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THE CHARACTERS OF THE GENERALIZED STEINBERG
REPRESENTATIONS OF FINITE GENERAL LINEAR GROUPS

ON THE REGULAR ELLIPTIC SET

ALLAN J. SILBERGER AND ERNST-WILHELM ZINK

Abstract. Let k be a finite field, kn|k the degree n extension of k, and
G = GLn(k) the general linear group with entries in k. This paper studies the
“generalized Steinberg” (GS) representations of G and proves the equivalence
of several different characterizations for this class of representations. As our
main result we show that the union of the class of cuspidal and GS repre-
sentations of G is in natural one-one correspondence with the set of Galois
orbits of characters of k×n , the regular orbits of course corresponding to the
cuspidal representations. Besides using Green’s character formulas to define
GS representations, we characterize GS representations by associating to them
idempotents in certain commuting algebras corresponding to parabolic induc-
tions and by showing that GS representations are the sole components of these
induced representations which are “generic” (have Whittaker vectors).

Let k = Fq be a finite field of cardinality q, let k̄|km|k be, respectively, an
algebraic closure of k and the degreem extension of k contained in k̄. Let φ : x 7→ xq

denote the Frobenius automorphism of k̄|k and of any subextension km|k. Let
G = GLn(k) be the group of non-singular n × n matrices with entries in k. Also
write Gm = GLm(k) for any m ≥ 1.

In a signally important paper published in 1955 [GR] J. A. Green showed how
to calculate formulas for the irreducible characters of G. In Green’s work appeared
for the first time general character formulas for the cuspidal representations and
for a family of “generalized Steinberg” (GS) representations.

For their study of the “level zero” discrete series characters of unit groups of
simple algebras over a p–adic field the authors need diverse characterizations of
cuspidal and GS characters of finite general linear groups and to be able to pass
between these different characterizations. In this paper we give these characteriza-
tions and prove their equivalence.

It is fruitful to view the set of GS representations as a class of representations
of G which contains the class of cuspidal representations as a subclass. Of course
the cusp form property, the property of not being a component of IndGU 1 for any
unipotent radical U 6= (I) of a parabolic subgroup of G, clearly distinguishes the
class of cuspidal representations from all other representations of G. However,
other important properties which are usually associated to the class of cuspidal
representations generalize to the union of the two classes of representations of G.
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For instance Green gives a single character formula, with an accompanying degree
formula, which applies to both classes of representations, mutatis mutandis. Both
the cuspidal and the GS representations are “generic”, in the sense that they have
“Whittaker vectors” (cf. §5). The main result of this paper (Theorem 6.1) reads
out of Green’s results the fact that on the regular elliptic set of G the characters
of the GS representations, like the cuspidal characters, are represented by familiar
character sums. It is important that the character sum which represents the value
of the character of a GS representation on the regular elliptic set of G = Gn is
“norm related” to the character sum which represents the character of the corre-
sponding “cuspidal base representation” (cf. §3) on the regular elliptic set of Gv
(v | n) (see equation (8)). Corollary 6.2 elaborates this relationship in present-
ing a natural one-one correspondence between the set of cuspidal and generalized
Steinberg representations of G and the set of Galois orbits of characters of k×n , the
cuspidal characters corresponding to the orbits which consist of regular characters
of k×n . The authors use these structural facts to “weakly explicitly match” (ex-
cept for an unramified twist) the “level zero” discrete series characters of the unit
groups between the various p–adic simple algebras of the same reduced degree over
the same center ([SZ2]).

To prove the one-one correspondence of Corollary 6.2 the authors need a prelim-
inary result (Theorem 1.1) which implies that the restrictions of the GS characters
to the regular elliptic set of G are pairwise distinct functions. The proof of Theorem
1.1 given in this paper depends upon a classical result of Zsigmondy [ZS] (see also
[ART] and [BV]). The authors wish to thank a referee for pointing out these ref-
erences and the simplified proof of Theorem 1.1 which Zsigmondy’s result implies.
Our first section also introduces certain character sums which represent the values
of GS representations on the regular elliptic set and discusses the connections be-
tween these character sums and the parameter set of Macdonald for the set of GS
representations of G ([MAC, (1.4, ii)]). The paper’s concluding Remark 6.3, using
Macdonald’s parameter set, describes a natural parameterization for the set of all
cuspidal and GS representations of finite general linear groups.

Most of this paper is devoted to proving that the different ways of characterizing
GS representations lead to the same class of representations. In §2 we recall Green’s
character formulas for cuspidal representations. In §3 GS and “generalized trivial”
(GT) representations are defined via Green’s character formulas; we also prove that
the GS and GT representations are the components of certain parabolically induced
representations which occur simply (Lemma 3.1). In §4 we use the Hecke algebra
isomorphism given in Howe’s lectures [HM, Chapter 1] to associate idempotents in
the commuting algebras of the associated parabolically induced representations to
the GS and GT components. We use the degrees of these representations and a
calculation based on Schur orthogonality to assign these idempotents to the correct
representations (Proposition 4.2).

In §5 we recall classical results concerning generic representations of finite general
linear groups, results which have been long known to experts in representation
theory, and we use these results to obtain yet another useful characterization of the
class of GS representations (Corollary 5.7). Though this characterization is also
known by the experts, we shall give a proof here. We begin the section with an
old argument, due to either Gelfand and Graev or Gelfand and Kazhdan, which
proves that cuspidal representations are generic (Lemma 5.2). Next comes a more
precise characterization of cuspidal representations (Lemma 5.3) which was found
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by S. I. Gelfand [GE1], [GE2]. We then prove the GLn(k) analogue of a result
of Rodier (Theorem 5.5) [ROD]. Using these results, we reprove Gelfand/Graev’s
theorem that an irreducible representation of GLn(k) has at most a one-dimensional
subspace associated to a given generic character (Corollary 5.6). As the last result
of the section, we obtain our characterization of GS representations as the only
generic components of certain parabolically induced from cuspidal representations.

The concluding §6 states and proves our main result, then presents its corollary
and the final remark.

