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Introduction. In this paper we show how to calculate the irreducible char-

acters of the group GL(n, q) of all nonsingular matrices of degree n with
coefficients in the finite field of q elements. These characters have been given
for w = 2 by H. Jordan [8], Schur [10], and others, and for n = 3 and » = 4 by
Steinberg [12], who has also [13] done important work in the general case.

We are concerned here with "ordinary" characters, that is, characters of
representations by matrices with complex coefficients. Let xi, • • - , X* be the
distinct absolutely irreducible ordinary characters of a group ® of order g.
By a character of @ (often called a "generalised character" or "difference
character") we mean a class-function <j> on ® of the form

<t>  =   Y QiXi
t-1

where the af are rational integers. If the at are non-negative integers, so that
<f> is the character of a matrix representation of ®, <b will be called a proper
character.

For any two complex-valued class-functions x. $ on ®, define the "scalar
product"

(X, *) = —   Y x(x)$(x),
g .e®

and "norm"

||x|| = (x, x)-
We have two classical principles for calculating the irreducible characters of
®:

4 character % of ® is irreducible if and only if ||x|| = 1, and x(l) >0 (we use
1 for the identity element of ®), and

Two irreducible characters x, ^ of ® are distinct if and only if (x, ^0 =0.
Let q be a fixed prime-power, and write ®n = GL(n, q). Characters of ®„

are derived from two sources; from the subgroups of ®„ on the one hand, and
from the defining representation of ®„ (this is of course a modular representa-
tion) on the other. The use of subgroups is based on Frobenius' treatment
(Frobenius [5]) of the characters of the symmetric group ©„ (cf. Steinberg
[13]). Let V„ be the space of n-vectors with components in %=GF(q), the
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CHARACTERS OF THE FINITE GENERAL LINEAR GROUPS 403

finite field of q elements. An element A C ©B is a linear operator on F„ by the
usual product vA (vC F„).

Let n=si+s2+ • • ■ +sk he a partition of n into positive integers s<, and
let F(0 be the subspace of F„= F(W consisting of vectors whose first Si+s2
+ • • • +Si components are zero. Then the subgroup ©n,,.. .n of all elements
of ®n which leave invariant the chain of subspaces

7(0) > 7(1) >   . . . > yw _ o

consists of all matrices
'^n   ^4i2 • • • Aik

0       A22- • ■ A2kA =

.0       0    ■■■Akh,

for which AiiCQd.i (» = 1, 2, • • ■ , k).
Ii at is a character of ®Si (* = 1, 2, • • • , k), then it is clear that yp(A)

= «i(.4ii) • • • ak(Akk) is a character of $„,,...,». We define «i o a2 o • • • oa*
to be the character of ©B which is induced by yp. It is shown in §2 that the
binary multiplication cti o a2 is commutative, associative, and bilinear, and
that «i o a2 o • • • o ak is equal to the Mold product ( • • • (ai o a2) o • • • o ak).
Let <vf„ be the space of all class-functions on ®» (» = 1, 2, • ■ • ), and let zA
be the (restricted, or weak) direct sum zZn-i ^n- Since Frobenius' induced
character formula can be applied to any class-function \p, we may define
«i o a2, as above, for any aiG<vfi„ a2£e/f,„ and extending this definition by
linearity, e/f becomes a commutative, associative algebra over the complex
field S.

This o-product generates characters of ®„ from those of the groups
®m (m<n). To start this inductive process and to keep it going, we need our
second construction. This is the following theorem, which is based on R.
Brauer's fundamental characterisation of characters of finite groups (Brauer
[1]).

Write M(%) for the multiplicative group of any field ft, and £ for the
field of complex numbers.

Theorem 1. Let x—>R(x) (xC®) be any representation of a finite group ©
by nonsingular nXn matrices R(x) with coefficients in a finite field g*. Suppose
that %* contains, for each xC&, the latent roots

Zi(x), • • • , |„(x)

of R(x). Then if
6:a->ao (a C M(%*))

is any homomorphism of M(%*) into Af(&), and if S(h, ■ ■ • , tn) is any sym-
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404 J. A. GREEN [November

metric polynomial in h, • • • , t„ with rational integer coefficients, the function

X(x) = S(Ux)o, • • • , Ux)o)
is a character of ®.

This theorem is proved in §3.
The nature of the characters of ®„, as functions on ®„, is of great interest.

All characters are what I have called uniform functions (Definition 4.12).
This means that the value at any conjugacy class of ®„ is given, by a certain
fixed "degeneracy rule," in terms of the functions which describe the char-
acter on the classes of principal matrices; these are the matrices whose latent
roots are all distinct. For example, the different conjugacy classes of ®2 are
typified by matrices with the following canonical forms:

Class Ci c2 Cz Ci

Itakdmatdx       (*   )       (*   ^        (*   $)       ('    J,

where a, 0dM(GF(q)) and a^0, while n, i)qdM(GF(q2)) are roots of an
irreducible polynomial over GF(q) of degree 2. A uniform function U on ®2
is characterized by two independent functions ("principal parts"): U'(a, 0),
which is defined for a, 0dM(GF(q)) and is symmetric ina, 0, and L7"(r;)(1),
defined for i]EM(GF(q2)) and satisfying.U"(ri) = U"(r)q). The values on the
different classes are then given by

U(ci) = (q + l)U'(a, a)/2 + (-q + l)U"(a)/2,
U(c2) = U'(a, a)/2 + U"(a)/2,
U(ct) = U'(a, P),
U(c<) = U"(v).

In the degeneracy rule occur polynomials Qfc(q), defined for each pair p, X
of partitions of each positive integer n. These are expressed in terms of further
polynomials which were first introduced by P. Hall (in unpublished lectures,
Hall [7]); the Q^(q) are closely connected with the characters xj of the sym-
metric group ©„.

The uniform functions on ®„, for n = l, 2, • • • , generate a subspace V
oi the algebra zA. Theorems 7 and 8 (§5) show respectively that V is a sub-
algebra of z/i, and that V contains the characters which are provided by
Theorem 1. Theorem 11 (§6) gives, with the aid of certain remarkable
orthogonality relations (Theorem 10) satisfied by the Q^(q), a formula for
the scalar product of two uniform functions. The simplicity of this formula
is the chief technical advantage from introducing this type of function.

(') We use a slightly different notation for V and t7" in the general case (see Definition
4.12).
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In Theorem 14 (§8) we give explicit formulae for all the irreducible char-
acters of ®„, in terms of certain "basic characters," whose values at any class
can in turn be computed by the degeneracy rule. A complete table of char-
acters can therefore be written down as soon as the polynomials Q\(q) are
known. Tables of Q),(q) for partitions p, X of » = 1, 2, 3, 4, 5 are given in an
Appendix. Theorem 14 includes also explicit formulae for the degrees of all
the irreducible characters.

There is an extremely complete duality between the rows and columns
of the character table of ®„. The rule given in Theorem 14, by which the
characters are obtained from the basic characters, is in effect a dual degen-
eracy rule which involves the characters Xp OI the symmetric group ©„ in
place of the Q\(q).

I should like to express my gratitude to Professor P. Hall for permission
to use two unpublished theorems of his (Theorems 3 and 4) and also to Dr.
W. Ledermann, who read the manuscript and made many valuable sugges-
tions.

1. Notation, conjugacy classes, and class types. Let g = gi be the Galois
field GF(q) with q elements. Write %d = GF(qd) (d = l, 2, ■ ■ ■). We regard
each %d as an extension of 8 = Si. and we can think of the gd, for l^d^n,
as subfields of %* = %n\- The automorphisms of g* over g are the mappings

«->«*■ (aC 8*)
for r=0, 1, • ■ • , n\ — 1, the elements a of degree d (over §) are those for
which exactly d oi the conjugates

2
a, a', aq , . • ■ ■

are distinct, and the subfield %d consists of 0 together with all elements of
degree dividing d. (The zero element 0 is conventionally excluded from the
set of elements of degree 1.) The roots of an irreducible polynomial/(f) over
% of degree d^n are regarded as being in our universal field %*; they form of
course a set of conjugate elements

a, a", • ■ ■ , ««"

of degree d (unless f(t) =t).
Two matrices A, BC®n are conjugate in ©„ if and only if they are similar

over g (for which we shall write .4~P) in the usual sense of matrix theory.
Let/(<) =td — ad-itd~1— ■ ■ ■ — a0 be a polynomial over g, of degree d. Define
the matrices

1
1

U(f) = Ui(f) =      .,
1

ao    ai        • • • aa-i
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406 J. A. GREEN [November

U(f)     u
^(/)=    m u

■      U(j).

with m diagonal blocks U(f), and U is the identity matrix of Gd, and finally,
if X= [li, k, • • • , lp] is a partition of a positive integer k whose p parts,
written in descending order, are li = l2= • • ■ ̂ lp>0,

Uxif) = diag [Utl(f), Uh(f), ■■-, U,,(f)}.
The characteristic polynomial | tl — U\(f) \ is f(t)k. Let 4 £®„ have character-
istic polynomial

MM ,*w
fifi   • • • fif

where /i, ft, • • • , ftr are distinct irreducible polynomials over g, **^0
(i = l, 2, • • • , N) and, if di, d2, • • • , ds are the respective degrees of
fhft, • • • ,/at, 2Xi kidt = n. Then we have(2)

4 -diag [Un(fi), U„(f2), ■■■ , U,„(fN)}

where vi, v2, • • • , vn are certain partitions of ki, k2, • • • , kw respectively. By
convention 0 is the only partition of the integer 0, and in the formula above,
a term Uo(f) is to be omitted. We may denote the conjugacy class c of 4 by
the symbol

c = (fih •••/«■)•
For many purposes, however, we shall prefer the following more systematic
description of classes. Let E be the set of irreducible polynomials f=f(t) over
5, of degrees =n, excepting the polynomial t. Write d(f) for the degree of

fdF. The class c is described by the function vc(f) on E, whose value vc(f)
is^the partition (possibly zero) with which / is associated in the canonical
form of a matrix of c (as, for example, /< is associated with Vi in the case
above).

Let us write |p| for the integer of which v is a partition. Then we see at
once

Lemma 1.1. Let v(f) be a partition-valued function on'F. Then there exists a
class c of ®„ such that v(f)=vc(f) (each fdF) if and only if

(*) Cf. Jacobson, Lectures in abstract algebra, vol. II. The canonical form displayed there
differs from ours, in that the matrix which corresponds to our Um(J) (see Jacobson, p. 97) has,
in place of li, a dXd matrix whose coefficients are all zero, except for a coefficient unity in one
corner. However our matrix is similar to Jacobson's, provided that the roots of the irreducible
polynomial fit) are all distinct, which is certainly the case when the coefficients are in a finite
field.
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zZ I "(/) I d(f) = n.
We shall denote the class c by the symbol

c=(... /-</) • • • ).

By the latent roots, characteristic polynomial of a class c, we mean the
corresponding things for a matrix of c. A class c is principal if each vc(f) = {1}
or 0; alternatively, the characteristic polynomial F(t) oi c has no repeated
factors, so that the latent roots of c are all distinct. If F(f) has ra factors of
degree d (d = l, 2, ■ • • , n) we say c is of principal type p, p being the parti-
tion {l,*2r» • • • nTn} of w=ri+2r2+ • • • +nrn which has ri parts 1, r2 parts
2, • • • . A class c is primary if vc(f) =0 except for one particular/£ 7"; c has
the form (J") for some partition v. Primary classes (/*) and (g") (/, gCF) are
said to have the same type ii X =/x and d(f)=d(g).

In general, let c = ( • • •/"*» • • • )• Let d be a positive integer, and let v
be a partition other than zero. Let rc(d, v) be the number of fC F of degree rf,
for which vc(f) =v. Let pc(p) be the partition

{ lr,(l.»)2»-c(l!.') • • •   }.

Then two classes b, c are of the same type ii and only if pb(v) =pc(v) for each
nonzero partition v. For example, all the matrices

a

8   1 («, 8 G M(Si)),
/3.

are of the same type in ®8, although of course each new pair (a, 8) describes
a new class. Here p({l}) =p({2}) = {l}, and p(r)=0 for V9*\l}, {2J.

