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Abstract

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one

of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large,

manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison

of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000

PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry

literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER

corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was

manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family,

formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was

measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the

CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also

mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention

recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions

from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been

generated as well. We propose a standard for required minimum information about entity annotations for the

construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation

guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/

Introduction
There is a pressing need to extract information of che-

mical compounds and drugs from the rapidly growing

scientific literature [1]. Text mining and information

extraction techniques are showing promising results in

the biomedical domain: A range of applications have

been implemented [2] to detect bio-entities [3,4] and

their relations (e.g. protein-protein interactions [5],

gene-disease relations [6], and protein-mutation associa-

tions [7]), or to select relevant documents for a particu-

lar topic [8]. One of the first steps required for more

complex relation extraction tasks is to find mentions of

the entities of interest. In the life sciences domain the

entities that have attracted most attention are genes and

proteins [9], while in case of more generic texts and

newswire, efforts have been made to detect information
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units including names of persons, organizations or

locations [10].

Automated techniques with the aim of detecting (tag-

ging) mentions of named entities in text are commonly

called named entity recognition (NER) systems. Although

early NER taggers typically relied on hand-crafted rules,

the current trend increasingly points towards the use of

supervised machine learning techniques for entity recog-

nition [10]. Such systems learn a statistical model to

identify entity mentions by inferring which characteristics

(features) distinguish them from the surrounding text.

Exploited features can be the presence of certain combi-

nations of orthographic features, like consecutive charac-

ters or words (n-grams), their letter case, or the presence

of digits, special characters (e.g. hyphens, brackets,

primes, etc.), and symbols (Greek letters, @, $, etc.). Also

the ending or beginning of words (affixes) and the pre-

sence of particular terms found in a list (gazetteer) of

precompiled names are often exploited by NER systems

[10,11] and can help identify a word’s morphology (inflec-

tions, gerund, pronouns, etc.). For instance, when looking

at the chemical literature, it becomes clear that in case of

systematic chemical names they do look quite different

from common English words, mainly due to the nomen-

clature rules that define chemical naming standards.

Supervised methods classify word (token) sequences

by assigning them to one of a set of predefined entity

classes. For this task, they require labeled example data

that commonly is split in two collections. The first col-

lection is called the training set, from which the model

infers its parameters. The trained model is then used to

detect entity mentions in the second collection, the test

set ; This set is used to evaluate the quality of the

learned model. If satisfactory, the parameterized model

can then be applied to detect entities in new, unlabeled

text. Therefore, labeled text is important not only to

build machine learning-based entity taggers: It also can

be used to evaluate the performance of any kind of NER

system, regardless the underlying method used. Produ-

cing labeled data for this purpose therefore refers to

the construction of properly annotated text, a so-called

corpus. This process requires adding metadata (the

annotations) to the original text according to specific

annotation guidelines.

Over 36 corpora have been generated in the biomedical

field [12] already. When the corpus contains documents

with manually marked up annotations done by domain

experts, they are known as Gold Standard Corpora

(GSC). Because the manual annotation process is very

laborious, lower quality corpora can be constructed by

using automated techniques. A few such Silver Standard

Corpora (SSC) have been published, too, such as the

CALBC corpus [13]. Chemical (named) entities are

important for chemistry, but also for other research areas

such as life sciences, pharmacology, medicine, material

sciences or physics. Yet, despite their wide-spread use,

only few corpora with manually labeled chemical entities

exist to date.

Biology corpora with chemical entities

There are several corpora developed in the life sciences

domain that include text annotations of chemical sub-

stances. A widely used and valuable resource for biome-

dical language processing is the GENIA corpus [14]. It

contains a collection of PubMed abstracts annotated

semantically with a variety of different entity types

defined in the GENIA Chemicals ontology. Most of the

underlying concept classes were derived from categories

found in Medical Subject Headings (MeSH), a hierarchi-

cal terminological resource used to index PubMed

abstracts [15]. The GENIA chemical concepts do corre-

spond to a rather broad interpretation of chemicals,

many of which cannot be linked to any concrete chemical

entity with an associated structure. In this corpus, quali-

fier terms and chemical role/application terms are also

annotated as chemical entities. There are no exhaustive

annotation guidelines for chemical compounds underly-

ing the GENIA corpus annotation, being essentially tai-

lored towards biologically relevant annotations.

Moreover, in GENIA, chemical entity annotations were

not prepared by a chemist and chemical annotations

relied mainly on human interpretation of the text and

background knowledge. The CRAFT corpus [16] is a cor-

pus of 97 full text biomedical articles that contains sev-

eral different concept annotation types including a type

consisting of chemical concepts from the ChEBI ontology

[16]. This type includes chemicals, chemical groups,

atoms, subatomic particles, biochemical roles and appli-

cations [17]. Annotations of the CRAFT corpus were

done by biologists based on annotation guidelines that

also included a set of linguistic aspects for text span

markup. Chemical annotations in the CRAFT corpus

were not exhaustive, being restricted mainly to the con-

cepts covered by the ChEBI ontology. The coverage of

this ontology for the chemical space published in the lit-

erature is unclear. Another hand-annotated life sciences

corpus that contains chemistry-related annotations is the

PennBioIE CYP 1.0. This corpus of 1,100 abstracts

requires payment of a license fee and is focused on a

rather narrow scope, the inhibition of cytochrome P450

enzymes. It includes chemicals under a semantic class

called substance. This substance class is rather vaguely

defined and includes proteins and other substances as

well as role and functional terms. There are a few cor-

pora that are primarily concerned with the annotation of

relationships that involve chemicals, and more particu-

larly drugs. The EU-ADR corpus has 300 abstracts

including drug-target and drug-disease relations [18]; it
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was pre-annotated automatically and missed or incorrect

annotations were manually corrected. With a similar

scope, the ADE corpus contains annotations of drug-

related adverse effects, covering chemicals/drugs in a

therapeutic context for 3,000 abstracts. In case of the

DDI corpus, 700 documents (both PubMed abstracts and

DrugBank records [19]) were annotated for drugs and

relations between them [20], while the EDGAR corpus

(103 PubMed abstracts about cancer) also contains anno-

tations of drugs in addition to genes and cells [21]. The

Metabolites and Enzymes corpus [22] has annotations of

metabolites, carried out on 296 abstracts on yeast meta-

bolism. The annotation in this corpus was restricted only

to those names that appeared in the context of metabolic

pathways. There was also one chemistry-disease relation

corpus generated from 21 US patents that contained

claimed structure-activity-relationships. These patents

were automatically tagged with chemistry and disease

terms. The annotations process was restricted to the

manual classification of the relation type existing

between co-occurring terms [23].