Although in this paper we treat only the representation theory of the group
GLn(k) and our work involves only the classical results mentioned above, we should
try to place this paper within the context of the important results regarding the
representation theory of finite reductive groups which have appeared during the
past more than twenty years. In [DL] Deligne and Lusztig constructed families of
virtual characters for reductive groups over finite fields by using `-adic cohomology.
Let G be a connected reductive k-group. Let T be a 〈φ〉-stable maximal torus
of G and θ an irreducible character of the group of fixed points T φ of T . To
this data Deligne and Lusztig associate a virtual character RGT (θ) of Gφ which,
up to sign, is irreducible if θ is in general position ([CAR, Theorem 7.3.4], [DL,
Theorem 6.8]). In particular, ±RGT (θ) is an irreducible cuspidal character if θ is
in general position and T lies in no proper 〈φ〉-stable parabolic subgroup of G
([CAR, Theorem 9.3.2], [DL, Theorem 8.3]). This construction produces all the
irreducible cuspidal characters of GLn(k). Let L be a 〈φ〉-stable Levi subgroup
of G and let π be a cuspidal representation of Lφ. Let P = L n UL be a 〈φ〉-
stable parabolic subgroup of G with L as Levi factor and consider the induced
representation I(Pφ, π). In [HL1] (see also [L, Chapter 8]) Howlett and Lehrer have
studied the commuting algebra of I(Pφ, π) and in [HL2] have considered irreducible
characters which correspond to the trivial and sign characters of Coxeter groups
of the form NG(L, π)/L. Thus they have considered analogues and generalizations
of the “generalized Steinberg” (GS) and “generalized trivial” (GT) representations
which are studied here. These representations are interchanged by “Alvis-Curtis
duality” (see [CUR]). Concerning the theory of “generic representations”, discussed
in §5 for the special case of GLn(Fq), it should be remarked that [DL, Theorem 10.7]
(see also [CAR, Proposition 8.4.7]) gives a complete description of the irreducible
generic characters of general Gφ (G with connected center), expressing them as linear
combinations of Deligne-Lusztig charactersRGT (θ). In principle, this description can
also be used to obtain the results of our §5. Bernshtein and Zelevinskii [BZ] give a
full account of the theory of generic representations for GLn in the local field case
and they remark that similar results hold for GLn(k).

1. Galois Orbit Sums of Characters on Finite Fields and

Macdonald’s Parameter Set

As already mentioned, the characters of the GS representations are represented
on the regular elliptic set of G by familiar character sums. Let X denote the group
of characters of k×n . For any χ ∈ X we write [χ] for the 〈φ〉-orbit of χ. The character
sums alluded to are the sums of the form

S(χ) =
∑
η∈[χ]

η.(1)
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Since the set X is a basis for the space of complex-valued functions on k×n , the
set of character sums S(χ), regarded as a set of complex-valued functions on k×n ,
is a linearly independent set. Let R = Rn be the set of primitive elements of kn|k.
Identifying the set of regular elliptic conjugacy classes of GLn(k) with the set of
〈φ〉-orbits in R under any embedding of k×n into GLn(k), we may represent the
values of the generalized Steinberg characters on the regular elliptic set of GLn(k)
as the set of functions of the form (−1)n−1S(χ). We regard the character sums
S(χ) as functions on R; it is natural then to ask whether this data determines the
character orbit [χ].

Theorem 1.1.
(i) For any χ, χ′ ∈ X the restrictions to the set R ⊂ k×n of the functions S(χ)

and S(χ′) are equal if and only if [χ] = [χ′].
(ii) There is no 〈φ〉-orbit [χ] ⊂ X such that the function S(χ) is identically zero

on R.

Example. Consider the quadratic extension F4|F2 with the automorphism φ(x) =
x2. The character group X = X(F×4 ) splits into two 〈φ〉-orbits [χ0], [χ1] of lengths
1 and 2 respectively. Restricted to R = F4 − F2, the orbit sum S(χ0) = χ0 has
constant value 1, while S(χ1) = χ1 + χ2 has the constant value −1. Thus the
two functions, though not linearly independent as functions on R, are different
functions on R and neither is identically zero.

Proof. If [χ] = [χ′], then S(χ) = S(χ′) on all of k×n , therefore in particular on
R. We have to prove only the converse. Assume that [χ] 6= [χ′] but S(χ) − S(χ′)
vanishes on R. In this case the restriction to k×n −R cannot be zero. Let Y ⊂ X
be the group of characters which are identically 1 on k×n − R. Then for every
η ∈ Y we have η(S(χ) − S(χ′)) = S(χ) − S(χ′) as functions on k×n . Since the set
X is a basis of the space of complex-valued functions on k×, it follows that each
of the orbits [χ] and [χ′] is stable under multiplication by elements of Y . This
implies that |Y | ≤ |[χ]|, where |Y | denotes the order of the group Y . Since any
orbit of the cyclic group 〈φ〉/〈φn〉 acting in X = X(k×n ) must have length dividing
n, from cancellation in the group X we infer that |Y | ≤ n. Thus we shall have a
contradiction as soon as we prove that |Y | > n. From the hypothesis S(χ) = 0 on
R, the same argument also proves Theorem 1.1(ii).

Lemma 1.2. Assume that n > 1 and let Φn(x) =
∏
d|n(xn/d − 1)µ(d) be the n-

th cyclotomic polynomial. Then |Y | divides Φn(q) for all n and q. Moreover,
|Y | ≥ Φn(q) > n for all (n, q) 6= (6, 2).

Remarks. 1. Since Φ6(x) = x2−x+1, we have Φ6(2) = 3 ≤ 6; Φn(q) > n definitely
fails in the case (n, q) = (6, 2). Thus we have to verify separately that Theorem 1.1
is true when (n, q) = (6, 2). We delay this for the moment.

2. A referee pointed out that for Theorem 1.1 it is enough to know that |Y | ≥
Φn(q). It is easier to prove this than |Y | = Φn(q), which we showed in our original
proof of Theorem 1.1. We also gave a longer proof that Φn(q) > n for (n, q) 6=
(6, 2). The referee pointed out that this assertion follows from results of Zsigmondy
[ZS] (see also [ART, §1, Corollary 2] and [BV]). Zsigmondy proved that for any
(n, q) 6= (6, 2) or (2, 3) (n > 1) there is always a prime ` such that ` | Φn(q) and
` - Φi(q) (∀i < n), i.e. such that ` | qn − 1 and ` - qi − 1 (∀i < n). We reproduce
the referee’s proof of Lemma 1.2.
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Proof. Since xm − 1 =
∏
d|m Φd(x) for any m ≥ 1, it follows that qm − 1 divides

the product
∏
d|n,d<n Φd(q) for all m|n,m < n. Thus lcmm|n,m<n{qm − 1} also

divides
∏
d|n,d<nΦd(q). On the other hand, |Y | = (qn−1)/lcmm|n,m<n{qm−1} and

Φn(q) = (qn−1)/
∏
d|n,d<n Φd(q). Therefore, Φn(q) divides |Y | too, so |Y | ≥ Φn(q).

We next show that Φn(q) > n follows from the fact that there exists a prime `
such that ` | qn−1 and ` - qi−1 (∀i < n) ([ZS], [BV], [ART]). Clearly, the existence
of ` implies that ` | Φn(q), so Φn(q) ≥ `. “Fermat’s Little Theorem”, together with
(`, q) = 1, implies that ` | q`−1 − 1. Thus from Zsigmondy, Birkhoff/Vandiver, and
Artin we have ` > n. Since Φn(q) ≥ ` > n, Φn(q) > n. To complete the proof of
Lemma 1.2 we note that Φ2(3) = 3 + 1 > 2.