Let p(v) be a partition-valued function on the nonzero partitions v (p(v)
may take the value 0). The condition for p(v) to describe a type of ©„ is

(i) ZIpMIM =«•
For example, p(p) describes the principal type p if p(v) =0 (vr*{l}), and
p( {1}) =p. The number f («) of functions p(v) satisfying (1) is naturally inde-
pendent of q, and is the number of types of classes of ©„. For sufficiently large
q there will be classes of every type, but for small values of q certain types
may not be represented. For example, if 2 = 2, there is no class of principal
type {1*}, because there are no matrices

a

B
y

in which a, 8, y are in % and are distinct.
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The number t(n) appears as the number of rows or columns of a character
table of ©„. This is because the irreducible characters, which by a well-
known theorem of representation theory are the same in number as the
conjugacy classes, themselves collect into types in a corresponding way, and
the values of all the characters of a given type at all the classes of a given
type can be included in a single functional expression.

It is not hard to show that t(n) is the coefficient of x" in the power-series
expansion of

p(x)pip(x2)p2p(x3)"> ■ ■ ■

where pn is the number of partitions of n, and p(x) is the partition function
zZn-o PnX" = 1/(1 —x)(l —x2) • • • . We suppress the proof, because the result

is not required for our investigation of the characters of ®n, but give below
some values of t(n); these are most easily calculated with the help of this
formula.

n = 1    2    3    4     5        6        7

t(n) = 1    4    8    22    42    103    199.

For the number c(n, q) of classes of &n = GL(n, q), there is a similar gener-
ating function

00 00

zZ c(n, q)x" = jj P(xd)w(d-q),
n-0 d—1

where

■>»(d, q) = 4 Z H(k)qdlk
d k\a

is the number of irreducible polynomials/(f) of degree d over GF(q). We see
from this that for given n, c(n, q) is a polynomial in q with constant rational
coefficients.

2. Hall's polynomials. Induced characters. A module (V, ft) is an abelian
group V equipped with a set ft of endomorphic operators. We shall assume
also that ft contains the identity automorphism of V. Two modules (V, ft),
(VJ, ft') are equivalent if the abelian groups V, V are isomorphic (we shall
then identify V and V), and ft and ft' generate the same ring of endo-
morphisms of V. It is clear that equivalent modules have isomorphic sub-
module lattices, and isomorphic automorphism groups.

Let A be any nXn matrix with coefficients in %. Write Va = VA(%) for
the module which has V=Vn as abelian group, and for operators the scalar
multiplications g, together with A. Write V\= V\(q) = Ft/x(/)(g), where
f(t)=t, and X is any nonzero partition; we may also define V0(q)=0. It is
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clear that V\ is equivalent to Vu^t), where l = t—a (ctdiS) 1S any linear poly-
nomial over g- Next let /£ E have degree d > 1. The matrix U(f) generates,
in the algebra of linear transformations of Va, a field %d- We then see at
once that Fc/x(/)(g) is equivalent to V\(qd).

Suppose now that 4£®„ and that 4 is in the class c = (f?f!? • • -f^).
Matrices which are similar determine isomorphic modules, so we may write
Va= Vc in what follows, without ambiguity. Since 4—diag (4i, 42, • • • ,
AN) where Ai=U,i(fi) (i = l, 2, • ■ • , N), Vc is isomorphic to the direct
sum

VAl 0 VA, @ ■ ■ ■ e vAN;

and since fx, /*,-••, /w are distinct, this is the unique decomposition of Vc
into indecomposable characteristic submodules.

Write L(c), L\(q) respectively for the lattices of submodules of Vc, V\(q),
and let 4(c), A\(q) be the groups of automorphisms of the same modules.
We have now

Lemma 2.1. Ifc = ( ■ ■ ■/'<« ■ • • ), then
L(c) 9* II W«d(/)).

and

(IT *'w each °ase stands for direct product, in the usual sense of abstract algebra.)

This lemma shows that L(c), 4(c) depend only on the type of the con-
jugacy class c.

The group A(c) is just the centralizer in ®„ of an element Adc. Let a(c)
be its order, and let a\(q) be the order of 4x(<?); a\(q) is therefore the order
of the centralizer of the matrix U\=U\(f), where f(t)=t. It can be shown
that

a,(q) = <?'M+2»x i>*,_*,+1 (-)(3),

where &i = &2= • • • =^»>0 are the parts of the partition conjugate to X,
and £,+i=0 (see, for example, Littlewood [9]), and by

Definition 2.2. <j>r(t) = (1-*)(1 -t2) ■ ■ ■ (1-f) if r^ 1, <t>o(t) = 1;

(3) Hall [7]. This formula is easily obtained by considering the centralizer algebra C of the
of the matrix U\, whose dimension Frobenius has given by an expression (see, for example,
Wedderburn, Lectures on matrices, or Jacobson, Lectures in abstract algebra, vol. II) which may
be reduced to | x| +2n\. It is not hard to see that the quotient of C by its radical is the sum of
total matrix algebras of degrees ks—k2, k2 — k3, - - ■ , k„ respectively, and from this the order
ox(g) of the group ^4x(2) of units of C may be written down.
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Definition 2.3. If the conjugate partition of X has parts ki, k2, • • • , k„
then wx= zZ'-i C*,>

We have then

Lemma 2.4. If c = ( ■ ■ ■ f"u) ■ ■ ■), then a(c) = Jl/GF arU)(qd(-f>), where
a\(q) is the polynomial defined above, of degree |X| +2n\ in q.

We consider next the character x=«i o a2 o • • • o a* described in the
introduction. The character \p* of a group ® induced by the character \p oi a
subgroup § which has cosets

(2) $Gi = §,§G2, ■ ■ ■ (Gi, G„ ■ ■ ■ C ®)
is given by the formula (Frobenius [3])

^*(A) = JZ TKGiAG?) (A C ®)
*

summed over those cosets §G»- for which GiAGr1C&, that is, for which
®GiA = §Gi.

In our case the cosets (2) are in 1-1 correspondence with the different
chains
(3) F(0) > F(1) > • ■ • > F^-1' > Vw = 0

of subspaces of V= F(0), which have factors of dimensions Si, St, • • • , sk
respectively. If $£>GA=(qG, all the subspaces in the chain (3) which cor-
responds to §G are closed to A, which means that they are submodules of
VA. The matrix GAG"1 lies in § =§n„...,t, and if

An   Ai2 • • • Aih

A22 • • • A2k
GAG->= _   _ (AuC&.i),

Akk,

then the factor module F(<_1)/^(0 of VA is isomorphic to Vau (* = 1, 2, • • • ,
k).

Thus we get the following

Theorem 2. Let ai, • ■ ■ , ak be characters of ®M, • • • , ®,t respectively,
where si, • ■ • , sk are positive integers such that Si+ ■ ■ ■ +sk = n. Then the
value of the character aio ■ ■ ■ o ak of ®„ at a class c is

(4) (ai o ■ ■ ■ o ak)(c) = zZ g°i---ctai(ci) ■ • ■ ak(ck),

where the summation is over all rows c\, ■ ■ ■ , ck of classes respectively of
®«n • • • . ®«i> and icyck is the number of chains (3) of submodules of a
module F(0) = Vc in which V^-v/V-^ is isomorphic to VCi (i = l, 2, ■ • ■ , k).
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1955] CHARACTERS OF THE FINITE GENERAL LINEAR GROUPS 411

We remarked in the introduction that ax o • • • o ak can be defined if
ax, • • • , at are any complex-valued class-functions on ®,„ • • • , ®,t respec-
tively; it is clear that formula (4) still applies. We prove in the next lemma
certain statements which were made in the introduction.

Lemma 2.5. The binary product ai o a2 is bilinear, associative and sym-
metric, and cti o at o • ■ ■ o ak is equal to the k-fold product of oti, a2, • • ■ , a*
in any order.

That the binary product at o ct2 is bilinear is clear; that it is associative
follows from the equations

Zd        e ^—\     c       e c
gcxc2gdC3 =   2—1 gciegc^Ci =  gcxc2et

d ,

which results from counting the gJlC2C| chains F(0)> F(1)> F<2)>0 of sub-
modules of F(0) = Vc which have factors isomorphic to Vcv VCt, Vc, respec-
tively, in two ways: first we take all such chains for which F(0)/ F(2)= Vi, and
then sum over classes d oi ®,1+,,; for the second way we sum, over classes e of
®,,+,„ the number of our chains in which F(1,= F«.

This formula shows in fact that ax o (a2 o a3) = («i o a2) o az = ax o a2 o a3,
and similarly, we can show that «iO • • • o a* is equal to any &-fold product of
«!,•••,«* in that order. To complete the proof of Lemma 2.5, we must show
that «i o a2=at o ax. Let 4 belong to the class c of ®,l+,s. It is well known
that the transpose 4' of any square matrix 4 is similar to 4, because tl—A
and tl—A' (t is an indeterminate) have the same elementary divisors. This
means that VA=.VA'. But VA> is isomorphic to the "dual module" Wa of Va,
whose elements are the linear mappings of Va into %, and whose operator set
consists of g and the operator 4' defined by

(wA')(v) = w(vA) (w d Wa, v d Va)

(we have used the same symbol 4' for this linear transformation as for its
matrix with respect to a suitable basis of Wa)- Using the familiar correspond-
ence between the subspaces of a vector space and its dual, we find that each
chain

Va > Fa) > 0

with factors isomorphic to Vcv Vcv respectively, corresponds to a chain

0 < W<» < WA

with factors again isomorphic to Vn, Vc,. Thus gcClCi = g^, and this proves
that ax o a2 =a2 o ax.

P. Hall [7] has defined, for any partitions Xi, X2, • • • , X*, X such that
I Xi I -f- (X21 -|- • • ■ +|X*| =|X|, and for any prime-power q, the function
gMi--•**(<?). as the number of chains (3) of submodules of V\ in which the
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factor F(i_1VF(<) is isomorphic to Fx,- (i = l, 2, • • ■ , k). We shall make use
of the following two theorems from this paper:

Theorem 3. gx,x2--.x4(2) « a polynomial in q, with rational integer coeffi-
cients.

For a given partition X, let {XJ represent the Schur function (see Little-
wood [9]) in an infinite (or any sufficiently large finite) number of variables
fi, h, ■ • • . The product {Xi} {X2} • ■ • {X*} can itself be written as a linear
combination of Schur functions; let c\1\i...\lc he the coefficient of {XJ in this
expression. We have then

Theorem 4. If c^...^ 9* 0, then g\v..\t(q) has the leading term
cV--Xifc2nX~"Xl "Xi! oui tf cXi--x* = 0> ^e« gx,--Xi(?) vanishes identically. (n\
is given by Definition 2.3.)

(We shall use from this theorem only the fact that the degree in q of
fv-x^g) is «x—»x,— • • • -«x*, unless g\...\k(q) vanishes identically.)

The following is a very brief sketch of the proofs of these results. Hall in-
troduces for each partition X a symbol Y\ and among these a multiplication

Txr„ = zZ gx>,.
V

(It will be seen from the proof of Lemma 2.5 that it is enough to prove Theo-
rems 3 and 4 for the gx„-) If we write £m = r(imj, and $x = Ei,E*, ■ ■ ■ Eki (in
the notation of Definitions 2.2 and 2.3), we find

$x = I\ + JZ cxX,

in which the C\„ are zero unless p. is a partition of n= |X| which precedes X
in the usual ordering of partitions.

Next, the CxM are polynomials in q with rational integer coefficients; this
is proved inductively by first calculating explicitly the coefficient gx,U»>! of
Tp in Y\Em (for given partitions X, p and given integer m). This implies that
the Tx can be expressed in terms of the 4>M with coefficients which are poly-
nomials in q. Theorem 3 now follows at once, for we have 4>x4>„ =4>„ where k is
the partition whose conjugate has for its parts those of the conjugates of X
and p, taken together.

Theorem 4 results from relating the possible structures of a module V
which has a chain (3) in which F"-"/F(i' = Fx, (t = l, 2, ■ ■ ■ , k), with the
law of multiplication of the Schur functions {Xi}, • • • , {X*}.

From Lemma 2.1 we have at once

Lemma 2.6. If c = ( ■ ■ •/"<" • • • ), and if c, = ( • • •/'«« • • • ) (i = l,
2, • • • , k), then
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g«ic,...ct =   II ?',(/) ■■■na)(<ld(f)).
f&F

We conclude by considering two special cases of (4). In the first of these
(which comes most easily direct from Frobenius' formula \f/*(A)
— Y^PiCiAGi1)), 1 denotes the identity matrix of any appropriate degree.