Chemical text corpora

As opposed to the previously introduced corpora, a

number of corpora have also been described that are

more focused on chemistry and chemical entities rather

than on biological aspects of chemical substances. They

provided important lessons for the construction of the

CHEMDNER corpus. Nevertheless they also showed

crucial differences in scope, used document collections,

availability (both of annotation guidelines together with

the resulting corpus), format and size. Early attempts

to build a chemical NER systems, due to the lack of a

chemical entity text corpus, explored the use of lexical

resources related to chemistry derived from the UMLS

Metathesaurus, which was used for training and testing

various methods [24]. Wren published a machine

learning method trained on the chemical ChemID

database and used it to find chemical entity mentions

in PubMed abstracts. Due to the lack of an evaluation

text corpus he could only assess the precision on a

small sample of putative chemical names extracted

automatically [25]. Another publication by Zhang

described the use of chemical annotations done by the

indexers of the National Library of Medicine (NLM)

[26] as a proxy for evaluating a chemical entity recog-

nition system. These annotations are only done at the

document level without specifying the exact entity

mention offsets within the abstract. The NLM indexers

annotate topic-related chemical concepts and therefore

the indexing is not exhaustive. This type of annotation

only reflects the understanding of the topic by the indi-

vidual indexer. The document indexing was based on

terms of the MeSH tree associated with chemicals

(Chemicals and Drugs branch and supplementary con-

cept records called MeSH substances). Narayanaswamy

and colleagues described a small corpus of 55 abstracts

selected by a keyword search (using as query acetylates,

acetylated and acetylation) that contained also a small

number of chemical names [27]. The text corpus intro-

duced in the article describing the ChemicalTagger sys-

tem consisted in 50 paragraphs from the experimental

sections of full text articles selected using a keyword

search related to polymer synthesis. It is concerned

with the annotation of chemical phrases rather than on

chemical entity mentions and the associated link to the

annotation guidelines was not functional anymore (bro-

ken link) [28]. The ChEBI Patent Gold Standard corpus

was created as a joint effort between curators of the

ChEBI database and the European Patent Office [29]. It

involved the annotation of chemical entities in 40

patent documents (18,061 chemical entities, 47% of

them were initially linked to ChEBI records). This cor-

pus is publicly available but more details on the anno-

tation criteria and process were not released together

with the corpus. This corpus was generated manually

without using any software to create pre-annotations.

An updated version of this corpus was also published

to increase the initial mapping of mentions by using an

updated version of the ChEBI database (53.7% of

ChEBI mapped chemical entities) [30]. A recent effort

carried out by both academia and commercial teams

resulted in a larger corpus of 200 patents annotated

with chemical information [31]. These patents were

automatically pre-annotated with chemical names and

human curators revised and corrected mis-identified

pre-annotations and added missing chemical mentions

manually. The annotation guidelines used for con-

structing this corpus were partially based on the anno-

tation guidelines that we have released for the

CHEMDNER corpus, as detailed later in this manu-

script. A relevant contribution to the development of

chemical corpora was provided by the authors of the

Sciborg corpus [32,33] and the Chemistry PubMed cor-

pus by Corbett et al. [33,34] Unfortunately neither of

these two corpora are publicly available, but the under-

lying annotation criteria shared by both datasets had a

deep impact on the annotation guidelines prepared for

the CHEMDNER corpus. The Sciborg corpus consisted

of 42 full text chemistry research papers annotated

manually with chemical compounds while the chemistry

PubMed corpus by Corbett et al. consisted in an hand-

annotated corpus of 500 PubMed abstracts selected using

the query ‘metabolism[Mesh] AND drug AND hasabstract’.

Both corpora consisted in exhaustively annotated chemical

texts done by chemists according to very detailed annota-

tion rules (31 pages long guideline containing 93 rules,

together with example cases [33]). Different annotation
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classes were defined to deal not only with chemical com-

pounds but also with chemical reactions, chemical adjec-

tives, enzymes and chemical prefixes.

A more granular annotation specifically of the chemical

compound mentions was proposed for the construction of

the open access Chem EVAL corpus (a.k.a. SCAI corpus),

a small corpus of 100 abstracts (with 1206 chemical men-

tions) annotated with chemical entities [35]. Details on the

actual definition and selection of chemical compound

mentions were not provided together with this corpus,

and the original authors stated that additional evaluation

and refinement of the corpus and its guidelines is work in

progress. Nevertheless this corpus proposes several types

of chemical mention classes of practical relevance, which

were modified and adapted for the annotation of chemical

mention classes of the CHEMDNER corpus. The chemical

classes proposed by them included IUPAC (systematic and

semi-systematic chemical names), PART (partial IUPAC

names), TRIVIAL (trivial names), ABB (abbreviations and

acronyms), SUM (sum formula, atoms, molecules, SMILES

and InChI) and FAMILY (chemical family names). The

distinction between TRIVIAL and IUPAC was an arbitrary

decision according to the name length: names with one

word were considered as TRIVIAL, while multi-word sys-

tematic and semi-systematic names were labeled as

IUPAC.

Chemical names and challenges for NER

To be able to implement and compare the performance

of chemical NER systems the availability of large enough

manually tagged text corpora is a key requisite. It is thus

not surprising that a comparative evaluation effort for

this topic had not been carried out prior to the release of

the CHEMDNER corpus. The intrinsic difficulty in defin-

ing annotation guidelines of what actually constitutes a

chemical compound that can be linked to structural

information was the main difficulty in constructing the

CHEMDNER corpus. Although the International Union

of Pure and Applied Chemistry (IUPAC) has defined a

set of rules for the chemical nomenclature, those naming

standards are not sufficiently followed in practice when

examining the scientific literature [36]. Chemistry is a

research discipline with a considerable degree of speciali-

zation that can explain the encountered variability of

language use between its sub-disciplines. Moreover che-

mical entities are also studied in publications from other

disciplines such as medicine, biology and pharmacology.

Thus a virtually arbitrary number of language expressions

may be found in the literature to refer to chemical com-

pounds. This variability can be explained by the use of

aliases, e.g. different synonyms used for the same entity.

For instance the antidiabetic and anti-inflammatory drug

‘troglitazone’ also has the brand name ‘Rezulin’, while its

systematic (IUPAC) name would be ‘(RS)−5−(4−[(6

−hydroxy−2,5,7,8−tetramethylchroman−2−yl)methoxy]

benzyl)thiazolidine−2,4−dione’. Variability can also be

simply due to alternative typographical expressions refer-

ring to the same chemical. The problem of variability has

a negative impact on i) the resulting recall of NER sys-

tems (fraction of the total entities mentioned in text that

are recognized by a system) and ii) the feasibility to map

all the various alternative compound mentions to its cor-

responding unique canonical chemical structure.

Ambiguity, the fact that a given word can correspond

to a chemical entity or to some other concept depend-

ing on the context of the mention, also poses difficulties

for labeling text with chemical entities. A source of

ambiguity for chemical entities is the heavy use of acro-

nyms, abbreviations, short chemical formula and certain

trivial names used in the literature. Additionally, a few

common English words such as gold, lead and iron are

also a source of ambiguity for NER systems. The follow-

ing list summarizes some of the challenges related to

chemical entity mention annotation and automatic

recognition.

• Difficulties in defining what a chemical entity is.

• The official IUPAC nomenclature guidelines are

only partially followed in practice in the literature.

• Chemical compounds/drugs often have many syno-

nyms or aliases (e.g. systematic names, trivial names

and abbreviations referring to the same entity).

• Existence of hybrid chemical mentions (e.g. men-

tions that are partially systematic and trivial).

• Chemical compounds are ambiguous with respect

to other entities or terms (in particular abbreviations

and short formula).

• Existence of naming variation: typographical var-

iants (alternating uses of hyphens, brackets, spacing,

etc.) and alternative word order.

• New chemical compound are discovered and

described in papers every day (novel chemical

names).

