
BULLETIN Bull. Malaysian Math. Soc. (Second Series) 21 (1998) 63-78 
 of the 
 MALAYSIAN MATHEMATICAL SOCIETY 

 
 
 
 

The Check Positions of Hamming Codes and the 
Construction of a 2 EC-AUED Code 

 
1HOW GUAN AUN  AND  2ANG MIIN HUEY 

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia 
 1gahow@cs.usm.my,  2ang_miin_huey@hotmail.com   

 
 

 Abstract.   Hamming Code is the oldest and the most commonly used single error correcting and 
double errors detecting code.  For implication, it is constructed over the field .  For each 

, there is a  Hamming Code where  and .  A message word 
of length k is encoded using a generating matrix G into a codeword of length n.  This amounts to 
inserting r parity check digits into the message word.  The positions of the parity check digits in the 
codeword are called the check positions of the code (with respect to G).  A received word is then 

decoded using a parity check matrix H. If the check positions of the code are in the  

coordinates of the codeword, then the  rows of H are called the check rows of the 
code.  We proved in this paper that for any parity check matrix of a Hamming Code, there exists a 
generating matrix G of the code, such that the check rows of the code are linearly independent. We 
believe that this fact is contained implicitly in a paper of Hamming [7]    but we cannot find any 
explicit proof in existing literature.  Using the above fact, we construct a        2
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 EC-AUED code. 
 
 
1. Introduction 
 
More than 40 years, error control coding theory has been proved to have increased the 
reliability of computer or communication systems against errors [17].  Different system 
may be vulnerable to different types of errors.  Error that changes digit 1 to 0 is called a 
1-error whereas error that changes digit 0 to 1 is called a 0-error.  If both 0-errors and   
1-errors occur with equal probability in each received word, the errors are classified as 
symmetry type.  If 0-errors and 1-errors are both likely to occur but not simultaneously in 
each received word of a system, the errors are classified as unidirectional type.  It has 
been found that the most likely errors that occurred in VLSI memories are not of 
symmetric type but of unidirectional type [1, 6,12, 13, 14].  As a result, a receiver usually 
gets limited number of symmetry errors while the number of unidirectional errors can be 
very large.  Therefore for the late 10 years, the aim of most research works in coding 
theory [2, 3, 4, 5, 11, 16]  is to design codes for correcting up to t symmetry errors and 
detecting all occurrences of unidirectional error.  These codes are called t EC-AUED 
codes.  In [5], Bose and Rao have shown that constant weight codes of minimal distance 

 are t22 +t  EC-AUED codes.  In this paper, we shall construct a 2 EC-AUED code, 



 G.A. How and M.H. Ang 64 

 
which is not of constant weight type.  Before this, we need to show a property regarding 

the check rows of  ]3 , ,[ kn Hamming Codes.  The basic theories used in this paper can be 
found in [8, 9,15]. 
  
2. The check rows of Hamming Code 
 
 Let F be any finite field . A subset V of )( μpGF rF is said to be a pair-wise 
independent subset if and only if any two distinct elements in V are linearly independent.  
V is a maximal pair-wise independent subset if and only if there does not exist any other       
pair-wise independent subset in rF  that contain V.   Proposition below gives a property 
of the maximal pair-wise independent subset.  
 
 Proposition.   Let V be a pair-wise independent subset of    V is a maximal 

pair-wise independent subset of 

,rF .2≥r
rF if and only if  1 ||

1||  −
−= F

F r
V . 

 
Proof. Let K be a relation define on  such that ,  if and 
only if  such that , i.e., if and only if  is linearly dependent.  

Clearly, K is an equivalent relation. Let  and  be the equivalent class 
containing a.  Thus, 

}{0−rF }{ , 0ba −∈∀ rF baK
}0{ −∈∃ Fk ab k= }{ ba, 

}{0a −∈ rF aE
{ }}0{|}|{ −∈=∈= FkkKFE r ababa .  1−= FEa  and 

thus K  has 1 ||
1||

−
−

F
F r

 distinct equivalent classes.  

 Let V  be a pair-wise independent subset of F r.  If 1 ||
1|| −

−> F
F r

V ,  such 

that , contradicting the pair-wise independence of V.  If 

}{ 0b −∈∃ rF

2  || ≥∩ bEV 1 ||
1||  −

−< F
F r

V , 

then  such that .  Choose }{ 0b −∈∃ rF } {=∩ bEV  any bja E∈  then  is 

also a pair-wise independent subset of   This shows that V  is not a maximal pair-
wise independent subset of   Thus we have proved the theorem.   

}{ ja∪V

.rF
.rF

                                                         
 In term of maximal pair-wise independent subset, the definition of Hamming Codes 
over F is given as follows 
 
Definition.   A  linear code over F such that the rows of its parity check matrix forms a 
maximal pair-wise independent subset of ,rF 2≥r , is called a  Hamming 

Code where 

][ 3,, kn

1 ||
1||

−
−= F

F r
n  and .1 ||

1|| rk F
F r

−= −
−  

 The only maximal pair-wise independent subset of  is 

 with 

,)2( rGF

}{)2( 0−= rGFV 12  −= rV .  Thus over , a parity check matrix of any )2(GF
]3 , ,[ kn  Hamming Code is simply a matrix whose rows are non-zero elements of 
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.)2( rGF   From now on, we assume .  Algorithm below gives a method of 
getting a generating matrix G for a  Hamming Code from its parity check matrix. 

)2(GFF =
]3 , ,[ kn

 
Algorithm.   Let H  be any parity check matrix of  Hamming Code. ]3 , ,[ kn
 
 (i) Permute the row of H to get H ′  of the form .  Thus ⎟

⎠
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some element in .nS  

 (ii) Let  ).( XIG k=′

(iii) Permute the column of G ′  according to  to get G.                                       
Hence,  
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Thus G is a generating matrix of the  Hamming Code. ]3 , ,[ kn

 
Example 1. Let  be constructed using the irreducible polynomial  
over F.  Thus 

)2( 4GF 4++1 xx
}1 , , , ,0{++1][)2( 15244 ==〉〈= βββxxxFGF  and  

is the minimal polynomial of β.   We write . 

