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Many important applications of electronic structure methods involve molecules or solid surfaces in
a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical,
calculations often employ continuum solvation models to approximate the effect of the solvent.
Previous solvation models either involve a parametrization based on atomic radii, which limits the
class of applicable solutes, or based on solute electron density, which is more general but less
accurate, especially for charged systems. We develop an accurate and general solvation model
that includes a cavity that is a nonlocal functional of both solute electron density and potential,
local dielectric response on this nonlocally determined cavity, and nonlocal approximations to the
cavity-formation and dispersion energies. The dependence of the cavity on the solute potential
enables an explicit treatment of the solvent charge asymmetry. With four parameters per solvent,
this “CANDLE” model simultaneously reproduces solvation energies of large datasets of neutral
molecules, cations, and anions with a mean absolute error of 1.8 kcal/mol in water and 3.0 kcal/mol

in acetonitrile. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907731]

. INTRODUCTION

Solvents play a critical role in determining chemical
reaction mechanisms and rates, but the need for thermody-
namic phase-space sampling renders direct treatment of the
liquid in electronic structure calculations far too computa-
tionally intensive. The standard solution to this problem is to
use continuum solvation models which empirically describe
the dominant effects of the solvent within a single electronic
structure calculation of the solute alone. This enables rapid
estimations of free energies of reaction intermediates, allow-
ing for a theoretical screening of reaction mechanisms, and
providing insight into the mechanisms involved in catalysis
required for the development of more efficient catalysts.

Conventional continuum solvation models, such as
the “SM” series' and the polarizable continuum models
(PCMs),*° construct cavities composed of a union of van
der Waals (vdW) spheres centered on the solute atoms and ap-
proximate the effect of the solvent by the electric response of a
continuum dielectric cavity along with empirical corrections
for cavity formation and dispersion energies. These models
include a number of atom-dependent parameters, such as radii
and effective atomic surface tensions, which are fit to datasets
of experimental solvation energies, typically including neutral
and charged organic solutes. These models can be quite
accurate for the solvation energies of solutes similar to those in
the fit set but require care when extrapolating to new systems.
Additionally, the sharp cavities generated from the union of
atomic spheres can lead to numerical difficulties including
non-analyticities in the energy landscape for ionic motion that
complicates geometry optimization and molecular dynamics
of the solute.

In contrast, density-based solvation models such as
the self-consistent continuum solvation (SCCS) approach’:®
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and the simplified solvation models®!! within joint-density

functional theory (JDFT)'? employ a continuously varying
dielectric constant determined from the solute electron density.
These models avoid the numerical difficulties arising from
sharp spheres making them more naturally suited for the
plane-wave basis sets used in solid-state calculations. Ad-
ditionally, density-based solvation models typically involve
fewer (two to four) parameters and should extrapolate more
reliably from one class of solute systems to another. However,
the smaller parameter set also limits the typical accuracy
achievable in this class of models. In particular, these solva-
tion models exhibit a systematic error between the solvation
of cations and anions, with cations in water over-solvated and
anions under-solvated. This issue is sometimes handled by
fitting separate parameter sets for differently charged solutes,®
but that is not an option for solutes that combine centers of
opposite charges, such as zwitterions or ionic surfaces.

Here, we report a highly accurate density-based solvation
model that addresses the aforementioned charge asymmetry
issue. We start with the recent non-empirical solvation model,
“SaL.SA” (spherically averaged liquid susceptibility ansatz),'?
derived from the linear-response limit of joint density-
functional theory,'? which provides an excellent starting point
due to the independence of its cavity from fitting to solvation
energies, and provides additional numerical stability from the
nonlocality in the determination of the cavity, the electric
response, cavity formation free energy, and dispersion energy.
To account for the charge asymmetry, Sec. II A introduces a
nonlocal dependence of the cavity on both the electron density
and electric potential of the solute.