• Definition of both chemical entity mention bound-

aries and word tokenization is complicated.

For the successful detection of chemical entity men-

tions, tools need to be able to cope as much as possible

with these difficulties.

BioCreative task on chemical entity recognition

Chemical entities of practical importance are those that

can be ultimately linked to chemical structure informa-

tion, rather than general vague chemical concepts. Being

able to associate a given chemical compound name to a

chemical structure was the central annotation criteria
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followed for the construction of the CHEMDNER corpus.

The details on the construction of the CHEMDNER cor-

pus will be provided in the following sections. To demon-

strate its utility, the CHEMDNER corpus was used as the

dataset to train and evaluate chemical NER systems that

participated in a task posed at the fourth BioCreative

community challenge [11]. The BioCreative challenges

are an ongoing effort to promote the evaluation and

development of text mining and natural language proces-

sing software for the life sciences community [37]. Carry-

ing out this task within the organization of BioCreative

was especially useful due to the previous experiences of

this community with related bio-medical NER tasks (the

Gene Mention recognition tasks of BioCreative I and II

[38,39], as well as the Gene Normalization tasks [40]).

Methods
The construction of the CHEMDNER corpus started

with the definition of the overall annotation goal together

with an exhaustive revision of previous work done on

annotation of chemical entities as well as named entities

in the biomedical and other domains. The aim while

defining the chemical entities annotated for the CHEMD-

NER corpus was to capture only those types of mentions

that are practically relevant. The common characteristic

among all the chemical mention types used for the

CHEMDNER corpus was that they could be associated to

chemical structure information with at least a certain

degree of reliability. We consider this aspect of crucial

practical relevance. The annotation carried out for the

CHEMDNER corpus was only exhaustive for this particu-

lar type of chemical mention, which we named Structure

Associated Chemical Entity Mentions (SACEMs). For

example ‘nitric oxide’, ‘resveratrol’ or ‘malondialdehyde’

would constitute example cases of SACEMs, while gen-

eral chemical concepts like ‘inactivator’ or ‘pigment’, bio-

logical roles like ‘hormone’, ‘antibiotic’ or ‘metabolite’

and reactivity roles like ‘nucleophile’ or ‘chelator’ do not

qualify as SACEMs. This implies that other types of men-

tions of chemicals and substances were not annotated.

In order to construct the CHEMDNER corpus we exam-

ined several critical aspects that we thought influence the

corpus quality.

• Corpus selection and sampling.

• Annotation guidelines and their corpus-driven

refinements.

• Entity annotation granularity.

• Human annotator expertise and training.

• Annotation tools and interface.

• Annotation consistency and definition of upper

and lower performance boundaries to be expected

by automated systems.

• Corpus format and availability.

From an initial examination of SACEM mentions it

was clear that chemicals in text appeared in various

forms. We therefore proposed a more granular annota-

tion schema that covered the most important types of

chemical mentions that can be found in the literature.

We introduced seven classes of SACEMs, inspired by

previously introduced chemical mention types [35].

Figure 1 provides an overview of the chemical mention

classes together with a short description and example

cases. When defining these classes, the following issues

were contemplated: semantically relevant aspects of che-

micals, the usefulness of the class information for subse-

quent NER detection methods (detection strategies) and

their implication in chemical structure normalization of

the mentions (normalization strategies). Depending on

the chemical mention class, different strategies for link-

ing mentions to chemical structures have to be used

(e.g. dictionary-based strategy for trivial names or name

to structure conversion software for systematic names).

In the CHEMDNER corpus, the following CEM classes

were introduced: SYSTEMATIC, IDENTIFIERS, FOR-

MULA, TRIVIAL, ABBREVIATION, FAMILY and

MULTIPLE.

Document selection and sampling

An often-underestimated aspect when constructing text

corpora is the initial selection of the documents that

should be annotated. Using a keyword based article selec-

tion has the risk of generating a rather narrow or biased

dataset, especially when the aim is named entity recogni-

tion. In order to make sure that the NER tools developed

on the CHEMDNER corpus will generalize well on any

chemistry-related document we used a careful selection

strategy. The used CHEMDNER document set had to be

representative and balanced in order to reflect the kind of

documents that might mention the entity of interest. In

case of chemical entities it is essential to cover articles that

show sufficient diversity of the kind of mentions expected

to emerge across various chemical disciplines. The articles

should have enough cases of systematic names, common

or generic names of compounds and drugs, trade names,

identifiers, acronyms, reference numbers of compounds

and even formulas. In case of the CHEMDNER corpus the

document selection criteria took into account primarily

the scientific discipline of the journals and publication

dates. The following steps were used to select abstracts for

the CHEMDNER corpus.

Step 1: Selection based on subject categories from the

ISI Web of Knowledge relevant to various chemistry-

related disciplines: BIOCHEMISTRY & MOLECULAR

BIOLOGY; APPLIED CHEMISTRY; MEDICINAL

CHEMISTRY; MULTIDISCIPLINARY CHEMISTRY;

ORGANIC CHEMISTRY; PHYSICAL CHEMISTRY;

ENDOCRINOLOGY & METABOLISM; CHEMICAL
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ENGINEERING; POLYMER SCIENCE; PHARMACOL-

OGY & PHARMACY and TOXICOLOGY.

Step 2: Selection of the top 100 journals for each

category based on the journal impact factor.

Step 3: Selection of journals that had at least 100

articles.

Step 4: Selection of articles that were published in

2013 in English, with abstracts and links to full text arti-

cles in the PubMed database.

Step 5: Selection of articles that belonged to the var-

ious subject categories.

Step 6: Randomization of the abstracts and selection

of 10,000 records

Step 7: Splitting into three datasets: 3500 (training

set), 3500 (development set) and 3000 (test set)

abstracts.

The CHEMDNER corpus therefore contains representa-

tive articles for a range of chemistry-related fields. It is suf-

ficiently large to cover the most relevant mention types

and naming variability that are encountered in the scienti-

fic literature, allowing both to generate a predictive model

and train an NER recognizer on a subset of abstracts as

well as evaluate the performance on a distinct test collec-

tion. We selected recent publications to make sure that

the corpus would be useful for the detection of chemical

entities in new abstracts as soon as they get published. It

also covers journals with an high impact in the field based

on its impact factor and the number of published articles

by that journal.

Annotation guidelines

Surprisingly there are many manually annotated text

corpora that are not distributed together with detailed

guidelines describing how the annotations were gener-

ated. Such black box corpora have the disadvantage that

they cannot be extended, it is impossible to compare

them in a meaningful way to other corpora and it is

unclear how to deal with potential causes of inconsisten-

cies and annotation errors. Annotation guidelines should

specify the necessary instructions to identify the text ele-

ments that should be tagged (and those that shouldn’t

be tagged) and how to assign them to its corresponding

entity class. At a general level they do represent the

instructions on how the annotation schema should be

applied to the actual text data that will be labeled.

Three important things had to be addressed in the

annotation guidelines: (a) what to label, (b) the mention

boundaries of those labels, and (c) how to classify those

mentions into chemical mention categories.

