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1. Introduction

The cell surface displays a complex array of oligosaccharides, glycoproteins, and

glycolipids. This diverse mixture of glycans contains a wealth of information, modulating a

wide range of processes such as cell migration, proliferation, transcriptional regulation, and

differentiation.1–5 Glycosylation is one of the most ubiquitous forms of post-translational

modification, with more than 50% of the human proteome estimated to be glycosylated.6

Glycosylation adds another dimension to the complexity of cellular signaling and expands

the ability of a cell to modulate protein function. The structural complexity of glycan

modifications ranges from the addition of a single monosaccharide unit to polysaccharides

containing hundreds of sugars in branched or linear arrays.7 This chemical diversity enables

glycans to impart a vast array of functions, from structural stability and proteolytic

protection to protein recognition and modulation of cell signaling networks.8,9–12

Emerging evidence suggests a pivotal role for glycans in regulating nervous system

development and function. For instance, glycosylation influences various neuronal

processes, such as neurite outgrowth and morphology, and may contribute to the molecular

events that underlie learning and memory.7,13,14 Glycosylation is an efficient modulator of

cell signaling and has been implicated in memory consolidation pathways.15–18 Genetic

ablation of glycosylation enzymes often leads to developmental defects and can influence

various organismal behaviors such as stress and cognition.19–24 Thus, the complexity of

glycan functions help to orchestrate proper neuronal development during embryogenesis, as

well as influence behaviors in the adult organism.

The importance of glycosylation is further highlighted by defects in glycan structures that

often lead to human disease, as exhibited by congenital disorders of glycosylation

(CDG).25–29 These are usually inherited disorders resulting from defects in glycan

biosynthesis, which are accompanied by severe developmental abnormalities, mental

retardation, and difficulties with motor coordination. Such disorders highlight the

importance of glycan biosynthesis in human health and development. Because therapeutic

treatments are currently limited, investigations into the structure–activity relationships of

glycans, as well as disease-associated alterations to glycan structure, are crucial for

developing strategies to combat these diseases.

© 2008 American Chemical Society
*To whom correspondence should be addressed. lhw@its.caltech.edu.

NIH Public Access
Author Manuscript
Chem Rev. Author manuscript; available in PMC 2014 April 29.

Published in final edited form as:

Chem Rev. 2008 May ; 108(5): 1708–1731. doi:10.1021/cr078215f.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Understanding the structure–function relationships of glycans has been hampered by a lack

of tools and methods to facilitate their analysis. In contrast to nucleic acids and proteins,

oligosaccharides often have branched structures, and their biosynthesis is not template-

encoded. As such, the composition and sequence of oligosaccharides cannot be easily

predicted, and genetic manipulations are considerably less straightforward. Analytical

techniques for investigating oligosaccharide composition, sequence, and tertiary structure

are still undergoing development and are far from routine, unlike methods for DNA and

protein analysis. Lastly, glycan structures are not under direct genetic control and, thus, are

often heterogeneous. This heterogeneity complicates structure–function analyses by

traditional biochemical approaches that rely on the isolation and purification of glycans from

natural sources.

The problems associated with oligosaccharide analysis have hindered efforts to understand

the biology of oligosaccharides yet have given chemists a unique opportunity to develop

new methods to overcome these challenges. The development of chemical tools for the

analysis of glycan structure and function is essential to advance our understanding of the

roles of glycoconjugates in regulating diverse biological processes. In this review, we will

highlight the emerging area of glyconeurobiology with an emphasis on current chemical

approaches for elucidating the biological functions of glycans in the nervous system.

2. Sialic Acids

2.1. Structure

Sialic acids participate in a multitude of biologically interesting phenomena, including cell–

cell recognition, adhesion, and intracellular signaling events.30–32 Originally known as

neuraminic acid (Neu) and its derivatives, sialic acids are a family of α-keto acids

containing a nine-carbon backbone.32 The most well-known members of the sialic acid

family include N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc),

and deaminoneuraminic acid (KDN) (Figure 1). In addition to these basic forms, more than

50 distinct sialic acid structures have been identified in nature, arising from acetylation,

methylation, lactylation, sulfation, and phosphorylation of the C-4, C-5, C-7, C-8, or C-9

hydroxyl groups.

Sialic acids exist predominantly as terminal monosaccharides linked to galactose residues in

glycan chains through α(2–3)- or α(2–6)-linkages. They can also form a ho-mopolymer of

α(2–8)-linked sialic acid in mammals, termed polysialic acid (PSA).33,34 As discussed

below, each glycoform dictates a unique function to the glycoproteins and glycolipids

expressing these sugars. Sialic acids have historically received much attention due to their

participation in cell–cell recognition events and the pathogenesis of diseases such as

cancer,35–37 inflammatory disease,38–40 and viral infection.41–44 The development of sialic

acid analogues as inhibitors or probes for biomedical research has led to significant

advances in our understanding of this important family of carbohydrates. Here, we will

discuss some of the roles of sialic acids in neurobiology and chemical approaches that have

provided insight into their functions.
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2.2. Neurobiological Functions

2.2.1. α(2–3)-Sialic Acid and Myelin-Associated Glycoprotein—Sialic acid is often

expressed as α(2–3)-linked sialic acid in the nervous system, a carbohydrate motif

recognized by the Siglec (sialic acid-binding immunoglobulin-like lectin) family of proteins.

Human Siglecs include at least 13 members, each containing a common V-set

immunoglobulin domain that interacts with sialic acid.45 One interaction that has been

extensively studied is the binding of myelin-associated glycoprotein (MAG; also known as

Siglec-4) with α(2–3)-sialic acid. MAG is a 100-kDa integral membrane glycoprotein that is

expressed myelinating glia cells.46,47 It is involved in regulating the formation and

maintenance of myelin48 and has been suggested to inhibit nerve regeneration in the adult

central nervous system (CNS).49–51 Mice deficient in MAG display delayed myelination,52

defects in the organization of periaxonal space,53 and subtle morphological abnormalities of

myelin sheaths.52 The interactions of MAG with sialic acid-containing glycosphingolipids,

known as gangliosides, have been extensively studied and have contributed to our

understanding the role of MAG in myelin formation and neural regeneration.

MAG preferentially binds the glycan structure Neu5Acα-(2–3)Galβ(1–3)GalNAc,54 which

is expressed on cell-surface gangliosides and O-glycans of glycoproteins.47 Gangliosides

represent the major source of sialic acid expression in the brain. MAG binds with high

affinity and specificity to the major brain gangliosides GD1a and GT1b, as well as the

polysialoganglioside GQ1bα, a minor ganglioside expressed on cholinergic neurons (Figure

2). Digestion of gangliosides purified from bovine brain with neuraminidase, an enzyme that

cleaves sialic acid residues, eliminated the binding of MAG to these gangliosides,

demonstrating the importance of the sialic acid moiety in mediating MAG–ganglioside

interactions.55–57

Studies suggest that the association of MAG with sialic acid-containing gangliosides plays

an important functional role in neuronal growth. The ability of MAG to inhibit neurite

outgrowth in vitro is blocked by treatment of cerebellar granule neurons with neuraminidase

or with the glucosyl-ceramide synthase inhibitor P4, which prevents synthesis of all

glycosphingolipids.55 Moreover, mice lacking the glycosyltransferase gene GalNAcT (UDP-

N-acetylgalactosamine: GM3/GD3 N-acetylgalactosaminyltransferase) do not express

complex gangliosides such as GD1a and GT1b and, as a consequence, exhibit axon

degeneration and gross dysmyeli-nation.58,59 These mice also display progressive behavioral

abnormalities consistent with neurodegenerative disease, such as defects in balance,

reflexes, and motor coordination.59 Thus, detailed knowledge of MAG and its interactions

with sialylated glycans may enhance our understanding of myelinating disorders such as

multiple sclerosis and provide opportunities to enhance axon regeneration after CNS injury

or disease.

2.2.2. Polysialic Acid—In the brain, PSA is expressed primarily on the protein neural cell

adhesion molecule (NCAM).60–62 NCAM plays critical roles in both nervous system

development and memory formation, regulating processes such as cell adhesion, axon

targeting and fasciculation, neuronal migration, synaptic plasticity, and

synaptogenesis.60,61,63–70 PSA–NCAM is highly expressed in the embryonic brain71–73 and
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is found in the adult brain in areas that retain a high degree of plasticity and neurogenesis,

such as the hippocampus, olfactory bulb, and hypothalamus.74–77

Although the molecular mechanisms underlying PSA function are not well understood, PSA

is thought to modulate cell–cell adhesion by attenuating homophilic NCAM–NCAM

interactions. The large steric bulk and hydration shell of the carbohydrate chain increase the

intercellular space by 10–15 µm, reducing trans NCAM–NCAM interactions across

apposing cells.78 In addition, PSA modulates the interactions of NCAM with other proteins,

such as heparan sulfate proteoglycans involved in the formation and remodeling of

hippocampal synapses.79 The PSA chains on NCAM have also been proposed to play a role

in some neuropsychiatric disorders. For example, expression of PSA–NCAM is significantly

reduced in the hippocampus of schizophrenic patients and may contribute to the complex

symptoms associated with the disease.80–82 Moreover, PSA has been implicated in the

etiology of Alzheimer’s disease, as PSA–NCAM-positive granule cells are increased in the

hippocampus of Alzheimer’s patients and are associated with disorganization of PSA-

positive fibers.83 Finally, PSA may also regulate neuronal function through NCAM-

independent mechanisms. For example, PSA has been suggested to act as a competitive

antagonist of the NMDA receptor, an ionotropic glutamate channel involved in synaptic

transmission,84 thereby preventing glutamate-induced excitotoxicity.85

Despite intriguing roles for sialic acid-containing glycans, the molecular mechanisms

underlying their diverse functions in the brain remain largely unknown. As described below,

chemical approaches to access and manipulate sialic acid structures have expanded our

understanding of the neuro-biological roles of sialic acid and promise to continue to advance

the field.