In SaL.SA, the nonlocal electric response involves an
angular momentum expansion which converges rapidly only
for small sphere-like solvent molecules (such as water)
and which increases the computational expense by one-two

©2015 AIP Publishing LLC
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orders of magnitude compared to local response. Section
IT B replaces the nonlocal electric response with a local
dielectric as in traditional continuum solvation models but
derived from the nonlocal cavity that builds in the charge
asymmetry. Because it is based on the charge-asymmetric
nonlocally determined local electric response, we refer to this
new model as the CANDLE solvation model. The treatment
of the cavity formation and dispersion energies are almost
identical to SaLLSA,!!:13 except for minor modifications to the
dispersion functional (Sec. II C) to improve the generalization
to solvents of highly non-spherical molecules. Finally, Sec. I1I
details the fits of three of the four parameters in the model—a
charge asymmetry parameter, an electric response nonlocality
parameter, and the dispersion scale factor—to experimental
solvation energies. (The fourth parameter is strongly covariant
with the charge asymmetry parameter and hence not fit but
fixed in Sec. II A.) That section then demonstrates the accuracy
of the CANDLE solvation model for water and acetonitrile as
prototypical solvents.

Il. DESCRIPTION OF MODEL

Following the SaLLSA solvation model,'* we approximate
the total free energy of a solvated electronic system as

Asol[n] = Ank[n] + Ulq[pel’ s]+ Geay[s] + Edisp[s]- (D

Here, we employ the notation introduced for solvation
models'® derived within the framework of joint density-
functional theory:'? the suffix “el” labels properties of the
solute subsystem which is treated using electronic density
functional theory while the suffix “lq” labels properties of the
solvent subsystem which is treated using liquid free-energy
functional theory.

Above, Ayg[n] is the Hohenberg-Kohn functional' of the
solute electron density n(#), which in practice we treat using
the Kohn-Sham formalism'> with an approximate exchange-
correlation functional. The second term Ug[pe,s] is the
electrostatic interaction energy between the solute and solvent,
where p. () is the total (electronic + nuclear) solute charge
density and s(7) is the cavity shape function which switches
smoothly from 0 in the region of space occupied by the solute
to 1 in that occupied by the solvent. The third and fourth terms
of (1) capture the cavity formation free energy and dispersion
energy, respectively.

Sections II A-II C describe each of the above terms in
detail. Section II A presents the determination of the cavity
shape function s(7), Sec. I B describes the electric response
of the solvent that determines Uy, and Sec. II C details the
dispersion energy Egisp.

For the cavity formation free energy G, we adopt
the parameter-free weighted density approximation from
Ref. 11 without modification. Briefly, this model for the cavity
formation free energy begins with a weighted-density ansatz
motivated from an intuitive microscopic picture of surface
tension and completely constrains the functional form to
bulk properties of the solvent including the number density,
surface tension and vapor pressure. The resulting functional
accurately describes the free energy of forming microscopic
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cavities of arbitrary shape and size in comparison to classical
density-functional theory and molecular dynamics results.'®
(See Ref. 11 for a full specification of Gy[s].)

A. Cavity determination

Traditional density-based solvation models determine the
cavity as a local function of the solute electron density,
s(F) = s(n(¥)), that switches from 0 to 1 over some density
range (controlled by n. in the JDFT simplified solvation
models®!® and by (Omin, Pmax) in the SCCS models’®) that is
fit to solvation energies. In contrast, the non-empirical SaLSA
model determines the cavity from an overlap of the solute and
solvent electron densities,

0 k
s(F) = Lerfeln M )
2 c

where nﬁ](r) is a spherical average of the electron density
of a single solvent molecule and * denotes convolutions,
(f * g)(F) = [ dF f(F — ")g(7"). The critical density product
fie = 1.42 x 1073 is a universal solvent-independent constant
determined from a correlation between convolutions of
spherical electron densities of pairs of atoms and their vdW
radii. (See Ref. 13 for details.)