To create high quality guidelines that fit the annota-

tion task required a multi-step iterative process: starting

from an initial guideline draft until clear and refined

guidelines were obtained. In case of the CHEMDNER

corpus, to define the text-bound annotations of chemical

mentions was not trivial. It required a deep knowledge

of chemistry, supported with consultation of external

knowledge sources in case of doubt. The guidelines

were prepared by chemists with feedback of trained lit-

erature curators also with a Ph.D. in chemistry. In order

Figure 1 CHEMDNER chemical entity mention classification chart and examples.
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to label SACEMs mentions, a set of annotation rules

were defined. These rules were initially adapted by

reviewing the annotation guidelines for chemicals from

the manual prepared by Corbett et al. [33] (version 6.0,

2007). The CHEMDNER annotation rules had several

important modifications: (1) only chemical nouns (and

specific adjectives, treated as nouns) were considered

(not reactions, prefixes or enzymes); (2) the number of

original rules was reduced; (3) rules were grouped as

positive, negative, orthography and multi-word rules. In

case of the multi-word rules some simplifications were

done, making less error-prone to human interpretation.

Very general chemical concepts (non-structural or

non-specific chemical nouns), adjectives, verbs and

other terms (reactions, enzymes) that cannot be asso-

ciated directly to a chemical structure were excluded

from the annotation process. SACEMs for this task had

to refer to names of specific chemicals, specific classes

of chemicals or fragments of specific chemicals. General

chemical concepts, proteins, lipids and macromolecular

biochemicals were excluded from the annotation. There-

fore genes, proteins and protein-like molecules (above

15 amino acids in length) were not annotated. Chemical

concepts were labeled solely if they provided concrete

structural information. Relevant and intuitive examples

cases (rule instantiation examples) were provided in the

guidelines when necessary to represent a specific anno-

tation rule, to make it easier to understand and apply

them. Although chemical intuition of the annotators

was important for defining the annotation guidelines we

did not require any specific linguistic background

knowledge.

Stage 1 – Pre-annotation guideline discussion round

At the very beginning, before a sample set was anno-

tated, the annotators revised the guidelines and posed

questions to improve the guidelines in a first refinement

round. At this stage, the annotation specifications were

reformulated if ambiguities or inconsistencies were

detected.

Stage 2 – pilot annotation guideline testing and refinement

Then, the initial set of rules was then tested in practice

by using them to annotate a small sample of abstracts

(the seed corpus). The seed corpus was annotated by

curators to examine the suitability of the stage 1 guide-

lines. During this pilot annotation experiment: we esti-

mated the required annotation time effort; refined

iteratively the guidelines (to make them more precise and

easier to follow, resolving cases of under-specification);

learned how to use the annotation interface and how it

fitted the needs required for annotating the mentions

according to the guidelines.

Stage 3 – corpus annotation

The last step consisted in the annotation of the training,

development and test set. During the corpus annotation

stage, the guidelines were refined when novel, previously

unspecified ambiguities were encountered. These ambi-

guities were resolved through direct feedback with the

experts that constructed the guidelines. Moreover new

example cases were added to the guidelines.

The CHEMDNER annotation guidelines are publicly

available together with the corpus at [41]. In an attempt

to facilitate its reading, the guidelines are structured

according to six different types of rules, while trying to

keep them as comprehensive as possible:

General rules: rules that clarify the use of external

knowledge sources and how to deal with unclear

mentions.

Positive rules: rules that specify which chemical entity

mentions should be labeled.

Negative rules: rules that specify which kind of men-

tions should not be tagged.

Class rules: specifications for the manual assignment

to the corresponding CEM classes, including hybrid

names.

Orthography and grammar rules: rules for defining

consistently the entity mention boundaries, dealing for

instance with whitespaces, mis-spellings, flanking char-

acters, commas, brackets, etc.

Multi-word entity rules: rules defining labeling criteria

for multi-word chemical entities.

The CHEMDNER annotation guidelines, including the

example cases are 21 pages in total. One of the most

important and difficult issues when defining the guide-

lines was to establish what constitutes a chemical men-

tion and what does not. A single, particular chemical

compound assignable to a chemical structure can be

easily recognized by a chemist. The problem arises for

general terms comprising several structurally diverse che-

mical compounds and for which the mention intrinsically

provides a general notion of structural class. For example,

the term ‘Alkaloid’ refers to a group of naturally occur-

ring chemical compounds that mostly contain basic

nitrogen atoms. From a practical viewpoint, it would be

worthy to tag this SACEM as a FAMILY because an end-

user could be interested in recognizing this family of

compounds in a given biomedical context. However,

strictly talking, a single simple Markush formula can not

be assigned to this class. In an attempt to homogenize

the criteria, an exemplary list (probably expandable in

future releases) was provided in the guidelines. As the

number of potential mentions of this kind is not really

high compared to the rest of mentions, this should not

strongly affect the final conclusions of the task. An addi-

tional problem with these mentions is that most of them

are natural products commonly found in living organ-

isms, so the frontier between chemistry and biology

is not easily traceable. As mentioned, a limit on the size

of the peptides, sacharids, nucleotides and lipids was
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imposed as a solution for these small biochemicals. A

second problematic issue was establishing how to deal

with the adjectives. Adjectives preceding valid SACEMs

that add more precise information on the chemical entity

were annotated. Finally, the exact assignation of the men-

tions to the FAMILY class was controversial in some

cases and exemplary cases were added during the itera-

tive refinement. For example, synthetic polymers consist-

ing of an undefined number of monomers were detected

during the annotation and incorporated to this class.

Annotation process and interface

It is important to define the minimal curator selection

criteria, i.e. the skills that are required to carry out the

annotation task and to make sure that the curators have

a suitable background and are familiar with the annota-

tion of literature data. A prerequisite for the manual

annotation for the CHEMDNER corpus was that annota-

tors had to have a background in chemistry to guarantee

that the annotations are correct. The group of curators

used for preparing the annotations was composed mainly

of organic chemistry postgraduates with an average

experience of 3-4 years in annotation of chemical names

and chemical structures. The curators were trained to

mark up the text according to the labels specified in the

guidelines. The raw text was not tokenized prior to the

annotation and only the title was distinguished from the

PubMed abstract. The selection of text spans was done at

the character level, we did not allow nested annotations

and distinct entity mentions should not overlap. Each

text span was selected according to the annotation guide-

lines and classified manually into one of the CEM classes.

Figure 2 provides a very general flowchart of the

CHEMDNER annotation process resulting in the annota-

tions used for the BioCreative CHEMDNER task. The

annotation modus operandi itself relied on the chemical

background knowledge of the curators (and comprehen-

sion of the guidelines) during the labeling of the chemical

entity mentions. We recommended the curators to con-

sult existing chemical knowledgebases in case of doubts.

