equation (22) holds and the proof of Lemma 3 is completed. �

LEMMA 4. Let SF and S� be the sets defined in Equations (4) and (10), respectively.
Then inf S� ≤ inf SF .

PROOF. Let α ∈ SF . By Equation (4), there exists a function gL ∈ TF such that

α =
∫ L

−L

(
W(gL(s))

q
+ |g ′

L(s)|p
p

)
ds .

Using the technique of rescaling set, we define gL,1(s) = gL(sL) for s ∈ [−1, 1]. Applying
the change of variables and Young’s inequality, we have∫ 1

−1
(W(gL,1(s)))

1/q · |g ′
L,1(s)|ds =

∫ L

−L

W(gL(s))1/q · |g ′
L(s)|ds ,

and ∫ L

−L

W(gL(s))1/q · |g ′
L(s)|ds ≤

∫ L

−L

(
W(gL(s))

q
+ |g ′

L(s)|p
p

)
ds .

Define α̃ ≡ ∫ 1
−1(W(gL,1(s)))

1/q · |g ′
L,1(s)|ds. We have shown that for each α ∈ SF , there

exists a number α̃ ∈ S� such that α̃ ≤ α. Therefore, inf S� ≤ inf SF . �

LEMMA 5. Let S∞ and S� be the sets defined in Equations (9) and (10), respectively.
Then inf S∞ ≤ inf S�.

PROOF. Let α ∈ S�. Then there is a function g� ∈ T� such that

α =
∫ 1

−1
(W(g�(s)))

1/q · |g ′
�(s)|ds .(28)

We change the variable to the arclength τ (s), τ (s) ≡ ∫ s

−1 |g ′
�(t)|dt for −1 ≤ s ≤ 1 and

denote L = τ (1). Since τ ′(s) = |g ′
�(s)| > 0 on (−1, 1), the function τ is monotone in-

creasing, and its inverse function τ−1 : [0, L] → [−1, 1] exists. Furthermore, (τ−1)′(s) =
(|g ′

�(τ
−1(s))|)−1 > 0 on (0, L). We define gL(s) = g�(τ

−1(s)) for 0 ≤ s ≤ L. Then

g ′
L(s) = g ′

�(τ
−1(s))

|g ′
�(τ

−1(s))| , and |g ′
L(s)| = 1 for s ∈ [0, L] .(29)
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Using the variable of arclength to rewrite Equation (28) as

α =
∫ L

0
(W(g�(τ

−1(s)))1/q · |g ′
�(τ

−1(s))| |(τ−1)′(s)|ds .

Since |g ′
�(τ

−1(s))||τ−1(s)| = |g ′
L(s)|, it further implies

α =
∫ L

0
(W(gL(s)))1/q · |g ′

L(s)|ds .(30)

For the function gL, if there is a function g∞ ∈ T∞ such that∫ ∞

−∞

(
W(g∞(s))

q
+ |g ′∞(s)|p

p

)
ds =

∫ L

0
(W(gL(s)))1/q · |g ′

L(s)|ds = α ,

then α ∈ S∞. Moreover, S� ⊂ S∞ and this will show that Lemma 5 holds. The connection
between the two functions gL and g∞ is contained in the two equalities∫ ∞

−∞

(
W(g∞(s))

q
+ |g ′∞(s)|p

p

)
ds =

∫ ∞

−∞
(W(g∞(s))1/q) · |g ′∞(s)|ds(31)

and ∫ ∞

−∞
(W(g∞(s))1/q) · |g ′∞(s)|ds =

∫ L

0
(W(gL(s)))1/q · |g ′

L(s)|ds .(32)

The condition for Equation (31) means that the equality holds in Young’s inequality, that is,

|g ′∞(t)| = W(g∞(t))1/p for all t ∈ R .(33)

The condition for Equation (32) is that there is a monotone increasing function h ∈ C1
pw(R)

such that

g∞(t) = gL(h(t)) for all t ∈ R ,(34)

lim
t→−∞ h(t) = 0 and lim

t→∞ h(t) = L .(35)

Since h is increasing, Equation (33) is reduced to

h′(t) = |h′(t)| = W(gL(h(t)))1/p for all t ∈ R(36)

by Equations (29) and (34). The above discussion reduces the problem to the existence of
an increasing function h which satisfies the ordinary differential equation y ′ = W(gL(y))1/p

with initial value y(0) = L/2. Since W is in W1,∞
loc (RN ; R) and W is locally Lipschitz on RN ,

it implies that W(gL(y))1/p is in W
1,∞
loc ((0, L)). Thanks to Picard’s Existence and Uniqueness

Theorem [17], we obtain the existence of a unique continuously differentiable function y :
I → R with 0 ∈ I satisfying the differential equation and the initial condition, and also
by the Continuation Theorem [17], we extend the interval I into the maximum interval of
existence, say (t0, t1) with I ⊂ (t0, t1), and

lim
t→t+0

y(t) = 0 , lim
t→t−1

y(t) = L .(37)
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Define

h(t) ≡



0 if t ≤ t0 ,

y(t) if t0 < t < t1 ,

L if t ≥ t1 .