We make two modifications to the SaLSA cavity deter-
mination. First, the spherically averaged electron density of
the solvent molecule produces the correct cavity sizes for
the small approximately spherical solvent molecules (such
as water, chloroform, and carbon tetrachloride) for which
SaLLSA works well. For non-spherical solvents, spherically
averaging the electron density would result in an unphysically
large extent for n?q(r): the range would correspond to the
circumradius of the solvent molecule which would overes-
timate the average distance of nearest approach of the solvent
molecule to the solute. The vdW radius of the solvent,'’
determined from the exclusion volume in the equation of
state of the solvent, naturally captures the effective size of the
solvent molecule for nearest approach. Traditional polarizable
continuum models successfully employ spherical probes to
determine the separation between the inner and outer cavities
(solvent-accessible and solvent-excluded surfaces) even for
non-spherical solvents.® To generalize the SaLSA cavity
determination to non-spherical solvents using these ideas, we
replace the solvent electron density with a simple Gaussian
model,

I’lﬁl(}’) = Zvalwlq(r),

. _ 1 —r?
with wyy(r) = o Voay exp (20_12q ) 3)

Here, Z,, is the number of valence electrons in the solvent
molecule and the Gaussian width o4 is selected so that
the overlap of the model electron densities of two solvent
molecules crosses 7i. at a separation equal to twice the vdW
radius R,qw of the solvent. This condition reduces to the
transcendental equation in og,

0 0 Zzl _dew
(ny. * my )(2Ryaw) = T exp v =ii.. (4)
4" QoigVr)3 o3
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Consistency of the above condition with the correlation
between atom density overlaps and atomic vdW radii'?
results in cavities of the appropriate size (corresponding
approximately to atomic spheres of radius equal to sum of
solute atom and solvent vdW radii).

Second, we modify (2) to account for the charge
asymmetry in solvation. Dupont and coworkers® show that
their characteristic solute electron density parameters that
fit the solvation energies of anions in water are an order
of magnitude larger than those that fit solvation energies
of cations. Thus, they recommend separate parameter sets
depending on the charge of the solute. We consider this
far too restrictive as it precludes applications to solutes that
combine sites with different charges. Recently, Pomogaeva and
coworkers'® introduce a correction for hydration free energies
that depend on the electric field at the surface of the cavity to
account for asymmetries due to hydrogen bonding. However,
their approach is based on sharp atomic-sphere cavities and
is not self-consistent. To incorporate similar effects in self-
consistent density-based solvation models, we build in a
dependence of the cavity on the solute electron potential that
effectively adjusts the critical electron density depending on
the “neighborhood,”

Zvalﬁ(’:’)

e

1
s(F) = Eerfc In

- Sign(pcav)fsat (|pcav| vy - Vkﬁel(f'))] . &)

Here, i = wiq*n and pe = wig * pe are weighted elect-
ron densities and total charge densities, respectively. The
remainder of this section specifies the remaining attributes
of (5).

The combination VK jq is the negative of the electric
field due to the solute (spatially averaged by the convolution
with wyg) since K is the Coulomb operator, and éy;, the unit
vector along Vi, is parallel to the inward normal of the cavity.
Therefore, the argument of fg, in (5) is proportional to the
spatially averaged outward electric field due to solute, which
is negative for cation-like regions and positive for anion-
like regions (using an electron-is-positive sign convention for
electrostatics).

Now note that we can write (5) as (2) with 71, replaced with
ﬁiﬁ = ﬁceSig“(PcaV)f sat¥) where x is the combination discussed
above that measures the local ‘“anion-ness.” The SCCS
solvation fits for ions required electron density parameters
for anions about an order of magnitude larger than those
for cations and neutral molecules.® We impose the following
conditions on f(x):

o fo(x) =0 for x < 0 (cation-like regions) to reproduce
the similarity of cation and neutral parameters.

e For x > 0 (anions), f(x) saturates to Dy, for large x
so that the modulation of 7T is limited to a factor
of ePmax_ This provides numerical stability. We set
Dnax = 3 which is just sufficient to cover the parameter
changes observed in the SCCS fits. In principle, we
could fit Dy to solvation energies as well, but this
parameter is strongly covariant with p,y, and hence,
for simplicity, we hold it fixed at the above value.
Fitting Dpax could marginally improve the accuracy
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of the model, but does not seem to be necessary for the
solvents considered so far.
e fu(x) is continuous and differentiable.