4++1 xx
4++1)( xxxm =β

 Let H be a parity check matrix of  cyclic Hamming Code having  
 as its generator polynomial.  Permute the rows of H according to  

15] 11, ,3[
4++1)( xxxm =β

 
f   =  (  1   5   9   13   2   6   10   14   3   7   11   15   4   8   12  ),  
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Then we get   Permute the column of ).( 11 XIG =′ G ′  according to  and thus we 
get  

1−f
).( 11IXG =   Note that  and 11)(r =G 0=GH .  Hence, G is a generating matrix 
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of the  Hamming code having H as parity check matrix. Therefore 
  m is encoded into  

15] 11, ,3[

,) , , ,( 11
1010 Fm ∈=∀ aaa
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 Now we shall prove our main theorem regarding the check rows of  
Hamming Code.  

]3 , ,[ kn

 
Theorem.    Assume 2≥r  and H is a parity check matrix for a  Hamming 
Code. Let the rows of H be   Then there is a generating matrix G for the 
code such that when encode using G, if the check positions of the codeword are in the 

 coordinates, then 

]3 , ,[ kn
. , , , 21 nrrr

thth
2

th
1  , , , riii } , , ,{},,,{ ri i i eeerrr

r 21   
21

= . 
 
Proof. Consider a parity check matrix of  Hamming Code with the form 

, where X is a 

]3 , ,[ kn

⎟
⎠
⎞⎜

⎝
⎛=′ ′

rI
XH  rk ×  matrix.  Apparently )( XIG k=′  is a generating matrix 

of the code. When encoding using , the check positions are in the last r coordinates 
and the theorem is obviously true for this particular case. 

G ′

 Let H be any parity check matrix of the  Hamming Code C.  Then H could 
be obtained from

]3 , ,[ kn
  H ′  by permuting the rows of H ′  according to some permutation in 

 That is  for some .nS ,= HPH ′θ nS∈θ  and thus 1= −′ θPGG  is a generating matrix of 

C.  While encoding using G, every message word  is encoded into mG.  Hence,  kF∈m
 

   1)( −′= ϑPGmGm
    1) , , , , , ,( 1+21 −=

ϑ
Pnkk aaaaa

 . ) , , , , , ,( )()1 ()()2((1) nkk θθθθθ aaaaa +=

 
ik  is a check position (with respect to the generating matrix G) 

 ⇒  is a parity check digit )( kiaθ
 ⇒     for some y,     yi aa

k
=)(θ nyk ≤≤+ 1  

 ⇒ yik =)(ϑ  for some y,     nyk ≤≤+ 1  

⇒  row of H is the  row of th
ki thy H ′     for some y,     nyk ≤≤+ 1     

         (as   row of H is the  row of th= kiHPH ⇒′θ
th)( kiϑ H ′ ) 

 ⇒  row of H  has the form of     for some i,     th
ki ie ri ≤≤1 . 

Thus, we have proved the theorem. 
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 Let H be a parity check matrix and G be a generating matrix of a  linear 

code where .  We named the  rows of H as the check rows if 

the  coordinates are the check positions of the code (with respect to G). 
Therefore theorem above shows that given any parity check matrix H of a Hamming 
Code we can find a generating matrix such that when encoding using G, the check rows 
of the code are linearly independent. 
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3. The construction of a 2 EC-AUED code 
 
We shall now construct a code C of minimal distance 5.  The message set M is a constant 
weight code of length  k and each message word m is encoded into a codeword of the 
form  where  y and u are elements in ) , ,( umy tF  and pF  respectively. 
 Let us start by explaining how to get u from m.  Let } , , ,{ 110 −= kQ ωωω  be an 
additive abelian group of order k with 0ω  its identity element and N be a constant weight 
code of length p. We assume . kN ≥   For every ,) ,, (= 1-1,0 Mmmm k ∈m  we 

calculate ∑  where  −
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Let  

NQg ⎯→⎯:  
 

be any one to one function.  Then we define  This method is due to 
Rao and Bose [5]. 

). ( 1
0∑= −

=
k
i iimg ωu

 
Example 2.    Let M be a 3 out of 7 code; }6  ,5  ,4  ,3  ,2  ,1  ,0{=Q  be the     
additive group of  and )7(GF ,11000{ 0 == αN ,011001 =α ,001102 =α  

,000113 =α ,100014 =α ,101005 =α }.100106 =α  a subset of the  2 out of 5 code.  
Define  

NQg ⎯→⎯:  
 

such that .)( rα=rg  Then for ,0101010 M∈=m  we get  

00110        )2g(  =  )0+503010(       
6

0
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 Next we describe how y is obtained from m.  Let G be a generating matrix and                                            
H be a parity check matrix of a linear code having independent check rows.  For every 

 we then permute the coordinates of mG so that the resulting 
word has the form .  Thus we get  y.  