(38)

The function h ∈ C1
pw(R) is as desired and it also satisfies Equations (36) and (35). By

Equations (34), (37) and (38), it follows that g∞ is in C1
pw(R),

g∞(−∞) ≡ lim
t→−∞ g∞(t) = gL(0) = g�(−1) ∈ Ai ,

and

g∞(∞) ≡ lim
t→∞ g∞(t) = gL(L) = g�(1) ∈ Aj .

Hence g∞ is in T∞ and satisfies Equations (31) and (32). As a consequence, S� is included in
S∞ and Lemma 5 is proved. �

3. Γ -convergence theory. We first investigate the struture of a limit function.

LEMMA 6. If the functionals Fε are defined by Equation (5) with lim infε→0+ Fε(vε)<

∞ and functions vε converge to v in L1(Ω; RN), then the values of the function v(x) belong
to {a, b} a.e. Furthermore, the function v(x) is equal to χA(x)a + χB(x)b, where the set A

and B are defined by (11).

PROOF. Since vε converges to v in L1(Ω; RN), there is a subsequence {vεj } which
converges to v a.e. It follows that W ◦ vεj converges to W ◦ v a.e. By Fatou’s lemma, we have

0 ≤
∫

Ω

W(v(x))dx ≤ lim inf
j→∞

∫
Ω

W(vεj (x))dx ≤ lim inf
j→∞ εjqFεj (vεj ) = 0 .

The last equality holds due to the assumption. The integral of the nonnegative potential func-
tion W over Ω vanishes, and hence W(v(x)) = 0. That implies v(x) is in {a, b} a.e., and this
lemma is proved. �

It follows from (H3) that we can choose r1 > |a − b|/2 = r0, and C = max{W 1/q(v);
|v − (a + b)/2| ≤ r1}, such that∫ r1

r0

[
inf|v−(a+b)/2|=r

W 1/q(v)

]
dr >

1

2
inf S� .

Define W�(v) ≡ min{W 1/q(v), C}, T (ξ) = {γ ∈ C1
pw([−1, 1]) ; γ (−1) = a, γ (1) = ξ},

and

Φ(ξ) = inf

{∫ 1

−1
W�(γ (s))|γ ′(s)|ds ; γ ∈ T (ξ)

}
.(39)

The technique of truncation has been used to guarantee the Lipschitz continuity of the function
Φ on RN . A similar argument in Fonseca and Tartar [16] establishes the properties of the
function Φ in the following lemma.
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LEMMA 7. Let Φ be the function defined by (39).
(i) The function Φ : RN → R is Lipschitz continuous on RN .

(ii) If v ∈ W1,p(Ω; RN), then Φ ◦ v ∈ W1,p(Ω; RN) and

|∇(Φ ◦ v)(x)| ≤ W 1/q(v(x)) · |∇v(x)| for a.e. x ∈ Ω .

(iii) inf S� = Φ(b).

Let us recall the following lemma.

LEMMA 8 (cf. [13, 20], Lower semicontinuous of variation measures). Suppose that
Ω ⊂ Rn is open. Suppose fk is in BV(Ω) for each k in N and fk converges to f in L1(Ω).
Then

∫
Ω

|∇f (x)|dx ≤ lim infk→∞
∫
Ω

|∇fk(x)|dx.

Now, we will show the theorem below.

THEOREM 9. Let functionals Fε and F0 be defined by Equations (5) and (12), respec-
tively. If vε converges to v in L1(Ω; RN), then F0(v) ≤ lim infε→0+ Fε(vε).

PROOF. We first claim that the limit function v is a BV-function on Ω . If vε converges
to v in L1(Ω; RN), then lim infε→0+ Fε(vε) is finite and Φ ◦ vε converges to Φ ◦ v in L1(Ω).
It implies that vε is in W1,p(Ω; RN). By the fact that if u is in W1,p(Ω; RN) then Φ ◦ u is in
W1,p(Ω; RN) and also in BV(Ω), we have Φ ◦ vε ∈ BV(Ω). Applying Lemma 8 to Φ ◦ vε

and Φ ◦ v, we have∫
Ω

|∇(Φ ◦ v)(x)|dx ≤ lim inf
ε→0+

∫
Ω

|∇(Φ ◦ vε)(x)|dx .

Using condition (ii) in Lemma 7 and Young’s inequality to (5), we get∫
Ω

|∇(Φ ◦ v)(x)|dx ≤ lim inf
ε→0+

∫
Ω

W 1/q(vε(x))|∇vε(x)|dx

and ∫
Ω

W 1/q(vε(x))|∇vε(x)|dx ≤ Fε(vε) .