2.3. Chemical Neurobiology of Sialic Acid

2.3.1. Synthetic Sialic Acid Derivatives: Probing the Specificity of MAG

Interactions—Synthetic sialic acid analogues have been used to elucidate the molecular

determinants important for MAG-ganglioside interactions. The C-9 hydroxyl group

represents a key recognition element: substitution of this group with hydrogen, halogen, or

thiol groups attenuated the association of MAG with Neu5Ac (Figure 3, compounds 1–5).

Interestingly, an amino group at C-9 enhanced binding to MAG by 3-fold, suggesting the

importance of a hydrogen donor at this position (compound 6).86 The C-5 N-acetyl group of

Neu5Ac was also found to be critical for MAG binding, although it is not always required

for interaction with other Siglecs. Replacement of this group with an N-propanoyl, N-

aminoacetyl, or N-thioacetyl moiety enhanced binding of sialic acid to MAG by up to 4-fold

(compounds 7–9). The corresponding halogenated derivatives were all found to increase the

binding to MAG (compounds 10–13), with the monofluorinated derivative achieving a 17-

fold increase in potency. In contrast, amino substitution at the C-5 position significantly

attenuated binding to MAG.86 Together, these studies highlight key interactions between

MAG and the C-9 hydroxyl and C-5 N-acetyl groups of sialic acid.

In addition to probing monosaccharide variants, numerous oligosaccharide derivatives have

been synthesized and tested for binding to MAG. These structures mimic naturally occurring

ganglioside structures such as GD1a (Figure 2). Consistent with previous studies,
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substitution of the C-9 hydroxyl of Neu5Ac with a methyl group within the trisaccharide

Neu5Acα(2–3)Galβ(1–4)Glc attenuated binding to MAG by 5-fold, again highlighting the

importance of the glycerol side chain.87 These results are consistent with an X-ray crystal

structure of the Siglec sialoadhesin complexed with sialyllactose, in which the C-9 hydroxyl

group of NeuAc forms a hydrogen bond with the amide backbone of Leu-107.88 Although

these proteins are distinct, it is conceivable that their mode of binding to sialic acid would be

conserved across Siglec family members. In contrast to C-9, the C-7 and C-4 hydroxyls do

not appear to contribute substantially to the binding energy of MAG–sialic acid

interactions.87 The C-7 deoxy derivative of Neu5Acα(2–3)-Gal(β(1–4)Glcβ-2-azidoethyl

exhibited only slightly enhanced binding to MAG (1.5-fold), whereas the C-4 deoxy

derivative showed slightly decreased binding (2-fold). However, both the C-7 and C-4

hydroxyls appeared to be critical for binding when placed in the context of a polyvalent

array.57 Thus, valency and cell-surface presentation may reflect another facet of the complex

regulation and specificity of Siglec–ganglioside interactions.

Synthetic oligosaccharide derivatives have also provided insight into the importance of

specific glycosidic linkages and other residues within the structure. MAG was found to bind

5-fold better to α(2–3)-linked Neu5Ac than to α(2–6)-linked Neu5Ac in synthetic

trisaccharides.87 Interestingly, replacement of Neu5Ac in a pentasaccharide structure with

the naturally occurring sialic acid KDN led to a 6.5-fold increase in MAG binding,87

suggesting that other sialic acid forms may bind MAG in vivo. In addition to contacts with

terminal sialic acid residues, internal sugars were also found to be important for MAG

interactions. For instance, substitution of the C-4 hydroxyl group of galactose in

Neu5Acα(2–3)-Galβ(1–4)Glc with a hydrogen atom enhanced binding to MAG by 2.3-fold.

Changing this residue to GalNAc, adding an O-methyl substituent at C-6, or exchanging the

ring oxygen to an N-methyl or N-butyl functionality decreased the potency of the

trisaccharide.87 Modifications of the third glucose residue to N-acetylglucosamine (GlcNAc)

also decreased the binding properties of the molecules. Various substitutions of the N-acetyl

group, such as N-phthaloyl or N-octanoyl substituents, increased the potency of the

compounds, which reflects the potential for a hydrophobic interaction with MAG at this

site.87 Lastly, pentasaccharides of the structure Neu5Acα(2–3)Galβ(1–4)AllNAcβ(1–3)-

Galβ(1–4)Glcβ–2-(trimethylsilyl)ethyl (AllNAc = N-acetyl-allosamine) were found to

increase binding above the trisaccharide Neu5Acα(2–3)Galβ(1–4)Glc by ~6-fold,

suggesting even more extensive contacts between MAG and the interior residues of large

glycan structures.87

Together, studies using synthetic analogues have illustrated how subtle perturbations to the

sialic acid core structure can have significant effects on protein binding. As described below,

such studies may facilitate the design of novel synthetic inhibitors of MAG function with

therapeutic potential.

2.3.2. Development of MAG Antagonists with Therapeutic Potential—The

importance of MAG–ganglioside interactions for nerve regeneration and myelination has

inspired the design and synthesis of small molecules capable of disrupting those interactions.

Such molecules have the potential to enhance nerve regeneration by blocking the inhibitory
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effects of MAG on neurite outgrowth. Below, we provide some examples of small molecule

antagonists that exhibit activity in cellular regeneration models.

Paulson and co-workers examined the interactions of monovalent sialic acid derivatives with

MAG and other Siglec family members.89 Over 25 derivatives representing most of the

major sialic acid structures found on glycoproteins and glycolipids were tested. The most

potent inhibitor of MAG–ganglioside interactions was the disialyl structure Neu5Acα(2–

3)Galβ (1–3)[Neu5Acα(2–6)]GalNAcα-O-ThrOCH3 (Figure 4A), which exhibited an IC50

value of 0.3 µM. This compound showed greater than 12000-fold enhanced potency relative

to Neu5Ac for inhibiting MAG–sialic acid interactions.89

The disialyl structure above and other potent inhibitors such as Neu5Acα(2–3)Galβ (1–

3)GalNAc were subsequently tested for their ability to attenuate MAG-mediated inhibition

of neurite outgrowth.90 When rat cerebellar granule neurons (CGN) are cultured on a

substratum of myelin-extracted proteins, they project fasciculated axons and cluster

together, leaving the majority of the substrata bare. This form of neuronal growth inhibition

is mediated primarily by MAG. The sialosides relieved the MAG-dependent inhibition of

CGN neurons, enhancing nerve regeneration in a dose-dependent manner and proportional

to their relative binding affinities for MAG.90 The most potent compound, the disialyl

structure, completely reversed the inhibition induced by MAG. Thus, synthetic glycans can

effectively enhance neurite outgrowth in vitro and, when used in combination with other

treatments, may provide a means to improve functional recovery after neuronal injury. The

ability to compare various Siglec family members against a large number of sialoside

structures has also revealed the specificity of Siglecs for different carbohydrate epitopes and

may help to fine-tune the development of selective MAG antagonists.

Many oligosaccharide-based inhibitors are synthetically challenging to produce and can

suffer from poor pharmacokinetics. As an alternative to this approach, Ernst and coworkers

generated structurally simplified mimics of the ganglioside GQ1bα. In particular, the Gal

and GalNAc residues in the trisaccharide Neu5Acα(2–3)Galβ (1–3)GalNAc were replaced

with an α-linked benzyl ether moiety, and aromatic residues were positioned on the glycerol

side chain (Figure 4B). Despite its smaller size, this compound displayed a remarkable

1000-fold enhanced binding affinity relative to the trisaccharide Neu5Acα(2–3)Galβ (1–

3)Gal-NAcβ-2-(trimethylsilyl)ethyl. Although the compound was not tested in cellular

regeneration assays, it was anticipated to have improved pharmacokinetic properties due to

its lower molecular weight and favorable Clog P value.91–93 Similar approaches may yield

additional therapeutic leads with the desired inhibitory potency and pharmacokinetics for the

treatment of demyelinating disorders.

2.3.3. Synthetic Mimics of α(2–8)-Linked PSA for Nerve Regeneration—PSA

expression is generally considered a permissive determinant in areas of neuronal growth and

plasticity, making it a potential therapeutic target for neuronal regeneration. In fact,

expression of PSA has been shown to promote functional recovery and provide a favorable

environment for axonal regeneration in animal models of spinal cord injury.94,95 In these

studies, PSA–NCAM was ectopically expressed in spinal cord astrocytes in vivo,94 or PSA-

expressing Schwann cell grafts were employed.95 Although the use of PSA oligo- and
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polysaccharides may be viable alternatives, PSA isolated from natural sources is often

heterogeneous in length and can be contaminated with other cell-surface glycans. In

addition, PSA adopts a helical conformation96 and forms filament bundles,97 thus exhibiting

different structural elements that may have distinct functions.

To circumvent these challenges, Rougon, Schachner, and co-workers screened a large

peptide library to identify potential PSA mimetics.98 Two cyclic peptides were identified

that recapitulated the properties of endogenous PSA. Both compounds stimulated the

outgrowth and defasciculation of mouse dorsal root ganglion (DRG) neurons and promoted

neuronal migration in vitro and in vivo. In addition, one peptide enhanced the migration of

transplanted neuronal progenitor cells in the murine olfactory bulb in vivo via a pathway

known to be regulated by PSA.98 Thus, synthetic mimics may provide novel alternatives to

PSA for neuronal regeneration.

2.3.4. Metabolic Labeling To Remodel Cell-Surface Sialic Acid Interactions—

The metabolic labeling of glycan chains with unnatural sugars has played a key role in

expanding the knowledge of sialic acid function in the nervous system. Early studies by

Reuttar and colleagues demonstrated that unnatural chemical functionalities could be

incorporated into cell-surface sialylglycoconjugates by the addition of N-

acetylmannosamine analogues (ManNAc; Figure 5A) to cells.99–103 ManNAc is the first

committed intermediate in the sialic acid biosynthetic pathway, and the enzymes in this

metabolic pathway are promiscuous for some unnatural substrates.104–106 As described

below, the ability to alter the structures of sialylglycoconjugates has provided key insights

into the roles of sialic acid in neuronal migration and proliferation.