,) ,, (= 1-1,0 Mmmm k ∈m
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be a generating matrix and parity check matrix of  Hamming Code                
having independent check rows. Let 

]7 ,4 ,3[
}1001 ,0011 ,0110 ,1100{=M . Then 

 ,) , , ,(= Mdcba ∈∀m )  ,  ,  ,  ,  ,  ,( abddbaccbadcaG ++++++=m .  Permute the 
coordinates of  mG according to   or compute  to get  y ( )657431 =−f fPG)(m
 

m  mG 
) , , ,( dcba   ) , , ,, ,  ,( abddbaccbadca ++++++  

   
 
 

  fPG)(m  
  ) ,() , , , , , ,( my=++++++ dcbadbacbadca  

1−f

 
Hence if  then  and thus  
and we get  

,0101 M∈=m 1100110)0101( =G 1100101=)1100110( fP
.110=y

 
 Now we choose suitable  to construct our code C.  We take          

Q to be the additive group of  write 

HGMgNQ ,,,,,

),11(GF };10,9,8,7,6,5,4,3,2 ,1,0{          =Q  

,110000{ 0 == αN  ,0110001 =α  ,0011002 =α  ,0001103 =α  ,0000114 =α  
,1010005 =α  ,1001006 =α ,1000107 =α ,1000018 =α ,1010009 =α }01001010 =α  a 

subset of the 2 out of 6 code and the one to one map g is defined as follow: 
 

NQg ⎯→⎯:  
such that  rrg α=)(: . 
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 Let G and H be respectively the generating matrix and the parity check                                                                
matrix of the  cyclic Hamming Code, C15] 11, ,3[ ′ given in Example 1. Let                                                                 
 M ′   be the 5 out of 11 code.   is then encoded into a codeword M ′∈m ) , ,( umyc =  as 
explained before.  For our chosen generating matrix ),( 11IXG =  we get Xmy =  as 

   Hence  ). ,( mym =G ,) , ,( C∈=∀ umyc C ′∈),( my .   It is clear from the choice of 

Q that ,  if  Mmmm ′∈=∀ ),,,( 1010m rii i = 10
0∑ = m ,  then ru α=)(= rg . 

 Unfortunately the code C encoded from M ′  has minimal distance less than 5.  To 
increase its distance we choose the set of message words to be M, a subset of M ′  that 
satisfies a further condition, namely if M∈'a ,a  , 'aa  ≠ , which are encoded into 

 and  respectively, then ) , ,( uay ),,( uay ′′′ 'uu  =  and 'yy  =  implies 6) ,(d ≥′aa .  
There exist many such subsets M, we exhibit one in appendix.  Now let C be the code 
encoded from M instead of from M ′  and we shall prove 5)(d =C . 
 
 Let   ), , ,( uayc = ,),,( C∈′′′=′ uayc 'cc  ≠  and thus 'aa  ≠ . 
 
Case 1.  and yy ′≠ uu ′≠ :  implies uu ′≠ .2) ,d( ≥′uu  As ),,( ay ,),( C ′∈′′ ay  

.  Thus, ( ) 3) ,( ), ,(d ≥′′ ayay .523) ,(d =+≥c'c  
Case 2.  and : Similar to Case 1, yy ′= uu ′≠ 2) ,d( ≥′uu  and 3)) ,(), ,((d ≥′′ ayay .  
Thus 523) ,( d =+≥c'c . 
Case 3.  and : We claim that yy ′≠ uu ′= .4) ,d( ≥′aa   Let ) , , ,( 1010 aaa=a  and 

  Assume that ). , , ,( 1010 aaa ′′′=a 2) ,d( =′aa  when .uu ′=   Then we have 

,  10
0

10
0 ∑ ′=∑ == i ii i iaia  where at position  j  and k, ,kj ≠  we have ,1=ja  0=′ja  and 

   This results in ,0=ka .1k =′a kj =  for ,kj ≠  which is impossible.  Hence  if  
 uu ′=  then . 4) ,( d ≥a'a  Therefore 514) ,( d =+≥c'c  as . 1) ,( d ≥y'y

Case 4.  and : Apparently  by the further condition satisfied 
by M. 

yy ′= uu ′= 5) ,( d ≥c'c

 
 Exhausting all possible cases, we see that C is of minimal distance five and thus is a   
2 EC code.  
 
 Let   be any received word.  As N and M are constant weight codes, 
the occurrences of unidirectional errors in  a and 

) , ,( uayw ′′=
u′  are always detected by C.  On the 

other hand, if unidirectional errors occur only in y′  which is also the check positions of 
 then the errors can be detected by computing ,C′ ,) ,( Hay′  since the check rows of C ′  

are linearly independent.  Therefore C is a 2 EC-AUED code.  Below is the decoding 
algorithm   of  C. 
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Decoding algorithm. Assume ) , ,( uayw ′′=  is received, where ).,,,( 1010 aaa=a   

Let  be the check polynomial of  and )(xw ) ,( ay′ ). ( 10
0   ∑=′′ =i i iagu  

 
Step 1.  .2)(wt ≠′u
 
 (i) :  a is the transmitted message word. 5)(wt =a

 (ii) :  If     5)(wt ≠a ,)( iββ =w 144 ≤≤ i   then  3−+ iea   is  the  decoded  
message    word.   Else we detect an uncorrectable error pattern in w. 

 
Step 2.  .2)(wt ≠′u
 
 (i)  and 5)(wt =a uu ′′=′ :  a is the transmitted message word. 
 (ii)  and 5)(wt =a uu ′′≠′ : 
  (a) 0w =)(β :  a is the transmitted message word, 
  (b) 0w ≠)(β :  Find 
 

   .   and   ) , , ,(==
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   If  such that Q∈∃m ,2) ,(d =am  then m is the decoded message word.  

Else we detect an uncorrectable error pattern in w. 
 (iii)  and : Compute  15)(wt ±=a {})(1 ≠′− ug
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 If  ,1−= is  then  is the decoded message word.  Else an uncorrectable 

error pattern detected in  w. 
iea +

 (iv) :  Find  25)(wt ±=a
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 If  such that  then m is the decoded message word.  Else we 

detect an uncorrectable error pattern in w. 
Q∈∃m ,2) ,(d =am
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Step 3. Other conditions besides Steps 1 and 2, we detect uncorrectable error pattern      
in w. 
 