It follows that ∫
Ω

|∇(Φ ◦ v)(x)|dx ≤ lim inf
ε→0+ Fε(vε) ,(40)

and Φ ◦ v is in BV(Ω). By (39), Φ(a) is zero and Φ(b) is equal to inf S�. Hence we obtain
(Φ ◦ v)(x) = Φ(v(x)) = Φ(χAa +χBb) = Φ(b)χB . Thus, χB is in BV(Ω) and χA = χΩ\B
is in BV(Ω). Furthermore, the function v is in BV(Ω) since v = χAa+χBb. We have proved
the claim. The next step is to show the identity∫

Ω

|∇(Φ ◦ v)(x)|dx = F0(v) .(41)

Since (Φ ◦ v)(x) = Φ(b)χB , we have∫
Ω

|∇(Φ ◦ v)(x)|dx =
∫

Ω

Φ(b)|∇χB|dx = Φ(b)PerΩ(B) = Φ(b) · PerΩ(A) .
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From the equality Φ(b) = inf S� again, it follows that∫
Ω

|∇(Φ ◦ v)(x)|dx = (inf S�)PerΩ(A) .(42)

Combining Lemma 7 with Equation (12), we get Equation (41). Theorem 9 follows from
Equations (41), (42) and (40). �

THEOREM 10. Let v ∈ W1,p(Ω; RN). Then there exists a family {vε}ε>0 in
L1(Ω; RN) which converges to v in L1(Ω; RN) and lim supε→0+ Fε(vε) is less than or equal
to F0(v).

Before the proof of Theorem 10, let us recall two lemmas.

LEMMA 11 ([4, 21]). Let Ω ⊂ Rn be open, and A be a polygonal domain in Rn with
the compact boundary ∂A and Hn−1(∂A∩∂Ω) = 0. Then the following two statements hold :

(i) There exists a constant η > 0 such that the function h(x) defined by

h(x) ≡
{−d(x, ∂A) if x ∈ A ,

d(x, ∂A) if x �∈ A

is Lipshitz continuous on Dη ≡ {x ∈ Rn; |h(x)| < η} and |∇h(x)| = 1 a.e. on Dη.
(ii) If St ≡ {x ∈ Rn; h(x) = t}, then limt→0 Hn−1(St ∩ Ω) = Hn−1(∂A ∩ Ω).

LEMMA 12 (cf. [13, 20], Coarea formula). Suppose that f : R → R is a measurable
function and that h : Rn → R is a Lipschitz function. Then∫

Ω

f (h(x))|∇h(x)|dx =
∫ ∞

−∞
f (t)Hn−1({x ∈ Ω ; h(x) = t})dt

for each measurable subset Ω of Rn. In particular, we have∫
Ω

|∇h(x)|dx =
∫ ∞

−∞
Hn−1({x ∈ Ω ; h(x) = t})dt

for each measurable subset Ω of Rn.

PROOF OF THEOREM 10. The strategy for the proof is to observe the form of the limit
function v, v = χAa + (1 − χA)b, then to construct a sequence of functions v

g
ε ∈ L1(Ω; RN)

which converges to v in L1(Ω; RN) starting from a given function g in TF . Moreover, this
sequence of functions satisfies

lim
ε→0

Fε(v
g
ε ) = PerΩ(A)

∫ L

−L

(
W(g(s))

q
+ |g ′(s)|p

p

)
ds .(43)

Finally, we apply the above result to construct a sequence which we want.
By the assumption, v ∈ W1,p(Ω; RN) and Lemma 6, v must be of the form

v = χAa + (1 − χA)b a.e. in Ω .(44)
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Without loss of generality, we assume that ∂A ∩ Ω ∈ C2 and Hn−1(∂A ∩ ∂Ω) = 0. We
define the function h : Ω → R by

h(x) ≡
{−d(x, ∂A) if x ∈ A ,

d(x, ∂A) if x �∈ A .
(45)

Now, let g ∈ TF , where TF was defined by (3). That is, there is L > 0 such that g(−L) = a

and g(L) = b. For this function g , we define a sequence of functions v
g
ε : Ω → RN by

vg
ε (x) =




a if h(x) ≤ −εL ,

gε(h(x)) if − εL < h(x) < εL ,

b if εL ≤ h(x) ,

(46)

where gε(s) = g(s/ε) for all s in [−L,L]. For the simplification of notation, we define f :
R → R by

f (t) =



|gε(t) − a| if − εL < t ≤ 0 ,

|gε(t) − b| if 0 < t < εL ,

0 otherwise .

