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Objects that float at the interface between a liquid and a gas interact because of interfacial
deformation and the effect of gravity. We highlight the crucial role of buoyancy in this interaction,
which, for small particles, prevails over the capillary suction that often is assumed to be the
dominant effect. We emphasize this point using a simple classroom demonstration, and then derive
the physical conditions leading to mutual attraction or repulsion. We also quantify the force of
interaction in particular instances and present a simple dynamical model of this interaction. The
results obtained from this model are validated by comparison to experimental results for the mutual
attraction of two identical spherical particles. We consider some of the applications of the effect that
can be found in nature and the laboratory. © 2005 American Association of Physics Teachers.

[DOL: 10.1119/1.1898523]

I. INTRODUCTION

Bubbles trapped at the interface between a liquid and a gas
rarely rest. Over a time scale of several seconds to minutes,
long-lived bubbles move toward one another and, when con-
tained, tend to drift toward the exterior walls (see Fig. 1).
Readers may readily verify these claims by pouring them-
selves a glass of sparkling water and following the motion of
those bubbles at the surface—particularly those at the pe-
riphery of the glass. This phenomenon has been affection-
ately dubbed the “Cheerios effect” after the observation that
breakfast cereals floating in milk often clump together or
stick to the walls of the breakfast bowl.!

In this article, we bring together a number of perspectives
on the Cheerios effect gathered from the literature and our
own experience at home, in the kitchen, and in the labora-
tory. We show how simple physical ideas lead to an under-
standing not only of the attraction, but also of its dynamical
consequences. Despite being a subject with enormous poten-
tial for simple, reliable party tricks, the technological impli-
cations of the Cheerios effect are far from frivolous. Much
research is currently being done to investigate the possibility
of using surface tension to induce the self-assembly of small-
scale structures.” Understanding the way in which particles
aggregate at an interface, and hence being able to control the
form of the aggregate as well as the dynamics of its forma-
tion, may one day enable much simplified manufacture of
components of micro-electromechanical systems.

For floating objects in equilibrium, we must consider the
balance of linear momentum both in the flotation plane as
well as out of the plane, and in addition the balance of an-
gular momentum in all three directions. Many of the miscon-
ceptions in the field arise from considering only some but not
all of these balance equations. In particular, neglecting the
condition of vertical force balance leads to an underestima-
tion of the importance of the particle’s buoyancy in deter-
mining the nature of the interaction.

We begin with a discussion of the physical mechanism
that leads to the observed attraction in most instances and
illustrate the role of particle buoyancy by a simple experi-
ment. We then focus on a series of simple examples that
allow us to quantify the magnitude of the attractive force.
The first of these examples is inspired by an oversimplified
physical picture that often is portrayed as a complete expla-

817 Am. J. Phys. 73 (9), September 2005

http://aapt.org/ajp

nation of the Cheerios effect. By considering the vertical
force balance that must be satisfied for particles to float, we
will show that it is the effects of buoyancy that dominate for
small particles and propose a simple dynamical model for the
attraction of two spherical particles. Finally, we show that
consideration of the remaining equilibrium condition, that of
torque balance, can lead to amphiphilic strips. We conclude
with some possible biological implications of our observa-
tions.

II. THE PHYSICAL ORIGIN OF ATTRACTION

The mechanism behind the apparent attraction between
bubbles or between a bubble and the wall of a glass is easy to
understand by considering the geometry of the interface at
which the bubbles are trapped. For simplicity, we consider
the latter case (schematically illustrated in Fig. 2), although
the explanation of the clustering of many bubbles is similar.
Here, the air—water interface is significantly distorted by the
presence of the wall (the well-known meniscus effect), and
because the bubble is buoyant, there is a net upward force
due to gravity, F,, on the bubble. Because it is constrained
to lie at the interface, however, the bubble cannot simply rise
vertically, and instead does the next best thing by moving
upward along the meniscus. Because water wets glass (the
contact angle # defined in Fig. 2 satisfies #<<r/2), in moving

Fig. 1. Bubbles floating on water in a petri dish. The bubbles are observed
to aggregate before moving to the wall of the container. After sufficiently
long times, the island of bubbles in the center also migrates to the wall.
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Fig. 2. Schematic of a single bubble close to a wall, along with the defini-
tion of the contact angle.

upward and along the meniscus the bubble also moves closer
to the wall. Viewed from above, it appears as if there is an
attractive force acting between the wall and the bubble when
in fact the buoyancy of the bubble causes it to move in re-
sponse to the curved meniscus.

A single bubble will deform the interface just as the pres-
ence of a wall does, although for a different reason and to a
lesser extent. In the case of the bubble, it can only remain at
the interface because the buoyancy force, which tends to
push the bubble out of the liquid, is counterbalanced by the
surface tension force, which opposes the deformation of the
interface and hence acts to keep the bubble in the liquid.
These two competing effects reach a compromise where the
bubble is partially out of the liquid but the interface is
slightly deformed. This deformation is sufficiently significant
to influence other bubbles nearby, which move upward along
the meniscus and so spontaneously aggregate.