 The decoding algorithm given above is capable of correcting t errors if .2≤t   
Suppose no error occurred in w.  Then ,5)(wt =a 2)(wt =′u  and .uu ′′=′  Hence Step 

1 of the decoding algorithm fails and we go on to Step 2.  We get a as the decoded 
message word according to Step 2 (i). 
 Assume that an error has occurred in w.  If the error is in ,y′  then ,5)(wt =a  

 and   Again Step2)(wt =′u .uu ′′=′  1 fail and we get a as the decoded message word 
according to Step 2(i).  However if the error is in the  position of a, then 

 with 
thk

15)(wt ±=a .2)(wt =′u  Obviously  
 

.1)( = 1
10
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⎥
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Thus, according to Step 2(iii),  is the decoded message word.  If the error 
happened to be in  we get 

kea +
,u′ 12)(wt ±=′u  with .5)(wt =a  Then Step 1(i) in the 

decoding algorithm propose a to be the decoded message word. 
 Assume that double errors have occurred in w during the transmission.  If the errors 
occurred in 
 
 (i) y′  and the  position of a, then j th 2)(wt =′u  and .15)(wt ±=a  Apparently 

[ ] 1)() (= 110
0 −=′−∑± −

= jgias i i u  and thus  is the decoded message 
word according to Step 2(iii). 

jea +

 (ii)  and  then  together with y′ ,u′ 12)(wt ±=′u .5)(wt =a   According to Step 1(i),  
a is the decoded message word. 

 (iii) and the  position of a (which is the  position of u′ j th th)4( +j C ′∈′ ),( ay ),  

then   and  Let .  
Apparently   Thus  is the decoded message word according to 
Step 1(ii). 

,12)(wt ±=′u 15)(wt ±=a .)( 1)4( −+= jw ββ 1)4( −+= ji ββ
.144 ≤≤ i 3-+ iea

 
 For cases where double errors have occurred simultaneously in ,y′  a or ,u′  the 
errors involved might be of unidirectional or symmetry types.  Assume that two errors 
have occurred in   Whether the errors are of unidirectional or symmetry type, we get 

  and   Hence for both cases, we take a as the decoded 
message word as proposed in Step 1(i).  

.y′
,5)(wt =a 2)(wt =′u .uu ′′=′

 If the errors are in ,u′  then 22)(wt ±=′u  if the errors are of unidirectional type or 
 if the errors are of symmetry type with 2)(wt =′u .5)(wt =a   In the first case, a will be

taken as decoded message word as given in Step 1(i).  For the later case, the two  
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symmetry errors in  will cause  with u′ uu ′′≠′ .)( 0=βw   Hence by Step 2(ii)(a) in the 
decoding algorithm a is the decoded message word.  
 Suppose both errors are in a, then 25)(wt ±=a  if the errors are unidirectional 
errors or  if the errors are symmetry errors with 5)(wt =a .2)(wt =′u   The two 
symmetry errors in a will cause  with uu ′′≠′ .)( 0≠βw  Thus the errors can be corrected 
by Step 2(ii)(b) in the decoding algorithm.  For the remaining case, we will use Step 
2(iv) which is similar to Step 2(ii)(b) to correct the errors. 
 Refer to Steps 2(ii)(b) and 2(iv), we now describe how to construct the                         
set 
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We partition M into a number of equivalent classes, each denoted by  for 

 and  using two equivalent relations, S and Z as given 
below 

ijV
15 , 2, 1, ,0=i 10 , 2, 1, ,0=j

 
baba SM      , , ∈∀      if and only if     .XX ba =  

 
Obviously S is an equivalent relation and thus M is partitioned into 16 equivalent classes, 
denoted by , where  1510  , , , VVV
 

}integer  of tionrepresentabinary   theis  { iXMVi aa∈= . 
 
 Let Z be an equivalent relation defined on V  such that i

 ), , , ,( 1010 aaa=∀ a ,) , , ,( 1010 iVbbb ∈=b  
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Apparently Z is an equivalent relation on .   iVi ∀  Thus, each  can be                                                             
further partitioned into 11 equivalent classes, denoted by                                                                  

 where 

iV
,ijV
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Thus for a received word  if ), , ,( uayw ′′= y′  is the binary form of integer i and 

,)(1 jg =′− u  then   The list of all elements in each .ijVQ = ,ijV 15 , 2, 1, ,0=i  and 
 is given in appendix.  10 , 2, 1, ,0=j

 Assume that there exist , , iV∈sr mm  sr mm ≠  such that 
 Then .2) ,( d) ,( d == amam sr ,4) ,(d) ,( d) ,(d =+≤ amammm rssr  which is a 

contradiction as each  is chosen to be a distance 6 constant weight code.  Hence if 
two errors have occurred in a, there is an unique 

,ijV
ijV∈m such that .2) ,(d =ma  

 
Example 4. Assume that  is received.  Let 011000  1000 0110011  0000=w ,0000=′y  

 and 00110011100=a .011000=u′   Note that ,5)(wt =a  2)(wt =′u  and uu ′′≠′  as 

10α=′′u ( )∑ ++++++++++=
10

0 10=00076500210= i i ia  and .1α=′u   Since 
 
     1110965)( ββββββ ++++=w
                 01111110010100110110 ++++=  
         ,1001 0≠=

 
a is compared to each message word in  by Step 2(ii)(b) (as 10V y′  is the binary 

representation of integer 0 and 1)(1 =′− ug ). From appendix, we get 
 and thus 01001111000 is the decoded message word according 

to Step
2=) 00,(010011110 d a

 2(ii)(b). 
 Assume that  is received. Let 011000  1000 0101111  0000=w ,0000=′y  then 

 and . Note that 00101111100=a 011000=u′ 6)(wt =a  and .2)(wt =′u                      

By Step 2(iii), compute [ ] . )() (= 110
0 u′−∑± −

= gias i i As 1)(1 =′− ug                           

and ,400076543010 10
0 =++++++++++=∑ =i i ia  .314 =−=s  Thus 

 is the decoded message word according to Step 2(iii). 00100111100=+ 4ea
 Assume that  is received.  Let 010000  00100111101  0000=w ,0000=′y  then 

 and 00100111101=a .010000=u′   Note that 6)(wt =a  and .1)(wt =′u  Obviously 
two errors have occurred separately in a and .u′   As 
 
    131110985)( βββββββ +++++=w
      101101111110010110100110 +++++= 1011=  
        .1011 13β==
 
Then  is the decoded message word according to Step 1(ii). 00100111100=+ 10ea
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4.   Conclusion 
 

We make a few remarks to conclude this paper. 
 