In order to satisfy these conditions, we select

0, x<0
tanh x2, x> 0.

fsat(x) = Diax { (6)
This parametrization is of course not unique, but it is one
of the simplest choices that capture the observed charge
asymmetry and remains numerically stable. Note that a similar
dependence on the solute electric field would be extremely
unstable in a conventional isodensity model that depends on
the local electronic density. Here, the nonlocality introduced
by the convolutions with wiq(r) is critical to the success of the
present model.

Finally, the fit parameter p., selects the sensitivity of
the cavity to the solute electric field. Water requires pc,y > 0
because anions in water require a larger ¢ than cations. Some
solvents, such as acetonitrile, exhibit the opposite asymmetry.
Note that we split the sign and magnitude of p,y in the
formulation of (5), so that the charge asymmetry correction
always applies to anions rather than cations. We could have
alternatively applied the correction to anions when pg,y > 0
and to cations when p.,, < 0. However, this choice leads to
an instability for cations when pg,, < 0: a decrease in the
electron density near the nuclei increases the electric field,
reduces the cavity size, increases the solvation of the electrons,
and favors a further decrease in electron density. (The similar
situation of anions for p.,, > 0 is stable because increases
in electron density are limited by the associated Kohn-Sham
kinetic energy cost.)

B. Electric response

The cavity of conventional density-based solvation
models represents the shape of an effective continuum dielec-
tric that reproduces solvation energies. In contrast, the cavity
of the SalLSA model (and hence, the one determined above)
corresponds to the physical distribution of solvent molecule
centers because the model directly captures the nonlocal
dielectric response of the solvent molecules. However, this
nonlocal dielectric response requires an expansion in angular
momentum that is computationally intensive and practically
applicable only for solvents involving small, approximately
spherical and rigid molecules.

The CANDLE solvation model restores the standard local
response approximation to achieve computational expediency
and generality, but this, in turn, then requires an empirical
description of the dielectric as in other local solvation models.
We use the dielectric shape function,

6(r—n)

se7) = (wy » 5)(F) with w(r) = =3,

(N

which extends an empirical distance 7 closer to the solute than
the solvent-center cavity s(7) described by (5).

The fit parameter i controls the distance between the
solute and the solvent dielectric boundary, analogous to the
primary fit parameters of conventional solvation models such
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as electron-density thresholds or atomic radii scale factors.
However, compared to conventional iso-density solvation
models”!? which only employ an empirical dielectric cavity,
the present approach uses the physical cavity from the SaLSA
approach for the cavity-formation and dispersion terms. This
enables the use of physical models for those terms that
capture the correct cavity shape and size dependence instead
of empirical surface tension models.

The solvent electric response in CANDLE is then approx-
imated by a continuum dielectric €, optionally with Debye
screening k> = % ¥, N;Z? due to finite bulk concentrations
N; of ions of charge Z;, modulated by the dielectric shape
function. The free energy of interaction of the solute charge
density p.(F) with the solvent electric response is

2
g [-V~<1 +(ep = DAYV + k25D ]

1 N N N
Ulq[pel] =3 / drpel(f’) [KE - K] pel(f’)» where

(®)

€ 4r

is the screened Coulomb operator. In practice, ¢ = Kepe
is calculated iteratively by solving the modified Poisson
(Helmholtz, if & # 0) equation, I?g 1¢ = pel, €xactly as in
previous solvation models.!”

Figure 1 compares the bound charges and cavity shape
functions of the CANDLE solvation model with previous
density-based solvation models, for a water molecule in liquid
water. The SaLSA and CANDLE s(¥) are almost identical
and the transition is at the physical location of the first
peak of the radial distribution function gpo(r). The local
LinearPCM requires a cavity that transitions much closer to
the solute, while the CANDLE s.(7) reaches inwards towards
the solute with a much wider transition region. The bound
charge in the CANDLE solvation model is qualitatively simi-
lar to the purely local model, except for a longer tail away
from the solute due to the slower variation of the dielectric
constant.