This mechanism was first proposed by Nicolson® as a
means by which the bubbles that constitute a bubble raft
interact and give the raft its solid-like properties. As we shall
see in Sec. V, this mechanism provides the dominant contri-
bution for the interaction between sufficiently small par-
ticles.

The same argument works for floating particles that are
significantly more dense than water. That such heavy par-
ticles can float at all is due to the fact that surface tension
stops the interface from deforming too much downward as
would happen if the particle were to sink. This reversal of the
interfacial curvature can be seen clearly in Fig. 3 for a metal
pin floating on water: surface tension must act upward to
counterbalance the weight of the pin. In analogy with what is
observed with bubbles, we would expect that another draw-

Fig. 3. A photograph of a drawing pin floating upturned on water. Notice
that the deformation of the interface in this case is opposite to that around a
bubble or near a wetting wall.
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ing pin floating near the first will ““fall” down the interface,
and hence the two appear to be attracted to one another, as is
observed.

III. REPULSION: OFTEN MISUNDERSTOOD

So far we have seen that the deformation of an interface
caused by the presence of particles at that interface can lead
to mutual attraction between these particles and eventually to
the formation of large clusters. We have seen, however, only
one half of the story. Imagine that we were to float a buoyant
bubble in the vicinity of a drawing pin—would they also at-
tract? On the basis of the previous argument, we expect that
the bubble will move upward along the interface distorted by
the presence of the drawing pin. However, because the pin is
not buoyant, that is, the interface has the curvature shown in
Fig. 3, moving along the interface will, in this case, cause the
bubble to move away from the drawing pin and so the two
objects repel one another.

A more striking demonstration of this repulsion can be
achieved using two drawing pins, provided they are the kind
that has a thin plastic cap around the blunt end. As we would
expect from the discussion given in Sec. II, these two draw-
ing pins will attract when floated at the interface. However, if
we now carefully remove the plastic cap from the top of one
and float it (the cap) near the intact drawing pin, then the two
will move apart.

This simple experiment apparently challenges the com-
mon assumption that the attraction or repulsion of particles at
interfaces depends solely on the wetting properties, namely,
the contact angles, of the particles (see, for example, Ref. 4,
p. 70, example 3 or Ref. 5). Here, the wetting properties of
the plastic cap (which is the only part that is in contact with
the liquid) are not altered by removing it from the pin, but
the weight that it must support is much reduced, making the
cap buoyant. In turn, this buoyancy alters the balance be-
tween surface tension and gravity so that the interface must
now pull down on the cap to keep it at the interface, and so
the deformation near the cap resembles that around a bubble.
This change in the sign of the curvature of the interface was
brought about without changing the surface properties of the
cap. Instead, it occurs simply because of a change in the
effective density of the particle, which is a possibility that
appears not to have been explored fully.®

IV. A MODEL CALCULATION

Quantifying the physical picture outlined in Sec. II allows
us not only to predict the conditions under which the inter-
facial curvature changes sign, but also to understand simply
the dynamical interaction between two particles. We start
with an idealized problem in which we account only for the
condition of horizontal force balance (and neglect the verti-
cal force and torque balance conditions) by focusing on two
infinite vertical plates at a liquid—gas interface, as shown in
Fig. 4. The presence of the plates distorts the interface, lead-
ing to an attractive force between the two plates whose mag-
nitude we shall now calculate. This setup has been used as a
model for explaining the Cheerios effect,' and although we
argue later that this picture is incorrect for floating objects, it
does lend itself to a simple calculation. (For a further sim-
plification leading to similar conclusions, the reader is re-
ferred to Ref. 7.)

The equation of the interface z="h(x) is determined from
the condition that the pressure change across the interface
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Fig. 4. The geometry of two infinite plates in a semi-infinite fluid. The
planes have contact angles #; and 6, and are at a horizontal distance d
apart.

due to surface tension (which is proportional to the curvature
of the interface) is equal to the hydrostatic pressure differ-
ence caused by the deformation of the interface (see Ref. 4,
p. 65 for a thorough discussion). For small interfacial deflec-
tions, this balance may be written as:
d*h i |
Y dx2 =pgn, ( )

where vy is the surface tension coefficient of the liquid—gas
interface, p is the density of the liquid, and g is the accelera-
tion due to gravity. Equation (1) is to be solved with the
boundary conditions that the contact angles, 8, and 6,, are
given at each of the plates and the deflection of the interface
should decay far away from the plates. In the regions labeled
i=1, 2, 3 in Fig. 4, the solution of Eq. (1) is z=h;(x)
=A,e ¥te+ Be"'te, where L,=\y/pg is the capillary
length, which defines the length scale over which interac-
tions occur. The conditions i (—®)=0=hj3(®) give A,
=(0=Bj;, which, combined with the contact angle condi-
tions, h{(0)=cot 6, and hj(d)=—cot 6,, give the interface
shape outside the plates as:

hl(x)=LC cot aleX/LC, (2)
h3(x) :LC cot Hze(d_x)/L('. (3)