Lemma 2.7. Ifcti, ■ • • , ak are class-functions on ®81, • • • , ®,t respectively,
and if a =cti o • • • o a*, then

IrW •••+n(g) m m
lM«) • • • lr-.*(?)

wAere*»(2) = (2"-l)(a"-1-l) • ■ • (g-l) = (-l)"0.(g).

The proof follows from the easily verified facts, that gn=^n(q) qCn-» is
the order of ®n, and that the order of §n...,t is g,, ■ • • g,kq', where

5=2 SiSj.
i<i

Lemma 2.8. If cti, ■ ■ ■ , ak, a, are as in Lemma 2.7, and if c = (fif2 • • ■ fN)
is a principal class of ®„, then a(c) can be calculated from the values of <Xi(d)
at principal classes c,- only; in fact

«(<0 = Y «i(ci) • • - ak(ck)
summed over those rows (ci, ■ ■ • , ck) of principal classes of ®,„ • • • , ®,t,
respectively, which are such that each of the polynomials fi, ft, ■ • • , /y occurs
in exactly one of the c;.

For Vc is the direct sum of characteristic submodules F,-= Vv(/{) (* = 1,
2, ■ ■ ■ , N); each Vi is irreducible, and so the only submodules of Vc are sums
of subsets of Vi, V2, ■ • • , Vn- From this can be seen that each gj,...ct is
either 0 or 1, and is 1 only if (ci • • ■ ck) has the properties mentioned at the
end of the lemma.

3. Brauer's theorem. The characters Ej[i>]. In this section we first prove
the Theorem 1 stated in the introduction, and then construct with its help a
large number of characters of the groups ®n.

Brauer's Characterisation of Characters (Brauer [l]). 4 c/cm-
function x on a finite group & is a character of ® if and only if the restriction
of xto d. is a character of @, for every elementary subgroup S of ®.

A subgroup S of ® is elementary if it is generated by an element x£®,
together with a Sylow ^-subgroup ^3 of the centralizer of x in @, p being any
prime which does not divide the order of x. Thus S is the direct product of
ty with the cyclic subgroup generated by x.

Proof of theorem 1 (4). We may assume that the homomorphism

(4) This theorem, and its proof, were suggested by one of Brauer's own applications of his
characterisation of characters (Brauer [l, Theorem 12]).
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0: «->«<, (a C M(g*))

is in fact any prescribed isomorphism of M(%*) into ilf(&). For otherwise,
since M(%*) is cyclic, we have 0=</>f where <f> is the prescribed isomorphism
and i is some integer. (By </>'" we understand here the function defined by
<p'(a)=<j>(ai).) Then we have only to apply the theorem (supposed proved
for <f>) to the symmetric function S(t\, 4, • • • , 4).

Suppose %* has characteristic p and contains p° elements, and let K be
the algebraic number field obtained by adjoining the (pa—l)th roots of
unity to the rationals. For any prime ideal divisor p of p in the ring 7 of inte-
gers of K, we have 7/p^g*; let us identify 7/p with g*. Let R be the group
of (pa— l)th roots of unity in 7C, then distinct elements of R have distinct
residues modulo p. Since we may choose the isomorphism 6 arbitrarily, we
assume that it is the inverse of the isomorphism k—»ic = /c + p (nCR) of R onto
Af(,5*), so that a~o=a for each a6M(8*).

Our theorem is true if the order g of ® is not divisible by the characteristic
p of %*. For in this case there is a complex representation Ro(x) of ® with
coefficients in 7, such that

Rojx) = R(x), all x C ®

(see for example Speiser [ll, p. 223]). The latent roots of i?0(x) are complex gth
roots of unity k,(x), which can be arranged so that

Ki(x) = £,(x) (i = 1,2, ■ ■ ■ ,).

On the other hand £,(x)0 is also a complex gth root of unity such that

£>(x)0 = S,(x),

by our remarks above. Since p does not divide g, no two distinct complex gth
roots of unity are congruent modulo p (see for example, Brauer and Nesbitt,
[2]), and therefore

£,(x)0 = Ki(x) (i = 1, 2, • • • , »).

This shows that the £,(x)0 are the latent roots of a complex representation
i?o(x) of ®, and it follows by a well-known theorem (Frobenius [4]) that any
elementary symmetric function of the £<(x)o is a (proper) character of ®.
This proves our theorem in the present case.

Suppose now that ® is an arbitrary finite group. Any elementary subgroup
(5 of ® can be written as a direct product S&Xft of subgroups §, $ of ®,
where ^ has order prime to p, and $ is a £-group. By what we have proved,
X restricted to !£> is a character of §. On the other hand, if x£§ and yCft,
then
(5) x(xy) = x(*)-
For i?(y), whose order is a power of p, has all its latent roots equal to 1. R(x)
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and R(y) commute, so they can be transformed simultaneously to triangular
matrices; we can assume that

'&(*)       * ) ri     *•
R(x)= \ ,      R(y) =     " • _     .

.   0        ' Ux)\ 10     ' 1.
Thus R(xy) =R(x)R(y) has latent roots £i(«), • ■ ■ , £B(x), which proves (5)
(cf. Brauer and Nesbitt, loc. cit.).

Suppose for a moment that x denotes an arbitrary proper character of §.
We may extend x to JQXSt by (5), and this extension is a character of t&XSt,
because xy—>x is a homomorphic mapping of § X St onto §. By linearity this
result applies to any character x of §, and therefore to our present case. We
have now shown that x is a character on every elementary subgroup (5 of
®, and so by Brauer's Theorem, x is a character of ®.

We take R to be the defining representation E(4) =4 (4 £®„) of ®„, and
g* = GE(gn!) as in §1. Let 6 be a fixed isomorphism of M(%*) into M(&). 6 is
a generator of the character group of the cyclic group M(%*), so that 6 has
multiplicative order gnl —1. The restriction of 8 to M(%d) (l^d^n) is a gen-
erator of the character group of M($d), and so 6 has order qd— 1, as function
on M(%d).

If cti, ' • ' , an are the latent roots of 4 E®„, we have by Theorem 1 that

44) = 2>*(«0 ••V(«,),
the rth elementary symmetric function in 0k(ax), • • • , c7*(an), is a character
of ©„, for any integer k, and any positive integer r^n. The case r=n gives
the linear character 0*(det 4); we get q—1 different linear characters in this
way, and it will later appear that these are all the linear characters of ®„
(except in the case » = g = 2).

Let us consider the value of the character o\ at a principal class
c = (fift ■ ■ ■ fs) of ®n;/i, ft, ■ • • ,/jv are distinct polynomials from E whose
degrees d\, dt, ■ • ■ , dx add up to n. From each/,- (i = 1, 2, • • • , N) choose a
single root y,-, so that yf (u = 0, 1, • • • , dt—l) are all the roots of/,-. Write
ti = Bk(yx) and ^ = 6k(yf). We shall consider tf, if to be distinct "variables"
if and only if u^v (mod di); we have then a set of n variables

q      9» a^i-l
'l,   'if  *1 »  *  '  *  » 'l ,

a    «2 a**-1
.,. h, t2, t2 , • • • , t2       ,
(o)

,
a    a* a*tt—'

for, for, for, • • • , for
By its definition, crf(c) = /Jm, the sum of the C„,r monomials m of degree r
in these variables, which contain each variable at most once.
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If P is a set of permutations of the variables (6), and m is a monomial,
write Pm tor the sum of the different monomials which can be obtained from
m by application of elements of P. Let Dt be the cyclic group of order di
generated by the permutation which takes tf to tf (u=0, 1, • ■ • , di — 1)
and leaves fixed the variables in the other rows of (6). Let T be the~subgroup
generated by Di, • • ■ , DN; it is the direct product of these groups.

If we collect the terms m of o$(c) = zZm into sets of monomials m transi-
tive under T, we get

(7) 0-1(6) = zZM,
summed over all sums M of such T-transitive sets. Each M in (7) has the
form M= Tm, for some m, and if we write

m = mim2 ■ • ■ m^,

mi being the product of the factors in m which are from the ith row of (6)
(mi = l if there are no such factors), it is clear that

N
(8) M = Tm = II Dinii.

<-i
To study a single factor 7>jW, of (8) let us write for the moment ti = t,

di = d, m,i = m and Di = D. m has the form

m = taitai •••/<■* = tA, say,

where A stands for the (unordered) set (ai, ■ ■ ■ , a*) = (gri, • ■ • , qn) of h^r
powers of q. Because tq°=tqV if u=v (mod d) we think of T\, ■ ■ • , rh as residues
(mod d), and as such they are distinct. Such a set A of powers of q, in which
we identify qu and q" if u = v (mod d), we call a d-set, and we say A is primitive
if all the d-sets

(9) A, Aq, ■ ■ ■ , Aq"-1

are distinct. In general a d-set A is not primitive. Let 5 be the least positive
integer for which Aq* = A; then 5 divides d and there are exactly s distinct sets
(9), namely

A, Aq, ■ ■ ■ , Aq'-1.

Because A = Aq", we can collect the h members of A into g = hs/d subsets of the
form

qpl(l, q", ■ ■ • , ^(W')-1'),

q"«(l, q*, ■ ■ ■ , q'C-oi*'*-1'*),

and now B = (gpi, • ■ • , qp«) is a primitive s-set.
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Definition 3.1. If s, e are positive integers, k is any integer, and ydi§*,
let

Ts,e(k:y) = 0*(y+/+--.+s(*-1>') +o«k(y1+*+■■■+«(e-1),)

+ . . . + Sa»-^(7l+a»+...+a(e"'1)8)

This function, which is fundamental in the present work, will appear only in
cases where the degree of 7 divides se (that is, whenydM(%se)). In this event
T,,e(k:y) = TSie(k:yq), so that Ts,e(k:y) is really a function of the irreducible
polynomial/which has y as a root. We can therefore write Ts,e(k:y) = Ts,e(k:f)
without ambiguity.

We have from the definitions of A and 5,

Dm = tA + tA" + ■ ■ ■ + t^""1.

Taking B to be the primitive 5-set derived from A above, and writing
kB = k(qpl + • • • +qp'), this gives

(10) Dm = T.,d,.(kB:f),

where/=/.• is the polynomial from (/i/2 • • -/at) which is under consideration.
It is clear that B could be replaced by any of the sets Bg, Bg2, • • • with-

out altering the right-hand side of (10). We. shall call a pair (5, B) in which
(i) 5 is a positive integer, and
(ii) B is a primitive 5-set,

an index. Two indices (s, B), (s', B') are considered equal if and only if 5 = 5'
and B =B'gu for some integer u. The pair (1, 0), where 0 stands for the empty
set, will be called the zero index. Except when this is expressly included,
"index" will mean "nonzero index."

We have now from (8) and (10)
N

(ID M=   JlT.{,i{/.i(kBi:f<)
.'-1

where (5,-, B,-) is an index, possibly zero, such that 5,- divides di
(i = l, 2, ■ ■ ■ , N). If |Bj| denotes the number of elements in B„ then
T,i,dil,i(k'Bi'.fi) is of degree d,-|B,-|/s< in the variables (6).

Let us define, for every pair v, s of positive integers, and for every integer
k, a function If [v] on the principal classes of ®s„, as follows. Let (gxg2 ■ ■ ■ gM)
be a principal class of ®s„; gi, g2, ■ • • , gM being distinct polynomials from E.
Then

* M
(12) I.[v](gigt • ■ ■ gM) = II T,,di9iU,(k:gi)

•=.1

if 5 divides d(gt) (i = l,2, ■ ■ ■ , M), and is equal to zero otherwise.
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Let c(s, B) be the set of those/< occurring in c = (fift ■ • -/at), which are
such that (s^ B.) in (11) is a given index (s, B), and write v(s, B) = l/s (sum
of the degrees of these /<). v(s, B) is an integer because each Si divides di,
and if we use the symbol 0(5, B) to denote also the principal conjugacy class
determined by the/,- which it contains, c(s, B) is a class of ®W(5|b)- We can
now write

(13) M=Ul™[v(s,B)](c(s,B)),
(«.B)

the product being taken over all (nonzero) indices (s, B), with the convention
that a factor for which v(s, B) =0 is equal to unity.