2.3.4.1. Metabolic Labeling of Neurons with Elongated N-Acyl Derivatives of Sialic
Acid: Elongated N-acyl derivatives of ManNAc have been incorporated into

sialylglycoconjugates of PC12 cells, oligodendrocyte progenitor cells, microglia, astrocytes,

and neurons from cerebellar microex-plant cultures.101,107 In these studies, cells were

treated with N-propanoylmannosamine (ManNProp), wherein the N-acetyl substituent of

Neu5Ac is replaced with a longer N-propanoyl group (Figure 5A). ManNProp was found to

stimulate the proliferation of microglia relative to cells treated with the natural sialic acid

precursor, ManNAc.107 ManNProp also induced the migration of oligodendrocyte

progenitor cells, the precursors to oligodendrocyte cells, which play key roles in myelin

formation and become functionally impaired in neurological diseases such as multiple

sclerosis.108–112 Interestingly, treatment with ManNProp prolonged expression of a

sialylated ganglioside involved in cell migration, the A2B5 epitope,113 revealing a potential

mechanism for its functional effects.

In other studies, Reutter and co-workers investigated whether ManNProp modulates

signaling pathways within oligodendrocytes.114 Treatment of these cells with ManNProp

and the inhibitory neurotransmitter γ-aminobutyric acid (GABA) induced GABA-dependent

oscillations in intracellular calcium. Calcium is an important second messenger in the

nervous system, and calcium oscillations are believed to contribute to a highly plastic

signaling system underlying the communication between neurons and glia.114 Interestingly,

ionotropic GABA receptors are modified by sialic acid,115,116 suggesting that extended N-
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acyl substituents may alter the functional properties of this receptor. However, ManNProp

undoubtedly perturbs the expression of multiple sialylglycoconjugates at the cell surface,

and direct evidence that altered sialylation of the GABA receptor is responsible for the

observed response is lacking. In the future, it will be interesting to uncover the precise

molecular mechanisms by which these modifications to sialic acid structure elicit their

effects on intracellular signaling.

ManNProp has also been shown to promote neuronal growth in various contexts. For

instance, ManNProp induced the neurite outgrowth of small rat CGN, PC12 cells, and chick

DRG neurons.117,118 Moreover, treatment with Man-NProp promoted reestablishment of

functional connections in the perforant pathway, which consists of projections from the

entorhinal cortex into the dentate gyrus of the hippocampus, in coculture experiments.117

Although the particular glycoconjugates responsible for these effects were not elucidated,

several cytosolic proteins implicated in neurite outgrowth were found to be differentially

expressed after the ManNProp treatment, including unc-33 like phosphoprotein (ULIP),

various heat shock proteins, and 14-3-3ε, a protein that associates with both GABA

receptors and the α(2–3)-sialyltransferase IV.117,119,120

Bertozzi and colleagues have explored the influence of various ManNAc derivatives on PSA

biosynthesis. N-Butanoylmannosamine (ManNBut, Figure 5A), but not ManNProp, was

shown to significantly inhibit PSA expression in a dose-dependent manner in the NT2

neuroblastoma cell line. Moreover, both human polysialytransferases responsible for PSA

biosynthesis (STX and PST) displayed reduced kinetic efficiencies for transfer of ManNBut

and ManNPent (Figure 5A), whereas ManNProp was transferred at a rate sufficient for

biosynthesis.118,121 Thus, elongation of the N-acyl side chain of sialic acid may interfere

with recognition of the growing PSA chain by polysialyltransferases. However, findings by

Jennings and co-workers suggest that both ManNBut and ManNProp may be partially

incorporated into sialylglycoconjugates, as detected by flow cytometry using a monoclonal

antibody that recognizes N-propanoyl- and N-butanoyl-PSA.122,123 Consistent with an

inhibitory effect on PSA biosynthesis, ManNBut blocked polysialylation of NCAM in both

chick DRG neurons118 and NT2 cells124 and decreased the outgrowth of DRG neurons.118

The effects on neurite outgrowth were comparable to those elicited by treatment of cells

with endoneuraminidase, an enzyme that cleaves PSA residues.

2.3.4.2. Metabolic Labeling with ManNGcPA: Metabolic labeling of neurons with

unnatural sugars has also been exploited to alter protein recognition events at the cell

surface. Treatment of neuroblastoma–glioma hybrid cells with the sialic acid metabolic

precursor N-glycolylmannosamine pentaacetate (ManNGcPA; Figure 5A) converted cell-

surface sialylglycoconjugates from expressing Neu5Ac to expressing Neu5Gc,125 a sialic

acid form that is not normally found in humans.126 Whereas Neu5Ac sialylglycoconjugates

displayed on neuronal cells bound efficiently to MAG, the binding of MAG to cells

expressing Neu5Gc sialylglycoconjugates was significantly inhibited.127 These studies

demonstrate the potential of metabolic labeling to serve as a useful tool for perturbing

specific glycan–protein interactions.
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2.3.4.3. Chemoselective Labeling of Sialylated Cell-Surface Glycoconjugates: The

ability to incorporate unnatural sugar analogues into cell-surface glycoconjugates allows for

the introduction of reactive chemical functionalities onto glycoproteins and glycolipids, such

as ketone, azide, or alkyne groups. These functionalities allow for selective labeling of

proteins with reporter groups such as affinity tags and fluorescent dyes or for the delivery of

toxins.128–131 Bertozzi and co-workers have exploited N-levulinoylmannosamine (ManLev),

which contains a ketone functionality appended to the N-acyl side chain (Figure 5A), to

label neuroblastoma cells.129 Incubation of the cells with ManLev resulted in incorporation

of the ketone moiety into sialylated glycans in a concentration-dependent manner.

Subsequent reaction with a biotin hydrazide derivative (Figure 5B) enabled visualization of

sialylglycans by fluorescence microscopy, revealing their presence along the cell body and

neuronal processes.132 Although the specific sialyltransferases involved are not fully

understood, ManLev was successfully incorporated into PSA, suggesting that α(2–8)-

polysialyltransferases are capable of utilizing ketone-modified precursors for PSA

synthesis.132 These studies provide a powerful means to modulate the structure of PSA and

potentially other sialylglycans with a wide variety of chemical groups.

2.3.4.4. Summary of Sialic Acid Metabolic Labeling: Cumulatively, studies have

demonstrated that unnatural ManNAc derivatives can be exploited to manipulate the

structure of sialylated glycans on neuronal cell surfaces. These studies have revealed that

subtle alterations in sialic acid structure can have striking consequences for PSA

biosynthesis and biological phenomena such as neurite outgrowth, cell proliferation, and

migration. In the future, these versatile chemical tools could be employed for visualization

of dynamic neuronal processes in vivo, such as activity-dependent changes in the expression

or localization of sialylglycans. The ability to engineer the glycan composition of cell

surfaces and to selectively label sialylated glycans for imaging or other applications

provides a powerful complementary approach to genetics and biochemistry.

3. α-L-Fucose

3.1. Structure and Biosynthesis

α-L-Fucose (6-deoxy-L-galactose; Fuc) is generally expressed as a terminal monosaccharide

on N- and O-linked glycoproteins and glycolipids. As such, it often serves as an important

molecular recognition element for proteins. Fucose is distinct from other naturally occurring

sugars because it is a deoxyhexose sugar that exists exclusively in the L-configuration

(Figure 6). A structurally diverse array of fucosylated glycans has been identified with

fucose often linked to the C-2, C-3, C-4, or C-6 positions of the penultimate galactose in

glycoconjugates or to the core GalNAc residue of N-linked glycans.1 O-Fucosylation, the

direct modification of serine and threonine residues by fucose, has also been observed on

epidermal growth factor (EGF) repeats of glycoproteins such as Notch, a protein involved in

cell growth and differentiation.133 While fucose is not elongated in N-linked and O-linked

glycans, O-fucose can be elongated by other sugars.1

Given the structural diversity of fucosylated glycans, it is perhaps not surprising that more

than a dozen different human enzymes are involved in the formation of Fuc linkages.1 Two

enzymes, FUT1 and FUT2, are dedicated to the synthesis of Fucα(1–2)Gal glycans, an
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epitope found on the ABO blood group antigens134–136 that has also been implicated in

synaptic plasticity.13,137,138 A gene homologous to FUT1 and FUT2, called Sec1, contains

translational frameshifts and stop codons that interrupt potential open reading frames and

thus appears to be a pseudogene.134 FUT3 catalyzes the synthesis of both α(1–3)- and α(1–

4)-fucosylated glycans and can transfer fucose to both Gal and GlcNAc in an

oligosaccharide chain, whereas FUT4–7 form only α(1–3)-fucosylated glycans.139,140 FUT8

and FUT9 generate Fucα(1–6)GlcNAc structures, with FUT8 generally catalyzing

attachment of this structure to the core asparagine residue of N-linked oligosaccharides141

and FUT9 catalyzing its attachment to a distal GlcNAc of polylactosamine chains.142

FUT10 and FUT11 are putative fucosyltransferases that are reported to synthesize α(1–3)-

fucosylated glycans based on sequence homology, although no functional studies have yet

been performed.1 Finally, POFUT1 and POFUT2, also known as O-fucosyltransferase 1 and

O-fucosyltransferase 2, catalyze the direct fucosylation of serine and threonine residues

within epidermal growth factor repeats.143,144

3.2. Neurobiological Functions

Fucosylated glycans play important roles in various physiological and pathological

processes, including leukocyte adhesion,145,146 host–microbe interactions,147,148 and

neuronal development.149,150 They are prevalent on the glycolipids of erythrocytes, where

they form the ABO blood group antigens that distinguish specific blood types.136 Aberrant

expression of fucosylated glycoconjugates has been associated with cancer,151–154

inflammation,145,155–157 and neoplastic processes.158,159 For instance, the fucosylated

antigens, sialyl LewisX, sialyl LewisY, and sialyl LewisB, are up-regulated in certain cancers

and have been associated with advanced tumor progression and poor clinical

prognosis.160–163 Moreover, deficiency in fucose leads to a congenital disorder of

glycosylation type IIc in humans, also known as leukocyte adhesion deficiency type II (LAD

II). This disorder results in the impairment of leukocyte–vascular epithelium interactions

and is characterized by immunodeficiency, developmental abnormalities, psychomotor

difficulties, and deficits in mental capabilities.164

Although their roles in the brain are less well understood, fucosylated glycans have been

implicated in neural development, learning, and memory. Here, we will highlight aspects of

their biosynthesis and functional roles in the nervous system.