The contact angle conditions, h5(0)=—cot#; and h;(d)
=cot 6,, give the interface shape between the two plates:

cot 0, cosh +cot 6, cosh(x/L,)

c

. sinh(d/L,)

ho(x)
L

4)

Because of the interfacial deformation given by Egs. (2)—
(4), the plates are now subjected to a capillary pressure that
results in a horizontal force on the plates. (There is no result-
ant horizontal surface tension force because its components
on either side of a plate cancel exactly.) This force may act
either to bring them together or to pull them apart depending
on the contact angles 6, and #,. The value of the horizontal
force per unit length, F;,, can be calculated by integrating

819 Am. J. Phys., Vol. 73, No. 9, September 2005

Fig. 5. A typical force-separation curve for a wetting and nonwetting plate
and a liquid—gas interface. Here, #;=27/3 and 6,= /4, and we observe
repulsion at large separations and attraction at short range.

the hydrostatic pressure along each of the wetted sides of one
of the plates (say the one on the left in Fig. 4) and taking the
difference as follows:

1,(0) 71(0) hy(0)
Fh:_f pgzdz+f pgzdz:f pgzdz
h(0)

—® — 2(()

1
= 38l (0)>~ha(0)%], 5)

so that we have:

(cot @, cosh(d/L,)+ cot 6,)?
sinh?(d/L,)

_y
2

F,= —cot® 4,

)

where the sign convention is such that F;,<<0 corresponds to
attraction between the plates. Typically this force is either
attractive for all plate separations or repulsive at large sepa-
rations and attractive at short separations (with an unstable
equilibrium at an intermediate distance). An example of a
force-displacement curve in the latter case is shown in Fig. 5.

Equation (6) can be used to show that repulsion is possible
only if cot 6; cot §,<<0, that is, if one plate is wetting and the
other nonwetting. We note that if cot 6, —cot 6,, the fact
that F;,—0 as d—o implies that repulsion can occur only if
Fj, has a maximum value somewhere, because as d—0, F),
— —oo. A simple calculation shows that the only turning
point of the function f(&)=(cot 6, cosh &+cot 6,)/sinh & oc-
curs at &= £&*, where cosh & =—cot 6#,/cot 6,, which only
has a real solution &* if cot 6, cot 6,<0. When cot ;=
—cot 6,, the short range attraction does not exist, and instead
there is repulsion at all displacements. However, the result
that repulsion can only occur when cot 6, cot 6,<0 still
stands.

This result shows that vertical plates at a liquid—gas inter-
face will attract if they have like menisci and otherwise re-
pel, as we saw in Sec. II with floating objects. However, the
physical mechanism here is subtly different. We can no
longer argue in terms of one plate following the meniscus
imposed by the other because these plates do not float, mean-
ing that there is no analogue of the condition of vertical force
balance in this case. Instead, we must consider the effects of
hydrostatic pressure which result from the deformation of the
interface, as explained in Ref. 8 following earlier arguments
by Kelvin and Tait. We give here an abbreviated version of
their argument in terms of the configurations shown in Figs.
6(a) and 6(b) in which plates of like wettability are at the
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Fig. 6. Typical interfacial profiles for the different configurations of plate
wettabilities. (a) Two wetting plates. (b) Two nonwetting plates. (c) A wet-
ting and nonwetting plate at intermediate separation. (d) A wetting and non-
wetting plate at short range.

interface. In Fig. 6(a), the upper portion of the central col-
umn of fluid is at a pressure lower than atmospheric pressure,
Pam» because of the curvature of the interface; the two plates
attract because of the excess of atmospheric pressure. Simi-
larly in Fig. 6(b), the pressure in the outer fluid is greater
than p ., again because of the sign of the interfacial curva-
ture, and so there is an excess pressure (or capillary suction)
causing the two plates to attract. The situation is more com-
plicated when one plate is wetting and the other nonwetting.
At intermediate and large displacements, the interfacial dis-
placement of the central column at the points where it
touches a plate is smaller than it is on the other side of the
same plate [as shown in Fig. 6(c)] due to the constraint that
the central interface must pass through z=0 (rather than just
being asymptotic to 0) to allow it to satisfy both contact
angle conditions. From Eq. (5), we thus see that F;,>0 and
so the two plates repel. When the two plates come close to
contact, however, a relatively large change in the gradient of
the intermediate meniscus is required between the two plates,
inducing a large curvature. Because the curvature of the in-
terface is proportional to its height, this large curvature in
turn means that the displacement of the interface must be
large in this region, which reverses the sign of the force and
leads to attraction [see Fig. 6(d)]. The exception is the case
cot 6;=—cot 6,, as noted in the discussion following Eq. (6).
Here, very little curvature is required because the contact
angles are precisely complementary, and so very little dis-
placement of the interface is necessary. Thus, the interfacial
displacement of the inside of the plates is smaller than that
on the outside of the plates, and so, again using Eq. (5), there
is mutual repulsion between the two plates, regardless of the
distance between them.