They could crosscheck information from reference

sources such as Wikipedia, and chemical databases

(ChEBI, DrugBank, etc.) or even carry out online

searches to make sure that the annotations were compli-

ant with the guidelines. Annotators knew that the text

collection corresponded to PubMed abstracts and they

were provided with pointers to the original PubMed

records. No additional meta-data or automatically pre-

tagged text was provided. We initially experimented with

a pre-tagging strategy using a specially adapted version of

the MyMiner system [42] that included the option of

pre-tagging the text with Oscar4 and then manually cor-

recting the labels. The automatic pre-tagging strategy

had limitations in terms of performance and had the

potential of biasing the curation results. Moreover, as we

also requested the classification of mentions into one of

the seven chemical mention classes, we finally chose to

use an exclusively manual annotation approach. For

manually tagging a large collection of abstracts distribu-

ted across multiple curators it is crucial to test suitable

annotation infrastructures that are scalable and that can

efficiently manage and visualize the generated annota-

tions. Thus, together with distributing the guidelines we

made sure to provide efficient access to a suitable text

curation tool. Therefore we required that the graphical

user interface allows labeling of text efficiently and con-

sistently. We explored alternative ways on how to present

the documents to the annotators in a way that is sup-

ported by existing annotation tools. In addition to the

MyMiner tool, the systems Brat and Knowtator were

examined [12]. Finally we decided to adapt the Annota-

teIt tool [43] as the curation application for the construc-

tion of the CHEMDNER corpus. It doesn’t require local

installation on the curators side. It can be used through a

web-browser and it makes the annotation process as easy

and fast as possible. The annotation tool selection criteria

that we examined for choosing this system are as follows:

(1) It should be fast in loading previous annotations and

adding new labels, (2) it should be scalable for the anno-

tation of data large collections (10,000 abstracts), (3) it

should make sure that the annotations were not lost due

to time-outs etc., (4) it should allow that the annotations

could be created using an intuitive web-browser interface

and (5) it should accurately capture the entities’ Unicode

character offsets. Figure 2 contains an example screen-

shot of the interface used to generate the manual annota-

tions for the CHEMDNER corpus. The curators were

provided with a short demo video illustrating how the

interface worked. A color code schema was defined for

tagging and visualizing the different SACEM classes. We

provided recommendations specifying browser settings

that should be used during the annotation process. The

input abstracts were previously randomized to avoid that

the ordering of abstracts could have an effect on the

curation process. Annotation was carried out in annota-

tion batches of 100 abstracts each.

Annotation format

In principle, the information represented in annotated

textual data can be represented in various alternative

formats reflecting how the annotations look like. For

choosing the annotation format of the CHEMDNER

corpus, several criteria were important. First of all, the

format should be easy to use for building NER systems,

thus it should be simple and easy to modify. There was

a clear separation of the entity annotation format and

the exchange (dump) format of the released CHEMD-

NER corpus. This means that we kept the annotations
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separate from the actual text (the information on the

location of the entity mentions is stored in a different file

from the actual raw text). We used a standoff annotation

format by specifying in a separate file the character loca-

tion. Using character offsets instead of token location was

particularly important for the CHEMDNER corpus

because it makes it easier for the corpus consumers to

use their own text tokenization strategy. We avoided

using a complicated XML schema for the initial baseline

release. We examined some basic recommendations pro-

vided by the Linguistic Annotation Framework (LAF) for

data distribution [44]. All records used for the CHEMD-

NER corpus were distributed as plain text, UTF8-

encoded PubMed abstracts in a tab-separated format

with the following three columns: article identifier

(PMID, PubMed identifier), title of the article, and

abstract of the article. The baseline entity annotation file

had a tab-separated format with columns corresponding

to the article identifier, the part of the document pro-

cessed (T: title, A: abstract), the start and end characters

offsets of the chemical, the text string of the chemical

entity mention and the corresponding chemical entity

mention class. Example cases of the entity annotation file

can be seen on Figure 2. The task annotation files were

derived from the entity annotation file, one for the CEM

task and one for the CDI task. In addition to this simple

annotation format we have recently generated a version

of the CHEMDNER corpus using an alternative format,

the widely used BioC format [45]. The BioCXML version

of the CHEMDNER corpus [41] was checked to make

sure that the used XML was valid, both with respect to

XML itself and the BioC DTD. The Python script to con-

vert the flat-files of the CHEMDNER tab-separated for-

mat into the BioC format was released together with the

corpus.

Results
CHEMDNER corpus overview

The CHEMDNER corpus is currently the largest chemical

entity corpus annotated with a high degree of granularity

for PubMed abstracts. A detailed summary of the total

number of generated annotations of the entire CHEMD-

NER corpus as well as divisions according to each of the

three corpus subsets (training, development and test set)

Figure 2 Left side: Overview of the manual CHEMDNER corpus annotation process. Right side and bottom: Annotation examples for the

Chemical Document Indexing (CDI) and Chemical Entity Mention (CEM) task.
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can be seen in table 1. The CHEMDNER corpus contains

a total of 84,355 manual chemical mention annotations;

corresponding to 19,805 unique chemical name strings

extracted from 10,000 exhaustively examined abstracts.

Although the majority of the abstracts did contain at least

a single chemical mention (a total of 8,301 abstracts), this

table also shows that a fraction of the abstracts did not

have any chemical mention at all. This smaller subset can

be used as a true negative dataset of abstracts that do not

mention SACEMs. Until now, such a true negative dataset

for chemical entity mentions was missing. This table also

shows that the annotation density across the various data-

sets is coherent and this in turn reflects that the CHEMD-

NER corpus is balanced and that overall the three subsets

have a comparable (relative) number of chemical men-

tions. The used abstracts were derived from a total of 203

different journals from heterogeneous chemically related

topics (see the subsection on Document selection and

sampling). When examining the annotations according to

the chemical mention classes, as shown in the lower part

in table 1 the quantitative importance of two chemical

mention classes becomes obvious, namely of the mention

classes TRIVIAL (30.36%) and SYSTEMATIC (22.69%).

These two classes make up more than half of all the anno-

tations. It seems that the overall frequency of ABBREVIA-

TION (15.55%), FORMULA (14.26%) and FAMILY

(14.15%) is similar. Mentions of chemical identifiers

(2.16%) and of the type MULTIPLE (0.70%) are quite

infrequent. One common baseline strategy for entity

recognition consists in tagging those entities in the test set

that were previously contained in the list of chemicals of

the training collection. Such an analysis also helps to illus-

trate the diversity and representativeness of the used data

collections and examines basic aspects of the corpus char-

acteristics. The vocabulary transfer is the proportion of

entities (without repetition) that appear both in the train-

ing/development set as well as in the test corpus. This

value is often taken as the lower boundary of the recall

that can be expected from NER systems. In case of the

CHEMDNER dataset, the vocabulary transfer was of

36.34% when uniting both the training and development

set names before comparing them to the test set entity list.

It was 27.77% when using only the names from the train-

ing set, and 27.70% when using only those from the devel-

opment set.

In order to get a general idea on what the CHEMDNER

corpus contains we carried out a simple statistical corpus

analytics to summarize the corpus content. Figure 3

shows the statistical profile of the chemical entities con-

tained in the CHEMDNER corpus by examining the dis-

tribution of the chemical mentions. It illustrates the

CHEMDNER corpus rank/frequency profile, reflecting the

relation between chemical entity mention frequency and

the corresponding entity rank when ordering chemicals

according to the resulting absolute frequency. The entity

frequencies were calculated by counting the number of

times a chemical entity string is found in the corpus.

This plot is coherent with statistical corpus characteris-

tics observed for token frequencies of other corpora,

showing the typical behavior that corpora have com-

monly an uneven distribution of word types. We exam-

ined what chemical entities are most frequently used in

the corpus. Part (b) of this figure provides example cases

of the top frequent chemical entity names annotated in

the CHEMDNER corpus. The vast majority of chemicals

in the corpus had a very low frequency, and only few

entities (e.g. glucose or oxygen) did have a high number

of mentions. Over 72% of the chemical entities were

mentioned only one or two times in the corpus. One par-

ticularity of chemical compound mentions, which differ-

entiates it from almost any other entity type is length.