3.2.1. Neuronal Development—Fucose has been reported to play an important role in

neural development. O-Fucosylation is essential for the activity of Notch, a transmembrane

receptor protein that controls a broad range of cell-fate decisions during

development., 165–169 Studies suggest that fucose modulates Notch signaling either by

inducing a conformational change in the protein or by interacting directly with Notch

ligands.168 Notch signaling is believed to be involved in neuronal progenitor maintenance,

and governs the cell-fate decision between neuronal and glial lineages. Notch signaling may

also contribute to the behavior of differentiated neurons and neuronal migration.170 Genetic

deletion of the POFUT1 gene is embryonic lethal in mice and causes developmental defects

similar to those observed upon deletion of Notch receptors, including abnormal

vasculogenesis, somitogenensis, and neurogenesis.171,172 These studies demonstrate the
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importance of fucose in proper neuronal development and implicate Notch fucosylation as

an important mediator of these events.

3.2.2. Learning and Memory—Multiple studies have suggested a role for fucosylation in

learning and memory. For instance, the incorporation of fucose into glycoconjugates in the

brain was significantly enhanced by task-dependent learning in both chicks and rats.173–176

Rats were trained in a brightness discrimination task, in which animals learned to enter a

bright chamber while avoiding a dark one. Trained animals demonstrated an increase in

[3H]-labeled fucose incorporation into glycoconjugates at synapses, the specialized sites of

communication between neurons.175 Moreover, exogenous application of L-fucose or 2′-
fucosyllactose (Figure 6) enhanced long-term potentiation (LTP), an electrophysiological

model for learning and memory, both in vivo and in hippocampal slices.177,178

Fucose is highly enriched at neuronal synapses,13,179,180 where the majority of the

fucosylated glycoconjugates exist as complex N-linked structures.181 Studies indicate that

the activity of fucosyltransferases increases during synaptoge-nesis182 and upon passive-

avoidance training in animals.183 Moreover, the cellular machinery involved in protein

glycosylation can be found within dendrites,184,185 raising the intriguing possibility that

local protein synthesis and fucosylation may be occurring at synapses in response to

neuronal stimulation.

Further studies have specifically implicated Fucα(1–2)Gal linkages in neuronal

communication processes. For instance, 2-deoxy-D-galactose (2-dGal; Figure 6), which

competes with native galactose for incorporation into glycan chains and thus prevents the

formation of Fucα(1–2)Gal linkages,186 has been shown to induce reversible amnesia in

animals.138,186,187 In contrast, other small molecule sugars such as 2-deoxy-D-glucose, Gal,

or Glc had no effect, suggesting a unique function for Fucα(1–2)Gal saccharides. 2-dGal has

also been reported to interfere with the maintenance of LTP, both in vitro and in vivo.188,189

Furthermore, a monoclonal antibody specific for Fucα(1–2)Gal190 significantly impaired

memory formation in animals, presumably by blocking formation of the Fucα(1–2)Gal

epitope.137

3.3. Chemical Approaches for Studying L-Fucose

Despite intriguing evidence linking Fucα(1–2)Gal sugars to neuronal communication and

memory storage, the molecular mechanisms by which these sugars exert their effects are not

well understood. Recently, however, chemical tools have been developed that are beginning

to shed light on the roles of Fucα(1–2)Gal lectins and glycoproteins in the brain.

3.3.1. Deoxygalactose Analogues—Hsieh-Wilson and co-workers investigated the

effects of the amnesic compound 2-dGal and other fucosylation inhibitors on cultured

hippocampal neurons. Inhibition of Fucα-(1–2)Gal linkages using 2-dGal led to stunted

neurite outgrowth in young neurons lacking functional synapses (Figure 7).14 In contrast, 3-

deoxy-D-galactose (3-dGal), which inhibits fucose incorporation at the C-3 position of

galactose, had no effect on neurite growth, suggesting that specific fucose linkages are

important for the neuritogenic activity. The effects of 2-dGal could be successfully rescued
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by the addition of excess D-Gal to the media, suggesting that the inhibition can be reversed

by the de novo synthesis of Fucα(1–2)Gal sugars.

Interestingly, 2-dGal also exerted dramatic effects on the morphology of older neurons, even

after axonal differentiation and synaptogenesis had begun to occur.13 Application of 2-dGal

led to a remarkable retraction of dendrites and collapse of synapses, whereas 6-dGal had no

effect. However, D-Gal was only partially able to rescue the effects of 2-dGal, which may

reflect the decreased plasticity of older neurons. Thus, fucosylated glycans and, in particular,

Fucα(1–2)Gal glycoconjugates appear to be important for modulating neuronal morphology

and maintaining functional neuronal connections.

To gain insight into the molecular mechanisms involved, Hsieh-Wilson and co-workers

sought to identify Fucα(1–2)Gal glycoproteins in the hippocampus.13 Using a gel-based

mass spectrometry approach, they identified synapsins Ia and Ib as the predominant

Fucα(1–2)Gal glycoproteins in older hippocampal cultures and in the adult rat brain. The

synapsins are synaptic vesicle-associated proteins that play important roles in

neurotransmitter release and synaptogenesis.191,192 Fucosylation of synapsin I was found to

have significant effects on synapsin expression in neurons, protecting it from proteolytic

degradation by the calcium-activated protease calpain. Moreover, studies using 2-dGal and

synapsin I-deficient mice showed that synapsin fucosylation contributes to the profound

effects of 2-dGal on neurite outgrowth and synapse formation. However, other unknown

Fucα(1–2)Gal glycoproteins were also involved in the process. These studies provide the

first evidence that Fucα(1–2)Gal glycoproteins are directly involved in neurite outgrowth

and underscore the importance of identifying the Fucα(1–2)Gal proteome of the brain.

3.3.2. Glycopolymers and Imaging Probes—Fucose often occupies a terminal

position on glycan chains, and as such, it serves as an important molecular recognition

element for lectins. A well-studied example is the binding of L-selectin to the fucosylated

glycan sialyl LewisX, an interaction known to be critical for leukocyte adhesion.1 To

investigate whether Fucα(1–2)Gal lectins exist in the mammalian brain, a small molecule

probe was designed and synthesized that contained the Fucα(1–2)Gal epitope and a biotin

moiety for imaging potential lectin receptors in the brain (Figure 8).14 Rat hippocampal

neurons were incubated with the small molecule probe, and the bound probe was visualized

on the cells using a streptavidin–dye conjugate (Figure 8). Strong fluorescent staining of the

cell body and neuronal processes was observed, consistent with the presence of fucose-

binding lectin receptors.

To investigate whether the association of Fucα(1–2)Gal with these receptors would elicit a

neuronal response, Hsieh-Wilson and colleagues treated cultured neurons with poly-

acrylamide-based polymers displaying multiple copies of the Fucα(1–2)Gal epitope.14 The

Fucα(1–2)Gal polymers promoted neurite outgrowth by more than 75%, and the potency of

the compounds was dramatically enhanced with increasing polymer concentration or

carbohydrate valency. Importantly, polymers bearing other carbohydrates moieties, such as

GlcNAc, Gal, Fucα(1–3)GlcNAc, or only Fuc, had no appreciable effects, indicating that

the observed neuritogenic activity was specific for Fucα(1–2)Gal. Together, these studies

provide the first evidence that Fucα(1–2)Gal lectin receptors are found in the brain, and they
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identify a novel carbohydrate-mediated pathway for the regulation of neuronal growth. This

work also highlights the power of chemical probes to explore the biological effects of

specific glycans and their associated receptors. It will be important in the future to identify

the lectins involved and to elucidate the specific mechanisms and pathways leading to

neuronal growth.

3.3.3. Metabolic Labeling Using Alkynyl or Azido Fucose Analogues—Recently,

the Bertozzi and Wong groups independently demonstrated that alkynyl- or azido-containing

fucose analogues could be exploited to selectively label and image fucosylated glycans in

mammalian cells.193,194 Their strategy exploits the fucose salvage pathway to convert

unnatural fucose sugars into the corresponding GDP-fucose analogues, which then serve as

donors for fucosyltransferases. Once the azido or alkynyl fucose analogue is incorporated

into glycans, it can be reacted with fluorescent dyes, biotin, or peptides via Staudinger

ligation or [3 + 2] azide–alkyne cycloaddition chemistry. Bertozzi and co-workers

synthesized fucose derivatives with azido groups at the C-2, C-4, and C-6 positions.193 Only

the C-6 azido fucose analogue (Figure 6) was successfully incorporated into the glycans of

the Jurkat T lymphocyte cell line, consistent with earlier observations that some

fucosyltransferases tolerate substitutions at the C-6 position of the pyranose ring. Wong and

colleagues demonstrated that both azido- and alkynyl-modified fucose derivatives (Figure 6)

could be incorporated into the glycans of hepatoma cells, allowing for fluorescent imaging

of fucosylated glycoconjugates.194,195 Interestingly, the alkynyl fucose analogue was shown

to be significantly less toxic to cells than the azido fucose analogue.194 Future application of

these powerful approaches to neurons should facilitate proteomic studies to identify

fucosylated glycoproteins and may allow for the dynamic imaging of protein fucosylation in

vivo.