Then |vg
ε − v| is equal to f ◦ h on Ω . By Lemma 11, we have∫

Ω

|vg
ε − v|(x)dx =

∫
Ω

f ◦ h(x)dx =
∫

Ω

f (h(x))|∇h|(x)dx ,

and by Lemma 12, we have∫
Ω

|vg
ε − v|(x)dx =

∫ ∞

−∞
f (t) · Hn−1({x ∈ Ω ; h(x) = t})dt

=
∫ 0

−εL

|gε(t) − a| · Hn−1({x ∈ Ω ; h(x) = t})dt

+
∫ εL

0
|gε(t) − b| · Hn−1({x ∈ Ω ; h(x) = t})dt .

Using the change of variables for the last term in the last equality, we get the equality∫ εL

0
|gε(t) − b| · Hn−1({x ∈ Ω ; h(x) = t})dt

= ε

∫ L

0
|g(t) − b| Hn−1({x ∈ Ω ; h(x) = εt})dt .

By Lemma 11 again, limτ→0 Hn−1({x ∈ Ω ; h(x) = τ }) = Hn−1(∂A ∩ Ω) = PerΩ(A).
Taking τ = εt for each ε > 0 with |εL| < δ, we have Hn−1({x ∈ Ω ; h(x) = εt}) <

PerΩ(A) + 1 for all −L ≤ t ≤ L. Therefore, we have

ε

∫ L

0
|g(t) − b| Hn−1({x ∈ Ω ; h(x) = εt})dt ≤ εL(PerΩ(A) + 1)‖g − b‖∞ .

Similary, we have

ε

∫ 0

−L

|g(t) − a| Hn−1({x ∈ Ω ; h(x) = εt})dt ≤ εL(PerΩ(A) + 1)‖g − a‖∞ .
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The above argument gives us the estimate∫
Ω

|vg
ε − v|(x)dx ≤ εL(PerΩ(A) + 1)[‖g − a‖∞ + ‖g − b‖∞] ,

provided ε > 0 small enough. Furthermore, we know limε→0
∫
Ω

|vg
ε − v|(x)dx is equal to

zero, and the convergence of v
g
ε to v in L1(Ω; RN) is proved. Next step is to show Equation

(43).
By Equation (5), we evaluate

Fε(v
g
ε ) =

∫
Ω

[
1

ε

W(v
g
ε (x))

q
+ εp−1 |∇v

g
ε |p(x)

p

]
dx

=
∫

Ω

[
1

ε

W(gε(h(x)))

q
+ εp−1 |∇v

g
ε (h(x))|p(x)|∇h(x)|

p

]
dx

=
∫

Ω

[
1

ε

W(gε(h(x)))

q
+ εp−1 |∇v

g
ε (h(x))|p(x)

p

]
|∇h(x)|dx .

The last equality follows from |∇h| = 1 a.e. (cf. Lemma 11) whenever ε > 0 small enough.
By using Lemmas 11, 12 and technique of change of variables to the last term, we rewrite
Fε(v

g
ε ) as

Fε(v
g
ε ) =

∫ L

−L

(
W ◦ g

q
+ |g ′|p

p

)
(t) Hn−1({x ∈ Ω; h(x) = εt})dt .

Therefore,

lim
ε→0

Fε(v
g
ε ) = lim

ε→0

∫ L

−L

(
W ◦ g

q
+ |g ′|p

p

)
(t) Hn−1({x ∈ Ω; h(x) = εt})dt

=
∫ L

−L

(
W ◦ g

q
+ |g ′|p

p

)
(t) lim

ε→0
Hn−1({x ∈ Ω; h(x) = εt})dt

= PerΩ(A)

∫ L

−L

(
W(g(t))

q
+ |g ′(t)|p

p

)
dt .

Let ε̃ be a positive number. Let us denote S̃F = PerΩ(A)SF , S̃∞ = PerΩ(A)S∞ and
S̃� = PerΩ(A)S�. By Theorem 1, we have inf S̃F = inf S̃∞ = inf S̃� = F0(v). Since F0(v) =
inf S̃F , it follows that there exists a number η = η(ε̃) in S̃F and gη in TF such that η <

F0(v) + ε̃ and

η = PerΩ(A)

∫ L

−L

[
W(gη(s))

q
+ |g ′

η(s)|p
p

]
ds for some L > 0 .

Furthermore, for η ∈ S̃F , there exists a family {vgη
τ }τ>0 in L1(Ω; RN) such that v

gη
τ converges

to v in L1(Ω; RN) and Fτ (v
gη
τ ) converges to η as τ goes to 0+. We get that for each ε̃ > 0,

there is a η < F0(v) + ε̃ and v
gη
τη in L1(Ω; RN) such that ‖vgη

τη − v‖L1(Ω;RN ) < ε̃ and

Fτη (v
gη
τη ) < F0(v) + ε̃. Let vε̃ = v

gη
τη . The sequence {vε̃}ε̃>0 has the desired property and

Theorem 10 is proved. �
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