This argument often has been invoked to explain the
Cheerios effect (see, for example, the answer to Problem
3.100 of Walker’s book! or do an internet search on “Chee-
rios effect”). Although the effects of hydrostatic pressure
imbalances caused by interfacial deformation are certainly
important, the calculation considered in this section cannot
constitute a complete explanation because it neglects the cru-
cial fact that Cheerios and other floating objects must satisfy
a vertical force balance to be able to float. As we shall see in
Sec. V, this additional requirement changes the physics fun-
damentally for small particles, leading to the buoyancy
mechanism outlined in Sec. II providing the dominant effect.
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Fig. 7. Geometry of a sphere lying at a liquid—gas interface. The shaded
area represents the weight of the liquid equivalent to the buoyancy force due
to hydrostatic pressure acting on the sphere (Ref. 10).

Incorporating this additional equilibrium condition, however,
requires a slightly more involved calculation, which we now
consider.

V. THE CASE OF FLOATING OBJECTS

Having seen the manner in which the force between two
interfacial objects can be calculated in a somewhat artificial
geometry, we are now in a position to consider the scenario
that is of most interest to us here: interactions between ob-
jects that are floating at a liquid—gas interface. The major
difference between the interactions between floating particles
and the earlier discussion of two vertical plates is that we
must now take into account the vertical force equilibrium of
the object. This additional condition is actually a significant
enough complication that, even using the linearized approach
of Sec. IV, progress can only be made numerically. However,
for sufficiently small particles we may assume that the inter-
facial profiles generated by one or more objects floating at
the interface are sufficiently small that they may be super-
posed. This assumption allows us to make progress analyti-
cally.

This assumption was tacitly made in our discussion of the
attraction and repulsion of objects at interfaces in Sec. II, but
was first introduced by Nicolson,3 who used it to calculate
the interaction force between neighboring bubbles in bubble
rafts. It was then applied to the calculation of the force be-
tween floating particles at an interface by Chan et al.,” who
considered some simple illustrative particle configurations
such as two horizontal cylinders floating near one another.
Here we give their argument applied to the determination of
the interaction force between two identical spheres floating
at an interface. This application is primarily motivated by the
simplicity of an experimental realization.

A. A single particle

In the spirit of the Nicolson approximation, we first ne-
glect the presence of the second sphere and consider the
vertical force balance on an isolated sphere to determine an
approximate expression for the interfacial slope at the con-
tact point, z. (see Fig. 7). Evaluating z, is equivalent to
determining the value of ¢, as defined in Fig. 7, because of
the geometrical relation ¢.=— 6+ arctanz,; the calcula-
tion of z. will prove useful for justifying Nicolson’s approxi-
mation and for comparing the results with those of Sec. IV.

For the sphere to remain at the interface, its weight,
tmp,gR? must be balanced by the component of surface
tension acting along the (circular) contact line and the buoy-
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ancy force due to the displaced bulk fluid. The first of these
forces is easily seen to be given by
27R sin ¢, ysin(arctan z/)=27yR sin ¢z (1+2/%) 2. The
second is given by the weight of the water that would occupy
the area between the wetted region of the sphere and the
undisturbed interface, which is shown as the hatched area in
Fig. 7. To understand physically this generalization of
Archimedes’ principle, notice that the liquid has no knowl-
edge of the geometry of the object that is at the interface
outside of its wetted perimeter. The liquid must therefore
produce an upward force equal to what it would provide to
an object filling the entire hatched region, which we know
from the usual Archimedes result is the weight of the dis-
placed liquid that would fill this volume. (For elegant rigor-
ous derivations of this result, see Refs. 10 or 11.) This vol-
ume can be calculated by splitting it into a circular cylinder
of radius R sin ¢, and height z,., and a spherical cap of
height R(1—cos ¢,.) and base R sin ¢.. These considerations
give the buoyancy force

Z. 2 1
mpgR> = Sin b+ 3~ cos b+ gcos3 ¢C) . (7)

The balance of the vertical forces may now be written ex-
plicitly as:

!

L PR = 2R sin b, —— + pg R i
3 TS8R =2my sm(ﬁc\/l_i_—zé2 pg T Rsmzﬁc

2 1
+§—cos ¢+ gcos3 d)c). (8)

If we substitute ¢,=m— f+arctanz, and keep only those
terms linear in z., we obtain an expression for z_ sin ¢, ac-
curate to first order in the Bond number, BERZ/LE :

2D—-1 1 1 )

=B%, (9

— —cos O+ —cos> 6

Z.sin¢.=B 3 > 6

where D=p,/p. (As a consistency check, observe that z
=0 when 6= /2 and D= 1/2, which we expect, because in
this case the Archimedes buoyancy alone is enough to bal-
ance the weight of the sphere without any interfacial defor-
mation.)