8 [ ! v T T
CANDLE s i
\-.l- CANDLE s, ------- I
2  salSA - i i
= LinearPCM - o
CANDLE 1F 900 T epeemm = =
\.lP T 1 |
&2 CANDLE ——
& S SalSA - .
o LinearPCM e
SalLSA ?
o
'Tg 0
[ 3 L L . \
o
a 0 1 2 3 4 5
LinearPCM r [A]
FIG. 1. Comparison of the cavity shape functions and bound charges

(Obound(7)) for a water molecule in water from the CANDLE, SaLSA,!3 and
local LinearPCM'? models. The experimental oxygen-oxygen radial distri-
bution function!® goo(r) is also shown for comparison. Note that the SaLSA
and CANDLE s(ﬁ) are almost superimposed. The left panels show the bound
charge (+red, —blue) and electron density (green).
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C. Dispersion energy

Finally, for the dispersion energy, we adopt a slightly
modified form of the empirical approximation used in
SaLSA,'"13 which applies the DFT-D2 pair potential correc-
tion?” between the discrete solute atoms and a continuous
distribution of solvent atoms. The solvent atom distribution
is generated from s(7) by assuming an isotropic orientation
distribution of rigid molecules. In order to generalize to non-
spherical solvent molecules and eliminate the dependence on
the structure of the solvent molecule, we replace the atoms in
the solvent molecule with a continuous spherical distribution
wiq(r) of local polarizable oscillators with an empirical effec-
tive coefficient Ce.q €ach. The resulting simplified dispersion
functional is

Edisp[s] = =V CoetrNoulk Z / dr(wiq * 5)(F)

Cei |R; - 7|
= Sam . )
Ri—70" "\ Roi

where Ny is the bulk number density of the solvent, Cg; and
Ry; are the DFT-D2 parameters for solute atom i located at
position 13,-, and fqmp is the short-range damping function (see
Refs. 11 and 20 for details). The empirical scale factor s¢ in
the DFT-D2 correction has been absorbed into the empirical
Cecir coefficient.

lll. RESULTS
A. Computational details

We implemented the CANDLE solvation model in
the open-source plane-wave density functional software,
JDFTx.2! The local electric response is evaluated iteratively in
the plane-wave basis using exactly the same solver as previous
local solvation models,”!° while the nonlocal parts of the
functional are shared with or are minor adaptations of the
SaLLSA model.'""!* The nuclear charge density contributions
to pe are widened to Gaussians so that they are resolvable
on the plane-wave grid (see Ref. 10 for details). In the
calculation of the cavity shape function using (5), the valence
electron density n(7) is augmented by §-functions that account
for all the missing core electrons, to be consistent with the
all-electron convolutions used in the correlation with vdW
radii.”3

Self-consistent optimization of the Kohn-Sham functional
and geometry optimization require derivatives of the free en-
ergy with respect to the electronic state as well as ionic posi-
tions. These derivatives are straightforward to evaluate using
algorithmic differentiation in the algebraic formulation of
density-functional theory,>>?? despite the relative complexity
of the CANDLE model compared to iso-density solvation
models. For example, the code that evaluates the second term
of (1), Uig[ pel» 5], using (8) also calculates the functional deriv-
atives 6Uq/0 per and 6Uyg/0's. The code segment that calculates
s[n, pe] using (5) also handles the propagation of derivatives
with respect to s(7) to its inputs, namely, n(7) and p. (7). Finally,
all gradients are propagated to those with respect to n(#) for
the self-consistent Kohn-Sham optimization, and to those with
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(a) SCF cycles (b) lonic steps

FIG. 2. Convergence of energy and forces for an acetic acid molecule sol-
vated in water using the CANDLE model and a simpler iso-density model
(LinearPCM from Ref. 10). Part (a) shows the energy at each SCF cycle
collected over all ionic steps. Part (b) shows the forces at each ionic step.

respect to atomic positions for geometry optimization. Each
step of this gradient propagation, as implemented in the code,
is straightforward. However, a single analytical expression for
the entire gradient computation will be unduly complicated,
and we omit that for clarity since we do not require it anyway.
Figure 2 demonstrates that, despite its relative complexity, the
CANDLE model exhibits comparable convergence to simpler
models for the electronic state and geometry optimization.