We have shown that every term M of the sum

(7) o-l(c) = YZM
determines the following pair of functions:

First, we have the non-negative integer-valued function v, defined for each
index (s, B). This satisfies

(VI) £ v(s, B) I B I   = r,
(«.B)

and
(V2) £ sv(s, B)^n;

(«.B)

the first equation expresses that each monomial in M is of degree r in the
variables (6), while the left-hand side of the second is the sum of the degrees
di of those polynomials/,- for which (si, B,)^0, in (11).

Secondly we have the function c = c(s, B) whose values are subsets of
(/1/2 • • -/at) (or, equivalently, the principal conjugacy classes which these
subsets determine). For this we have

(CI) c(s, B) is a class of ®W(,,b) (each (s, B)),
(C2) c(s, B), 0(5', B') are disjoint unless (s, B) = (5', B'), and
(C3) s divides the degree of each member of c(s, B) (each (s, B)).
Conversely, such a pair of functions v and c determines, by means of

(13), a term M of (7).
Now suppose that for each v satisfying (VI) and (V2), we define a class-

function 4>, on the principal classes c of ®„ by

(14) $, =  {rUfKs.B)]} o7m
l(»,B) 1

where  JJ denotes the o-product, 7m is the identity character on ®m, and

m = n — \Z sv(s< B).
(».B)
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By Lemma 2.8 this function is well defined on principal classes c, because we
have defined the values of 7*[d] at principal classes.

The purpose of the foregoing analysis is the proof of the following

Lemma 3.2. For each principal class c = (fif2 ■ ■ ■ fy) of ®n,

(15) {2>}to = »k).
the summation being over all functions v which satisfy (VI) and (V2).

Proof. Lemma 2.8 shows that

Mc) = £ \ II I? Ms, B) ](c(s, B))l ,
o     M.,B) /

where the sum is over all functions c which satisfy (CI), (C2), and (C3).
Thus the left-hand side of (15) is

Zill    7*Bk*,B)](c(5,B))l,
v, o   l(,,B) /

taken over all pairs v, c which satisfy (VI), (V2), (CI), (C2), (C3). By (13).
this is exactly

ZZM = c\c).
We can now prove

Theorem 5. Let d, v be positive integers, and let k be any integer. Then there
is a character I%[v] of ®<j„ which has on the principal classes c the value defined
by (12).

Proof. This is by induction on the pair (v, d). We shall say (v, d) < (v', d')
if either v <v', or v=v' and d<d'. This is a well-ordering of the set of pairs
(v, d) of positive integers. For the first pair (1, 1) the theorem is true, for

7?[1](«) = e*(a) (*CM(%))
is a character of ®i = Af(3i).

Take n = dv, r=v in Lemma 3.2. Each 4>„ on the left-hand side of (15) is a
o-product of 7jB[t/] (together possibly with some identity character 7„—see
the definition (14) of 4>r) for which

»' ^ v,    and   s'v' ^ dv

by (VI) and (V2) respectively. Therefore $v has, as factors, only such I$[v']
as satisfy (v1, s') g (v, d), and equality here can occur only if v is the function
such that v(s, B)=0 unless (s, B) = (d, q°), while v(d, q°)=v. In this case,
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Therefore if we have found characters 7*'[f'], for every (v', s')<(v, d),
which take on principal classes the values given by (12), we can use formula
(15) (with n=dv, r=v) to extend the function l\[v] to the whole of ®d„.
Because the o-product of characters is again a character, and because o-J is a
character, l\\v\, so defined, is a character of ®dv-

Example. Take d = l, and we are led to consider the equation (15) in the
case n =r =v. Any function v(5, B) on the left must satisfy, by (VI) and (V2),

Y | B | v(s, B) = v,    and      Y sv(s, B) g v.
(«,B) (s.B)

However, B is a primitive 5-set, so that |B| 5^s, with equality only if 5 = 1.
Therefore v(s, B) =0 unless (s, B) =(1, g°), and for this index we must have
v(l, q°)=v. Equation (15) now reads

Ii[vl = a;,
and so we find that Ix[v] is one of the linear characters of ®„.

4. Uniform class functions. In this section and the next we are con-
cerned to show that the characters Ej[fl] are functions on ®rf„ of a special
sort, called uniform functions. One result of this is a rule for calculating the
value -/~J[i>](c) at any class c; another is that it becomes very easy to compute
the scalar product of two such characters.

Definition 4.1. If X is a partition with p^l parts, let k(\, q)=<j>p-i(q)
(<t> is given in Definition 2.2).

Definition 4.2. If X, p are partitions of n, and if p = (l"2r2 • ■ • ), let

(?p(?) = Yg^f-(9)k(\i, q)k(\t, q) ■ ■ ■ ,
the sum being over all rows (Xi, X2, • • • ) of partitions, such that Xi, • • • , XM
are partitions of 1, Xri+i, • • • , Xri+r, are partitions of 2 etc.

There are close connections between these polynomials Q^(q) and the char-
acters xi °f the symmetric group @„, and in §6 we shall discover certain
"orthogonality relations" among the ££. For the moment we content our-
selves with two elementary observations.

Lemma 4.3. The degree in q of 0$(q) does not exceed n\.

This follows from Hall's Theorem 4, together with the fact that the de-
gree of k(v, q) does not exceed ny.

If p = (lri2r2 • • • ), a = (l'12,i • • • ) are partitions of /, m respectively, let
p+a denote the partition (l"+»i2ri+'s • • • ).

Lemma 4.4. If v is any partition of n, then
V ^-\       ¥ X      ft

Qi*' - 2^1 g^QnQct
summed over pairs X, p of partitions respectively of I, m.
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Proof. Suppose that «i, a2, ■ ■ ■ and Bi, /32, • • • are any two rows of
partitions, such that |ai| +|a2| + • • • = 1, and \Bi\ +\82\ + ■ • ■ =m. Then
we have the identity

(16) \Z     g\?(q)gala1...(q)g!iJfit...(q) = glw-Mriq).
|X|-J,|M|-m

For the right-hand side of (16) is the number of chains

(17) F > F(1) > F<2> > > IF > Wm > W™ > • • • > 0

of submodules  of   V=V, which have factors respectively isomorphic  to
F„„  Vav ■ ■ ■ ,  Vpv  Vp„ • ■ • . The left-hand side is the sum for different
pairs X, p of the number of chains (17) in which V/W=Vx, IF=FM.

Thus

zZ&>»QpQ*> = zZg"<'iat...0lh...(q)k(ai,q)k(ai,q) • • • k(Bu q)k(82, q)

and this equals Qp+„, in view of the fact that the Hall polynomial gxixs--- is
symmetric in the suffixes Xi, X2, • • • (this follows by induction from the
formula && = && proved in §2).

We may observe that Lemma 4.4 still holds if the k(\, q) are replaced by
indeterminates fa. Ii p= {l,12r2 ■ • • } is a partition of n, there is a principal
type of class of ©„, represented by

C =  (/ll • • • /lr,/21 • • • ftrt • • ■ ).

ftti, ■ ■ ■ , fdrdCF being distinct polynomials of degree d (d = l, 2, • • •).
We introduce a set X" of variables xfii=xn, called p-variables. For each posi-
tive integer d there are rd variables x<a, • • • , XiU, and each Xdi is said to have
degree d(xdi) =d (i = l, 2, ■ ■ ■ , rd). Define a further set Sp of "p-roots"; these
are n variables, d of which are called the roots of xdi, and are written

q qd-l

kdi,  Zdi, ,  hdi      ,

(i = l, 2, ■ ■ ■ , rd; d = l, 2, ■ ■ ■). The p-roots are to be thought of as the
latent roots of a "typical class"

c = (xn • • • xirix2i • • • x2r2 ••••).

Definition 4.5. A substitution of X" is a mapping a of X" into F such that

(SI) d(xa)    divides    d(x),    for each    x £ X".

We apply a to S" as well, by the following convention; for each x^CX',
choose any root 7^- of xdia, and define ^dia to be y\\ (w=0, 1, ■ • ■ , d — 1).
(We shall use this notation only in contexts where it is irrelevant which root
ydi is chosen.)

Definition 4.6. Substitutions a, a' of X" are equivalent if there is a de-
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gree-preserving permutation (p of X" such that (pa=a'. A class of equivalent
substitutions is called a mode of substitution.

Let a be a substitution of X", and let fdF have degree d(f) —d. For each
positive integer i, let rt(a,f) be the number of xdX" such that d(x) =id and
xa =/. Then let p(a, /) be the partition

p(a,f) = {l'-Ka./^C"./) • • • }.

We have immediately

Lemma 4.7. a, a' are equivalent substitutions of Xp if and only if p(a, f)
=p(a',f) for each fdF.

Thus if m is the mode of a, we can write p(a, f) =p(m, f) without am-
biguity.

It is clear that | p(a, f) \ d(f) is the total degree of all the p-variables which
are mapped into/by a, and consequently Yf£F |p(«, f)\d(f) = \p\ =n. The
converse of this is

Lemma 4.8. Let ir(f) be a partition-valued function on F for which

Y  | t(/) | d(f) = n.
t&F

Then there is a unique partition p of n, and a unique mode m of substitution of
X, such that p(m,f) =ir(j), each fdF.

Proof. Let tt(/) = {l"</>2«<'> • ■ • }(fdF). Define p = {1"2" • • • } by
fd = Y M/)

summed over the pairs (i, f) (i is a positive integer, fd F) for which id(f) =d
(d = 1, 2, • • • ), and then m is the mode of any substitution which takes, for
each fdF, exactly pi(f) oi the p-variables of degree id(f) to/.

Definition 4.9. 4 p-function U^x") = Up(xn, • • • , xXn; x2x, • • • , xtr,;
• • • ) is a function in the p-variables which takes, for each substitution a of

X", a complex value U„(x"a) = Up(xxxa, • • • , xXria; x2xa, • ■ • , x2ria; ■ ■ ■ ),
and is symmetric in each set XdX, • • • , xATi (d = l, 2, • ■ •); in other words
U^x^a) = Up(xl'a') if a, a' are equivalent. We write Up(xpa) = U„(x"m), if m
is the mode of a. Up is in fact just a complex-valued function on the set of
modes m of substitution of X".

In practice it is often convenient to express Up in terms of the p-roots. We
shall write

U,(e) = U,($n, ■ ■ ■ , fa„; £«, • • • , fc„; • • • )
for Up(x'), and, if ydidM( %d) is a root of xdt a (i = l, 2, • • • ,rd;d = l,2, • ■ ■),
we define

U„(^a) = Upfrm) = 17,(711, • • • , yiri; 721, • • • , 7zr2; • ■ • )
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to be U,(x"a). Conversely if we have a function U„(yn, ■ • • , 7iM; 721, • • • ,
72r2; ■ • • ) which takes a complex value whenever ydiCM($d) (t = l, 2, • • • ,
rd; d = l, 2, ■ ■ • ) is symmetric in each set 7<a, • • • , ydTd (d = l, 2, • • • ) and
is unaltered if any yd, is replaced by any conjugate, then the equation
UP(^pa) = U^xfa) can be used to define U^x'a) unambiguously, and we
may regard Up as a p-function.

Example. Let p = {22}. There are two p-variables x2i, x22 each of degree 2.
Then

£7p(x2i, x22) = C/pfei, $22) = T2,i(k: £2i)r2,i(&:£22)

= {0*&i) + 0«*ttii)} {«*(&») + *«*(fci)}
is a p-function, for clearly it gives a well-defined complex value c7p(£21a, i;22a)
for each substitution a, and equivalent substitutions give the same value.

Definition 4.10. Let c = ( • ■ ■ f*cU) • • • ) be a class of ®n, and let p be a
partition of n. Then a substitution of the p-variables into c is a substitution
a of X' which satisfies

(S2) |p(«,/)|   =  \v.(f)\ (each f CF).
It is clear that if m is a mode of substitution into c, it is equally a mode of
substitution into c', where c' is any class for which

I ".'(/) I   =  k(/)| (each fC F).
When this is the case we write c«c', and say that c, c' are isobaric. A given
mode of substitution defines, by (S2), a unique set of isobaric classes.

Definition 4.11. If p={l"2rl • • • }, let zp = lriri!2r2r2! • • • , and
wf=rd r2\ ■ • • .