 (i) The information rate of the code we constructed is 0.4048, which is good compare 

to most commonly used codes. 
 (ii) The main theorem we proved is also true over any arbitrary finite field. 
 (iii) The check rows of Golay code, C23 , are also independent. Using our method, a                                                                 

4 EC-AUED code could be constructed. 
 (iv) We do not have an efficient algorithm to compute  This may be a future 

research problem. 
.ijV
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Appendix 
 

15,,1,0   ,
15

0

10

0
  ∪ ∪ ==

= =
iVM

i j
ij   and      .10,,1,0 =j .15,,1,0      ,  

10

0
 ∪ ==

=
iVV

j
iji

 
j 

0 

1 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 
 

 
j 

0 
 

1 
 
 

2 
 

3 

 
V 

0  j 

0 0 0 1 0 0 1 1 1 1 0 

0 1 0 0 1 1 1 1 0 0 0 

1 1 0 0 0 0 1 0 1 1 0 
1 0 1 1 0 0 0 0 0 1 1 

1 0 0 0 1 0 1 1 1 0 0 
1 0 0 1 0 1 0 0 1 1 0 

0 1 0 1 0 1 0 1 0 0 1 
0 0 1 1 1 0 0 0 1 1 0 

0 0 0 0 1 0 0 1 1 1 1 
1 1 1 0 0 0 1 1 0 0 0 

0 0 1 0 0 1 1 1 1 0 0 
1 0 0 1 0 0 0 1 1 0 1 

0 1 1 0 0 0 0 1 0 1 1 
1 0 0 1 1 1 1 0 0 0 0 

0 1 0 0 0 1 0 1 1 1 0 
0 1 0 0 1 0 1 0 0 1 1 

0 0 0 1 1 1 0 0 0 1 1 
1 1 0 1 0 0 1 0 0 0 1 

0 1 1 1 0 0 0 1 1 0 0 
0 0 0 1 0 1 1 0 1 0 1 
1 0 1 0 1 0 1 0 0 1 0 

 
V 

1  j 

1 1 0 1 0 0 0 0 1 0 1 
0 1 1 0 0 1 1 0 1 0 0 

1 1 0 0 0 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 0 
1 0 1 0 1 0 0 0 1 1 0 

0 1 1 0 1 0 0 1 0 0 1 
0 0 1 1 1 0 1 0 0 1 0 

0 1 0 0 1 1 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 1 1 

 
4 

5 

6 
 
 

7 

 
8 
 

 
9 

10 

 
j 

0 
 

 
1 

 
2 

3 
 
 

4 

5 
 
 

6 

7 

8 
 

9 

 
1 0 0 1 0 0 1 1 0 0 1 

0 1 0 1 0 0 1 0 1 1 0 

0 1 0 0 0 1 1 1 0 1 0 
0 0 0 1 1 0 1 1 1 0 0 
1 0 0 0 1 1 0 0 0 1 1 

1 1 1 0 0 0 0 1 1 0 0 
1 0 0 0 0 1 1 0 1 0 1 

0 1 1 1 0 0 1 1 0 0 0 
0 0 1 0 1 0 1 0 1 0 1 
1 0 0 0 0 0 1 1 1 1 0 

1 0 0 1 1 1 0 0 1 0 0 

0 1 1 0 1 1 0 0 0 1 0 
 

V 
2  j

1 0 1 0 0 1 0 1 1 0 0 
0 0 0 1 1 0 0 1 0 1 1 
1 0 1 0 1 0 1 0 0 0 1 

0 0 1 1 0 1 1 1 0 0 0 
1 0 0 0 1 1 1 0 1 0 0 

1 1 0 0 1 0 0 0 0 1 1 

0 1 0 1 0 1 0 1 0 1 0 
0 0 0 0 1 1 0 0 1 1 1 
1 1 1 0 0 1 1 0 0 0 0 

1 0 0 1 0 1 0 0 1 0 1 

0 1 1 0 0 1 0 0 0 1 1 
0 0 1 1 1 0 0 0 1 0 1 
1 0 0 1 0 0 0 1 1 1 0 

0 0 1 0 1 1 0 1 0 0 1 

1 0 1 0 0 0 0 0 1 1 1 

0 1 1 1 0 1 0 0 1 0 0 
0 0 1 1 0 0 1 0 0 1 1 

0 1 0 0 0 1 0 1 1 0 1 
0 0 0 1 0 1 1 0 1 1 0 
1 0 0 1 1 0 1 1 0 0 0 

 
10 
 

j 

0 

 
 
1 

 
2 

 
 
3 

 
 
4 

5 
 
 

6 
 

7 
 

8 
 

9 
 

10 

 
j 

0 
 
 
 

1 

 
- 
 

V 
3  j

1 1 0 0 0 1 0 1 0 1 0 
1 0 0 1 1 0 0 1 1 0 0 
0 1 1 0 1 1 0 0 0 0 1 

0 0 0 0 1 1 1 0 0 1 1 
0 1 1 0 1 0 0 1 0 1 0 

1 0 1 0 1 0 0 0 1 0 1 
1 1 1 1 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 0 0 1 