We perform all calculations with the Perdew-Burke-
Ernzerhof (PBE)’* generalized-gradient approximation to
the exchange-correlation functional, and the Garrity-Bennett-
Rabe-Vanderbilt (GBRV) ultrasoft pseudopotentials>> with
the recommended wavefunction and charge-density kinetic
energy cutoffs of 20 Ej, and 100 Ej, respectively. At least
15 ag of vacuum surrounds the solute in each calculation unit
cell, and truncated coulomb kernels?®-?8 are used to eliminate
the interaction between periodic images.

B. Parameter fitting

The CANDLE solvation model has three as-yet
unspecified parameters per solvent, the charge-asymmetry
parameter pc,y, the electrostatic radius 77, and the effective
dispersion parameter VCge, Which are fit to a dataset of
experimental solvation energies of neutral molecules, cations,
and anions in that solvent. Table I lists the optimum fit
parameters for water and acetonitrile that we determine below,
along with the values of the physical properties that constrain
the solvation model.

We calculate the gas-phase energy for each solute at
the optimized vacuum geometry. We optimize the solution-
phase geometry using an initial guess for the solvation
model parameters, and at that optimum geometry, calculate
the solvation energy and its analytical Hellman-Feynman
derivatives with respect to the parameters on a coarse grid
in the parameter space of the solvation model. Using the
analytical derivatives, we interpolate the solvation energies to
a finer grid in parameter space and then select the optimum
parameters to minimize the mean absolute error (MAE) of
all the solutes. We re-optimize the solution-phase geometries
with these parameters, and repeat the above parameter sweep
process till the optimum parameters converge. For both
solvents considered here, the second sweep yields identical
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TABLE I. Fit parameters and physical properties that constrain the CAN-
DLE solvation model. We obtain vdW radii from Ref. 17 and all other
physical properties from Ref. 29 (at standard conditions, 7"=298 K and
p =101.3 kPa).

Parameter Water Acetonitrile
Fit:
Peav [eao/ Ep] 36.5 -31.0
77 [aol 1.46 3.15

1/2
VCout [(J;ﬁ‘;}ﬁ) } 0.770 221
Physical:
Valence electron count, Zy, 8 16
vdW radius, Ryaw [A] 1.385 2.12
Dielectric constant, €, 78.4 38.8
Bulk density, Noui [a5°] 4.938x107° 1.709% 1073
Vapor pressure, pyap [kPa] 3.14 11.8
Surface tension, o pyik [Eh/a%] 4.62%x107° 1.88x 1073

optimum parameters as the first, and we show the results of
that final self-consistent parameter sweep.

C. Water

Using the above protocol, we fit the parameters for
water to a dataset of 240 neutral molecules, 51 cations, and
55 anions identical to the one used in fitting the SCCS
models.”® Figure 3 shows the MAE in the solvation energies
as a function of the solvation model parameters. Note the
extreme sensitivity of the anion solvation energies to the
charge-asymmetry parameter pg, (x-axis); the MAE for
anions would exceed 15 kcal/mol if pc,y is set to zero. The
neutral molecules and cations more strongly constrain the
electrostatic radius 7 (y-axis). Overall, the net MAE of all
solutes tightly constrains all the parameters. (The solvation
energies depend almost linearly on the dispersion parameter
V/Ceefr. To simplify the visualization in Figure 3, we “integrate
out” the v Cger parameter by setting it to its optimum value
for each combination of the other parameters.)

Table II compares the accuracy of the CANDLE solvation
model for water with that of the SCCS models and the integral-
equation formalism (IEF)-PCM3**3! in GAUSSIAN*? on
exactly the same set of solutes. The IEF-PCM model exhibits
large errors for cations as well as anions, while the SCCS
model fit to neutral molecules alone works reasonably well for
cations but systematically undersolvates anions resulting in a
large error of 17 kcal/mol. This error is reduced to 5.5 kcal/mol
by fitting a separate set of parameters for anions alone. With
charge asymmetry built in, the CANDLE solvation model
with a single parameter set exhibits comparable accuracy to
the individual SCCS models fit to each solute type.