Definition 4.12 (Definition of uniform function). For each parti-
tion p of n, let there be given a p-function U,,(xp). Then the uniform function
U=(Uf) on ®„ is the class function defined at the class c by

(18) U(c) = zZzZQ(™, c)Up(xpm)
p      m

summed over partitions p of n, and all modes m of substitution of X" into c;
and

(19) Q(m,c) = Jl-^~Q':Z)(qda)).
/Ef Zpimj)

The functions L^x') are called the "principal parts" of U, U„ being the
"p-part." Formula (18) is called the degeneracy rule.

Examples. (1). Let c = (fn ■ ■ ■ fujn •••/**•••) be a principal class of
type p= {lrl2^, • • • }. There are no substitutions of X' into c, unless o-=p;
there is exactly one mode of substitution of X' into c, namely that repre-
sented by
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xdi—>fdi (i = 1, 2, • • • , r;d = 1, 2, • • • ).

Thus (18) gives (7(c) = Up(fxx, • • ■ ,/„.;/„., • • • ,/»„; • • ■ ). (2) Let c be the
class of the identity element of ©„, so that vc(f)=0 unless f(t) =t — l; while
vc(t — 1) = {ln}. The only mode of substitution of X' into c is that repre-
sented by

xdi-> I - 1 (i = 1, 2, • • • , rd; d = 1, 2, ■ • ■ ),

and for this, p(m, t — 1) =p. So we have

U(l) =   Y -Qlin\q)Up(l, • • • , 1; 1, • • • , 1; • • • ).
|p|=n    Zp

Definition 4.13. A uniform function U whose principal parts are all zero
except for Up is called a basic uniform function of type p.

We have at once

Lemma 4.14. 4wy uniform function U is the sum Yi> Up of basic uniform
functions U" of types p(\p\ =n).

5. Properties of uniform functions.

Theorem 6. If U=(UP), V=(VP) are uniform functions on ®„, and X, p
are any complex numbers, then \U+pV is a uniform function on ®„.

The proof is immediate, we take \Up+pVp as the p-part of \U+p.V.

Theorem 7. If U, V are uniform functions on ®OT, ®„ respectively, then
U o V is a uniform function on ®m+n.

Proof. By Lemma 4.14 and Theorem 6 it is enough to show this for basic
uniform functions U, V. Suppose that U, Fare basic of types p= {ln2r2 • ■ ■ }
and a = {l'^*2 • • • } respectively, and that Up(x") is the p-part of U, and
Va(x") is the <r-part of V. Write t= {l"2'2 • • • } for the partition p-f-cr of
m+n.

A distribution ir will mean a 1-1 mapping of I'WI' onto XT which pre-
serves the degree of each variable; ir, ir' are equivalent if <j>ir—ir' for some
degree-preserving permutation <j> of X'UX" which leaves each of the sets
Xp, X" invariant. An equivalence class p of such distributions may be called
a mode of distribution of XpVJX" into XT. We shall prove

Lemma 5.1. If U, V are basic uniform functions of types p, a respectively,
then U o V is a basic uniform function of type r=p+a with r-part

(U o V)r(x') = Y Up(x>p)V.(x°p),
p

summed over all modes p of distribution of Xp\JX° into Xr.

Thus for general U=(UC,), V=(V„), the r-part of U o V is
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(20) (UoV)T(x*)=     zZ     zZU„(x"p)Va(x'p).
P,e,P+<"*T     V

Formula (20), less precisely described, is just Lemma 2.8 in the case k = 2,
ai = U, a2= V, with c the "typical r-class"

C =  (Xn • • ■ XitlX2l • • ■  x2h • • • )•

Proof of Lemma 5.1. Let c = ( • • ■/"(/) • • ■ ) be a class of @m+„. By
Theorem 2 and the degeneracy rule (18),

(UoV)(c)= zZ g'lClU(ci)V(c2)

(21) C"C2
= zZ    zZ gCc1ciQ(mi,Ci)Q(m2,c2)Vp(xmi)Ve(x°m2)

Cj,C2   mi,m%

summed over all classes C\, c2 of ®m, ®n respectively, and all modes mi, m2 of
substitutions of X", X" respectively into C\, c2.

If mi is a mode of substitution of X" into c\, it is equally a mode of sub-
stitution of X" into any class c{ isobaric to ci, and with this in mind we can
write (21) as

(22) (i7oF)(c)=   zZ R(mi, m2)U p(xpnii)Va(x°m2),

summed over all pairs mi, m2 of modes of substitutions respectively of X", X";
and

R(mi, m2) = zZ^      g4c£>(mi, c[)Q(m2, c2)
c[~ ci,cj~ <=2

if «i, mi are modes of substitutions into C\, c2 respectively.
Write ni(f) = \pCi(f)\  (i = l, 2; fCF). By (19) and Lemma 2.4, we have

R(mum2) =  II IZ g'n*i(q     )
(2,. /£*■  lnl-»i(/).l»!l-«j(/)

1 n'1        r  da\n"t        (   d{,)\
-Vp^l./)(q      )Y"{«'2,f)\q       )■

%P(ml*f)Z<r(m*>f)

What we require to show is that (U o V)(c) is equal to

zZ Q(m< c)(U o V)T(xrm) = zZzZ Q(™, c)Up(x"pm)V<,(x'pm) = F, say,
m m      p

the last summation being over modes m oi substitution of XT into c, and over
modes p of distribution of I'UI" into XT.

Ii a, «i, a2 are substitutions of the respective modes m, mi, m2, then there
exists a distribution ir such that
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ax = tea (restricted to Xp),    and
(24)

a2 = ira (restricted to X"),

if and only if

(25) p(mi, f) + <r(m2, f) = r(m, f) (each fdF).
With given mi and m2, equations (25) determine m (Lemma 4.8), and the
number of modes p of distributions ir which satisfy (24) is easily found to be

S(mi, m2) = n   __I_ZL-
S&F     WP(.mx,S)Wc{mi,f)

(wp is given in Definition 4.11). However this number is the number of terms
Q(m, c) Up(xppm) V„(x"pm) in Y, for which Up(x'pm) = Up(x<'mx), and Vc(x"pm)
= V<,(x'm2), so that the coefficient in Fof Up(xl'mi) Vc(x'm2) is

S(mh m2)Q(m, c) = T(mi, m2), say.

If we apply Lemma 4.4, together with (25), to the expression (23) for
R(mi, m2) we find with little difficulty that T(mi, m2) is the same as R(mx, m2).
Thus comparing Y with (23) we have F=(7o V)(c), and the lemma is
proved.

As far as the last two theorems are concerned, the nature of the k(K, q)
which appear in the definition of Q^(q) is irrelevant; in Lemma 4.4 we could
replace the k(\, q) by indeterminates k\. Our next theorem, however, which
is the link between uniform functions and the characters Ej[z>] obtained in §3,
depends essentially on the definition (4.1) k(K, q) =<pp-i(q).

Theorem 8. Let S(yi, y2, ■ ■ ■ , yn) be a function symmetric in 71, 72, ■ • • ,
7„ which takes complex values whenever 7\, y2, ■ • ■ ,y„dM(%*). Then the class-
function S(c) on ®», whose value at a class c with latent roots 71, 72, • • • , 7»
is defined to be

S(c) = 5(71, 72, • • • , 7„),

is a uniform function on ®„, with principal p-part

■SP(/) = S(£, £2, • • • , £n),

where £J, 8, • • • , {{J are the p-roots in any order (p is any partition of n).

Proof. We have to show that for the class c = ( • • • /"(/) • • • ),

S(yh ■ ■ ■ , 7n) = EZCk c)Sp(k"m),
p      m

7i, • • • , 7n being the latent roots of c. By the definition of Sp(xp),

SP(Z m) = S(i'ict, • • • , £„a) = 5(7i, • • • , 7„),
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a being any substitution of a mode m, and m being a mode of substitution of
Xp into c. This holds for every partition p of n. Thus it is enough to show that

(26) zZQ(m,c) = l,
p.m

where the summation is over all partitions p of n, and all modes m of sub-
stitution of X' into c. By (19)

jZQ(m,c) = zZ n -J— e:£./>(<?d(/>)
fi,m p,m   /^F    2p(m,/)

= n{ e -q;(V(/))},
because as p, w take all the values we have mentioned, the function p(m, f)
runs over precisely the set of partition-valued functions ir(f) such that
k(/)i = I v(f)\ (fCF), by Lemma 4.8. Therefore (26) follows from

Lemma 5.2. Let v be a partition of n. Then

£ -Q'M = 1-
|p|—n Zp

Proof. This is by induction on n. If r= {l(12(1 • • • } is a partition of n,
if l=s^n, and if r.^1, let t* be the partition jl'1 • • • s'«-1 • • • } of n — s.
Any partition p of n — s can be written uniquely in the form p=r*, for some
partition t of n.

By Lemma 4.4,

Q'r   - £ gX^r-C^,
|X|—n—«,|(i|—«

and so, observing that zT = st,zT-,

E»    1    x   u       1 »
gx,. —Qr'Q. = —J/.-Qr,

X,p Zr* Zt

if r* exists, that is, if /,>0. If f, =0, t* does not exist, but in this case the
right-hand side is zero, so we have, summing over all partitions p(=r*) of
n—s,

£   £ gl — qIq". =  £ — Q'r'St.-

By the induction hypothesis, £p (l/zp)(£ = l if sj>l, therefore

£gx„$ =   £ -Qlst. (s = 1, 2, • • • , w).

Define now polynomials /£ = A£(g) by
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(27) hi =    Y   <?**■ (I "I   = ». \p\   = s),
|X|=n-.

and then summing the preceding equation over 5 = 1, 2, • • • , n, we have

Y     h'p(q)k(,u, q) = {Y   -Q'\  Z St. = n lY -Q'\ -

The proof of this lemma, and hence of Theorem 8, now rests on the following
final result:

Lemma 5.3. // v is a partition of n, and if h'^q) are the polynomials defined
in (27), then

(28) Y   hl(q)k(», q) = n.
(K|(i|Sn

Proof. hp\(q) is by Definition (27) the number of submodules of V, (see §2)
which are isomorphic to V„. It is clear that every submodule 5 of V, is iso-
morphic to some Vp, where \p\ ;£«. Let us define for submodules 5 of V, the
functions

f(S) = k(p, q), if S^Vp (/(0) =0), and
g(S) = dimension of S as vector space over $•

Then equation (28) says

(29) g(V.) = Yf(S)
s

summed over all submodules 5 of V,. If \v\ =1, the only submodules of V,
are V, and 0, so that the formula holds in this case. We shall prove (29) by
induction on \v\ =g(V,). To this end we quote an easy adaptation of P.
Hall's enumeration formula for p-groups (Hall [6]), as follows. Write U for
the matrix U,(t) (see §1); V, is by definition the module whose operators are
Z7 and the field g. The submodule D= Fvi7is the intersection of the maximal
submodules of V„ and V,/D has ^-dimension d = number of parts of the
partition v. Further, since vU=0 (mod D) for every vdV„ we have that any
g-subspace of V„/D is a submodule. It is easy to see that the number of sub-
spaces of V,/D which have dimension d — k (O^k^d) is

„*      „*, ,      (4' " 1)(4" " 1) ' ■ ■ (}"« - 1)"' - ff'('> '     (,._„(,«_,)...(,-„       •

Hall's enumeration formula (Hall, loc. cit, Theorem 1.4, p. 39) says that if
f(S) is any function defined on the submodules 5 of V„ and for each submod-
ule T we define g(T) to be Yf(S)> summed over all submodules SQT, then

g(Vr) = f(Vr) + Y g(Si) - q Y g(St) + ■■■ + (-1)*-V*'2 Y g(Sk)
+ ••• +(-l)«^'E?(5d),
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where in £g(SA) the summation is over all submodules Sk containing D, for
which the dimension of Sk/D isd — k (and for which, therefore, the dimension
of Sic is n — k). This formula (which is based on the identity (30) below) can
be proved in just the same way as the corresponding formula for p-groups.

In our case, £g(S*) =(n — k)Nf, for by the induction hypothesis, g(Sk)
is equal to the ^-dimension of Sk, provided that this is less than n; that is, if
£2:1. Therefore

g(V,) = k(v, q)+zZ(n~ *)iV*(-l)*~Y'l!
Jb=l

= Kv, q) + nzZ (-Dk-\Ck-'Ndk- £ (-1)^,°^
k-i k=i

We have however the identity (Hall, loc. cit.)