3.3.4. Summary of Fucosyl Oligosaccharides—Cumulatively, studies using

chemical probes have revealed a role for fucosyl oligosaccharides and their associated

lectins and glycoproteins in the regulation of neurite growth and synapse formation. These

findings may shed light on behavioral and electrophysiological studies implicating Fucα(1–

2)Gal in long-term memory storage. Alterations in neuronal morphology, such as dynamic

changes in dendritic spine number and shape, occur during memory consolidation and

LTP.196,197 One possibility is that the interaction between certain Fucα(1–2)Gal

glycoproteins and lectins may promote the stabilization of synaptic connections that underlie

learning and memory. In addition, fucosylation may exert its effects independently of

lectins, by stabilizing fucosylated glycoproteins such as synapsin or modulating their

functions. The continued development and application of chemical tools has tremendous

potential to expand our understanding of the roles of fucosylated lectins and glycoproteins in

the brain and may provide exciting opportunities to modulate neuronal communication

processes.
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4. O-GlcNAc Glycosylation

4.1. Structure and Biological Functions

O-GlcNAc glycosylation is the covalent attachment of β-N-acetylglucosamine to serine and

threonine residues of proteins (Figure 9). Unlike other forms of glycosylation, O-GlcNAc is

a dynamic, reversible modification found only on intracellular proteins, rendering it akin to

protein phosphorylation. A wide range of proteins are O-GlcNAc-modified, including

transcription factors, nuclear pore proteins, cytoskeletal proteins, and synaptic

proteins.8,12,198,199–202 Several excellent reviews have described the functional roles of O-

GlcNAc in transcription,203 apoptosis,204,205 signal transduction,199 nutrient sensing,206,207

and proteasomal degradation.206 O-GlcNAc glycosylation has also been implicated in the

cellular stress response208,209 and is induced by oxidative, osmotic, metabolic, and chemical

stress.8,206 Levels of O-GlcNAc glycosylation are altered in disease states such as cancer,

diabetes, and Alzheimer’s disease.201,204,207,210–215 Moreover, one of the hallmarks of

Alzheimer’s disease is the formation of neurofibrillary tangles by hyperphosphorylated tau

protein,216 and several studies suggest that O-GlcNAc glycosylation negatively regulates the

ability of tau to become phosphorylated.217,218 Thus, the investigation of O-GlcNAc

function may provide insights into our understanding of critical cellular processes and

diseases.

4.2. Neurobiological Functions of O-GlcNAc

Emerging evidence indicates an important role for O-GlcNAc glycosylation in the nervous

system. The enzymes that catalyze the addition and removal of O-GlcNAc, O-GlcNAc

transferase (OGT) and O-GlcNAcase (OGA), are most highly expressed in the brain219 and

are enriched in both pre- and postsynaptic nerve terminals.220 OGT expression is critical for

cell survival,221 and neuronal-specific deletion of the OGT gene in mice leads to abnormal

development, defects in motor coordination, and early neonatal death.222 Thus far, more

than 50 neuronal proteins have been shown to be O-GlcNAc-modified, including proteins

involved in transcription (e.g., CREB (cAMP-response element binding-protein), Sox2

(SRY box-containing gene 2), ATF-2 (activating transcription factor-2)), neuronal signaling

(synGAP (synaptic Ras GTPase activating protein)), bassoon, the guanine nucleotide

exchange factor PDZ-GEF, and synapsin I), synaptic plasticity (synaptopodin and δ-
catenin), and neurodegenerative disease (tau and APP (β-amyloid precursor

protein)).8,202,217,223–227 Finally, O-GlcNAc glycosylation levels are dynamically

modulated by excitatory stimulation of the brain in vivo and upon activation of specific

kinase pathways in cultured cerebellar neurons.223

Despite its importance, the functional roles of O-GlcNAc glycosylation are only beginning

to be understood in the brain. A major challenge has been the difficulty of detecting and

studying the modification in vivo. Similar to phosphorylation, O-GlcNAc is often dynamic,

substoichiometric, targeted to subcellular compartments, and prevalent on low abundance

regulatory proteins. The sugar is also both enzymatically and chemically labile. For

example, mass spectrometry analyses to identify O-GlcNAc-modified proteins and map

glycosylation sites are challenged by loss of the modification upon collision-induced

dissociation (CID). The lack of a well-defined consensus sequence for OGT has precluded
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the determination of in vivo glycosylation sites based on primary sequence alone.

Furthermore, the complexity of the nervous system and its unique technical challenges (e.g.,

postmitotic cells, multiple cell types, blood–brain barrier, complex organization) greatly

complicates efforts to study O-GlcNAc glycosylation and necessitates the development of

rapid, highly sensitive detection methods. Here, we describe chemical approaches

undertaken to overcome these challenges and highlight how they have advanced our

understanding of the roles of O-GlcNAc glycosylation in neuronal function and dysfunction.

4.3. Chemical Tools To Study O-GlcNAc Glycosylation

4.3.1. Chemoenzymatic Labeling of O-GlcNAc Proteins

4.3.1.1. Rapid, Sensitive Detection: Traditional methods for detecting O-GlcNAc-modified

proteins often suffer from limited sensitivity and specificity. For instance, radiolabeling of

the proteins using UDP-[3H]-galactose and β(1–4)-galactosyltransferase (GalT), an enzyme

that transfers [3H]-galactose onto terminal GlcNAc groups of glycoproteins,228 can require

weeks for visualization and lacks the sensitivity to detect certain O-GlcNAc-modified

proteins. Lectins228 and antibodies229,230 are also effective methods, but they bind only a

subset of the O-GlcNAc-modified proteins (usually those with multiple glycosylation sites)

and have limited affinity and specificity.

In response, a chemoenzymatic approach for tagging O-GlcNAc proteins was developed by

Hsieh-Wilson and coworkers that allows for more rapid and sensitive detection. An

unnatural substrate for GalT was designed, in which a bioorthogonal ketone moiety was

appended to the C-2 position of galactose (UDP-ketogalactose probe, Figure 10A).231

Studies by Qasba and colleagues had demonstrated that a mutant form of GalT (Y289L)

tolerates minor substitutions at this position.232 Once transferred, the ketone moiety can be

reacted with an aminooxy biotin derivative, thus permitting the sensitive detection of O-

GlcNAc-modified proteins by chemiluminescence.231 Notably, this method enables the

identification of O-GlcNAc-glycosylated proteins that elude detection using other methods.

For example, detection of the glycoproteins α-crystallin and CREB was accomplished

within minutes, whereas lectins and antibodies failed to detect the modification on these

proteins and tritium labeling required more than a week to develop.231 Thus, this

chemoenzymatic approach provides superior sensitivity relative to traditional methods and

accelerates the identification of new O-GlcNAc-modified proteins.

4.3.1.2. Identification of O-GlcNAc-Glycosylated Proteins from Cells: Selective

biotinylation of proteins using the chemoenzymatic approach also facilitates the parallel

purification of O-GlcNAc-modified proteins from cell or tissue extracts by affinity

chromatography.233 Previous methods have necessitated purification of individual proteins

prior to analysis, a tedious and time-consuming process. Using the chemoenzymatic

approach, the tagged O-GlcNAc proteins can be isolated in a single step by streptavidin

affinity chromatography and interrogated for modification in parallel by Western

blotting.233 This strategy was used to demonstrate that the AP-1 transcription factors c-Fos

and c-Jun, as well as the activating transcription factor ATF-1, are O-GlcNAc-modified in

HeLa cells.233 In addition, the identification of O-GlcNAc on CREB-binding protein (CBP)

reveals a new class of O-GlcNAc-glycosylated proteins, the histone acetyltransferases
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(HAT). Thus, glycosylation can be readily investigated across structurally or functionally

related proteins, as well as novel functional classes. Together, studies have revealed that a

broad number of transcriptional components are O-GlcNAc-glycosylated,202,223,233 and O-

GlcNAc may function as a general regulatory modification for the control of

transcription.239,240

4.3.1.3. Proteome-Wide Analyses: When used in conjunction with high-throughput mass

spectrometry, the chemoenzymatic approach can be exploited for proteome-wide analyses of

O-GlcNAc-modified proteins.202 Proteins from cell lysates are chemoenzymatically labeled

and pro-teolytically digested. The desired glycopeptides are then captured by avidin affinity

chromatography and analyzed by HPLC in line with tandem mass spectrometry (LC–MS/

MS). The ketogalactose–biotin tag facilitates the isolation of O-GlcNAc glycopeptides from

complex mixtures. This enrichment step is often crucial for detecting low-abundance post-

translational modifications. The tag also provides a unique signature on the mass

spectrometer, thus enabling unambiguous identification of O-GlcNAc-modified peptides and

mapping of glycosylation sites to specific functional domains within a protein. Using this

approach, Hsieh-Wilson, Peters, and colleagues reported the first proteome-wide

identification of O-GlcNAc-modified proteins from the mammalian brain.202 Nearly 100

peptides were identified containing the mass spectrometry signature, and 34 of these

peptides were successfully sequenced. The sequenced peptides identified 25 different

proteins from rat brain. Of the proteins identified, only two proteins had been previously

reported, and 23 were novel O-GlcNAc-glycosylated proteins, thus significantly expanding

the repertoire of proteins known to be modified.

This method demonstrates the power of chemical-tagging approaches to accelerate the high-

throughput identification of O-GlcNAc glycoproteins. Notably, many of the proteins

identified have important functional roles in gene regulation, cytoskeletal dynamics,

neuronal signaling, and synaptic plasticity. For example, synaptopodin, synGap, and shank2

(SH3 and multiple ankyrin repeat domains protein 2) are critical for the regulation of

dendritic spine formation.234–236 Synaptopodin and δ-catenin have important roles in

learning and memory,234,237 and the guanine nucleotide exchange factor PDZ-GEF is

involved in the assembly of signal transduction complexes at the synapse.238 Together, these

studies suggest that O-GlcNAc glycosylation may play a role in mediating neuronal

communication and signaling networks. Consistent with this observation, Burlingame and

coworkers recently employed lectin weak-affinity chromatography in conjunction with mass

spectrometry to identify 18 O-GlcNAc-glycosylated proteins from the postsynaptic density

fraction of rat brain.224 The proteins represent multiple functional classes, and several

proteins involved in synaptic vesicle cycling were found to be extensively O-GlcNAc-

glycosylated, such as bassoon, piccolo, and synapsin I.224

While the chemoenzymatic approach has broad application to the study of O-GlcNAc-

glycosylated proteins from cell and tissue extracts, O-GlcNAc proteins cannot be labeled in

animals using this method. In addition, the determination of exact glycosylation sites is still

difficult, because the ketogalactose–biotin moiety can be lost upon CID in the mass

spectrometer. Instead, O-GlcNAc modification sites are mapped to short amino acid

sequences within proteins, which still provides insight into the function of the modification.
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Despite these limitations, the chemoenzymatic labeling strategy is so powerful for in vitro

analysis and proteomics that a variation of this approach is now commercially available for

fluorescent labeling or biotinylation of O-GlcNAc-glycosylated proteins using [3 + 2]

cycloaddition chemistry (Figure 10B).