1 0 0 1 0 0 1 1 0 1 0 
0 0 1 1 1 0 1 0 0 0 1 
0 0 1 1 0 1 0 1 1 0 0 

0 0 0 1 1 1 1 0 1 0 0 

1 1 1 0 0 1 0 0 1 0 0 
1 0 1 0 0 0 1 0 0 1 1 
0 1 0 1 1 0 0 0 0 1 1 

1 0 0 0 0 1 1 0 1 1 0 
0 1 1 1 0 1 1 0 0 0 0 

1 0 1 1 1 0 0 0 0 1 0 
0 1 0 0 0 1 1 1 0 0 1 

1 0 0 0 1 0 0 1 0 1 1 
1 0 1 1 0 0 1 0 1 0 0 

1 0 1 0 0 1 1 1 0 0 0 
0 1 0 1 1 1 0 1 0 0 0 

1 1 0 1 0 0 0 0 1 1 0 

 
V 

4  j

0 1 1 1 0 0 0 1 0 1 0  
0 0 1 0 1 0 0 0 1 1 1  
0 0 0 1 0 1 1 0 0 1 1  
1 1 0 0 1 0 0 0 1 1 0 

1 0 1 1 0 0 0 0 1 0 1  
0 1 0 1 1 0 1 0 0 1 0 

 

  



 G.A. How and M.H. Ang 76

Appendix (Cont’d) 
 

 
2 

3 
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5 

6 
 

7 
 
 

8 

9 
 

10 
 
 

j 
 
0 

1 

 
 
2 

 
 
3 
 

4 
 

5 
 
 

6 
 
 

7 

 

 
1 0 1 0 0 1 0 1 0 0 1 

0 1 1 0 0 1 0 0 1 1 0  
1 1 1 0 1 0 0 1 0 0 0  
1 0 0 0 1 1 1 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 0  
1 0 0 0 1 0 1 1 0 1 0 

- 

0 0 1 1 0 0 1 0 1 1 0  
0 1 1 0 0 0 0 1 1 0 1 

0 0 1 0 0 1 1 1 0 1 0  
1 0 0 1 0 0 0 1 0 1 1  
0 1 0 0 1 0 1 0 1 0 1 

0 0 0 1 1 1 0 0 1 0 1 

1 0 1 0 1 0 1 0 1 0 0  
0 0 0 1 1 0 0 1 1 1 0 

0 1 1 1 0 1 0 0 0 0 1  
1 0 0 0 0 1 0 0 1 1 1 

 
V 

5  j
 

1 0 0 1 0 1 1 0 1 0 0 

0 0 1 1 1 0 1 0 1 0 0  
0 1 0 0 0 0 1 0 1 1 1  
0 1 1 0 0 1 1 0 0 1 0 

0 0 1 0 1 1 1 1 0 0 0  
1 0 0 1 1 0 0 1 0 0 1  
0 0 0 1 0 1 0 0 1 1 1 

0 1 0 1 1 0 0 0 1 1 0  
1 0 1 0 0 0 1 0 1 1 0 

0 1 0 0 1 1 0 1 0 1 0  
0 1 1 0 0 0 1 1 0 0 1 

1 0 0 0 1 1 0 0 1 0 1  
0 1 0 0 0 1 1 1 1 0 0  
0 0 1 1 0 1 0 1 0 0 1 

1 0 0 0 1 0 0 1 1 1 0  
0 1 1 1 1 0 0 1 0 0 0  
0 0 0 1 1 1 1 0 0 0 1 

0 0 0 1 1 0 1 1 0 1 0  
1 1 1 0 0 1 0 0 0 0 1 
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10 
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j 
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1 
 
 

 
1 0 0 0 0 1 1 0 0 1 1  
1 1 1 0 0 0 0 1 0 1 0 

0 0 1 0 1 0 1 0 0 1 1  
0 1 1 0 1 1 0 0 1 0 0 

0 0 0 0 1 1 1 0 1 1 0  
1 0 1 1 0 0 1 0 0 0 1 

 
V 

6  j

1 0 1 1 0 0 0 0 1 1 0 

0 1 1 1 0 0 0 1 0 0 1  
1 1 0 0 1 0 0 0 1 0 1  
1 0 1 0 0 1 0 1 0 1 0 

0 0 0 1 0 0 1 1 0 1 1  
0 1 0 1 0 1 0 1 1 0 0  
1 0 0 0 1 1 1 0 0 1 0 

- 

0 1 1 0 0 1 0 0 1 0 1  
1 1 0 0 0 0 1 0 0 1 1  
1 0 1 1 1 0 1 0 0 0 0 

1 0 0 0 1 0 1 1 0 0 1  
0 0 0 0 0 1 1 0 1 1 1  
0 1 1 0 0 0 0 1 1 1 0 

0 0 1 1 1 0 0 0 0 1 1  
0 1 0 0 1 0 1 0 1 1 0 

0 0 1 1 0 0 1 0 1 0 1  
0 0 0 1 1 1 0 0 1 1 0 

0 0 1 0 0 1 1 1 0 0 1 

0 1 0 1 0 0 0 0 1 1 1  
0 1 1 0 1 0 1 1 0 0 0 

0 1 0 0 0 1 0 1 0 1 1  
0 0 1 1 1 1 0 1 0 0 0 

 
V 

7  j

0 0 0 0 1 1 1 0 1 0 1  
0 1 0 1 0 1 1 1 0 0 0  
0 1 1 0 1 0 0 1 1 0 0 

1 0 0 1 1 0 0 1 0 1 0  
0 0 0 0 1 0 1 1 1 1 0 
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5 
 

6 
 

7 
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9 
 

10 
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0 

1 
 
 

2 
 

3 

4 
 

5 
 

6 
 

 
7 

 
1 0 0 1 0 0 1 1 1 0 0  
0 1 1 0 0 1 1 0 0 0 1 

1 0 1 0 1 0 0 0 0 1 1  
0 1 1 0 0 0 1 1 0 1 0 

1 0 0 0 1 1 0 0 1 1 0  
1 0 1 0 0 0 1 0 1 0 1  
0 1 0 1 1 0 0 0 1 0 1  
0 0 1 1 0 1 0 1 0 1 0 