Chemical compound names, especially in case of sys-

tematic names, can be particularly long. The longest che-

mical mention of the CHEMDNER corpus was a 349

characters long systematic name. The mean chemical

mention length was 10.01 characters (median 8). There

were considerable differences in length (and also charac-

ter composition) between the various chemical mention

classes. Mentions of type MULTIPLE were very long

(mean: 27.85, median: 24 characters) because they basi-

cally corresponded to mentions of several compounds.

Table 1 CHEMDNER corpus overview

Training
set

Development
set

Test set Entire
corpus

Abstracts 3,500 3,500 3,000 10,000

Nr. characters 4,883,753 4,864,558 4,199,068 13,947,379

Nr. tokens 770,855 766,331 662,571 2,199,757

Abstracts with
SACEM

2,916 2,907 2,478 8,301

Nr. mentions 29,478 29,526 25,351 84,355

Nr. chemicals 8,520 8,677 7,563 19,805

Nr. journals 193 188 188 203

TRIVIAL 8,832 8,970 7,808 25,610

SYSTEMATIC 6,656 6,816 5,666 19,138

ABBREVIATION 4,538 4,521 4059 13,118

FORMULA 4,448 4,137 3,443 12,028

FAMILY 4,090 4,223 3,622 11,935

IDENTIFIER 672 639 513 1,824

MULTIPLE 202 188 199 589

NO CLASS 40 32 41 113

This table provides an overview of the CHEMDNER corpus in terms of the

number of manually revised abstracts (Abstracts) with their total sizes as

number of characters and tokens, the number of abstracts containing at least

one chemical entity mention (Abstracts with CEM), the number of annotated

mentions of chemical entities, the number of unique chemicals annotated (the

non-redundant list of mentions) and the number of corresponding journals for

the annotated abstracts. The number of mentions for each CHEMDNER entity

class (see Figure 1) is provided for each set and the entire corpus in the lower

half of the table.
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Also systematic chemical mentions were rather long

(mean: 15.48, median: 11). The other classes did all have

shorter mentions: FAMILY (mean: 13.19, median: 10)

TRIVIAL (mean: 10.06, median: 10), IDENTIFIER (mean:

7.25, median: 7) FORMULA (mean: 4.33, median: 3) and

ABBREVIATION (mean: 3.90, median:3). Note that in

case of the abbreviations, only cases of at least 3 charac-

ters were annotated according to the annotation rules.

Corpus inter-annotator agreement and harmonization

The comparison of independent manual labels con-

structed for the same documents by different individuals

can provide important insights on the quality of the cor-

pus and guidelines, it is an essential element of the con-

struction of Gold Standard corpora. It helps to assess

how well the annotation task was defined; it shows how

curators compare to each other and determines if the

interpretation of the instructions were followed consis-

tently. This means that the inter-annotator agreement

(IAA) score allows assessing how accurate the annota-

tions can be done by several annotators and scoring the

task reproducibility. Future extensions of a corpus using

the same guidelines should result in comparable inter-

annotator agreement results. If the score is high, the task

is well defined and the annotations are consistent. The

simplest IAA score is the percentage agreement between

experts. The IAA analysis of the CHEMDNER corpus

was conducted using a random sample of 100 abstracts

chosen from the entire dataset, asking the curators to

annotate the data set independently. The result of the

IAA study constitutes a sort of upper boundary for the

expected automated prediction performance. An inter-

annotator agreement of 91% was obtained when exact

matching of the chemical mentions was used without

considering the label of the SACEM classes. When the

SACEM class annotation of the mentions was also

considered, the IAA was of 85.26%. Manual inspection of

the conflicting annotations showed that the main source

of discrepancies were missed annotations by either one

or the other annotator and not true annotation errors or

differences in the mention boundary definition. This is in

line with previously published studies, describing as one

common source of disagreement between manual entity

annotations that some mentions were missed by the

curators while scanning over the document [33].

To make sure that during the annotation process the

amount of missed chemical mentions was marginal, in

addition to the main annotation team that prepared the

CHEMDNER corpus, a second group of additional cura-

tors annotated the test set abstracts. These abstracts were

used to score the automated mention predictions during

the CHEMDNER task, and it was therefore particularly

important that these annotations were complete and cor-

rect. We collected all the conflicting annotations between

the two curator teams, consisting in those mentions that

were only annotated by a single team. To harmonize

those conflicting annotations, they were presented to the

main curation group for a second round of manual revi-

sion. The entire abstract of those conflicting cases was

revised to resolve the annotation discrepancies within

their context. The curators provided written decisions of

inclusion, exclusion or changes related to the conflicting

chemical mentions together with comments explaining

their decision for more complicated cases. The annota-

tion guideline developers inspected the list of entity revi-

sions for final approval. Written discussions were done

on unclear cases that required further refinements (or

additional example cases) to be included in the annota-

tion guidelines. We relied primarily on the annotations of

the main annotator team because these curators had a

higher degree of experience in this task and they did pro-

vide active feedback for the refinement of the annotation

Figure 3 Chemical entity frequency. (A) Zipf plot of all chemical entities in the CHEMDNER corpus. (b) Most frequent chemical mentions of

the CHEMDNER corpus. Note: The annotation guidelines specified a small stop list of chemicals that were not annotated.
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guidelines. The results of the corpus harmonization pro-

cess was that 1,185 annotations were added to the origi-

nal 24, 671 test set annotations (4.08%) while 505 (2.05%)

where removed, obtaining the final harmonized test set

of 25,351 annotations. We performed a mention class

label revision (SACEM class label harmonization) on the

entire CHEMDNER corpus. For potentially inconsistent

cases where a given chemical name was annotated in

some cases as one SACEM class and in other cases as

another SACEM class, the chemical entities and their

SACEM class labels were manually inspected and cor-

rected. Finally, an automatic revision of annotations was

done to cross check the mention boundaries, trimming

whitespace characters, and ensuring their technical

coherence with the annotation rules.

A common mismatch between annotators was related

to issues on how to deal with non-essential parts of the

chemical name, especially concerning general modifiers

(e.g. ‘substituted’) inside the chemical name. These modi-

fiers should be retained whereas in some wrong cases

(e.g. ‘Fluorophenyl substituted 3,3’-diindolylmethane’) the

mention was incorrectly splitted. Closely related to this,

many mismatches between annotators were detected due

to a heavy trend to over split the chemical mentions into

different SACEMs, especially in the case of FORMULA

and MULTIPLE classes. The main variability between

annotators in the SACEM class assignment was found for

hybrid mentions comprising a combination of different

sub-parts of the mention (typically systematic nomencla-

ture, formula and abbreviations). A hierarchical assigna-

tion scheme was defined in the guidelines, so that the

curator should label the mention according to the rank-

ing provided for the SACEM: SYSTEMATIC has prefer-

ence over the rest of SACEMs, FORMULA over

TRIVIAL and so on. Some examples for the different

combinations were initially provided in the guidelines

and a few more were incorporated during the iterative

guidelines refinement process. We think that the hier-

archical SACEM class assignment guidelines require

further improvements. Dealing with the FAMILY class

could also be improved. For example, general FORMULA

involving more than a single compound were wrongly

assigned to the FORMULA class instead of the FAMILY

class.