It follows from Lemma 1.2 and the above argument that we have to verify The-
orem 1.1 only in the case (n, q) = (6, 2). Write K = F(26) and k = F(2). Fix
a generator χ1 of the cyclic group X = X(K×); thus a ∈ (Z/63Z)+ 7→ χa1 ∈ X
defines an isomorphism. In the present instance Y consists of the three characters
which correspond to the multiples of 21 in (Z/63Z)+. The action of the Frobenius
on X is given by χ 7→ χ2, i.e. a 7→ 2a in (Z/63Z)+.

If S(χ) = S(χ′) on R or S(χ) = 0 on R, then η[χ] = [χ] for all η ∈ Y .
Hence [χ] ⊂ X corresponds to an orbit [a] = {a, 2a, . . . , 25a} ⊂ Z/63Z such that
[a] + 21 = [a]. It is easy to see that the only orbit satisfying this condition is the
orbit [a] = [7], which is of length 6. This implies Theorem 1.1(i), since there is only
one Y -invariant character sum S(χ), namely the sum corresponding to χ := χ7

1. To
verify Theorem 1.1(ii) we have to prove S(χ) 6= 0 for some x ∈ R ⊂ K×. Since
ηS(χ) = S(χ) for η ∈ Y , we see that S(χ)(x) 6= 0 implies that η(x) = 1, i.e.
x ∈ (K×)3. Let θ := χ(x) = χ7

1(y3) = χ1(y21). Then θ3 = 1, and θ = 1 if and only
if y21 = x7 = 1. In the last case, S(χ)(x) = |[χ]| = 6, whereas for x7 6= 1 we obtain
θ + θ2 = −1, hence S(χ)(x) = −3. Thus the support of S(χ) is precisely (K×)3,
and there are regular elements in (K×)3 because F(23)× ∪ F(22)× contains fewer
than twenty-one elements.

We close this section by reformulating Theorem 1.1 for the limit of the groups
Xm := X(k×m) (m ≥ 1). Fix an algebraic closure k̄|k. The Frobenius φ : {x 7→ xq}
acts on k̄ and the fixed field km of 〈φm〉 is the extension of degree m of k.

For m|m′ we have the surjective norm mapping Nm|m′ : k×m′ → k×m. We let
k̃ := lim←− k

×
m be the projective limit with respect to the norm maps. For x̃ ∈ k̃ we

write x̃ = (xm), where xm is the projection of x̃ on k×m. By Zorn’s Lemma the
surjectivity of the norm maps implies the surjectivity of the projection maps.

Dually let Xm = X(k×m) and N∗m|m′ : Xm → Xm′ . The maps N∗m|m′ being
injective, we may consider the direct limit X̃ = lim−→Xm as a quotient of the disjoint
union X =

⊔∞
m=1Xm, namely X̃ = X/∼, where ηm1 ∼ ηm2 if N∗m1|m1m2

(ηm1) =
N∗m2|m1m2

(ηm2).
Sometimes the elements η̃ ∈ X̃ are considered as subsets of X . Note that η̃∩Xm

is either void or a single element ηm. Canonically, we have the character group
X̃ = X(k̃), where η̃(x̃) = ηm(xm) if ηm ∈ η̃. The Frobenius acts on k×m and
Xm such that φηm(φxm) = ηm(xm). This induces a natural 〈φ〉-action on k̃ and
X̃. We remark that the action of 〈φ〉 on X̃ has orbits [η̃] of finite length, namely
|[η̃]| = |[ηm]| if ηm ∈ η̃. If |[η̃]| = s, then Xn ∩ η̃ 6= ∅ if and only if s|n, and Xs ∩ η̃
is the unique regular element of η̃.
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Let χ̃ ∈ X̃ . Define

S(χ̃) = S([χ̃]) =
∑
η̃∈[χ̃]

η̃

and consider this as a function on k̃ such that

S(χ̃)(x̃) = S(χm)(xm) =
∑

ηm∈[χm]

ηm(xm) (χm ∈ χ̃).(1′)

Since the projection map x̃ ∈ k̃ 7→ xm ∈ k×m is surjective, the function S(χm) is
recovered from S(χ̃). We write S(χ̃)m := S(χm) if |[χ̃]| |m. Let Rm denote the set
of primitive elements of km|k. Then:

Corollary 1.3. Let χ̃, χ̃′ ∈ X̃ with 〈φ〉-orbits of length s, s′, respectively. The
following are equivalent:

(i) [χ̃] = [χ̃′].
(ii) S(χ̃) = S(χ̃′) as C-valued functions on k̃.
(iii) For all common multiples m of s, s′ the mappings S(χ̃)m and S(χ̃′)m of Rm →

C are equal.
(iv) For some common multiple m of s, s′ the mappings S(χ̃)m and S(χ̃′)m of

Rm → C are equal.

Proof. The implications (i)→(ii)→(iii)→(iv) are obvious. Concerning (iv)→ (i) we
remark that S(χ̃)m = S(χ̃′)m on Rm means S(χm) = S(χ′m) on Rm, where χm ∈ χ̃
and χ′m ∈ χ̃′. Hence, [χm] = [χ′m] by Theorem 1.1; we conclude that [χ̃] = [χ̃′].

2. Cuspidal Characters

To be able to read the remainder of this paper the reader will have to keep
Green’s paper [GR] nearby in order to be able to follow our references to it.

Let χ̃d ∈ X̃ and assume that |[χ̃d]| = d ≥ 1. We assume, as we may, that
χd ∈ Xd ∩ χ̃d and that χd is the only regular character in χ̃d. The orbit [χd] ⊂ Xd

consists of regular characters.
Using Green’s work, we associate to the 〈φ〉-orbit [χd] a cuspidal character of

Gd, specifically the character U = (−1)d−1Ikd [1] = (−1)d−1Jd(k) given by [GR,
pp. 430-431, Example (ii); cf. also pp. 417 (top) and 433] (In Green’s notation
θk = χd [GR, p. 431 or 433].). The factor (−1)d−1 is needed to convert a virtual
character into a true irreducible character ([GR, p. 437 mid-page; see p. 409,
Definition 2.2 for the function φd−1]). The degree of any cuspidal representation
of Gd (d > 1) is

∏
1≤j<d(q

j − 1) ([GR, p. 431; see p. 420 for k(λ, q)]). Green
proves that this character (or family of characters) is cuspidal in the sense that this
character occurs as a component of no character constructed in the standard way
by parabolic induction. He also proves that all (irreducible) cuspidal characters are
of the form (−1)d−1Ikd [1] for some choice of k.

Green’s results [GR, p. 431] imply the existence of a one-one correspondence
between cuspidal characters of Gd and orbits [ηd] of regular characters of k×d such
that the cuspidal character U = U([ηd]) satisfies

U(γ) = Uηd(γ) = (−1)d−1S(ηd)(γ)

for all regular elliptic elements γ ∈ Gd. We identify regular elliptic elements of Gd
with primitive elements of the field extension kd|k. The function S(χd) : Rd → C
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with domain the set Rd of primitive elements of kd|k is defined from the character
sum of (1).