Equation (9) contains two dimensionless parameters, B
and 3. The Bond number, B=pgR?/7, is the most important
dimensionless parameter in this system. It gives a measure of
the relative importance of the effects of gravity and surface
tension: large B corresponds to large particles or small sur-
face tension coefficient—in both cases the surface tension is
inconsequential. The expression for the slope of the interface
in the vicinity of the spherical particle given in Eq. (9) is
valid for B<1 (corresponding to a radius of ~1 mm or
smaller for a sphere at an air—water interface), in which case
surface tension is very important. The other dimensionless
parameter, 2, can be thought of as a (dimensionless) result-
ant weight of the particle once the Archimedes force has
been subtracted. This interpretation arises naturally from the
vertical force balance condition (8) and (9), because the re-
sultant weight of the object (in the linearized approximation)
is 2myRz, sin ¢p.=2myRBX..

To calculate the interaction energy using the Nicolson ap-
proximation, we also must calculate the interfacial displace-
ment caused by an isolated floating sphere, which is deter-
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mined by the hydrostatic balance YV2h=pgh, the
coordinate invariant statement of Eq. (1). With the assump-
tion of cylindrical symmetry, this generalization of Eq. (1)
becomes:

1 d| dh h 0
rdr\"dr _Lf’ (10)
with the boundary conditions that ~—0 as r—o and h'(r
=R sin ¢)=z,. Equation (10) has a solution in terms of
modified Bessel functions of the first kind'? and of order n,
K, (x):

Ko(r/Lc)

W)= =zl g R Gn gL,

—z, sin ¢ RKy(r/L,),
(11)

where we have used the asymptotic result (see, for example,
Ref. 12) that K(x)~ 1/x for x<<1 to simplify the prefactor.

B. Two interacting particles

Having calculated the effective weight of a sphere at a
deformed interface as 27w yRBY, [with 3 as defined in Eq.
(9)] as well as the interfacial deformation caused by the pres-
ence of a single sphere, we are now in a position to calculate
the energy of interaction between two spheres. To leading
order in B, this energy is the product of the resultant weight
of one sphere and its vertical displacement due to the pres-
ence of another sphere with its center a horizontal distance /
away. We may therefore write the energy, E([), as:

l
E(l)= —27ryR23222K0(L—), (12)

and from Eq. (12), the force of interaction is given by F(I)
=—dE/dl, or:

I
F(l)= —2mRBS’222K1<L—). (13)

c

Problem 1. Repeat the previous calculation for two cylin-
ders of infinite length lying horizontally and parallel to one
another at an interface. First consider the interfacial profile
caused by an isolated cylinder and show that it is given by

z(x)=—L.z.exp(—x/L,), (14)

when B<<1. Next use the linearized vertical force balance
and the geometrical relationship ¢,.=m— #+arctanz, to
show that:

2 2

The resultant weight of the object can be found from the
force balance to be ~2vyz.. With this effective weight and
the interfacial profile in Eq. (14), calculate the energy of
interaction (per unit length), E(/), between two cylinders
with center—center separation /. Show that

B 1 BC
2~5 7T(D—1)+0——sin20)5—. (15)

dE Y osn [
F(l)——ﬁ——EB C eXIJ(_L—C), (16)

with C defined as in Eq. (15).
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It is important to emphasize that the calculation leading to
Eq. (12) relies on several assumptions. The first is that the
particle is small enough that the total interfacial deformation
is the sum of that due to individual particles. (By comparison
with numerical results, Chan et al.’ show that the expression
derived by their method is essentially exact for Bond num-
bers B=<0.1.) Furthermore, we have neglected the effect of
capillary pressure acting on the particle to produce a hori-
zontal force—calculated for the case of two vertical plates in
Sec. IV. It is not possible using the analysis presented here to
include this effect because the Nicolson approximation im-
plicitly assumes that the level of the interface is the same on
either side of the particle. However, the difference in inter-
face heights on either side of the sphere only occurs at the
next order in B, so that using Eq. (6), we see that the con-
tribution from capillary pressure also only enters at the next
order in B.

At large Bond numbers this analysis breaks down, which
raises the question: is it still the case that large particles
interact because of their gravitational potential energy or
does the capillary suction effect discussed in Sec. IV become
more important? To answer this question conclusively re-
quires the numerical solution of the full problem, because for
large Bond number the interfacial deflections are no longer
small. Such a calculation is beyond the scope of this paper,
but has been performed by Allain and Cloitre,'® who showed
that for B>1, the vertical displacement of two horizontal
cylinders does not change substantially as they move toward
one another. Thus the attractive force must result largely
from pressure effects rather than the weight of the particles,
with the crossover between these two regimes occurring for
10<B <100 according to the numerical results of Ref. 13.