Chemical disciplines CHEMDNER subsets

The CHEMDNER corpus contains articles from various

chemistry-related disciplines. Some journals used during

the selection process did correspond to multiple ISI

Web of Knowledge subjects. This means that the sys-

tems trained and evaluated using the CHEMDNER cor-

pus should in principle generalize well across the main

chemistry disciplines. Nevertheless, there are scenarios

were it is useful to have a system tailored specifically for

a narrower chemical application area or discipline in

addition to a general chemical tagger. Each chemical dis-

cipline is characterized by certain particularities in terms

of sub-language and differences in chemical entity men-

tions and mention classes. We have provided the classifi-

cation of each article into various chemical disciplines,

enabling the possiblity to create the following CHEMD-

NER domain-specific subsets: BIOCHEMISTRY, APPLIED

CHEMISTRY, MEDICINAL CHEMISTRY, MULTIDIS-

CIPLINARY CHEMISTRY, ORGANIC CHEMISTRY,

PHYSICAL CHEMISTRY, ENDOCRINOLOGY, CHEMI-

CAL ENGINEERING, PHARMACOLOGY, POLYMER

SCIENCE and TOXICOLOGY. These subsets were based

on the ISI Web of Knowledge subjects. Although a manual

revision of the CHEMDNER journals could allow a more

accurate journal categorization, the subject categories used

here are still useful to enable the examination of the per-

formance of various taggers specifically for particular che-

mical disciplines. Some of these subsets are large enough

to serve as training and test set to generate sub-domain

specific chemical entity taggers. Table 2 provides an over-

view of the number of articles and annotations of each

subset. It also highlights general differences between the

kinds of chemical mentions used by researches from the

various chemical fields. For instance, in polymer science

and toxicology the use of abbreviations is very frequent

while the use of chemical formula is common in the physi-

cal chemistry literature. In organic chemistry and pharma-

cology the use of chemical identifiers and trivial names

seems to be more extended than in other domains.

CHEMDNER corpus test set predictions

Most of the existing biomedical corpora are not distribu-

ted together with the results of automated systems pre-

dictions trained or tested using these datasets. This

makes it impossible to do a more exhaustive and detailed

analysis of the differences between various methods at the

level of concrete annotations. When a corpus was used to

generate multiple predictions, for instance by different

teams of a community challenge, it is interesting to check

various run combinations or construct an ensemble sys-

tems with improved performance over the best single

run. The competitive performance of ensemble systems

has been demonstrated for instance for the recognition

of gene mentions [46] or the detection of protein interac-

tions [47], showing in some cases that even low scoring

runs can positively contribute to the ensemble system

performance. Moreover, we think that the release of cor-

pus predictions is useful to examine more difficult or

easier cases and to detect potential annotation errors

when examining consensus predictions generated by

multiple systems. We have included with the CHEMD-

NER release the predictions generated by participating

systems for the BioCreative CHEMDNER task [11] with
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the aim of keeping the research on this topic alive and

facilitate the improvement of chemical taggers and the

corpus annotations. A general characterization of meth-

ods, resources, features and performance of the various

systems can be found in the CHEMDNER overview

paper published in this same special issue [11]. Extra

details on each of the methods can be found for a subset

of competitive approaches in the systems description

papers of this special issue, the CHEMDNER evaluation

workshop proceedings [48] and in Additional file 1. The

best F-score obtained for the chemical mention recogni-

tion by a single run was 87.39%. For the 3,000 test set

abstracts, 26 teams returned 105 different runs, contain-

ing a total of 2,565,430 chemical mention predictions.

Additional file 2 shows the clustering of all runs in terms

of how similar the predictions between the runs are. The

mean number of predictions for the test set was

24,432.67 (standard deviation of 12,429.69), correspond-

ing to an average of 8.14 predicted mentions per abstract.

When looking at fraction of abstracts that had manually

annotated mentions (82.6%) and the average number of

abstracts predicted to have at least a single mention by

the systems (83.34%) the resulting numbers are very

close. The average number of unique chemical name

strings per abstract annotated manually for the test set

was slightly higher (2.52) than the number of predicted

unique compound names by returned by automated tag-

gers (2.10).

CHEMDNER silver standard corpus

Due to the considerable workload required for the con-

struction of manually annotated corpora, some efforts

have been made to construct automatically tagged text

collections generated by different systems. Despite

obvious limitations when relying on automated tagging,

one advantage of this strategy is that they can generate

very large datasets. When assuming that the automated

tools have an acceptable performance, the combination

of multiple systems can generate labels with an accepta-

ble quality.

The BioCreative metaserver constituted a pioneering

work in the integration, alignment and visualization of

multiple automated predictions, including the annotation

of gene/protein mentions and handling their character

overlaps [49]. The use of silver standard corpora as train-

ing data was explored for the implementation of chun-

kers of biomedical text [50] and NER systems [51].

Usually the creation of silver standard corpora required a

corpus harmonization in order to merge multiple predic-

tions, in the simplest case by applying a voting scheme

[13] together with various mention boundary reconcilia-

tion strategies (e.g. exact, nested, continuous similarity

measure for mention alignments [13]). To help in the

exploration of silver standard corpora usage for chemical

entity recognition and explore alternative corpus con-

struction strategies we have included the release the

CHEMDNER silver standard raw corpus. The distribu-

tion of this corpus might allow the study of generaliza-

tion strategies to a broader abstract collection. This

corpus contains automatically generated chemical men-

tion annotations generated by teams that participated in

the BioCreative CHEMDNER task for a background col-

lection of 17,000 PubMed abstracts. These abstracts cor-

responded to a random sample retrieved by a PubMed

search carried out the 27th of August 2013 selecting

records published during 2013 in English, with abstracts

and links to full text papers, without any prior keyword

or topic filtering. These articles were published in over

3,000 different journals. Originally this background set

was added to the test set abstracts during the prediction

phase of the CHEMDNER task to assure that teams did

not have enough time to do any manual correction of

Table 2 CHEMDNER abstracts, split into chemical disciplines (subject categories, first column; MULTIDISCIPL. CHEM.:

Multidisciplinary Chemistry)

Chem. subject categories Abstracts Mentions AB FA FO ID MU NO SY TR

PHARMACOLOGY 1,983 23,368 18.81 10.54 6.42 4.93 0.64 0.29 17.28 41.09

MEDICINAL CHEMISTRY 1,957 17,543 10.00 21.11 8.00 2.10 1.56 0.12 25.88 31.23

ORGANIC CHEMISTRY 1,893 22,622 18.77 10.56 6.56 5.00 0.63 0.30 17.43 40.74

TOXICOLOGY 1,664 21,608 20.82 10.59 14.16 1.35 0.46 0.13 22.68 29.81

MULTIDISCIPL. CHEM. 1,217 11,892 14.38 12.15 27.97 0.52 0.55 0.13 25.62 18.67

PHYSICAL CHEMISTRY 997 9,682 12.14 9.81 36.39 0.27 0.43 0.15 27.57 13.24

BIOCHEMISTRY 879 6,503 18.75 16.55 14.24 1.12 0.34 0.11 23.17 25.73

APPLIED CHEMISTRY 843 7,759 8.48 24.45 7.71 0.17 1.37 0.10 24.99 32.74

ENDOCRINOLOGY 652 5,484 14.66 16.01 9.87 1.33 0.15 0.15 20.13 37.71

POLYMER SCIENCE 232 1,999 33.82 17.26 6.50 0.05 0.10 0.00 25.86 16.41

CHEMICAL ENGINEERING 3 42 0.00 0.00 38.10 0.00 0.00 0.00 61.90 0.00

Abstracts: The number of abstracts associated with that category in the CHEMDNER corpus. Mentions: The total number of chemical entity mentions in the

abstracts of that category. Remaining columns: The values provided for the different SACEM classes correspond to the percentage of mentions in that category;