3. Generalized Steinberg and Generalized Trivial Characters

To relate the standard construction of GS representations to Green’s character
formula let χs ∈ Xs (1 ≤ s < n, s|n) be a regular character and let σ = σχs be
the cuspidal representation of Gs with the character Uχs . To be consistent with
Green’s notation we assume that the character Uχs of Gs is (−1)s−1Iks [1], the values
of which on the regular elliptic set of Gs are given by (−1)s−1S(χs) (cf. (1)) with
χs = θk. As before, the factor (−1)s−1 converts a virtual character into a true
character.

Regard [Gs]v = L (sv = n) as a block diagonal subgroup of G and let P =
LnU be the parabolic subgroup with L as a Levi factor which contains the upper
triangular subgroup of G. Regard the v-fold tensor power σ⊗v as a representation
of L inflated to a representation of P . Let I(P, σ⊗v) = IndGPσ

⊗v.
We call σ the cuspidal base representation which corresponds to the components

of I(P, σ⊗v). Since the representations parabolically induced from different cuspidal
representations or non-conjugate Levi factors of G are disjoint, the cuspidal base
representation is an invariant which distinguishes the components of I(P, σ⊗v) from
other irreducible representations of G.

In Green’s terminology, the character of I(P, σ⊗v) is a “basic character” of
the form (−1)n−vBs·{1

v}(k) [GR, p. 433, Definition 6.2]. The factor (−1)n−v =
(−1)(s−1)v results from our earlier conversion of the virtual cuspidal character Iks [1]
into a true character, then tensoring it v times. The argument “k” means the vector
(k, k, · · · , k) of length v.

It is known that the commuting algebra of I(P, σ⊗v) is isomorphic to the group
algebra C(Sv), where Sv denotes the symmetric group on v letters (cf. [IW, p.
81] and [HM, p. 11, Theorem 5.1]). This means that the inequivalent component
representations of I(P, σ⊗v) correspond bijectively to the characters of Sv. This
correspondence is made explicit in Green’s character formulas, where expressions
of the form χλπ denote the values of characters of Sv. In these formulas λ and π
both denote partitions of v, λ used to parameterize characters and π to parame-
terize conjugacy classes of Sv. Since the degrees of the characters of Sv equal the
multiplicities of the components of I(P, σ⊗v), there are two irreducible components
of I(P, σ⊗v) which occur simply, one corresponding to the trivial character and the
other to the sign character of Sv. These characters or representations we shall refer
to as the “generalized trivial” (GT) and “generalized Steinberg” (GS) components
of I(P, σ⊗v).

We now recall these characters as Green defines them in [GR, p. 437, Definition
7.3].1 These two characters are also specifically referred to following [GR, p. 438,
Lemma 7.4]. In terms of “basic characters” the “generalized trivial” (GT) character
is

(−1)n−vIks [v] = (−1)n−v
∑
|π|=v

1
zπ
χvπB

s·π
(
k
π

v

)
(2)

1In this definition Green gives a character for each partition of v or character of Sv. Green is
certainly not guilty of using the names “generalized trivial” and “generalized Steinberg”, although
he singles these two characters out and discusses the connection with Steinberg’s work in [GR, p.
438].
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with the degree ∏n
j=1(qj − 1)∏v
j=1(qsj − 1)

(3)

and the “generalized Steinberg” (GS) character is

(−1)n−vIks [1v] = (−1)n−v
∑
|π|=v

1
zπ
χ1v

π B
s·π
(
k
π

v

)
(4)

with the degree 2

qn(v−1)/2

∏n
j=1(qj − 1)∏v
j=1(qsj − 1)

.(5)

In (2) and (4) the sums extend over partitions π of v, zπ = 1p1p1!2p2p2! · · · when
π = 1p12p2 · · · is a partition with p1 parts 1, p2 parts 2, etc., χvπ = 1 ([GR, p. 423,
Definition 4.11]), and χ1v

π is the sign character of the symmetric group Sv evaluated
at the conjugacy class corresponding to π. In the sense that the values of χvπ (the
trivial character) and χ1v

π (the sign character) of Sv appear in the formulas for the
GT and GS characters, the two characters correspond, respectively, to the trivial
and sign characters of Sv.

The purpose of Lemma 3.1 is to show that the two components of I(P, σ⊗v)
which occur simply are indeed the representations with the respective characters
(−1)n−vIks [v] and (−1)n−vIks [1v].

Lemma 3.1. With respect to the measure on G which assigns G measure one the
inner products

((−1)n−vIks [v], (−1)n−vBs·{1
v}(k)) = ((−1)n−vIks [1v], (−1)n−vBs·{1

v}(k)) = 1.

Proof. By [GR, p. 435, Lemma 6.3] the inner product

(Bs·{1
v}(k), Bs·π

(
k
π

s

)
) = 0

for π 6= 1v, and

((−1)n−vBs·{1
v}(k), (−1)n−vBs·{1

v}(k)) = v!,

since v! is the dimension of the commuting algebra of I(P, σ⊗v). Therefore,

((−1)n−vIks [1v], (−1)n−vBs·{1
v}(k))

= ((−1)n−v
∑
|π|=v

1
zπ
χ1v

π B
s·π
(
k
π

s

)
, (−1)n−vBs·{1

v}(k)) = 1,

since z1v = v! and χ1v

1v = 1. Similarly,

((−1)n−vIks [v], (−1)n−vBs·{1
v}(k)) = 1.

2The formula for the dimension of the virtual character Iks [1v] in the middle of [GR, p. 438]

should read qsCv,2φsv(q)/φv(qs).
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4. GT and GS Representations as Hecke Algebra Characters

We wish to have another characterization of GT and GS representations. Let
T0 denote the diagonal subgroup of G, Z = k× the scalar subgroup of T0, and
U0 the upper triangle unipotent subgroup of G, consisting of all upper triangular
matrices with each diagonal entry equal 1. Also let P0 = T0 n U0 denote the
upper triangle subgroup of G. The commuting algebra of IndGP0

1 is canonically the
convolution algebra H0 = H(G,P0,1) of all left and right P0–invariant complex-
valued functions on G. The algebra H0 has a basis {hw}w∈W0 , where each of the
functions hw is the characteristic function of a double coset P0wP0, W0 being the
group of permutation matrices Sn. We normalize the invariant measure on G such
that P0 has unit volume. Then the identity element of H0 is the characteristic
function hI of P0. If r = ri ∈ W0 is a “reflection with respect to a simple root”,
i.e. r = ri is the transposition matrix which permutes the i–th and (i + 1)–th
components of a standard vector for some 1 ≤ i < n, then

hr ∗ hr = qhI + (q − 1)hr(6)

and

hr ∗ hw = hrw(7)

for all w ∈ W0 such that `(rw) = `(w) + 1 (cf. [IM], [HM]; “`(w)” denotes the
“length” of w ∈ W0). Since H0 is isomorphic to the group algebra C[Sn] ([IW]),
H0 has exactly two scalar characters. To define the idempotent functions in H0

which give these homomorphisms by convolution let

P (x) = (1 + x)(1 + x+ x2) · · · (1 + x+ · · ·xn−1)

be the Poincaré polynomial associated to a root system of type An−1. Set

etr = P (q)−1
∑
w∈W0

hw

and

est = P (q−1)−1
∑
w∈W0

(−q−1)`(w)hw.