As an independent test of accuracy, Figure 4 compares
predicted acid dissociation constants of mostly inorganic acids
(not present in the fit set) with experiment. The CANDLE
model marginally increases the error in pKa of cationic acids
compared to the local LinearPCM model, but significantly
improves the predictions for neutral and anionic acids since
it solves the anion under-solvation issue. Note, in particular,
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FIG. 3. MAE of CANDLE solvation energies of 240 neutral molecules, 51
cations, 55 anions, and all of these solutes in water, as a function of the fit
parameters. In each panel, the x-axis is pc,y in eao/Ep, the y-axis is 77 in
ayp, and the contours (color) axis is MAE in kcal/mol. The v Ceefr parameter
is set to its optimum value for each combination of the other two parameters.

that CANDLE makes reasonable predictions even for the
second and third dissociations of sulfuric and phosphoric acid,
which require solvation of dianions and trianions, respectively.
For the set considered here, the MAE is 4.7 pKa units for
CANDLE compared to 8.4 pKa units for LinearPCM.'?

D. Acetonitrile

For acetonitrile, we fit the CANDLE parameters using
the above protocol to the solvation energies of the 12 neutral
molecules, 30 cations, and 39 anions in the Minnesota
solvation database.>® Figure 5 shows the variation of MAE
with parameters for the solvation energies in acetonitrile. As
in the case of water, the combined set of neutral and charged
solutes constrains the fit parameters well. At the optimum

TABLE II. MAEs of the CANDLE solvation model for water compared to
various parametrizations of the SCCS model,” and IEF-PCM3%3! in GAUS-
SIAN?? using identical sets of solutes. (SCCS and GAUSSIAN results from
Ref. 8.)

MAE (kcal/mol)

Model Neutral Cations Anions All
GAUSSIAN’03 .. 4.00 10.2
GAUSSIAN’09 .. 11.9 15.0 ..
SCCS neutral fit 1 1.20 2.55 17.4 341
SCCS neutral fit 2 1.28 2.66 16.9 3.35
SCCS cation fit - 2.26 .

SCCS anion fit ... ... 5.54 .
CANDLE 1.27 2.62 3.46 1.81
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FIG. 4. Acid dissociation constants (pKa) in water predicted by the CAN-
DLE and LinearPCM'? models compared to experiment.

parameters, the MAE is 2.35 kcal/mol for neutral molecules,
4.04 kcal/mol for cations, 1.81 kcal/mol for anions, and
2.97 kcal/mol overall.

In contrast to water, the charge asymmetry parameter is
negative for acetonitrile, indicating that cations are solvated
more strongly than anions of the same size. This follows
intuitively from the charge distributions of the solvent
molecules. In water, the positively charged hydrogen sites
can get closer to the solute than the negatively charged
oxygen and hence, anions are solvated more strongly. In
acetonitrile, the negatively charged nitrogen site is more easily
solute-accessible whereas the positively charged carbon site
is blocked by the methyl group, and therefore, cations are
solvated more strongly.

Anions All

FIG. 5. MAE of CANDLE solvation energies of 12 neutral molecules, 30
cations, 39 anions, and all of these solutes in acetonitrile, as a function of the
fit parameters. The axes are exactly analogous to Figure 3.
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FIG. 6. Correlation of theoretical electron chemical potentials () with
experimental potential of zero charge (relative to SHE) for various solvation
models. The results are for single crystalline copper (squares), silver (trian-
gles), and gold (circles) surfaces, with 111, 100, and 110 orientations from left
to right, respectively. (LinearPCM and NonlinearPCM data from Ref. 10.)