0 0 0 1 1 1 1 0 0 1 0  
0 1 0 0 1 1 0 1 0 0 1 

1 0 1 1 1 0 0 0 1 0 0  
1 1 0 0 0 0 0 0 1 1 1 

1 0 0 0 1 0 0 1 1 0 1  
0 1 0 1 0 0 1 0 0 1 1  
1 0 1 0 1 1 0 1 0 0 0 

0 0 0 1 1 0 1 1 0 0 1 

1 0 1 1 0 0 1 0 0 1 0  
1 1 1 0 0 0 0 1 0 0 1 

1 0 0 0 0 0 1 1 0 1 1  
1 1 0 0 0 1 0 1 1 0 0 

 
V 

8  j

1 1 0 0 0 1 1 0 0 0 1 

0 1 1 0 0 1 0 1 1 0 0  
0 0 1 0 0 0 1 1 0 1 1  
1 1 0 0 0 0 1 1 0 1 0 

0 0 0 0 0 1 1 1 1 1 0  
1 1 0 1 1 1 0 0 0 0 0 

0 0 1 1 1 0 0 1 0 1 0 

0 0 1 1 0 0 1 1 1 0 0  
1 0 1 0 0 1 0 0 0 1 1 

0 1 0 1 0 1 0 0 1 0 1  
1 1 1 0 1 0 0 0 0 1 0 

0 1 0 1 0 0 0 1 1 1 0   
0 0 1 0 1 1 0 0 1 1 0  
1 1 1 0 0 0 1 0 1 0 0 

1 0 1 1 0 1 0 0 1 0 0 
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Appendix (Cont’d) 
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4 
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10 

 

 
 

 j 

0 
 

1 

 
1 0 0 0 0 1 0 1 1 0 1  
0 1 1 0 0 0 0 0 1 1 1 

1 1 0 0 1 0 0 1 1 0 0  
0 0 0 1 0 1 1 1 0 0 1 

0 1 0 1 1 0 1 1 0 0 0 
 
 

V 
9  j

0 0 0 1 0 1 0 1 1 0 1  
1 0 1 0 1 0 0 1 0 1 0 

1 0 1 0 0 0 1 1 1 0 0  
0 1 0 1 1 0 0 1 1 0 0 

1 1 0 0 0 1 0 0 1 0 1 

0 1 1 0 1 0 0 0 1 0 1  
1 1 0 0 0 0 0 1 1 1 0  
0 1 0 1 0 1 1 0 0 0 1 

0 1 0 1 0 0 1 1 0 1 0  
0 0 1 0 1 1 1 0 0 1 0  
1 0 0 1 1 0 0 0 0 1 1 

1 0 0 1 0 0 1 0 1 0 1 

1 0 0 0 0 1 1 1 0 0 1  
0 1 1 0 0 0 1 0 0 1 1 

0 0 1 0 1 0 1 1 0 0 1  
0 1 0 0 0 1 1 0 1 1 0  
0 0 1 1 0 1 0 0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0  
0 1 1 1 1 0 0 0 0 1 0 

0 1 0 0 1 0 0 1 0 1 1  
0 1 1 1 0 0 1 0 1 0 0 

0 1 1 0 0 1 1 1 0 0 0  
1 1 0 1 0 0 0 1 0 0 1  
1 0 1 0 1 1 0 0 0 0 1 

 
 

V 
10  j

1 0 0 0 1 1 1 1 0 0 0  
0 1 1 0 1 0 1 0 0 1 0 

0 0 0 1 1 0 0 0 1 1 1  
1 1 1 1 0 0 1 0 0 0 0 
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10 
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3 
 

4 
 

5 
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0 0 1 1 0 1 1 0 1 0 0  
0 0 0 0 1 1 0 1 0 1 1  
1 1 0 0 0 0 1 1 0 0 1 

0 1 1 1 0 0 0 0 0 1 1  
0 0 0 0 0 1 1 1 1 0 1 

0 0 1 1 1 0 0 1 0 0 1  
0 1 0 1 0 1 0 0 1 1 0  
0 1 0 0 1 0 1 1 1 0 0 

0 0 0 1 1 1 0 1 1 0 0 

1 0 1 0 0 0 0 1 0 1 1 

0 1 1 1 0 1 0 1 0 0 0  
0 0 1 0 1 1 0 0 1 0 1  
1 0 0 0 0 1 0 1 1 1 0  
1 0 0 0 1 0 1 0 0 1 1 

0 1 0 1 1 1 1 0 0 0 0  
0 0 1 0 1 0 0 1 1 1 0 

1 0 1 1 0 0 0 1 1 0 0 

1 0 0 1 1 0 1 0 1 0 0  
0 0 1 0 0 1 1 0 0 1 1 

 
 

V 
11  j

1 1 1 0 0 0 0 0 0 1 1 

1 0 1 0 1 0 0 1 0 0 1  
1 1 0 0 0 1 0 0 1 1 0 

1 0 0 0 1 1 0 1 1 0 0  
0 1 0 1 0 1 1 0 0 1 0  
0 1 1 0 1 0 0 0 1 1 0 

1 1 1 1 0 0 0 0 1 0 0  
0 0 0 1 1 1 1 1 0 0 0 

1 0 0 1 0 0 1 0 1 1 0  
1 1 1 0 0 1 0 1 0 0 0 

1 0 0 0 0 1 1 1 0 1 0  
0 1 0 1 0 0 1 1 0 0 1  
0 0 1 0 1 1 1 0 0 0 1 

0 0 1 0 1 0 1 1 0 1 0 

1 0 1 1 0 0 1 1 0 0 0  
0 1 0 0 1 1 0 0 0 1 1 
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3 
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5 
 

6 
 

7 
 

8 
 
 