Lemma 4.1.

hw ∗ etr = etr ∗ hw = q`(w)etr

and

hw ∗ est = est ∗ hw = (−1)`(w)est

for any w ∈ W0; `(w) denotes the “length” of w ∈ W0. The functions etr and est
are idempotents in H0 which span two-sided, one-dimensional ideals in H0.

Proof. We verify only the assertions which concern etr, as the assertions concerning
est follow by similar arguments. By formula (7) and the associativity of the multi-
plication in H0, to verify that hw ∗ etr = etr ∗hw = q`(w)etr it suffices to verify that
hr ∗ etr = etr ∗ hr = qetr for r ∈W0 a reflection corresponding to a simple root. It
is also not necessary to verify that hr commutes with etr, since this will be obvious
from the argument showing that hr ∗ etr = qetr. To prove that hr ∗ etr = qetr we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3348 ALLAN J. SILBERGER AND ERNST-WILHELM ZINK

let S0 be the subset of W0 consisting of all w ∈ W0 such that `(rw) = 1 + `(w).
Then etr =

∑
w∈S0

(hw + hrw). By (6) and (7),

hr ∗ (hw + hrw) = hrw + (hr ∗ hr) ∗ hw
= hrw + qhI ∗ hw + (q − 1)hr ∗ hw = q(hw + hrw).

This implies that hr ∗ etr = qetr. To complete the proof that etr ∗ etr = etr it is
enough to recall that, in the Poincaré polynomial P (x) =

∑
` a`x

`, the coefficient a`
is the number of elements of W0 with length `. From the relations hw∗etr = q`(w)etr
and hw ∗est = (−1)`(w)est it follows that the mappings h 7→ λtr(h) and h 7→ λst(h),
where h ∗ etr = etr ∗ h = λtr(h)etr and h ∗ est = est ∗ h = λst(h)est for h ∈ H0,
give homomorphisms of H0 to C. Thus, each of the central idempotents etr and est
in the semi-simple algebra H0 spans and projects out a one-dimensional, two-sided
ideal of H0.

The function etr is a constant function on G and is therefore a constant mul-
tiple of a matrix coefficient of the “trivial” representation of G. Therefore, the
idempotent est is a multiple of the unique P0–bi-invariant matrix coefficient of the
Steinberg representation of G, since the trivial and the Steinberg representations
are the components of IndGP0

1 which occur simply.
Let P = L n U be the parabolic subgroup of G already considered above and

let P0 now denote the upper triangular subgroup of GLv(ks). By Howe’s theory
[HM, loc. cit.] the Hecke algebras H = H(G,P, σ⊗v) and H0 = H(GLv(ks), P0,1)
are isomorphic. The Howe isomorphisms between these algebras are unique up
to automorphisms of the Dynkin diagram of Av−1; a Howe isomorphism sends
operators corresponding to simple reflections to one another. The algebraH also has
exactly two scalar characters. These characters are also represented by idempotent
elements of H. Under a Howe isomorphism the idempotent functions etr, est ∈ H0

correspond to idempotent functions in H which do not depend upon the choice of
Howe isomorphism. We denote these elements of H also as etr and est, respectively.
We want to show that the representations associated to etr, est ∈ H are, in the
proper order, the GT and GS components of I(P, σ⊗v).

Proposition 4.2. The GT and GS components of I(P, σ⊗v) are the components
which correspond to the idempotents etr and est, respectively.

Proof. Since the GT and GS components are the only components of I(P, σ⊗v)
which occur simply, the submatrices of these representations which transform left
and right under P as σ⊗v are, up to scalar multiples, the only functions in H
which give scalar characters of H. Thus, the functions etr, est ∈ H are multiples
of these submatrices of GT and GS in some order. It is sufficient to compute the
degrees of the representations corresponding to etr and est in order to show that
they correspond to GT and GS in the right order.

Since the algebra H is canonically the commuting algebra of the induced repre-
sentation I(P, σ⊗v), it has two one-dimensional characters. By the Howe isomor-
phism theorem the idempotent etr ∈ H is

etr = P (qs)−1
∑
w∈W

hw
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and

est = P (q−s)−1
∑
w∈W

(−q−s)`(w)hw,

where

P (x) = (1 + x)(1 + x+ x2) · · · (1 + x+ · · ·+ xv−1)

is the Poincaré polynomial corresponding to a root system of type Av−1, W ∼= Sv

may be taken to be the group of permutation matrices R ⊗ Is, where R is a v × v
permutation matrix and Is denotes the s × s identity matrix. The functions hw
are basis elements for the Hecke algebra which have support on double cosets PwP
and correspond to the characteristic functions of P0 double cosets under the Howe
isomorphism. The Howe isomorphism, which transforms the structure constants
as in (6) to H, also depends upon normalizing the Haar measure on G to give
P = L n U unit measure. This also implies that the identity element hI of H has
the value Iσ⊗v at the identity I ∈ G. We write Iσ⊗v for the identity operator in
the representation space of σ⊗v.

It is an easy consequence of Schur orthogonality (see, for instance, [SZ1, p.
11, Corollary 3.3]) that the dimensions of the representations with matrix-valued
idempotents etr and est may be computed by computing the traces of these matrix-
valued idempotents at I ∈ G and multiplying these traces by the index [G : P ].
Since

hI(I) = Iσ⊗v ,

the dimension of the representation corresponding to etr is

trace(etr(I))[G : P ] =
dim(σ⊗v)
P (qs)

|GLn(k)|
|GLs(k)|v|U |

=

∏s−1
j=1(qj − 1)v∏v−1
j=1 (

∑j
i=0 q

si)

∏n−1
j=0 (qn − qj)∏s−1

j=0(qs − qj)vqn(n−s)/2

=

∏n
j=1(qj − 1)∏v
j=1(qsj − 1)

,

which is the dimension of the GT representation (cf. (3)). Since P (q−s) appears in
the denominator of est instead of P (qs) and since the degree of the polynomial P (x)
is v(v−1)/2, the dimension of the representation corresponding to est is qsv(v−1)/2 =
qn(v−1)/2 times the dimension of the generalized trivial representation, i.e. the
dimension of the GS representation (cf. (5)). Since these dimensions equal the
respective dimensions of the irreducible characters (−1)n−vIks [v] and (−1)n−vIks [1v]
([GR, p. 438, Lemma 7.4]), etr is a matrix block of the representation corresponding
to the character (−1)n−vIks [v] and est corresponds to (−1)n−vIks [1v].