4.3.2. Metabolic Labeling of O-GlcNAc Proteins

4.3.2.1. Incorporation of GlcNAz into O-GlcNAc Proteins: A complementary strategy

that enables tagging of O-GlcNAcylated proteins in living cells involves metabolically

labeling the proteins with unnatural GlcNAc derivatives. Bertozzi and colleagues

demonstrated that N-(2-azidoacetyl)-glucosamine (GlcNAz, Figure 10C) is processed by

enzymes in the hexosamine salvage pathway, resulting in incorporation of a bioorthogonal

azide functionality into O-GlcNAc-glycosylated proteins.241 The azido group can be

subsequently labeled with triarylphosphines via the Staudinger ligation. Using this approach,

the authors demonstrated successful incorporation of GlcNAz into both nuclear and

cytoplasmic proteins of cultured Jurkat T lymphocyte cells. In particular, selective labeling

and detection of the nuclear pore protein p62, a known O-GlcNAc-modified protein with

>10 glycosylation sites,242 was shown using a phosphine–FLAG probe. Although

incomplete labeling of O-GlcNAc-glycosylated proteins limits the sensitivity of this

approach relative to the chemoenzymatic strategy described above, metabolic labeling with

GlcNAz sugars can be performed in living cells and might allow for the dynamic imaging of

O-GlcNAc-glycosylated proteins in vivo.

4.3.2.2. Proteomic Analysis by Metabolic Labeling: Although metabolic labeling has not

yet been applied to neurons, it represents another powerful chemical approach for the high-

throughput identification of O-GlcNAc-modified proteins. Zhao and colleagues labeled O-

GlcNAc proteins in the HeLa cervical cancer cell line with GlcNAz and tagged them with a

biotin phosphine reagent (Figure 10C).243,244 Tryptic digestion of the affinity-captured

proteins, followed by LC–MS/MS analysis, led to the identification of 199 putative O-

GlcNAc-modified proteins. Because the presence of the GlcNAc moiety was inferred rather

than detected directly, independent confirmation of the modification by immunoblotting was

required and demonstrated on 23 of the 199 proteins.

While this method provides a powerful chemical tool for profiling O-GlcNAc-modified

proteins, there are some limitations of this procedure for in vivo labeling in the brain. Most

sugars do not cross the blood–brain barrier,245 and thus in vivo labeling with these

molecules would entail invasive surgical procedures for intracranial administration rather

than simple intraperitoneal injection. In addition, metabolic labeling is not quantitative,

which may limit the sensitivity of detection as well as preclude the ability to monitor

glycosylation dynamics. Despite these limitations, the approach has been successfully

employed to investigate the O-GlcNAc proteome in both mammalian and insect cell

lines.243,244 In the future, metabolic labeling could prove a useful tool for studying the O-

GlcNAc proteome in cultured neurons.
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4.3.3. Methods for Mapping Exact Glycosylation Sites

4.3.3.1. The β-Elimination Followed by Michael Addition with Dithiothreitol (BEMAD)
Approach: The identification of O-GlcNAc modification sites within proteins is critical for

elucidating the functions of O-GlcNAc in specific biological contexts. Nonetheless, the

exact sites of glycosylation remain unknown for most proteins. Mapping glycosylation sites

has been challenging due to the low abundance of the modification and the lability of the

glycosidic linkage during fragmentation on a mass spectrometer, which can result in the loss

of direct amino acid identification. Hart and co-workers showed that the labile GlcNAc

moiety could be replaced with a more stable sulfide adduct by alkaline-induced β-
elimination followed by Michael addition with dithiothreitol (BEMAD, Figure 11).246 The

resulting sulfide adduct is not cleaved upon CID, thereby allowing sites of glycosylation to

be more readily determined. However, a limitation of this approach is that it is often

destructive to proteins,247,248 and selectivity controls must be performed to distinguish

among O-GlcNAc, O-phosphate, and other O-linked carbohydrates.246 When biotin

pentylamine is used in place of dithiothreitol, O-GlcNAc-modified peptides can be

selectively biotinylated, enriched by affinity chromatography, and identified by LC–MS/MS

analysis. This method has been successfully employed to identify novel O-GlcNAc sites on

purified glycoproteins such as synapsin I and proteins from a purified rat brain nuclear pore

complex.246 Further extension of BEMAD to complex mixtures for the high-throughput

mapping of O-GlcNAc sites is an important future goal.

4.3.3.2. Electron Transfer Dissociation (ETD) and Electron Capture Dissociation
(ECD) Coupled with Lectin Affinity Chromatography or Chemoenzymatic Labeling:
Recently, the development of novel fragmentation methods for mass spectrometry has

facilitated the identification of O-GlcNAc modification sites. Electron transfer dissociation

(ETD) and electron capture dissociation (ECD) use thermal electrons to produce sequence

specific-peptide fragmentation without the loss of labile post-translational modifications

such as O-GlcNAc and O-phosphate.249 ECD has recently been used by Burlingame and co-

workers to identify O-GlcNAc glycosylation sites following enrichment of the modified

peptides by lectin weak-affinity chromatography.224 The authors were able to identify

glycosylation sites on several neuronal proteins such as spectrin β2, shank2, bassoon, and

piccolo.

While ECD requires the use of a Fourier transform mass spectrometer, ETD has the

advantage of being performed in appropriately modified ion trap mass spectrometers,

rendering the technology powerful and more accessible. Hsieh-Wilson, Coon, and

colleagues have implemented ETD fragmentation to map glycosylation sites on neuronal

proteins following chemoenzymatic labeling and enrichment by avidin affinity

chromatography. The authors identified glycosylation sites on multiple proteins such as the

neuron-specific transcriptional repressor BHC80, the transcriptional repressor p66β, the

transcriptional coactivator SRC-1, and the zinc finger RNA-binding protein.223 With further

methodological refinements and advances in database search algorithms for fragment ions, it

is anticipated that ETD and ECD will become increasingly powerful tools for the study of

O-GlcNAc glycosylation.
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4.3.4. Monitoring O-GlcNAc Dynamics—Unlike most forms of protein glycosylation,

O-GlcNAc glycosylation is reversible and dynamic. Several studies have shown that global

O-GlcNAc levels in cells change within minutes of activation by specific extracellular

stimuli.250,251 O-GlcNAc levels are also highly responsive to cellular glucose

concentrations, as approximately 2–5% of all glucose is metabolized through the

hexosamine biosynthesis pathway to generate UDP-GlcNAc.252–254 Furthermore, studies

have suggested a potential interplay between O-GlcNAc glycosylation and phosphorylation

in neurons. An inverse relationship between O-GlcNAc and O-phosphate was observed

upon activation of protein kinase C (PKC) or cAMP-dependent protein kinase (PKA) in the

cytoskeletal protein fraction of cultured cerebellar neurons.255 As described below, recent

quantitative proteomics studies have shown that O-GlcNAc glycosylation is dynamically

induced by excitatory stimulation of the mammalian brain in vivo.223 Finally, O-GlcNAc

glycosylation is known to be dysregulated in multiple disease states and is believed to

contribute to the etiology of certain diseases, such as diabetes, Alzheimer’s disease, and

cancer.207,252,256,257

Despite considerable investigation, the specific proteins undergoing dynamic changes in

glycosylation remain largely unknown. Moreover, the molecular mechanisms and signaling

pathways involved in the regulation of OGT and OGA are poorly understood. As such, there

is a great need to develop chemical tools to monitor changes in glycosylation on specific

proteins and at specific modification sites in both normal and disease states. We describe

below some of the chemical approaches that have been developed to address these

challenges.

4.3.4.1. FRET-Based Sensors: Mahal and colleagues developed a fluorescence resonance

energy transfer (FRET)-based sensor to investigate O-GlcNAc glycosylation dynamics in

living cells.258 Their approach uses two fluorophores, enhanced cyan and yellow fluorescent

protein, separated by a known OGT substrate domain and the bacterial O-GlcNAc lectin

GafD (Figure 12). Upon O-GlcNAc glycosylation of the substrate domain, the GafD domain

binds the carbohydrate moiety, bringing the fluorophores into close proximity and leading to

a concomitant increase in FRET. The authors detected a significant increase in FRET from

HeLa cells transfected with the sensor construct upon treatment with glucosamine or the

OGA inhibitor PUGNAc (O-(2-acet-amido-2-deoxy-D-glucopyranosylidene)amino-N-

phenylcarbamate, Figure 14). 258 This biological sensor represents a promising tool for the

investigation of O-GlcNAc glycosylation dynamics in response to a variety of cellular

stimuli.

4.3.4.2. The Quantitative Isotopic and Chemoenzymatic Tagging(QUIC-Tag)Approach
for Quantitative Proteomics: Hsieh-Wilson, Peters, and co-workers developed a method to

probe dynamic changes in O-GlcNAc glycosylation using quantitative mass spectrometry-

based proteomics.223 Their QUIC-Tag approach (quantitative isotopic and chemoenzymatic

tagging) involves chemoenzymatically labeling proteins from two different cell states (e.g.,

normal versus diseased; stimulated versus unstimulated) with the keto-galactose–biotin

group as described above (Figure 13).223 After proteolytic digestion, the resulting peptides

are isotopically labeled with either heavy or light isotope tags using reductive amination
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chemistry to distinguish the two populations. The peptides are subsequently combined, and

the biotinylated O-GlcNAc peptides are captured using avidin chromatography. MS analysis

reveals two ions for each glycosylated peptide (corresponding to each of the two isotopically

labeled forms), and calculation of the peak areas measures the change in glycosylation level

for each peptide. Importantly, as the observed peptides are sequenced using CID or ETD

MS, the method identifies specific proteins undergoing dynamic changes in glycosylation

and can be used to monitor changes at particular glycosylation sites within proteins.

This approach has advantages over other methods of O-GlcNAc detection. For instance,

lectins and O-GlcNAc antibodies are typically used to detect only global changes in O-

GlcNAc glycosylation by Western blotting and do not monitor individual glycosylation

sites. Metabolic labeling using GlcNAz may alter the kinetic efficiency of O-GlcNAc

transfer to protein substrates, as well as influx through the hexosamine biosynthesis

pathway, which complicates efforts to quantify dynamic changes in response to cellular

stimuli. In contrast, the QUIC-Tag approach is performed on denatured protein lysates and

thus preserves the physiological glycosylation state of the protein without perturbing intra-

cellular glycosylation pathways.