9 

10 

 

j 

0 
 

1 
 

 
1 1 0 1 0 1 0 0 0 0 1 

1 0 0 0 1 0 0 0 1 1 1  
0 1 0 0 0 0 1 1 1 1 0  
0 0 1 1 0 0 0 1 0 1 1 

1 0 1 0 0 1 1 0 1 0 0  
0 0 0 1 0 1 0 1 1 1 0  
0 0 0 1 1 0 1 0 0 1 1 

 
V 

12  j

0 0 0 0 1 1 0 1 1 1 0  
1 0 1 1 0 0 0 1 0 0 1  
1 1 0 0 0 0 1 1 1 0 0 

0 1 1 1 0 0 0 0 1 1 0  
1 0 0 1 0 1 0 1 1 0 0  
1 0 0 1 1 0 1 0 0 0 1 

0 1 1 0 0 1 0 1 0 1 0  
0 0 1 1 1 0 0 1 1 0 0 

0 1 0 0 1 1 1 0 0 1 0  
1 0 1 0 0 1 0 0 1 0 1 

1 0 1 0 0 0 0 1 1 1 0  
0 0 1 1 0 1 1 0 0 0 1 

0 0 1 1 0 0 1 1 0 1 0  
1 0 0 0 1 0 1 0 1 1 0 

0 1 0 1 0 1 0 0 0 1 1  
0 1 0 0 1 0 1 1 0 0 1 

1 1 1 0 0 0 1 0 0 1 0  
0 0 0 1 1 1 0 1 0 0 1 

0 0 1 0 0 1 1 0 1 1 0  
1 0 0 1 0 0 0 0 1 1 1  
1 0 1 0 1 0 1 1 0 0 0 

1 0 0 0 0 1 0 1 0 1 1 

0 0 1 0 1 0 0 1 0 1 1 

 

V 
13  j

0 0 1 1 1 0 1 1 0 0 0  
0 1 0 0 0 0 1 1 0 1 1 

0 1 0 1 1 1 0 0 0 0 1  
1 0 1 0 0 1 1 0 0 0 1 
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Appendix  ( Cont’d ) 
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5 
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9 
 

10 
 
 
 
 

 
0 1 0 1 1 0 0 1 0 1 0  
1 1 1 0 1 0 1 0 0 0 0  
1 0 1 0 0 0 1 1 0 1 0 

0 0 1 0 1 1 1 0 1 0 0  
1 0 0 1 1 0 0 0 1 0 1  
1 1 0 0 0 1 0 0 0 1 1  
0 1 0 1 0 0 1 1 1 0 0 

1 0 0 0 1 1 0 1 0 0 1  
0 1 1 0 1 0 0 0 0 1 1 

0 1 0 0 1 1 0 0 1 1 0  
1 1 1 1 0 0 0 0 0 0 1 

1 1 0 1 0 1 0 0 1 0 0  
1 0 0 1 0 0 1 0 0 1 1 

0 1 1 1 1 0 0 0 1 0 0 

0 1 1 0 1 1 0 1 0 0 0  
0 0 0 1 1 0 1 0 1 1 0 

0 0 0 0 1 1 1 1 0 1 0  
1 1 1 0 0 0 0 0 1 1 0 

1 0 1 0 1 0 0 1 1 0 0  
0 1 1 1 0 0 1 0 0 1 0  
1 0 0 1 0 1 1 1 0 0 0 
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0 

 
 
 
1 

2 
 

3 
 

4 

5 
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8 
 
 

9 
 

10 
 

 
V 

14  j 

0 1 0 0 0 1 0 0 1 1 1 
1 1 0 0 1 0 0 1 0 0 1 
0 0 1 1 1 1 0 0 1 0 0 
1 0 0 1 1 0 1 0 0 1 0 

0 0 0 0 1 1 0 1 1 0 1 

0 1 1 1 0 0 0 0 1 0 1 
1 0 1 0 0 1 0 0 1 1 0 

0 0 0 1 0 0 1 0 1 1 1 
0 1 1 0 0 1 0 1 0 0 1 

0 1 0 0 1 1 1 0 0 0 1 

1 0 1 0 0 0 0 1 1 0 1 
0 1 0 0 1 0 1 1 0 1 0 

0 0 1 1 0 0 1 1 0 0 1 
1 0 0 0 1 0 1 0 1 0 1 
0 0 0 1 1 1 0 1 0 1 0 

0 0 0 1 0 1 1 1 1 0 0 

0 1 0 1 0 0 0 1 0 1 1 
0 0 1 0 1 1 0 0 0 1 1 
1 1 1 0 0 0 1 0 0 0 1 

1 0 1 1 0 1 0 0 0 0 1 
1 1 0 0 0 1 1 0 1 0 0 

0 0 1 0 0 0 1 1 1 1 0 
1 1 1 1 1 0 0 0 0 0 0 

 

 
j 

0 
 
 

1 

2 

3 
 
 

4 
 

5 
 
 

6 

7 

8 
 

9 
 

10 

 
V 

15  j

0 1 1 1 0 0 1 0 0 0 1  
0 1 0 1 1 1 0 0 0 1 0  
1 0 1 0 0 1 1 0 0 1 0 

0 1 0 1 0 1 1 0 1 0 0 

1 0 0 1 1 0 0 0 1 1 0 

0 1 0 1 1 0 0 1 0 0 1  
1 0 1 0 0 0 1 1 0 0 1  
1 0 0 0 1 1 0 1 0 1 0 

0 1 1 0 0 0 1 0 1 1 0  
1 0 0 0 0 1 1 1 1 0 0 

1 1 0 0 0 0 0 1 0 1 1  
1 0 1 1 1 0 0 1 0 0 0  
0 0 1 1 0 1 0 0 1 1 0 

0 1 0 0 1 1 0 0 1 0 1 

0 1 0 0 1 0 0 1 1 1 0 

1 1 0 1 0 0 0 1 1 0 0  
1 0 1 0 1 1 0 0 1 0 0 

0 1 0 0 0 1 1 0 0 1 1  
0 0 1 1 1 1 1 0 0 0 0 

1 1 1 0 0 0 0 0 1 0 1  
0 0 0 0 1 1 1 1 0 0 1 

 
 

  