5. The GS Representation as the Generic Component of I(P, σ⊗v)

In this section we review the theory of “Whittaker vectors” for G with the goal
of showing that the GS representation is the unique component of I(P, σ⊗v) which
has a Whittaker vector. In principle the results of this section follow from the
work of Deligne and Lusztig which has already been sketched and referred to in
our Introduction. As already mentioned, the results of this section are for the most
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part classical and all are known to experts. We shall indicate original sources for
these results to the extent that we know them. In particular, we shall reprove and
use results of Gelfand/Graev [GG], Gelfand/Kazhdan [GK], S. I. Gelfand [GE1],
[GE2], and Rodier [ROD]. Bernshtein and Zelevinskii [BZ] prove similar results in
the local field case.

A one-dimensional character of U0 is called generic if its restriction to every
super-diagonal one-parameter subgroup I + xi,i+1 (1 ≤ i < n) is non-trivial. A
representation of G is said to be “generic” or to have a “Whittaker vector” if its
restriction to U0 contains a generic character.

If µ is a generic character of U0 and π a representation of G such that π|U0

contains µ, we say that π has a µ-Whittaker vector.
Let ψ be a non-trivial additive character of k. Then any one-dimensional char-

acter µ of U0 may be represented in the form I +x 7→ ψ(
∑n−1

i=1 aixi,i+1) = µ(I +x)
for some choice of (a1, · · · , an−1) ∈ kn−1 (x an upper triangular nilpotent matrix).
Clearly, µ is generic if and only if

∏n−1
i=1 ai 6= 0. The diagonal group T0 normalizes

U0 and acts on the set of one-dimensional characters of U0. With respect to this
action the set of generic characters comprise a single orbit. From this we obtain:

Lemma 5.1. Let π be an irreducible representation of G. Let µ, µ′ be generic
characters of U0. Then the multiplicities of µ and µ′ in π|U0 are equal.

Let Xk (1 ≤ k < n) denote the subgroup of U0 which consists of all matrices
I + x (x upper triangular nilpotent) such that the first n − k columns of x have
only zero entries.

There is a folk argument, probably due to Gelfand/Graev or Gelfand/Kazhdan
[GK], to prove that any cuspidal representation of G has a Whittaker vector. Here
is this argument:

Lemma 5.2. Let π be a cuspidal representation of G. Then π is generic.

Proof. Let (π, V ) be an irreducible cuspidal representation of G and let P =
(Gn−1 × G1) n X1 be the standard “large” parabolic subgroup of G. Since π is
cuspidal, π|X1 cannot contain 1X1 . Therefore, since X1 is isomorphic to the abelian
group (under addition) kn−1, π|X1 is a direct sum of non-trivial additive charac-
ters. Since X1−{I} is a single orbit under Gn−1×G1 acting by conjugation on X1,
every non-trivial (one-dimensional) character of X1 occurs in π|X1 . In particular,
the character µ1 : (x1,n, · · · , xn−1,n) 7→ ψ(xn−1,n) occurs in π|X1 . Thus, we have
proved the existence of a subspace 0 6= V1 ⊂ V which transforms under X1 as the
isotypy component corresponding to µ1. We argue by induction to prove that for
1 ≤ k < n there exists a non-zero isotypy subspace Vk ⊂ V for π|Xk which trans-
forms as the character µk : I+x 7→ ψ(xn−k,n−k+1 + · · ·+xn−1,n). We have verified
our claim for k = 1 and assume it for 1 ≤ k < n−1. Let U be the unipotent radical
of the maximal parabolic subgroup (Gn−k−1 ×Gk+1)n U . Since π is cuspidal and
since π|U∩Xk acts trivially on Vk, it follows that π|(Gn−k×{1,··· ,1})∩U is a direct sum
of non-trivial characters on Vk. Since Gn−k−1 × {1, · · · , 1} stabilizes Vk and acts
transitively on U∩(Gn−k×{1, · · · , 1}−{I}), there exists a subspace 0 6= Vk+1 ⊂ Vk
such that on Vk+1 we have a multiple of the character I + x 7→ ψ(xn−k−1,n−k) for
I + x ∈ U ∩ Gn−k × {1, · · · , 1} = Xk+1 ∩ Gn−k × {1, · · · , 1}. Thus, on Vk+1 we
also have a multiple of the character µk+1 : I + x 7→ ψ(xn−k−1,n−k + · · ·+ xn−1,n)
of the group Xk+1. By induction it follows that there is a non-zero subspace Vn−1
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on which the generic character I + x 7→ ψ(x1,2 + · · ·+ xn−1,n) of Xn−1 = U0 acts.
This proves that π cuspidal implies that π is generic.

Let us recall the following assertion of S. I. Gelfand. Gelfand gives a short proof
of this result in [GE2], based on the theorem of Gelfand/Graev (see Corollary 5.4
below). We shall derive Gelfand/Graev’s result as a consequence of our develop-
ment, so we give a different proof for S. I. Gelfand’s assertion.

Lemma 5.3 (S. I. Gelfand [GE1], [GE2]). Let µ be a generic character of U0 and
let χ be a character of the center Z ∼= k× of G. Let P = (Gn−1 × G1) n X1

denote the standard large parabolic subgroup of G. Then the representation ρ(χ) =
IndPZ×U0

χ ⊗ µ is irreducible and independent of µ. Moreover, for any irreducible
cuspidal representation π of G with central character χ, ρ(χ) ∼ π|P .

Proof. Clearly, IndT0U0
ZU0

(χ⊗µ) is a representation of degree [T0U0 : ZU0] = (q−1)n−1

with the property that its restriction to U0 consists of the direct sum of all the
characters of U0 which are conjugate to µ under the action of T0. Thus every
generic character of U0 occurs in this representation and each occurs simply. By the
transitivity of induction this proves that ρ(χ) does not depend upon µ generic. For
the irreducibility we argue by induction, the case n = 1 being obvious. Assume that
for k < n the representation ρ(χ) is irreducible and that ρ(χ) ∼ π|P . Let (π1⊗λ,W )
be the tensor product of an irreducible cuspidal representation of Gn−1 and a
character of G1 such that π1 ⊗ λ|Z is the scalar representation χ · Iπ1⊗λ. Consider
J = IndPGn−1×G1

(π1 ⊗ λ). The commuting algebra of J is the convolution algebra
of End(W )-valued functions h which satisfy h(gpg′) = (π1 ⊗ λ)(g)h(p)(π1 ⊗ λ)(g′)
for all g, g′ ∈ Gn−1 × G1, p ∈ P . Since the non-zero elements of kn−1 comprise
a single orbit under the action of Gn−1, it is obvious that there are exactly two
Gn−1×G1\P/Gn−1×G1 double cosets, one with representative the identity element
of X1 and the other with representative any non-identity element of X1. We claim
that the commuting algebra of J is two-dimensional. Clearly, the double coset with
representative the identity element of X1 supports a one-dimensional subspace. Let
us show that the other double coset also supports only a one-dimensional subspace.
To see this note that any function with support in this double coset must satisfy