£ q^Ntt" = (1 + t)(l + qt)...(l + qd-\).

Putting t = — 1 in this gives

(30) zZ(-l)k~1qCk-'Nt=l,
t-i

while if we differentiate with respect to t, and then put t = — 1, we find

*=i

Thus g(V,)=k(v, q)+n — <j>d-i(q)=n, which completes the proof of Lemma
5.3.

Theorem 9. For given positive integers d and v, and a given integer k, the
character Id [v ] is the uniform function Id [v ] = U on &dv with the following prin-
cipal parts:

Up = 0 unless all the parts of pare divisible by d, while if p = {dpi(2d)p* • • • },

UP(xp) = U,(e) = II ft Td.e(k: £.„.<),
«     i=l

where
d-l

Td,,(k;i) = £0«**(£i+«*+--■•+«<*-»<').

Proof. Let p= {lri,2r' • • • } be a partition of n, and let c stand for a
"typical p-class" (xn ■ ■ • xir,x2i ■ • • x2r2 • • • )• Define a"T(c) to be   £fl*(fj)
• • • OHtf), where g, ■ • ■ , £* is the set S" of p-roots, in some order. This

purely formal definition makes the principal p-part of the function of (which
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is known to be uniform, by Theorem 8) the "value" of of at the "class" c. It
is easy to verify that Lemma 3.2, which is the result of an analysis of the
value of o*(c) at a principal class c = (/i/j • • -/at), will still hold for this
"typical p-class" c. The only changes needed are to replace, in the argument
leading to equation (13), the latent roots yf (w = 0, 1, • • • , d~ 1; i = l, 2,

• • • , N) by the p-roots, and to interpret each 7*B [v(5, B) ] which occurs in
(14) as the uniform function defined in the present theorem. By Theorem 7
the function <!>,, so defined is uniform, and its p-part is the result of evaluating
f>v(c) formally by Lemma 2.8 (see equation (20), Theorem 7). With these
interpretations the proof of Lemma 3.2 still holds, and (15) is now a relation
between the principal p-parts of the uniform functions 3>v and <r*.

The character l\\v] is defined, in the proof of Theorem 5, inductively with
the help of (15). We have shown that the same relation (15) holds between
the uniform functions Ej[z>] defined in Theorem 9. Therefore we can prove,
inductively, that the character and uniform function coincide, and this is the
assertion of Theorem 9.

The degeneracy rule (18) allows us to calculate, in terms of the poly-
nomials ()pi the values of these characters Ej[fl] at any class.

Example (i). ?7=.Zf [2] is a character of ®4. We have that t7p = 0 for all
partitions p of 4 except p = {22} and p = {4}. Let x2X, x22 be the {22} -variables,
and let xiX be the {4} -variable (in our general notation these sets of variables
would be distinguished by superscripts {22} and {4} respectively). Then

UiMxtu x22) = {ek(£2i) + *«*(&,)} [ek(£22) + e«k(£22)}, and

Uu,(xiX)=8k(tT')+e9\i;/).

Let c = (/l1)), where fdF has degree 2; this is a class of ®<. In each of the
cases p= {22} and p= {4}, there is only one mode of substitution of X" into
c; these are the modes mx, mt of the substitutions

x2X, Xtt-^f,    and    xix—*f,

respectively. Writing 7 for a root of/, we have

77(c) = Q(mx, c)77(22)(y, 7) + Q.(m2, c)Uu)(y)
= 2-'(g2 + 1) [6k(y) + 6<k(y)}2 + 2-'(-g2 + 1) [dk(y2) + 0«*(72)}

= 0*(72) + 0«*(72) + (g2 + 1)0*(7)0«*(7).

Example (ii). Let C/ = 7j[l], a character of ®<j. We have Up = 0, unless
p= {d}. There is only one {d}-variable, xn, and U\d}(^di) = Td.i(k:^di)- The
only classes c fo- which there exist substitutions of XW into c are the primary
classes c = (f), with | X | d (/) = d. Write e = d/d(f), and let 7 be a root of /.
The only mode m is that of the substitution xdi-^f, and for this, p(m,f) = [e).
Therefore

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1955] CHARACTERS OF THE FINITE GENERAL LINEAR GROUPS 431

U(c) = Q(m, c)Td.i(k:y) = -Qu(qdU))Td,i(k:y).
e

It is easy to see from Definition 4.2 that Q\e)(q) =k(\, q); while
d-l d(f)~l

Td.i(k'.y) = zZ0Qik(y) = e   £   B^y),
i=0 t=0

because y has degree d(f). Thus we have Id[l ](c) =0 unless c is primary, while

Ikd[l](f) = k(X, qda)){e\y) + 6%) + ■■■+ e*d(,)~lk(y)},

where y is any root of the polynomial f.
6. Scalar product of uniform functions. If U, V are any complex-valued

class-functions on ®„, the scalar product

(U, V) = - £  U(A)V(A) - £ J- U(c)V(c),
g xG8„ c    a(c)

summed over classes c of ®„. For g/a(c) (see §2) is the number of elements in
the class c. Ii c = ( • • • /'(/) • • • ) we have by Lemma 2.4

a(c) =   £ a,</)(g^>).

We shall find that when U, V are uniform functions, (U, V) has a very
simple expression (Theorem 11). First however we shall write down certain
remarkable "orthogonality relations" satisfied by the polynomials $.

Definition 6.1. If p= {lri2r» • • • }, let

cf(q) = (q ~ l)Tl(q2 - 1)«» • • • .

Theorem 10. 7/p, cr are partitions of n, then

tO       if p j* <r,

£ —r^Q\(q)Q\q) = ■  z,   ..
ixi=n ax(q) —— if p = o-.

(Cp(q)

The proof will be given later. With the help of these relations we can prove

Theorem 11. Let U=(UP), V=(Vp) be uniform functions on ®„. Then

(U, V) =   £   Kf(U, V),
lpl-n

where, if p={lri2r» • • ■ },

1      1
Kp(U, V)  = ■-— £ £7p(yh, • • • , 7iri; y21, • • • , y2ri; • • • ),

Zp  Cp(q)

■ Fp(yii, • • • , 7iri; y2U • • ■ , y2r%; ■ • ■ ),
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summed over all rows yn, • ■ ■ , 7ir,, 721, • • • , 72r2, ■ • • such that ydidM(%d)
(i = l, 2, ■ ■ ■ , rd;d = l, 2, ■ ■ ■).

Proof. By Lemma 4.14 it is enough to prove this for basic uniform func-
tions U, V, oi respective types p, a, say. We have then to show

(31) (77, V) = 0 if p ^ <r,
(32) (77, V) = Kp(U, V) if p = 0-.

If Up, V, are the principal p- and cr-parts of U, V respectively, and if c is the
class ( • • ■ fvU) • • • ), we have by the degeneracy rule (18),

(33) — U(c)V(c) = —- Y e(», c)G(»'. c)^,(N7.(?»>'),
a(c) a(c) m,m<

summed over modes m, m' of substitutions respectively of X", X" into c.
The set W of classes isobaric to c consists of all c' = ( ■ • • /"'(/) • • • ) such

that

I "'(/) I   =   I "(/) |, = n(f), say (each fdF).
The result of summing (33) over the classes c of W is

IiW) = Y A(m,m')Up(?m)V,(i<m'),
m,m'

where

4(w, w') = 2-11   -7-77777-&(•»,/. (g     )Q.'*.t)(a     ).
y(f)/e.F   aviri(qa'J>) zP(m,/)  zt,(m-,/)

the summation being over aW partition-valued functions v(/) such that
IK/)! =n(f) (fdF); we can factorise this and obtain

(34) 4(«,»')= II —-—   £   —577^Qpcm./)(g'i</))e"(-»'./)(gd(/))-
/Gf    Zp(m./)   Z,(m',/)   |X|=n(/)  «x(g   U))

According to Theorem 10, this is zero unless p(m, f) =<r(m',f) for each fdF,
that is, unless p=a and m=m' (Lemma 4.8). (U, V) is the sum of the I(W),
for the different isobaric sets W, so this proves (31). Now suppose that p=a;
we get this time

i(w) = y { n-7777^) w«)7,(f>o.

We can verify that I1/gf Cp(m,/)(g'fC/)) =c9(q), and so

/(IF) = -J- Z j IT -1 fp(£'»0Fp(S'm),
Cp(g)    m      \    /      Zp{m,ttJ
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the summation being over all modes m of substitution of X" into a class c of
W. Adding for the different W we get

(U, V) = -— £ { II -\ Up(?m)Vp(l'm),
CpW    m     K   f     Zplm,f)}

summed over all modes m of substitution of Xp. An elementary calculation
shows that this is the same as Kp( U, V) described in the theorem.

Before we prove Theorem 10, we shall construct certain characters of ®„,
which are basic uniform functions of a given type p = {lri2r* • • • }. As we
remarked at the end of §5, the character 7j[l], which we now write Jd(k), is
a basic uniform function on  ®d of type   {d}, with   |cf}-part  Td,i(k'.£di)
=ek(^di)+eqk(U)+ ■ ■ ■ +eqd~\Zdi).

Let h stand for the row (hn, • • ■ , hiri; hi, ■ • • , h%t%; • • • ) of integers hdi,
one integer for each part of p.

Definition 6.2. Let B = B"(h) be the character

B"(h) = Ji(hn) o ■ • • o Ji(hUl) o J2(hn) o • • • o J2(h2rJ o • • •

of ®n. By Theorem 7, this is a basic uniform function of type p, withp-part

Bp = B,(h\&) = II i   £     Sd(hdi.Uv)Sd(hdi:Uv) ■ ■ ■ Sd(hdT :U;j
a

where the summation is over all permutations 1'2' • • • r'd of 12 • • • rd, and
Sd(k:^) = Td,i(k^)=9"(0+9q^)+ ■ ■ ■ +6qd-1*(a).

B"(h) will be called a basic character of type p.
Proof of Theorem 10. This proceeds by induction on n. The case n = 1 is

trivial. If we know that the relations hold for the Q\ when |x|, |p| <«, we
may carry out the calculation in the proof of Theorem 11, in so far as only
these relations are required. Examining (34), we see that Q^ with |X| =n can
only occur if the class c has all its latent roots equal, so that c = (7*) for some
linear polynomial l(t)=t—y (yCM(^)). Write

Y~(q) - £ -^rQ\q)QxM (I p |. M - »),
ixi-n a\(q)

and then, by (34), if py^a

(35) (U, V) = - Ypc(q) £ Up(y, • • • , y; y, • ■ • )V.(y, ■ ■ ■ , 7; 7, • • • )
ZpZff y

summed over 7£M(3), while if p = <rt

(36) (U, V) = Kp(U, V) + {-J- Ypp(q) - - -j-} £ Up(y, ■ ■ ■ )Vf(y, • ■ ■ ).
^ Zp   Cp(q))    y

Let us now take
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U = B"(h) = Ji(hn) o • ■ • o Ji(hiri) o J2(h2i) o • • • o Jt(htri) o • • • ,

V = B'(l) = Ji(lu) O • • • O Ji(hri) O J2(lti) O • • • O ̂ (kr,) o ■ • • .

Then Yy Up(y, ■ • • , 7; 7, • • • , 7; • • • )V,(y, • • ■ , 7; 7, • • • , 7; • • • )
=ZpZ,Yy 0"(.y)^(y), where a = Yd.i hdi, and 6= Y*.t Am- By the character
relations for the multiplicative group M(%),

Yea(y)Hy) = sl,b-(q-i),
y

where we write

(0, if a jk b (mod qd - 1),
ll, if a m b (mod qd - 1) (d = 1, 2, ■ ■ ■ ).