By this approach, O-GlcNAc glycosylation was found to be stimulated upon PUGNAc

treatment of cortical neurons or kainic acid-induced excitatory stimulation of rodent brains

in vivo.223 Robust changes in O-GlcNAc glycosylation were observed at specific sites on

several proteins, whereas other modification sites remained unchanged, suggesting that O-

GlcNAc is subject to complex regulation in neurons. For example, glycosylation of early

growth response-1 (EGR-1), a transcription factor involved in long-term memory formation

and cell survival,259,260 increased greater than 10-fold after kainic acid stimulation. Because

the dynamic glycosylation site within EGR-1 lies within its transactivation domain, O-

GlcNAc glycosylation may modulate the transcriptional activity of EGR-1 and modulate

gene expression. Cumulatively, these studies indicate that O-GlcNAc glycosylation is

reversible, subject to complex regulation, and induced by neuronal activity, which supports

the notion that O-GlcNAc represents an important regulatory modification in the brain.

4.3.4.3. Stable Isotope Labeling with Amino Acids in Cell Culture(SILAC)Coupled
with Affinity Chromatography: Recently, Hart and co-workers employed the SILAC

(stable isotope labeling with amino acids in cell culture) method for quantitative

proteomics261 in conjunction with immunoaffinity chromatography to investigate the

interplay between O-GlcNAc and phosphorylation in COS-7 kidney fibroblast cells.262 Cells

from two different states were labeled with either heavy or light isotopes of arginine and

combined. Proteins of interest were subsequently isolated by affinity chromatography using

a general O-GlcNAc antibody, resolved by SDS–PAGE, proteolytically digested, and

analyzed by LC–MS/MS.

Using this approach, Hart and colleagues investigated the effects of lithium inhibition of

glycogen synthase kinase-3 (GSK-3) on O-GlcNAc glycosylation levels. GSK-3 is involved

in multiple intracellular signaling cascades and is implicated in the etiology of Alzheimer’s

disease, diabetes, and bipolar disorder, thus making it a desirable therapeutic target.263,264

The authors identified 10 proteins that were enriched after LiCl treatment, suggesting that
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they underwent increases in O-GlcNAc glycosylation. The increases in glycosylation were

confirmed on four proteins by immunoprecipitation. Interestingly, many proteins exhibited

no change, and 19 proteins showed decreases in glycosylation. These studies suggest that a

complex interplay exists between O-phosphate and O-GlcNAc within signaling networks.

Although this approach works well for dividing cells, SILAC is not amenable to tissues and

quiescent cells such as neurons. In addition, the method does not readily enable direct

detection of the O-GlcNAc modification, and thus independent confirmation by

immunoprecipitation is required. Nonetheless, this approach provides another powerful

strategy to investigate the cellular dynamics of O-GlcNAc glycosylation.

4.3.4.4. Small-Molecule Inhibitors of OGT and OGA: Traditional genetic approaches

have revealed insights into the functions of OGT and OGA in vivo. For example, genetic

deletion of the OGT gene in mice has revealed that OGT is critical for cell survival, and

neuron-specific deletion of OGT results in defects in mouse embryogenesis, loss of

locomotor control, and neonatal death.221,222 Although such studies have revealed an

important role for these enzymes in neural development, investigations into the functions of

O-GlcNAc remain challenging, particularly in adult animals. The development of small-

molecule inhibitors for OGT and OGA has been actively pursued to enable direct temporal

and spatial control over OGT and OGA activity.

Well-known small-molecule inhibitors of OGT such as alloxan (Figure 14) show multiple

nonspecific effects such as inhibition of OGA and glucokinase,265,266 as well as formation

of superoxide radicals.267 To develop better pharmacological agents, Walker and co-workers

screened a library using a high-throughput, fluorescence-based assay and identified several

novel compounds that inhibited OGT activity in vitro.268 Notably, the compounds

selectively inhibited OGT but not MurG, a related enzyme that also uses UDP-GlcNAc as a

substrate.

As PUGNAc, the most commonly used OGA inhibitor, suffers from nonspecific activity

toward β-hexosaminidase,269 several groups are working to develop more selective

inhibitors. The Vocadlo and Hanover groups have extended the N-acyl substituent of

PUGNAc to generate inhibitors with 10-fold selectivity for OGA over β-
hexosaminidase.269,270 van Aalten and colleagues developed a nagstatin derivative based the

crystal structure of a bacterial OGA (Figure 14).271 This molecule contains an

isobutanamido group at the N8 position that improves selectivity by fitting into a pocket of

the enzyme and a phenethyl group at the C2 position that interacts with a solvent-exposed

tryptophan from bacterial OGA. More recently, the Hanover and Vocadlo groups

independently developed novel OGA inhibitors based on the nonspecific hexosaminidase

inhibitor GlcNAc-thiazaoline, by adding fluoro, azido, or alkyl substituents (Figure 14). The

resultant inhibitors exhibited over 3000-fold selectivity for OGA over β-
hexosaminidase.272,273

The development of such compounds may enable the selective inhibition of OGT and OGA

in cultured neurons, as well as in vivo. The ability to perturb O-GlcNAc enzymes and

glycosylation levels with small molecules should reveal new information about the
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functional roles of O-GlcNAc glycosylation in the nervous system, as well as facilitate the

identification of signaling pathways that regulate OGT and OGA.

5. Glycosaminoglycans

5.1. Structure and Diversity

Glycosaminoglycans (GAGs) are sulfated, linear polysaccharides that represent a central

component of the extracellular matrix (ECM) and are involved in a myriad of biological

functions, including blood coagulation,274,275 angiogene-sis,276–278 tumor growth and

metastasis,279–281 neurite outgrowth,282–285 spinalcordinjury,286–288

anddevelopment.289–291 They are composed of repeating disaccharide units containing a

hexuronic acid sugar linked to a hexosamine sugar.292,293 There are several classes of GAGs

(Figure 15), each of which are distinguished by backbone composition, including heparin

and heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate

(KS), and hyaluronic acid (HA). Heparin and HS contain D-glucosamine (GlcN) and either

D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) connected by α(1–4) and β (1–4)

linkages. In contrast, CS polymers contain N-acetylgalactosamine (GalNAc) instead of

GlcNAc in alternating β (1–3) and β (1–4) linkages to GlcA, whereas DS polymers have

both GlcA and IdoA linked to GalNAc. Heparin/HS and CS/DS are attached to proteins

through O-linkages to serine residues via a GlcAβ (1–3)Gal-β (1–3)Galβ (1–4)Xyl (Xyl =

xylose) tetrasaccharide linker, forming glycoconjugates known as proteoglycans.294–296 KS

is attached to proteoglycans through either N- or O-linkages. Hyaluronic acid is unique in

that it is not protein-bound and is reportedly synthesized in the plasma membrane,296,297

whereas proteoglycans are synthesized in the Golgi apparatus.292,293

In addition to having different backbone compositions, GAGs display remarkable structural

variation through sulfation of various hydroxyl groups along the polysaccharide backbone

(Figure 15). The sulfation patterns of GAGs are incredibly diverse, owing to the large

number of potential sulfation sites and possible combinations of differentially sulfated

disaccharides linked in tandem. For example, heparin and HS disaccharide units can be

sulfated at the C-2 position of IdoA or the C-3 and C-6 positions of GlcN. The C-2 amine of

GlcN can also be acetylated, sulfated, or unmodified. Similarly, CS can be sulfated at the

C-4 and C-6 positions of GalNAc, as well as the C-2 and C-3 positions of GlcA. A simple

HS disaccharide has 48 potential sulfated sequences, yielding tetrasaccharides with over

2300 possible sulfation sequences.

GAGs also vary in chain length from ~10 to 200 disaccharide units, with clusters of low and

high sulfation along the polysaccharide backbone.298 Structural studies suggest that GAGs

can adopt a variety of helical conformations, such as variance in helical pitch that may

depend on the associated counterion.299,300 Further structural diversity is obtained from the

conformational flexibility of the pyranose ring of IdoA, which exists in equilibrium between

the chair and skew-boat conformations when sulfated at the C-2 position.298 Thus, the

combination of different sequences, charge distributions, and conformations gives rise to

tremendous chemical and structural diversity within glycosaminoglycan chains.
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5.2. Neurobiological Functions

5.2.1. Neuronal Development—Evidence from genetic and biochemical approaches

suggests that the sulfation patterns of GAGs are important for modulating their biological

activity and can exert profound effects on organismal development. For instance, mutation

of the N-deacetylase–N-sulfotransferase gene (Ndst-1) involved in HS biosynthesis inhibits

growth factor signaling that disrupts normal embryonic development in Drosophila.290 HS

and CS have been shown to interact with numerous growth factors and axon guidance

proteins in a sulfation-specific manner.283,301–308 Moreover, the sulfation patterns of HS

and CS change during the course of brain development,309,310 and specific CS sulfation

patterns are differentially expressed in certain brain regions.311,312 The sulfation patterns of

HS and CS are also organ- and age-specific, as is the expression of different

sulfotransferases.309,310 Thus, HS and CS sulfation patterns in the brain are tightly regulated

with the exquisite spatial and temporal control required for neuronal development.

5.2.2. Axon Guidance—In the developing nervous system, neurons are presented with a

variety of molecular cues that guide axons to their proper targets. HS sulfation has been

implicated in axon targeting through the interaction of the HS proteoglycan glypican-1 with

Slit, a secreted protein important for axon guidance, axon branching, and neuronal cell

migration.313,314 Slit repels axonal growth by binding to the Robo receptor.314,315 Removal

of HS by heparinase treatment or addition of exogenous HS containing specific sulfation

patterns inhibits Slit binding to Robo and abolishes the axonal repulsion mediated by

Slit.304,315 These results suggest that HS and particular HS sulfation patterns play important

roles in mediating the chemotropic actions of Slit. In other studies, HS sulfation was shown

to be critical for neuronal outgrowth and axon guidance in Caenorhabditis elegans. Using

genetic approaches, Hobert and colleagues demonstrated that certain neuronal subtypes

require the HS-modifying enzymes C5-epimerase, 2-O-sulfotransferase, and 6-O-

sulfotransferase for proper axon guidance.316 Interestingly, other subclasses of neurons

require only the C5-epimerase or 2-O-sulfotrans-ferase, and some neuronal subtypes do not

require any of the HS modifying enzymes. Cumulatively, these studies demonstrate that HS

sulfation patterns play important roles in neuronal development and may encode axon

guidance cues to direct neurons to their proper targets in vivo.