(π1 ⊗ λ)(g)h(x) = h(gx) = h(xg) = h(x)(π1 ⊗ λ)(g)(∗)
at I 6= x ∈ X1 whenever gxg−1 = x with g ∈ Gn−1 ×G1. We observe that the set
of g ∈ Gn−1×G1 such that gxg−1 = x for a non-identity element x ∈ X1 is a group
of the form P ′×G1, where P ′ is a large parabolic subgroup of Gn−1. By induction
π1|P′ is irreducible; therefore, by Schur’s Lemma, the space of functions satisfying
(∗) is one-dimensional. Thus the commuting algebra of J is two-dimensional and
therefore J has two inequivalent irreducible component representations. Now J
obviously contains the “lift” to P of π1 ⊗ λ as a subrepresentation. The dimension
of J is

dim(π1)qn−1 = qn−1
n−2∏
j=1

(qj − 1),

and the dimension of the complement of the lift is
n−1∏
j=1

(qj − 1) = [P : ZU0] = dim(ρ(χ)).
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Clearly, the complement of the lift contains a Whittaker vector, from which we
conclude via Frobenius reciprocity and by matching dimensions that it is equiva-
lent to ρ(χ) and that ρ(χ) is irreducible. By Lemma 5.2 any irreducible cuspidal
representation π is generic, so, by Frobenius reciprocity, if the central character
of π is χ, π|P contains a subrepresentation which is equivalent to the irreducible
representation ρ(χ). By Green’s results,

dim(π) =
n−1∏
j=1

(qj − 1),

so π|P ∼ ρ(χ).

Corollary 5.4. Let π be an irreducible cuspidal representation of G. Then for any
generic character µ of U0 the multiplicity of µ in π|U0 is exactly one.

Proof. This is now immediate from the irreducibility of the induced representation
ρ(χ) combined with Frobenius reciprocity.

We extend the definition of Whittaker vector to apply to any irreducible repre-
sentation π = π1 ⊗ · · · ⊗ πr of Gm1 × · · · ×Gmr by saying that π has a Whittaker
vector if each of the factors πi has one. Again if π has a µ-Whittaker vector with
respect to one generic character µ of U0∩(Gm1×· · ·×Gmr), then it has a Whittaker
vector with respect to every other such character. The multiplicity for each generic
character is clearly the same. We shall say that π has a µ-Whittaker vector if we
want to specify a particular character µ of U0 ∩ (Gm1 × · · · ×Gmr ).

Theorem 5.5 (cf. Rodier [ROD]). Let L = Gm1 × · · · ×Gmr (m1 + · · ·+mr = n)
be a block diagonal subgroup of G. Let P = L n U be the parabolic subgroup of
G which contains P0 and has L as Levi factor. Let π = π1 ⊗ · · · ⊗ πr be any
representation of L, irreducible or not, which has, up to scalar factors, exactly one
µ0-Whittaker vector, where µ0 is a generic character of U0 ∩ L. Then Π = IndGP π
has, up to scalar factors, exactly one µ-Whittaker vector for any generic character
µ of U0.

Proof. To avoid some minor technicalities we replace U0 by its opposite Ū0; we
show that there is, up to scalar factors, a unique µ-Whittaker vector (i.e. for Ū0)
with µ of Ū0 such that µ|Ū0∩L = µ0|Ū0∩L. It is enough to prove the theorem for
Ū0, because U0 and Ū0 are conjugate. To prove existence we consider the subset
PŪ ∼= P × Ū of G, where Ū denotes the opposite of U . Let µ1 = µ|Ū . Then for any
ū0 ∈ Ū0 we have ū0 = ūLū with ūL ∈ (Ū0∩L) and ū ∈ Ū . Let v = vµ0 be the, up to
scalar factors, unique vector in the representation space Vπ of π which transforms
as µ0 under Ū0 ∩ L. Let h : G → Vπ be defined such that h(pū) = µ1(ū)π(p)vµ0

for any p ∈ P and ū ∈ Ū . Assume that the support of h lies in PŪ . Then clearly
h is a µ-Whittaker vector for Π; it is also clear that h is, up to scalar factors, the
unique µ-Whittaker vector for Π with support in PŪ . We must show that there is
no µ-Whittaker vector for Π which has support in a coset of the form PwŪ , where
w is a permutation matrix not lying in L. By transitivity of parabolic induction
and arguing by induction on the parabolic rank of P it is sufficient to consider the
p-rank one case, r = 2. Using the fact that the p-rank is one, let λ be the weight
which is one on the positive root occurring in the Lie algebra of U and is orthogonal
to all the other simple roots, i.e. to the set of simple roots which occur in the Lie
algebra of L∩U0. If w fixes λ, then w belongs to the group generated by the set of
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reflections in the group of permutation matrices which fix λ [BOU, p. 75, Prop.1].
Since λ lies in the closure of a positive chamber, this group is generated by the set
of reflections which correspond to the set of simple roots which are orthogonal to
λ, precisely to the set of simple roots which occur in the Lie algebra of L ∩ U0.
This reflection group is just the set of all permutation matrices lying in L. If w
represents a double coset PwŪ 6= PŪ , then w /∈ L and therefore w does not fix λ.
Since

(λ,w−1α) = (wλ, α) < 0

for some simple root, it follows that some subdiagonal one-parameter subgroup of
Ū0 is conjugated by w into U . Therefore, for any h : PwŪ → Vπ which satisfies
h(luwū) = π(l)h(wū) for l ∈ L, u ∈ U, ū ∈ Ū , we have

Π(ū0)h(w) = h(wū0) = h(wū0w
−1 · w).

In this case it follows that Π(ū0)h(w) = h(w). This implies that h is not an
eigenfunction for Π|Ū0

which transforms according to a generic character of Ū0.
We conclude that, up to scalar factors, there is only one µ-Whittaker vector in the
representation space of Π.

Corollary 5.6 (Gelfand/Graev [GG]). Let π be an irreducible representation of
G. For any generic character µ of U0 the representation π has at most a one-
dimensional space of µ-Whittaker vectors.

Proof. Since every irreducible representation of G occurs as a subrepresentation of
IndGP σ with σ a cuspidal representation of a Levi factor L lifted to P = LnU , our
claim is an immediate consequence of Corollary 5.4 and Theorem 5.5.

Corollary 5.7. Let σ be a cuspidal representation of Gs, where n = sv. Let L =
[Gs]v be a block-diagonal subgroup of G and let P = Ln U be a parabolic subgroup
of G with L as Levi factor. The only component of Π = IndGP σ

⊗v with a Whittaker
vector is the GS component.