We have in general

(37) Y   e\y)e'(y) = sd*.»-(qd-i).
yE.M<$d)

Turning now to the case p —a, we can easily calculate Kp( U, V) in our present
case. By Definition 6.2,

Kp(B'(h), B»(t)) =--£11 YSd(hdi.ydv)Sd(ldi.ydv>) • • •
ZP    CP\l) ydi     d

■Sd(hdrf-ydr')Sd(ldr/-ydr'')
d d da

in which the first summation is over rows (711, • • • , 71,,; • • • ) as in Theorem
11, while the second summation is over all pairs (1' • • • r'd), (1" ■ ■ ■ r'l) of
permutations of 12 • • -fd. We may write this as

II -r—-'Ta-^T'rdl       ^ £     Sd(hdi:ydi)
d       driTd\     (qd-l)r* ydl.---.ydr,  V  ■ ■ -r-

d a

■3d(ldl'-ydl)  • • • Sd(hdrd'y<Jrrf)Sd(ldrj'-ydrj),

where the first summation is over all rows 7<n, • • • , ydrd oi elements of
M(%d)- We see that the term

Y     Sd(hdi'-ydi)Sd(hv'-ydi) ■ • ■ Sd(hdr'-ydr)Sd(ldr> 'ydr)
ad daT«T"*'V.

a

factorises to give

II      Y     Sd(hd>:y)Sd(ld<>:y).
i-l   yGjMftJ

By (37),
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£    Sd(a:y)Sd(b:y) = dAd(a, b) ■ (qd - 1),
7eAf(5d)

where
d d d d

A  (a, b)   =  Sa,h + Sa,tt +  ■  • •   + Oa.bq*-1,

and so we get

Kp(U, V) = III   II   *>d(hdi, Uv)Ad(hd2, hv) ■ ■ ■ Ad(hdr. UO \ .
d     Kv-.-r! d d    )

a

This shows in particular that Kp is an integer.
Since U, V are characters, (U, V) must be an integer. Let us specialise

U, V still further, making all hdi = ldi = 0. It follows then from (35), (36) and
what we have just proved, that

Yp,(q) -(q-1)    and     |fpp(?) - -^| ■ (q - 1)

are integers, and this must be true for each prime-power q. Now by Lemmas
2.4 and 4.3, these are each rational functions in q whose numerator is of
smaller degree than the denominator, provided that n> 1. Thus they tend to
zero as q—> <*>. This means that for all sufficiently large prime-power values of
q they are zero, and therefore they are identically zero.

Incidentally we have proved

Lemma 6.3. Let p= {l^'J • • ■ }, <r= {l*'2*! • • • } be partitions of n, and
let h, I stand for the rows

(ha, • • • , hin; hn, • ■ • , &2t2; • • • )> and

(hi, ■ ■ ■ , hri; hi, • • • ,  hr2; • ' ' )   respectively.

Let B"(h), B'(P)  be the characters defined by 6.2.  Then  (B"(h), B'(l))=0 if
pj^a, and

(B"(h), B>(1)) = II {   £    *d(hdi, hv) ■ ■ ■ Ad(hdTd, ldrd.)\ ,
d      \l'..-rd' )

where

Ad(a, b) = Sdih + Sd,bq + • • • + S^-i        (d « 1, 2, • • •).

7. The primary irreducible characters. Let s be an integer, and
ir= {l"^** • • • } a partition. Write sir for the partition {spl(2s)pi ■ ■ ■ }.

The basic character B"(h) has p-part Bp(h:^1') given in 6.2. By Theorem 9
the character I*[v] has p-part zero unless p=sir for some ir, while its sir-
partis U,.*(k:i;) = TlellZi T.,e(k:Ui)-
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Lemma 7.1.

B,.Ak— :{—J = zrU..T(k:?"),

where kv/s stands for the row (hsX, • • ■ , hsPl; h2t,i, • • • , h2SiPi; • ■ •) in which

h..,i = k(l + q> + ■ ■ ■ + }<-»•), (i = 1, 2, • • • , p.; e - 1, 2, • • ■ ).

This follows from the definitions, using the easily verified identity

S„(k(l + q'+ ■■■ + f-»':Q = «r.,.(ft:{).
Two uniform functions with the same principal parts must be equal.

Thus we have

Lemma 7.2. If kir/s is the row defined above, then

(38) l".[v] =   zZ —B' r(k—\
|x|-t>  Zx \       S /

By Definition 6.2,

B'"lk—J = Zio • ■ • oZioZ2o • • • oZ2o • • ■

there being p. factors Z. = Jse(k(l+q'+ ■ ■ ■ +q<-'-»>) (e = l, 2, • • • ). We
may compare (38) with the formula

W- zZ-p*
)x|=v  ZT

in which {v} represents the Schur function in n^v variables h, t2, ■ ■ ■ , tn
(this particular Schur function is often written hv and called the homogeneous
product sum of degree v. See, for example, D. E. Littlewood [9]), Pe = t\+t\
+ ...+£ (e = l, 2, • ■ ■), and PT=PPlPf • ■ • for any partition
7T= {lP!2P2 • • • }. Pi, Pt, • ■ ■ , Pn are algebraically independent generators
of the algebra S of symmetric polynomials in t\, t2, ■ ■ ■ , tn with complex
coefficients, and on the other hand the o-product is commutative and associa-
tive, so that the mapping

P.-»2. (e= 1,2, •••,«)

defines a homomorphism of S into the algebra zA defined in the introduction.
To the Schur function {v} =hv, there corresponds, under this homomorphism,
the function I*[v], by Lemma 7.2.

For a partition X of v, the Schur function {XJ is defined (Littlewood, loc.
cit.) by
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M = Y-x.p.,
lx|—v   Z*

xi being characters of the symmetric group @„, and to this corresponds the
class-function on ®,

Definition 7.3

J.[x] = E -x>*(ft-Y
|x|-» zT \     s /

We have yet to show that this is a character; the coefficients XxAx are not all
integers. But we do know (Littlewood, loc. cit.) that {X} can be expressed
as a rational integral combination of products of the form

rtvxrtvi ' ' ' rivrt

and using the homomorphism of S into <sA, we have that I* [X] is a rational
integral combination of characters

I.[vi] o I.[vt] o • • • o /,[»,],

and is therefore itself a character.
By the degree of a character x of ® (even if x is not a proper character)

we mean x(l), where 1 is the identity element of ®. The degree of Jd(k) = Ej [l ]
is

Jd(k)(l) = <t>d-i(q) (Example (ii), §5).

By Lemma 2.7 the degree of the basic character B"(h) is

Ir-n(g)
(39) pp = Y   *-0o(g)"<r>i(g)" • • •

ir-i(g)ri*2(g)r2 • • •

= <?>n(g)-Cp(g),

writing
1 1

Bp(q) =-• • • .
(1 - g)- (1 - g*)-

Consider now the homomorphism of the algebra S into the field of ra-
tional functions in a variable q, which is defined by

P,^-- (e= 1,2, •••,«).
1 — g«

Under this mapping a certain rational function

(40) {X:g} =Y-XPep(q)
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corresponds to the Schur function   {X}.  Comparing Pe = t{+te2+ ■ • ■ +t'n
with the formal expansion

1/(1 - q*) - 1« + q° + (q2)> +■■■ ,

we see that (provided |x| ^n){\:q} is just the formal Schur function in the
infinity of variables

l, q, q2, ■ ■ ■ .

D. E. Littlewood (loc. cit., Chapter VII) has calculated these functions ex-
plicitly and found that, if X= {h, k, • • ■ ,lp} where /i^/2^  • • • ^/p>0, then

(41) {\:q}  = jW"       II      (1 - ql'-l--+>) I f[ *W-p-r(«).
l^rKaSp /        t=1

We may remark that if p=sir, then ep(q) =eT(q'); and then using 7.3,
(39), and (40) we have

Lemma 7.4. Let s, v be positive integers, sv = n, and X a partition of v. Then
the degree of the character 7* [X ] of ®„ is

*»(?)• {x:g«}
where {X:^} is the function defined in (41).

Two special cases are of interest: if X= {v}, {X; q} =l/(pv(q), so that

The degree of I*[v] is <psv(q)/4>v(q');

and if X= {l„}, {X:#} =qc*'i/<t>v(q), so that

The degree of 7*[l»] is qc',-kpsv(q)/<pv(q').

The character 71[ln], whose degree is gc».2, has been calculated by Steinberg
(13), who was the first to discover characters which are effectively the 7*[X].
By examining (41) we have

Lemma 7.5. The degree o/7j[X] has the sign of (-l)<<-»» = (- 1)"-".

Lemma 7.6. Let s, v be positive integers, and X any partition of v. Then
l|/J[x]|hM/

k, kq, kq2, • ■ • , kq'-1

are s distinct residues mod (q'—l).

It is easy to give a direct proof of this, but it is a special case of a Lemma
(8.3) which will be proved in the next section. The condition on k which is
described is equivalent to the statement A*(&, k) = l.

Let e be a generator of M(%*), and let e, = e(«*'~1,/(«'_1) (l^s^n). e, is a
generator of M($s). Each nonzero element of %, has an expression e*, and in
this, k is uniquely determined mod (q'—l). The condition for ej to have the
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degree 5 is that all its 5 conjugates e*, ef", • ■ • , ej"~ should be distinct,
which means that

(42) k,kq,---, kq'-1

are distinct residues mod (g*— 1). In this circumstance we shall say that
each of the integers (42) is an s-primitive, and that the set (42) is an s-simplex
g (or a simplex g of degree 5) with k, kq, ■ ■ ■ , /kg*-1 as its roots. The cor-
respondence between the 5-simplex g and the irreducible polynomial of degree
5 which has «J, ej*, • • • , e^~ as its roots, proves

Lemma 7.7. There are exactly as many simplexes of degree s as there are
irreducible polynomials fdF of degree s.

It is easily seen from the definitions 7.3 and 6.2 that /*[X]=/f [X] if
k, k' are roots of the same 5-simplex g (in other words, if k' = kq" (mod (g* — 1))
for some integer u). Thus there is no ambiguity in writing

(gX) = (-l)"-"/.^].

The lemmas in this section allow us to deduce

Theorem 12. Let 5, v be positive integers. Then for each s-simplex g, and
each partition X of v, we have an irreducible character (gx) of ®„„ of degree

(-l)<-*>^„(g){X.g'}.
Further, U= (gx) is a uniform function, and if k is any root of g, the prin-

cipal parts are Up = 0, unless all the parts of p are divisible by s, while if p=sir,
withir= {lP'2"2 ■ • • },

u,g) = (-i)('_1)Vx II ft r.,.(*:u.i).
e    1=1

The (gx) may be called the primary irreducible characters.
8. The irreducible characters of ®„. Let G be the set of all 5-simplexes,

for 10-s^n, and let d(g) denote the degree of gdG. Our object is the

Theorem 13. Let v(g) be a partition-valued function on G such that

Y   I "(g) I d(g) = n.
.Ge

Then

(■■■ r (<> • • •) = n (g-w)
,Go

(H stands for o-product, and a factor for which v(g)=0 is omitted) is an irre-
ducible character of ®„, and the only irreducible characters of ®„ are those ob-
tained in this way.
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Lemmas 1.1 and 7.7 show that there are exactly as many characters
( . . . gy(.o) • • • ) as there are classes of ®„. Therefore we have only to show
that these characters are all irreducible and distinct, and then we know there
can be no further irreducible characters.

Let us call ( • • • g'io) • • • ) the "symbol" of a "dual class" e. If g is an
s-simplex with root k, and if X is a partition of v, it will be convenient to
write 7f[X]=7„[X]; so that (gx) = (-l)('-1)c7<,[X]. Now define, for a dual
class e = ( • ■ ■ g'(a) ■ ■ •), the character

(43) I.=   X\l0[v(g)\
oGg

This character 7. is of course connected with the character ( ■ • • g'(t) • • • )
defined in Theorem 13 by the trivial relation

T. = (— i)z{<*(»)-MI»(»)l( . . . o'd) . . . )(44) ' v        s ;
=   (_l)n-2|»U)|(  .  .   .  gHo)   •   •  •  )

where £ stands, in each case, for £„g= o- However I, is the more convenient
or computation.

For each partition p={lri2rj • • • } of n, define the set Y' of "dual
p-variables" ydi = ydt (i = l, 2, • ■ ■ , rd; d = l, 2, • ■ ■), and say that ydi has
degree d(ydi)=d. A substitution a of Y" is a mapping of Y" into G which
satisfies
(TI) d(ya) divides d(y), for each y £ F".

Equivalence, modes, and the partition p(a, g) are defined just as in §4;
we have lemmas analogous to 4.7 and 4.8. a is a substitution into the dual
class e = ( ■ ■ ■ g",{Q) • • • ) if and only if

(T2) \p(a,g)\   =\v.(g)\ (gCG).
Isobaric dual classes can be defined, as in §4.