The toroidal shape of a Cheerio complicates the notion of
Bond number, but if we take the effective radius based on its
volume R* =(R%R2)”3~2.7 mm (where R;~2 mm and R,
~5 mm are the two radii of the torus) and L.=2.7 mm for
an air—water interface, then B~ 1. This value is within the
regime where the gravitational energy of the particles domi-
nates the capillary suction due to the meniscus between
them, and so it is crucial that we account for the buoyancy
effects to correctly interpret the attractive force.

Finally, we discuss briefly how the result in Eq. (13) fits
with the interpretation of attraction and repulsion that we
developed in Sec. II. If you do Problem 2, you will see that
the sign of the force between two nonidentical spheres is
governed by the sign of z.") sin ¢{"z/? sin ¢”, where the
superscript (i) labels the two particles. The interaction is
attractive if this product is positive and repulsive if it is nega-
tive. From Eq. (11) we see that this product has the same
sign as the product of the gradients of the menisci in the
neighborhood of the two particles, and so we see that there is
mutual attraction if the particles have like menisci and repul-
sion if they have unlike menisci. This mathematical argu-
ment corresponds precisely to the physical picture that we
saw in Sec. II, although we are now able to quantify the
combination of contact angles and particle densities which
gives rise to the two possibilities. We also note that the
strength of the interaction decreases as the surface tension
coefficient, vy, increases. This slightly counterintuitive result
is a simple consequence of the fact that for higher values of
v, the deformation of the interface required to satisfy the
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Fig. 8. Experimental data (points) compared to the solutions of the dynami-
cal equation (17) (solid line) for two identical spheres of radius 0.3 mm
interacting via flotation forces at an air—water interface. The theoretical
curve is calculated by solving Eq. (17) numerically with vy
=0.0728 Nm™!, ©=0.001 Pas, and 3%/ @=0.673 used as the fitting pa-
rameter. (2 is the dimensionless resultant weight of the spheres and « is the
ratio of the drag that the particle feels at the interface to that which it would
experience in an unbounded fluid.) The dashed line gives the asymptotic
result (18).

vertical force balance condition for particle 1 is less, and so
the gravitational hill on which particle 2 finds itself is
smaller.

Problem 2. Repeat the analysis for two spheres but now
allow them to have different material properties R, 6, and D.
Show that the sign of the force between two (nonidentical)
spheres is determined by the sign of z. " sin ¢{"z/® sin ¢

VI. THE DYNAMICS OF FLOATING PARTICLES

So far we have limited ourselves to calculating the force
between particles. We shall now use this calculation to an-
swer some questions that arise from observing the motion of
objects at an interface. A natural question to start with is
“how fast do two spherical particles come together?,” a
question that we shall consider in this section.

To make the dynamical problem tractable, we assume that
the vertical velocity of each particle as it moves along the
meniscus is small enough that the vertical force balance used
to determine the horizontal force is satisfied. This assump-
tion is valid to leading order, as shown in Ref. 9. We assume
that the motion is overdamped so that a Stokes drag term* for
the viscous drag provided by the liquid balances the attrac-
tive force between the two particles given in Eq. (13). This
balance leads to the equation of motion:

dl (1)

67T,LLRC¥E: —27T~yRBS/222K1( I ),
where u is the dynamic viscosity of the liquid and « is a
scaling factor which takes into account the fact that the drag
experienced by a particle at an interface is less than it would
experience if completely immersed in the bulk fluid. We ex-
pect that @~ 1/2, although the dependence of « on 6 was
computed numerically in Ref. 14. Data obtained from ob-
serving two spherical particles with radius 0.3 mm as they
move under each other’s influence at the interface between
air and water is shown in Fig. 8. The data were collected
from a time lapse video (one frame per second) of the motion

(17)

C
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taken with a digital camcorder, which was then analyzed
using image analysis software.'> The dimensionless resultant
weight of the particles, 3, is difficult to measure experimen-
tally because of its dependence on the contact angle 6. We
thus appear to have two unknown parameters in this model
(a and ). Fortunately, because only the ratio 32/« appears
in Eq. (17), we can fit the numerical solution of Eq. (17) to
the experimental data presented in Fig. 8 by this one param-
eter.

In this case, we assume that the particles are sufficiently
small that their inertia may be neglected entirely. The ap-
proach we have adopted is better suited to such small par-
ticles because the Bond number in this case also is very
small, and so the expression for the interaction force in Eq.
(13) is effectively exact. Also, if the typical distance between
particles is small compared to the capillary length, L., then
we again are able to use the asymptotic formula K;(x)
~x~ ! for x<1 to approximate the modified Bessel function
in the force law (13). We substitute this formula into Eq. (17)
and solve for /(7), giving:

l(t)m\/l(()y_zch—BmEz, (18)
3ua ’

so that the time taken for two spheres to come into contact is
given by:

3ual(l(0)>2—R?)
LTS

In Fig. 8, we see that the asymptotic form (18) is a reason-
able approximation over the last 2 s before contact.