Proof. By Corollary 5.4 and Theorem 5.5, Π contains exactly one µ-Whittaker
vector, up to scalar multiples, for any generic character µ of U0. Therefore, exactly
one component of Π can have Whittaker vectors. This component π of Π must occur
simply, since the property of having a Whittaker vector is clearly invariant under
equivalence. Thus the only possible components of Π which can have Whittaker
vectors are the GT and GS components. However, if a component π of Π has a
Whittaker vector, then π|P must contain an irreducible component of dimension
[P : ZU0] =

∏n−1
j=1 (qj − 1). Thus, the dimension of π must be at least as large as

this dimension. By §3, (3), the dimension of the GT representation is too small;
note also that §3, (5) implies that the dimension of the GS representation is large
enough to be consistent with its having Whittaker vectors. Since one and only one
component of Π is generic, it is the GS component which is generic.

6. GS Characters on the Regular Elliptic Set

Our main result characterizes and parameterizes the set of cuspidal and gener-
alized Steinberg representations by their character values on the regular elliptic set
of G.
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Theorem 6.1. Let χs = θk be a regular character of k×s and let σ = σχs be the
cuspidal representation of Gs with character Uχs(γ) = (−1)s−1S(χs)(γ) for any
regular elliptic element γ ∈ Gs. Consider σ⊗v as a representation of a parabolic
subgroup P = Ln U with the Levi factor L of P isomorphic to Gs × · · · ×Gs. Let
Σ be the generalized Steinberg component of the induced representation I(P, σ⊗v).
Then the character U = UΣ is represented on the regular elliptic set of G by the
formula

U(ξ) = (−1)n−1
s−1∑
j=0

N∗kn|ks(χs)(ξ
qj )

= (−1)n−1
s−1∑
j=0

N∗kn|ks(χs)
qj (ξ)

= (−1)n−1S(χn)(ξ),

(8)

where we identify any regular elliptic element ξ ∈ G with a primitive element in k×n
and

N∗kn|ks(χs) = χs ◦Nkn|ks = χn ∈ Xn.

Proof. Green [GR, p.439, Theorem 12] represents the character U = (−1)n−vIks [1v]
in the form

Uρ(ξρ) = (−1)n−vχ1v

π

∏
`

p∏̀
i=1

Ts,`(k : ξs`,i)(9)

for any conjugacy class which corresponds to a characteristic polynomial with dis-
tinct roots (a “principal conjugacy class”). In (9) π is a partition of v, χ1v

π is the
sign character of Sv evaluated at π, and ρ is the partition sπ of n. These parti-
tions depend upon the factorization of the minimal (or characteristic) polynomial
of the conjugacy class. If the argument is regular elliptic, we have π = (v1) and
ρ = sπ = (n1), which implies that χ1v

π = χ1v

v = (−1)v−1. Since π = (v1), the prod-
uct Π` consists of one factor corresponding to ` = v, and p` = pv = 1. Therefore,
since

(−1)n−vχ1v

v = (−1)n−v(−1)v−1 = (−1)n−1

and since the product in (9) collapses to a single factor corresponding to pv = 1,
we have

Uρ(ξρ) = U(ξ) = (−1)n−1Ts,v(k : ξn,1).

In [GR, p. 417, Definition 3.1] we find that

Ts,v(k : ξ) = (θk ◦Nkn|ks)(ξ) + (θk ◦Nkn|ks)
q(ξ) + · · ·+ (θk ◦Nkn|ks)

qs−1
(ξ),

where ξ = ξn,1 is a root of the characteristic (or minimal) polynomial defining the
conjugacy class, i.e. a regular elliptic element of G. Hence (9) implies (8).

Corollary 6.2. For every n ≥ 1 there is a bijective correspondence [χn] 7→ Σχn
between the parameter set Xn/〈φ〉 of Galois orbits of characters of k×n and the set of
cuspidal and generalized Steinberg representations of Gn. If [χn] ⊂ Xn consists of
regular characters, then the representation Σχn of Gn is a cuspidal representation.
If [χn] = [N∗kn|ksχs], where χs ∈ Xs is regular, s | n, and s < n, then Σχn is the GS
representation which occurs as a component of the induced representation I(P, σ⊗v)
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(sv = n), where P = [Gs]v n U is a parabolic subgroup of Gn and σ = Σχs is the
cuspidal representation of Gs which corresponds to [χs]. The inverse mapping is
Σ 7→ [χn], where the character of Σ is (−1)n−1

∑
η∈[χn] η, on the regular elliptic set

of Gn.

Proof. Theorem 1.1 implies that the orbit [χn] may be recovered from the restriction
of the character of Σ to the regular elliptic set of Gn.

Remark 6.3.
1. The set X̃/〈φ〉 corresponds bijectively to the set of cuspidal representations

of all groups Gn (n ≥ 1). This correspondence is given as follows. Let
[χ̃] ∈ X̃/〈φ〉 and assume that |[χ̃]| = s ≥ 1. Then

[χ̃] =
⋃

m:s|m
[χm] ⊂

∞∐
m=1

Xm = X,

where [χm] ⊂ Xm. Only [χ̃]∩Xs = [χs] consists of regular characters; to [χs]
corresponds a cuspidal representation σχs of Gs.

2. Fix χ̃ ∈ X̃ , assume that |[χ̃]| = s ≥ 1, and let σχs be the cuspidal representa-
tion of Gs which corresponds to [χ̃]. For all m such that s | m (s < m) there
is a unique GS representation Σ of Gm such that Σ corresponds to the orbit
[χm] = Xm ∩ [χ̃] and such that Σ has σχs as its cuspidal base representation.
The mapping [χm] 7→ Σ = Σχm was described in Corollary 6.2.

3. Let Σ be the cuspidal or GS representation of Gm (s | m, s ≤ m) which
corresponds to [χ̃] ∩Xm. The function

(−1)m−1S(χ̃)m : Rm → C,

S(χ̃)m as in §1, (1′), represents the character of Σ on the regular elliptic set
of Gm. The orbit [χ̃] can be recovered from this function (for any m).

4. The set X/〈φ〉 is in bijective correspondence with the set of cuspidal and
GS representations of all the groups Gm (m ≥ 1). The subset [χ̃] ⊂ X/〈φ〉
parameterizes the set of all cuspidal and GS representations which have σχs
as cuspidal base representation.

We represent the above remark by the following commutative diagram in which
N denotes the set of positive integers:

(X̃ × N)/〈φ〉 α−−−−→ {Σχsv}y y
X̃/〈φ〉 β−−−−→ {σχs}.

In the above diagram, assuming that |[χ̃]| = s, α([χ̃], v) = Σχsv , where Σχsv is the
GS representation of Gsv with σχs as cuspidal base representation. We also have
β([χ̃]) = α([χ̃], 1) = σχs , a cuspidal representation of Gs. The left vertical arrow
“forgets” the integer component and the right vertical arrow associates to a GS
representation its cuspidal base representation. Of course χsv ∼ χs for all v ∈ N.
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