AB: ABBREVIATION, FA: FAMILY, FO: FORMULA, ID: IDENTIFIER, MU: MULTIPLE, NO: NO CLASS, SY: SYSTEMATIC, TR: TRIVIAL.
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their submissions, making sure that everything was done

automatically. This set was also added to obtain predic-

tions of abstracts that were not specifically pre-selected

for chemistry. All automatic annotations distributed in

the CHEMDNER silver corpus were in a common format,

enabling direct comparison and alignment of predictions.

This corpus contains only the crude annotations. By

doing this we intend to promote that researchers explore

their own cross comparison, mention alignment and con-

sensus annotations strategies. A total of 8,359,524 auto-

matic annotations by 105 runs were generated for these

17,000 abstracts. On average, the number of chemical

mentions per abstract was of 4.39, almost half when com-

pared to the chemistry-related test set abstracts. The

number of predicted unique compound names per

abstracts was 0.83 (compared to the 2.10 of the test set).

These numbers partially reflect also the fact that in case

of this random background set, on average only 52.80%

of the abstracts did contain chemical mentions. When

extrapolating these numbers to the entire PubMed data-

base, of over currently 14,8 million records with

abstracts, we would obtain over 12 million unique chemi-

cal names with more than 65 million mentions. However

these numbers have to be taken with care, because the

background set corresponded to recent articles, while the

PubMed database hosts a considerable number of older

publications.

Discussion and conclusions
The CHEMDNER corpus is a publically available, manu-

ally annotated, machine-readable text corpus large

enough to train chemical entity taggers. It is representa-

tive of modern chemical language (recent papers) for a

range of central chemical disciplines. During the con-

struction of this corpus, we have defined several corpus

hallmarks that are key for the construction of manually

annotated text corpora, not only for the chemical

domain. These proposed hallmarks characterizing the

CHEMDNER corpus are summarized in Figure 4. We

consider it crucial to provide minimal information for

each of these essential aspects of corpus construction.

Prior to the construction of the CHEMDNER corpus,

we encountered a range of problems with previous stu-

dies, related to corpus availability, lack of proper docu-

mentation, lack of document selection criteria, not

enough information on annotation guidelines or pro-

blems with the corpus format. For the annotation of

chemical entity mentions we believe that curators need

to consider the entire abstract as context for manual

annotation, beyond individual sentences. Chemical entity

annotations should be done at the character level and

not at the level of individual word tokens due to the

intrinsic challenges of tokenizing chemical texts [33].

We think that the CHEMDNER corpus could be a

valuable resource not only for entity recognition but

also for the implementation of improved chemical text

processing software (chemistry-tuned tokenization

methods optimized for the correct identification of che-

mical entities) or to develop text categorization systems

for triage of documents that do contain chemical men-

tions for manual curation. This corpus can potentially

be used for the implementation of sub-domain specific

chemical taggers tuned for more fine-grained chemistry

disciplines. Through the examination of both manually

annotated and automatically extracted chemical men-

tions, it should be possible to better understand the che-

mical vocabulary and define the chemical space of

published articles. The CHEMDNER corpus and the

taggers developed with it can be used to generate lexical

resources, i.e. gazetteers, containing chemical entities:

For example, previous studies showed that IUPAC

names are poorly covered by existing chemical diction-

aries [35]. The recognition of this type of chemical

names can thus only be addressed either by machine

learning and/or rule-based approaches that certainly

benefit from the availability of manually labeled text like

the CHEMDNER corpus. Considering the competitive

performance of systems trained on the CHEMDNER

corpus, we expect that these could be effective to gener-

ate pre-annotations that in turn can then be manually

validated or corrected in a quick curation procedure.

The CHEMDNER silver standard corpus can be inter-

preted as a sort of collaborative effort to annotate chemi-

cal entities. For this dataset there are still aspects that

would benefit from further analysis, such as alternative

harmonization strategies of the mentions or a compara-

tive analysis on the performance of systems trained on

silver-standard corpora versus gold standard corpora.

The release of automatically extracted chemical mentions

Figure 4 The hallmarks of text corpus construction that were

applied to the BioCreative CHEMDNER task.
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from the entire PubMed database (of systems trained the

CHEMDNER corpus) would demonstrate how scalable

those methods are and help in the curation of chemical

data from PubMed. Moreover, determining ways to dif-

ferentiate those mentions that are of practical relevance

for curators still needs additional analysis, but some pre-

liminary studies that took into account simply the posi-

tion of the chemical names in the text and restricting the

selection to certain sections of the abstract showed inter-

esting outcomes [26]. The performance of these tools on

other documents, including patents and full text articles

could potentially highlight both the adaptability as well

as challenges associated with each particular document

type. For an enhanced version of the CHEMDNER cor-

pus, aspects that could improve the impact of this

resource include a more granular classification of the

SACEM classes. With this respect, a simple ontology or

hierarchical classification of chemical entity mention

classes would be important. The underlying classes

would have to be useful to improve automatic detection

of entities and to facilitate the normalization of mention

to either structures or chemical databases. Some mention

classes can only be normalized using a dictionary based

approach, others using name to structure software. Some

of the current entities contained in the CHEMDNER

dataset cannot be directly normalized without some

more granular mention subtypes (e.g. in case of the

SACEM class FAMILY). Well-specified, generally used

workflows of the underlying normalization process of

chemical entity mentions to structures/databases are cur-

rently missing. We also think that a more granular anno-

tation strategy could help to improve the recognition of

other entity mentions such as genes and proteins. In

addition to a more detailed chemical mention classifica-

tion, some annotations would benefit from a more granu-

lar labeling at the level of substrings, for instance in case

of hybrid chemical mentions (e.g. chemical mentions that

are formed by strings belonging to different SACEM

classes like SYSTEMATIC and TRIVIAL). In the case of

chemical mentions of the class MULTIPLE, which cover

chemical entities that appear in form of separated or

unconnected expressions (discontinuous) they are being

annotated together in order to generate integrated forms.

Improvement of this type of mention would require

defining dependencies/relationships between the token

spans. The CHEMDNER corpus currently is only con-

cerned with chemistry-related information, missing

annotation of linguistic aspects, syntactic and grammati-

cal information. Adding this kind of information goes

beyond the scope of this corpus, but could potentially be

useful for other natural language processing tasks.

Finally, the annotation of named entities, although a key

step, is only the first task for the subsequent extraction of

more practically useful information, such as chemical

interactions. Annotation of a predefined set of relation

types involving chemicals from the CHEMDNER corpus

could help to promote research in the area of chemical

relation extraction.
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