To verify our assumption that the motion is slow enough
for us to be able to neglect the particle’s acceleration, we
look at the ratio of particle inertia to Stokes drag. This ratio,
R, is initially small and increases as the particles come
closer, reaching a maximum when they come in contact. If
we use the asymptotic expression for K;(x), we have:

2 ,y p Lc B 5/22 2

Rcomact: 276!2 3:“’2 . (20)

(19)

contact”™

For spherical particles of radius less than 0.3 mm (or B
=0.01), R<0.1 throughout the motion, which is sufficiently
small that our approach is self-consistent.

VII. AMPHIPHILIC STRIPS WITHOUT CHEMISTRY

As a final illustration of the principles that we have ap-
plied to the problem of the attraction of interfacial objects,
we consider briefly the equilibrium of a single two-

Fig. 9. A single two-dimensional strip (of weight W per unit length in the
direction perpendicular to the page) floating at an interface, with the hatched
area indicating the area of the displaced fluid, the weight of which is equal
to the buoyancy force on the strip. The asymmetric equilibrium position here
is possible because of the off-center position for the strip’s center of mass.
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Fig. 10. The dependence of ¢, ¢, on the offset of the strip’s center of mass,
given by (1—8)b, for B&[0,1] (the graph is symmetric about B=1). Here
the strip has dimensionless weight per unit length W/y=0.1 and half-width
b/L.=2.

dimensional strip, say of plastic (of weight W per unit length
into the page and width 2b) floating horizontally at an inter-
face, as shown in Fig. 9. This problem was studied exten-
sively in Ref. 11, where the interactions between two such
strips also was investigated. Here we content ourselves with
studying the simpler problem of a single strip but with a
slight twist: we take the center of mass line of the strip to be
displaced from the strip’s center line by a distance (1
— B)b [so that (1 — B) is a measure of the offset of the center
of mass of the strip]. As we shall see, an offset center of
mass is enough to break the symmetry of the problem, and
thus allow the strip to float at an angle « to the horizontal.

Because the strip is assumed to be infinitely thin, the con-
cept of contact angle that we used earlier is not well-defined
in this problem. Instead, the effective contact angles that the
interface makes at the points of contact with the strip, ¢ ,,
and the angle « are determined from the condition that the
strip be in equilibrium; this condition leads to three equations
for the three unknowns. Two of these are the conditions of
horizontal and vertical force balance, which we have encoun-
tered previously and may be written here as

0= (cos ¢, —cos 1)+ 2 (3 -23) e

for horizontal equilibrium, and

{a) loop

ol tape ——
"
-

wire =~

Fig. 11. Example of a simple amphiphilic strip. (a) Simple design of the
amphiphilic strip discussed in the text. (b) Photograph of a realization of
such an amphiphilic strip. Here the rectangular strip lies between a drawing
pin (left) and the cap of another drawing pin (right). These two objects
would normally be mutually repulsive (as discussed in Sec. III), but main-
tain a finite separation once they are separated by the amphiphile.
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for vertical equilibrium. The second term on the right-hand
side of Eq. (22) is the weight of liquid displaced by the strip,
which is shown as the hatched area in Fig. 9. In addition,
there is the condition of torque balance, which we did not
encounter for the equilibrium of the floating sphere (it is
automatically satisfied for objects of circular cross-section).
Here this condition is crucial because it gives a third equa-
tion by which to determine the three unknowns. By taking
moments about the center of mass, we have:

0=yb[(2—B)sin(p,—a)— Bsin(¢ +a)]

W= y(sin ¢, +sin ¢p,) — pg(2b cos a)( ) (22)

2=p)b
—pgf , z(s)sds, (23)
where s is an arclength coordinate measured along the strip
from the center of mass.

In principle, these equations can be solved even for inter-
facial deformations that are not small following the strategy
outlined in Ref. 11. However, for simplicity, we proceed here
in the limit where the three angles are small, and, therefore,
the interfacial deformations also are small. In this limit z;
~—L.¢},, zo~—L.p,, so the vertical relation (22) be-
comes:

W? | (BL2+6bL.+4b>=3b(L.+b)B)(3L:—2b>+3b(L.+b)B)

w b
7:(9{’14‘4’2) 1+L_C)- (24)

The linearized version of Eq. (21) is automatically satisfied,
and so we make use of the geometrical relation z,—z;
=2b sin « to give:

“ d;lb_/Ldzz' 29
Finally, the torque balance condition (23) yields:
0=(2=B)by= B2+ L%“ —B)(Bhr+ (2
—ﬁ>¢1)+£@(ﬁ3+(2—ﬁ>3>. (26)