We depart from the strict analogy with §4 when dealing with the "dual
p-roots." We define a set 77' of n symbols, of which

p d— l
hdi = hdi, hdiq, • • • , hdiq

are the "roots" of ydi = ydt (* = 1, 2, ■ ■ • ,rd; d = l, 2, ■ ■ ■). We may think of
these as "exponents" of corresponding p-roots, say eddi=^di (e<* is the generator
of M(%d) which was defined in §7). If a substitution a of X" takes £<« to an
element 7 = ej of Af(S*) which has degree s (s divides d), the effect in terms
of exponents is to take

hdi c «(,rf_i)/(4«_i)
Ui = «<*     to   7 = t, = id

Here c is an s-primitive, since ej has degree 5.
We do not propose to use any such explicit correspondence between 77"

and S" as that just described, but give this as explanation of the following
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Definition 8.1. If a is a substitution of Yp, we define a as a mapping of
H" into the rational integers, by

hdiot = cdi(qd - l)/(g'*- - 1),

where Cdi is a root of the simplex ydiPt, and Sdi is the degree of yrf,«.
Conversely any such mapping of H", in which for each i = l, 2, • • • , rd,

d = 1, 2, ■ • • , Cd% is an 5<j,-primitive and Sdi divides d, defines a substitution
of Y".

Finally a dual p-function is a function Z7p(yn, • • ■ , yiri; • • • )
= Up(hn, • • • , hiri; •■• • ) which takes a value Up(y"a) = Up(hpa) = Up(h"m)
= Up(hxxa, • • • , hXria; • • • ) for each substitution a of Yp, this value de-
pending only on the mode m of a. An example of a dual p-function is
Bp(h:%p) defined in 6.2 (regarded as function of the hdi).

Lemma 8.2. Let e = ( ■ • • g'(<,) • • • ) be a dual class of ®„, then

I. = Y Y x(m, e)B"(hpm)
p      m

summed over all partitions p of n, and all modes m of substitution of Y" into e,
and where

X(m,  e)   =   II     - Xp'm.g).
?£:(?    Zp (m,0)

This is a dual "degeneracy rule," which enables us to compute the char-,
acter /„ and thence ( • • • g'ie) • ■ • ), in terms of the basic characters Bp(h").

Proof. Write k(g) for a root of g£G, and d(g) for the degree of g. Definition
7.3 gives

rMg)] = itl°:Mg)}=    Y   -x^B^-f^g)^-).
|x|-|>.(a)|   Zx \ d(g) /

Substituting this in (43) we have

I'=   Y     11  "-Xx(B)5 1*(s)-J7t)>
x(0)   aSff Zx(„) \ d(g)/

where U is a o-product, and the summation is over all partition-valued func-
tions 7r(g) on G, which are such that |ir(g) | = | 'v(g) \ (gdG). By (T2) and the
analogue of Lemma 4.8, such functions ir(g) are exactly the functions p(m, g)
taken over all partitions p of n, and all modes m of substitution of Yp into e.
Finally, we can see that if 7r(g) =p(m, g), then

JJ Bd^-^(k(g)^) = Bp(hpm),
0Ga \        d(g)/

by writing each character Bd^a) •T(") on the left as a product of Es, according
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to Definition 6.2. (We see here the connection between Definition 8.1, and
the symbol kit Is defined in Lemma 7.1.) This proves the lemma.

Lemma 8.3. Let e = ( ■ ■ ■ g'M ■ ■ •), e' = ( ■ ■ ■ g»'<»> • ■ • ) be two dual
classes of ®„. Then

(I., 7.0 =0    if   e^e',
while (L,Q = \\le\\=l.

Proof. From Lemma 8.2,

(7., 7.0 = £   £ x(m, e)x(m', e')(Bp(hpm), Bp'(h>'m')),
p,m   p' ,m'

summed over all pairs p, p' of partitions of n, and all pairs m, m' of modes of
substitutions of Y", Y"' respectively into e, e'. By Lemma 6.3,

(Bp(hpm), B"'(hp'm')) = 0, unless p = p'.

If p=p', and if a, a' are substitutions of the modes m, m' respectively, then

(Bp(h'm), B"(hpm'))

= III   £    Ad(^i«, hdva') ■ ■ ■ Ad(hdra, hdrJ a')\ .
d     ll'-rj d d )

a

li, for given i, i', the simplexes g=ydiOt, g'=y<»'a' have degrees s, s' respec-
tively, then according to our convention (8.1)

hdict = c(qd - l)/(q> - 1), hdi,a' = c'(qd - l)/(q" - 1),

where c, c' are roots of g, g' respectively.
We remark now that Ad(a, b), by its definition (see Lemma 6.3), is zero

unless ed and ea are conjugate. Now ^dia = tc„ and eJS*'" = K'- These cannot
be conjugate unless, first, s=s' (for 5 and 5' are their respective degrees), and
further, c = c'qu (mod q' — l) for some integer u; that is, unless g=g'. If g = g'
we find very easily that

(46) Ad(hdia, hdi,a') = d/s = d/d(g).

Thus (45) is zero unless for each d = l, 2, ■ ■ ■ , there is some permutation
1'2' • • ■ r'd for which ydia = ydi-a' (t = l, 2, • • • , r<j). This is exactly the con-
dition for a, a' to be equivalent. Therefore (45) is zero unless m=m', and this
means that e, e' must be isobaric (|f(g)| =|f'(g)| for each gCG), because
there exists a substitution which is into both.

When m = m', we find by some elementary calculations from (45) and
(46), that

(B«(hpm), Bp(h"m)) = II Zp(ml(,).

We have therefore
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(Ie, I,') = Y x(m, e)x(m, e') II zp{m,0)
p,m ffGlG

Ztt 1 '(g)       ''(e)
XX Xp(m,o)Xp(m,fl)-

p,m     g      Zp(m<g)

By the analogue of Lemma 4.8, every partition-valued function w(g) on G
which is such that l'jr(g) | = | p(g) \(=\ v'(g) \) for each gdG, occurs as p(m, g)
for some p, m. Therefore we may factorize the above expression, and obtain

it    t  \        TT V 'l0) v'la}
(I., Ie>) =   XX lu      — Xx    Xx      ,

.e»   ix|=ifu)i Zx

and the character relations for the Xx then show that this is zero unless
v(g) = v'(g) Ior each gdG, that is, unless e = e'; while (/«., /,) =1.

This lemma, taken together with (44), proves Theorem 13, and this com-
pletes our investigation. We collect the main results in a final

Theorem 14. For each partition p= {li2r2 • ■ • } of n, write

h" = (An, • • • , Air,; h2h ■ • • , h2r2; ■ ■ ■ ),

£" = (£iii • • • , !ir,; f»i, • • • , br2; • • •),

and let Bp(hp:^p) be the function (Definition 6.2)

Bp(hp:Zp) = n|   Y   Sd(hdi--U-) ■ ■ ■ Sd(hdr:U>)\ ,
d     ll'...r- d        d   )

a

where

Sd(h:0 = »7»(0 + ««*(© + 6*(Q + ■■■+ d**-1"®,

and 0 is a generating character of M(%*). For given integers hu, • • • , hiri;
hti, ■ • ■ ,h2rv ■ • • , the basic uniform function (Definitions 4.12, 4.13) Bp(h) of
type p which has Bp(h:£p) as its p-part, is a character of ®„. Each irreducible
character of ®„ is characterized by a partition-valued function v(g) on the set G of
simplexes (§7) of degrees ^n, which satisfies

Y  I "(g) I d(g) = n,
g&O

and conversely each such function v(g) determines an irreducible character
( ■ ■ ■ g"(e> • • • ) which is given (Lemma 8.2, equation (44)) by

(47) ( • •■ ■ !»<»> • • • ) = (-l)»-2K<r>l Y x(m, e)Bp(hptn),
p,m

which expresses it as a linear combination of basic characters (the definitions of
x(m, e), Bp(hpm) are given in §8). This character may also be expressed (Theo-
rem 13) as a o-product (see the introduction) of primary irreducible characters
(Theorem 12, §7)
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(... rc>...) = n (r(e))>

and its degree (Lemmas 2.7, 7.4) is

Uq) II (-l)"('»{Kg):<?^>}
«6ff

wAerc^„(g) = (gn-l)(gn-1-l) • • • (q-l) = (-l)n<pn(q),and,ifthepartsof\
written in descending order, are k, h, • ■ ■ , lp,

{\:q} = gW-«W—      jj      (1 - ?W.-H-.)  / JJ *I+P_r(?).
l^KiSp ' r-1       r

Remarks. (1) If m = £r< is the number of parts of p, then( — l)n~mB''(h)
is itself an irreducible character, provided that, for each d = l, 2, • • • ,
hdi, hd2, ■ • • , hdr<1 are ^-primitives, and are the roots of distinct d-simplexes
gdi, gdi, • • ■ , gdU, respectively. For, according to (47), ( — l)n~mBp(h) is the
irreducible character described by the "principal" dual class

(48) (gn • • • ging2i • • • g2r2 • • • ).

For general values of the hdi, this character is of course not irreducible.
(2) Dual class "types" can be defined in the same way as class types were

defined in §1. For example, all the "principal characters" (48) (for a given
partition p) are of the same type. It is quite easy to set up systems of "type
variables," both for nonprincipal types, and for nonprincipal dual types,
and to show, using the two degeneracy rules (18) and (47), that all the values
of characters of a given type, at classes of a given type, are expressible by a
single function in these variables. For example, the value of any character
(48) at any principal class of type p is obtained by suitably specializing the
variables in the formula ( — l)m-nBp(hl".^"). All the characters of a given type
have the same degree.

(3) Linear characters. A linear character L = ( ■ • ■ gp{e) • ■ ■ ) must be
primary, for by Lemma 2.6 no o-product of more than one character can
have degree 1. Let L = (gx), for an s-simplex g, and a partition X of v, say. The
degree ( — l)i'~1'>,'(j>„(q) {X:g'} of L is soon seen to be a polynomial in q, multi-
plied by g««i+««+-..) (see [41, §7]), and if this is unity, we must have/2 = 4= • • •
= 0; that is, X = {v}. By one of the special cases mentioned below Lemma 7.4,
the degree of L is now

(-1) <-«•*„(})/*,(?•) = *„(?)/*.(?•)•
If q>2, 4'*v(q)/4'v(q')=l only if 5 = 1. If q = 2 there is also the case s = 2,
v = l. The character L = Ii[n] has been found (see example at the end of §3)
to have value 0*(det A), at an element A £®„. We have then the well-known
result

If q>2, or if n>2, the only linear characters of GL(n, q) are 0*(det A)
(* = 0, 1, • • ■ ,q-2).
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The group GL(2, 2), which is isomorphic to the symmetric group ©s, has
the further linear character — ll[l]-

Appendix. Tables of (^(q). From the definition (4.2) we may soon verify
the following special cases of (^(g) (|X| =\p\ =n):

ci"1 = 1 (IpI  = »)■
Q.T = 0, = *.(g) T.- j.-r- • • • (p = {l"2rs ■•■}),

(1 - q)ri (1 - q2)rt

QM = k(\, q) ( | X | = n).

Lemma 4.4 provides a method for calculating in succession the tables of Qx,
for » —1, 2, 3, • • • .

From Theorem 4 of P. Hall, it is easy to show that the symmetric group
character xj is the coefficient of gnXin Q^(q).

n = l. n=3.

Q\\H- r—-
,   W = 2"_ \ M 121} {3}
\ X \

\        W          W                          ̂ ^           !                  j                   !X >. _ _

_[^ TT; T~T f13'        (22+2 + !)       W      (1-3X1-32)
(l j g+l l-g (ff + 1)

«=4.

\P M {21'} {31} {4} {2«}

{4} 1 1 111

{31} 3<H-1 g+1 1 l-g l-g

(22} (2g + l)(g + l) g + 1 1 -g* l-g l-g+2g2

[212}       (3g2+2g+l) _g3+g*+g+i i_gs (i_g)(i_g2)    (i_g)(i+g2)

(2 + 1)

{14} (g3+32+2 + l) (g2+g + l)(l_g4)      (1_g2)(l_g4)     (1_g)(l_g2)       (l_g)(l+g2)
(g2+g+l)(g+l) (l-g') (l-g')
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