E. Solvation of metal surfaces

Finally, we examine the predictions of the CANDLE
solvation model for a class of relatively clean electrochemical
systems: single crystalline noble metal electrodes in an
aqueous non-adsorbing electrolyte. The surface charge on
these electrodes depends on the electrochemical potential,
and the surface becomes neutral at the potential of zero charge
(PZC). Experimentally, these potentials are referenced against
the standard hydrogen electrode (SHE). The absolute level of
the SHE is difficult to determine experimentally and estimates
range from 4.4 to 4.9 eV.>* Correlating the theoretical electron
chemical potential of solvated neutral metal surfaces with the
measured PZC provides a theoretical estimate of this absolute
potential."’lo Here, we reexamine this theoretical estimate with
the nonlocal solvation models, CANDLE and SalLSA.

Figure 6 plots the calculated electron chemical potential
of neutral metal surfaces using various solvation models
against the experimental PZC, and Table III summarizes
the absolute offset and error in the correlation so obtained.
The absolute offsets predicted using various solvation models
agree to within 0.1 eV and are well within the expected
experimental range. The CANDLE model exhibits a
marginally higher scatter but overall agrees well with the
linear and nonlinear local models studied in Ref. 10. The
nonlocality of the SaLSA and CANDLE models, therefore,
does not significantly alter the predictions of the local solvation
models for the absolute SHE potential.

TABLE III. Offset and RMS deviation between theoretical electron chemical
potentials and experimental potentials of zero charge for various solvation
models. (LinearPCM and NonlinearPCM data from Ref. 10.)

Model MsHE (eV) RMS error (eV)
CANDLE —4.66 0.11
SaLSA —4.55 0.09
LinearPCM —4.68 0.09
NonlinearPCM -4.62 0.09

J. Chem. Phys. 142, 064107 (2015)
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FIG. 7. Variation of surface charge on the 111 surface of platinum with elec-
trode potential for various solvation models. (LinearPCM and NonlinearPCM
data from Ref. 10.)

The charge of metal electrodes as a function of the
electrode potential is sensitive to the structure of the
electrochemical double layer and varies nonlinearly, but
continuum solvation models predict an almost linear variation
(almost constant double layer capacitance).'® Figure 7 shows
that the nonlocal solvation models, CANDLE and SalLSA,
also predict a linear charging curve for the Pt 111 surface. The
value of the double-layer capacitance is 12 uF/cm? for these
nonlocal models, slightly lower than 14 and 15 uF/cm? for the
linear and nonlinear solvation models'® and an experimental
estimate® of ~20 uF/cm?. Details of ion adsorption and the
nonlinear capacitance of the electrochemical interface are,
therefore, not described by continuum solvation models and
require an explicit treatment of the electrochemical double
layer.

IV. CONCLUSIONS

This work constructs an electron-density-based solvation
model, the CANDLE model, that explicitly accounts for the
asymmetry in solvation of cations and anions. This model
incorporates the charge asymmetry by adjusting the effective
electron density threshold parameter (and hence, the cavity
size) depending on the local charge environment of the solute,
which in turn is measured using the direction of the solute
electric field on the cavity surface. The CANDLE model
exploits the nonlocal cavity determination and approxima-
tions to the cavity formation and dispersion energies of the
fully nonlocal SaLSA model'® but replaces the nonlocal
electric response with an effective local response, thereby
combining the computational efficiency of standard local-
response solvation models with the stability and accuracy of
the nonlocal model.

With four parameters per solvent, the CANDLE model
predicts solvation energies of neutral molecules, cations,
and anions in water and acetonitrile with higher accuracy
than previous density-based solvation models. Since a single
set of parameters works for differently charged solutes, the
CANDLE model is particularly important for systems that
expose strongly charged positive as well as negative centers
to solution, such as ionic surfaces. A comparative study
of solvation models for solid-liquid interfaces would be
particularly desirable but difficult due to the dearth of directly



064107-8 R. Sundararaman and W. A. Goddard IlI

calculable experimental properties (analogous to solvation
energies for finite systems). Constraining the parameters of
this model requires experimental solvation energies for neutral
as well as charged solutes, but extensive data are available only
for a small number of solvents. The trends in the CANDLE
parameters for other solvents for which ion solvation data
are available will be useful in estimating the parameters and
accuracy of the CANDLE model for solvents without such
data.
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