Equations (24)—(26) constitute a system of three linear
equations in three unknowns, which can be solved by invert-
ing a 3 X3 matrix. Of particular interest here is the possibil-
ity that, for some values of B, ¢; and ¢, have opposite signs
as plotted in Fig. 10. We can understand this result more by
solving Egs. (24)—(26) to give:

¢1¢2=7Lc

From Eq. (27) and the restriction that <1, it is simple to
show that ¢,$,<0 when B<pB.=(2b*—3L>/[3b(b
+L.)], and hence ¢, and ¢, are of opposite sign for suffi-
ciently small 8 if b>(3/2)"’L... For the parameters in Fig.
10, B.~0.28, with ¢, changing from negative to positive
around B= B, and ¢, positive for all Be[0,1]. Physically,
the change in sign of ¢, is what we would expect because
for small B, the offset of the center of mass causes a large
torque and hence rotation of the object, forcing the far end of
the strip to be displaced above the equilibrium liquid level
and hence the interface here must be elevated, corresponding
to ¢,<<0. As the offset decreases, so does the torque associ-
ated with it, and the displacement of the far end of the strip
is diminished until, for sufficiently small offsets, the far end
lies below the equilibrium liquid level and ¢,>0.

The significance of the qualitatively different interfacial
shapes at both end of the strip when ¢, ¢, <0 is that in such
cases one edge is able to attract drawing pins while the other
repels drawing pins and attracts bubbles! Particles or mol-
ecules with this type of behavior often are termed am-
phiphiles and occur in detergents along with many other
applications.'® However, such amphiphilic particles are usu-
ally constructed by treating the two edges chemically to in-
duce the different behavior. Here, we have shown that this
behavior also may be achieved by altering the density of the
strip so that the center of mass of the object is displaced.

As well as the possible industrial applications that such
particles could have, this physical amphiphile lends itself to
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4(L,+b)*(b>+3bL +3L%)?

. (27)

a much simpler classroom demonstration than might be pos-
sible with chemical amphiphiles. By using a piece of sticky
tape doubled back on itself to form the strip [see Fig. 11(a)],
and a short length of wire (part of a paperclip, for example)
inserted between the two sides of the tape, it is possible to
make a strip with edges that deform the interface in mani-
festly different ways. An experimental realization is shown
in Fig. 11(b), which demonstrates that particles that would
otherwise be mutually repulsive can be coaxed into main-
taining a finite equilibrium separation.

Fig. 12. The interfacial deformation caused by a water-spider, Dolomedes
triton. The interface is visibly depressed by the spider’s weight acting on
each leg. Image courtesy of Robert B. Suter.
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VIII. DISCUSSION

We have investigated an aspect of everyday life that may
previously have escaped many readers’ notice—the propen-
sity of floating objects to aggregate. We expressed the
mechanism for this effect in terms of the simple physics of
particles trapped at a deformed interface feeling the effects
of their weight (or buoyancy), and then showed how ap-
proximate methods can lead to quantitative descriptions of
the magnitude and dynamical nature of the interaction. We
now conclude with a brief discussion of some of the sce-
narios in which this effect has been applied and mention
some potential research directions.

There are likely many instances where a variant of the
Cheerios effect is used by one species or another. Here we
choose to highlight water walking creatures that can be
found on the surface of many ponds. These creatures rely on
surface tension to prevent them from drowning because their
weight can be supported by interfacial deformations (as
shown in Fig. 12). However, when they try to climb out of
the pond, they become reluctant victims of the Cheerios ef-
fect, because this action generally requires climbing up the
meniscus against gravity. Recent observations'’ suggest that
some insects, such as Mniovelia Kuscheli, can overcome this
difficulty by pulling up on the interface with their front legs
and pushing down on it with their hind legs, effectively shift-
ing their center of gravity. They thus become a natural ex-
emplar of the mechanical amphiphile discussed in Sec. VII
because they are now attracted to the wall via the Cheerios
effect.

There remain many interesting questions that we have not
answered in this article, many of which are amenable to in-
vestigation in the classroom or the laboratory. For example,
it would be worthwhile to better understand the way in
which two different types of particles that are mutually re-
pulsive interact. With a mixture of light and heavy particles,
for example, clusters of like density particles form, all things
(other than the particle density) being equal. This segregation
phenomenon could find many applications within science
and industry. Such a study could naturally be extended by the
inclusion of amphiphilic particles, which would allow the
user to dictate a finite equilibrium spacing between two oth-
erwise repulsive objects. Another example is afforded by hair
on water: a flexible hair floating parallel to a planar wall
might be expected to bend as it is attracted to the wall be-
cause the attractive force would be greatest for those parts of
the hair closest to the wall and much less significant for those
parts further away. This motion has yet to be studied experi-
mentally or theoretically. The inspiration from the kitchen,
industry, and nature is almost overwhelming.
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