5.2.3. Spinal Cord Regeneration—Chondroitin sulfate proteoglycans (CSPGs) are

crucial components of perineuronal nets, structures of ECM molecules surrounding the soma

and proximal dendrites of certain neurons in the brain and spinal cord.317,318 CSPGs and

other ECM molecules are recruited to sites of CNS injury and form a portion of the glia scar,

a structure that inhibits axonal regeneration and contributes to permanent paralysis in vivo.

Several groups have demonstrated the importance of CSPGs and their associated sugar

chains in mediating neuronal inhibition after spinal cord injury. For instance, CSPGs have

been shown to inhibit the neurite outgrowth of DRG and CGN neurons in vitro.319,320

Moreover, degrading CS chains with chondroitinase ABC (ChABC), an enzyme that cleaves

CS into disaccharide units, reverses the inhibitory effects of CSPGs on neurite

outgrowth.321,322 Most notably, Fawcett, McMahon, and colleagues discovered that ChABC

digestion of CSPGs promotes spinal cord regeneration in vivo, with concomitant partial

recovery of proprioceptive behaviors and locomotor skills in mice.323,324 These and other
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studies indicate that CSPGs exert a crucial inhibitory role on neuronal regeneration and

represent valid targets for therapeutic intervention. Such studies also underscore the

importance of CS glycosaminoglycans in this process and the need to further understand the

molecular mechanisms and sulfation patterns involved in directing their activity.

5.3. Challenges to the Study of GAGs

While GAGs play a fundamental role in many neurobiological processes, a molecular level

understanding of the roles of specific sulfation sequences in mediating GAG functions is

largely unknown. GAG biosynthesis is not template driven and lacks the proofreading

capabilities of DNA biosynthesis, which results in greater chemical heterogeneity and

structural diversity within GAG chains. Thus, GAGs purified from natural sources are often

mixtures of compounds that contain different sulfation patterns and chain lengths.

Characterization of these structures is challenging and is often described simply in terms of

the percent composition of distinct sulfated disaccharide subunits. Little is known about the

precise linear sequences of GAG polysaccharides, although methods to sequence short

oligosaccharide sequences are becoming available.325–327 Given these challenges, the

synthesis of homogeneous oligosaccharides containing defined sulfation sequences has the

potential to significantly advance our understanding of the structure–activity relationships of

glycosaminoglycans. Here, we will highlight chemical approaches that have helped to

decipher the roles of GAGs in the nervous system and efforts to develop GAG-based

therapeutics for neurodegenerative diseases.

5.4. Synthetic Molecules for Probing Structure–Activity Relationships

As described above, the sulfation patterns of GAGs are important for directing their

neurobiological functions. Although genetic approaches have revealed crucial roles for

GAGs in neural development, such experiments lead to global changes in sulfation

throughout the carbohydrate chain, precluding the identification of specific sulfation motifs

responsible for biological activity. The use of chemically defined small-molecule GAGs has

provided insight into their neurobiological roles and demonstrated the importance of specific

sulfation sequences in mediating GAG functions.

5.4.1. Synthesis of Glycosaminoglycans—Early work on glycosaminoglycans

focused primarily on the synthesis of heparin oligosaccharides.328–336 Heparin has been

used since the 1940s as an antithrombic agent, and a unique heparin pentasaccharide

sequence was discovered in the 1980s as a potent factor Xa inhibitor.298 The first syntheses

of heparin pentasaccharides required over 60 steps, produced heparin in relatively low yield,

and were impractical for the development of synthetic drugs. Since then, the efforts of

multiple laboratories have contributed methods that allow for efficient syntheses of heparin,

HS, and their analogues.337–344

GAGs are notoriously difficult to synthesize, requiring the formation of stereospecific

glycosidic linkages, uronic acid donors and acceptors with low chemical reactivity, and

sophisticated protecting group strategies to effect regioselective sulfation. Heparin, HS, and

DS oligosaccharides also necessitate efficient syntheses of the challenging L-idopyranosyl

sugar. The synthesis of GAGs has been summarized in several excellent reviews (see refs
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337, 344–347) Recently, there has been great interest in generating libraries of sulfated

compounds to probe the role of sulfation and identify biologically active sulfation

motifs.2,285,339,340,342,348 In general, these approaches implement modular, convergent

synthetic strategies that afford multiple sulfated structures from a common disaccharide

synthon and thus minimize the number of steps.

Other strategies have employed chemoenzymatic routes to generate defined GAG

oligosaccharides. Kobayashi and co-workers have capitalized on the promiscuity of

hyaluronidase, an enzyme that normally catalyzes the hydrolysis of chondroitin in vivo, to

effect glycosidic bond formation and generate GAG polymers.349–353 They were able to

demonstrate the efficient polymerization of N-acetylhyalobiuronate [GlcAβ (1–3)GlcNAc]

and N-acetylchondrosine [GlcAβ (1–3)GalNAc] derivatives to form HA and nonsulfated

chondroitin, respectively, as well as unnatural chondroitin analogues.349 DeAngelis and

colleagues have generated chimeric unsulfated GAG oligo- and polysaccharides through the

use of hyaluronan and chondroitin synthases.354 Notably, Rosenberg and co-workers have

developed a chemoenzymatic route toward the synthesis of a specific sulfated HS

pentasaccharide that binds to antithrombin III.355 The authors used a nonsulfated

polysaccharide obtained from E. coli as starting material and synthesized the final product

using six recombinant sulfotransferases. This route achieved the synthesis of the sulfated

structure in just six steps with at least a 2-fold greater yield relative to total chemical

synthesis,356 although it was performed only on a milligram-scale. Thus, chemoenzymatic

synthetic strategies can complement traditional synthetic approaches to provide facile,

efficient methods to generate structurally defined natural and unnatural GAGs.

5.4.2. Effects of HS and DS Molecules on Neuronal Growth—Early studies of

GAG function in the nervous system involved the use of GAGs purified from various

biological sources, such as shark cartilage, bovine kidney, and the surface of tumor

cells.357–360 For example, Prochiantz and Rousselet demonstrated that natural HS

polysaccharides enhance axonal outgrowth, while inhibiting dendrite elongation. In contrast,

DS polysaccharides favor the growth of both axons and dendrites.358 Small-molecule di-

through hexasaccharides derived from HS and DS polysaccharides were found to have

similar effects as the natural polysaccharides, providing the first evidence that the biological

activity of GAGs can be recapitulated in short oligosaccharides.357,358

5.4.3. Neuroactive Small-Molecule Chondroitin Sulfates—Paradoxically, CS has

been shown to both stimulate and inhibit neuronal growth, depending on the cellular

context.361–363 However, the molecules used in those studies were ~200 saccharides in

length, poorly defined, and heterogeneously sulfated. To address whether specific sulfation

patterns were important for neuronal growth, Hsieh-Wilson and colleagues used a modular

strategy to synthesize pure, chemically defined CS-E, CS-C, CS-A, and CS-R

tetrasaccharides (Figure 16).283 Tetrasaccharides bearing the CS-E motif were found to

stimulate the outgrowth of various neuron types, including hippocampal and dopaminergic

neurons.283,285 A tetrasaccharide was found to be the minimal motif required for activity, as

CS-E disaccharides had no effect on neurite outgrowth.285 Furthermore, tetrasaccharides

bearing other prominent CS sulfation patterns found in the brain, such as CS-C and CS-A,
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had no significant growth-promoting activity, underscoring the importance of specific

sulfation patterns in directing CS activity. Notably, the unnatural CS-R motif could not

stimulate neurite outgrowth, despite having the same overall negative charge as CS-E.283

Thus, the precise arrangement of sulfate groups along the carbohydrate backbone is critical

for the growth-promoting activity of CS, rather than nonspecific electrostatic interactions.

Together, these results provide direct evidence for the existence of a “sulfation code” that

dictates the neurobiological functions of CS.

5.5. Carbohydrate Microarrays for Studying GAG–Protein Interactions

Microarray technology has revolutionized the discovery of biological information obtained

from both genomics and proteomics experiments. More recently, the advent of carbohydrate

microarrays has made a similar impact on our understanding of protein–carbohydrate

interactions.283,304,364–376 Carbohydrate microarrays provide a powerful tool for the rapid

interrogation of these interactions in a high-throughput, chip-based format. They have also

allowed for systematic investigations into the role of specific sulfation patterns in mediating

the biological activities of GAGs.

5.5.1. Oligosaccharide Microarrays—As described above, studies using chemically

defined oligosaccharides have implicated a tetrasaccharide bearing the CS-E sulfation motif

as important for neurite outgrowth. To gain insight into the molecular mechanisms

underlying its biological activity, the binding of various CS molecules to a panel of neuronal

growth factors was examined using carbohydrate microarrays.283 CS oligosaccharides were

synthesized with an allyl functionality at the reducing end of the sugar. Ozonolysis, followed

by reaction with 1,2-(bisaminooxy)ethane converted the allyl group to an aminooxy

functionality for rapid conjugation of the oligosaccharides to aldehyde-coated slides.283,374

Robotically printed glass slides were analyzed for the binding of CS-A, CS-C, CS-E, and

CS-R tetrasaccharides to growth factors such as midkine, BDNF, and fibroblast growth

factor-1 (FGF-1). Midkine is a growth factor involved in neural tissue development and

repair,377 whereas BDNF is a neurotrophin involved in nervous system development,

synaptic plasticity, and neurodegenerative disease.378 Both midkine and BDNF were found

to preferentially interact with the CS-E tetrasaccharide over other sulfation motifs. In

contrast, FGF-1 did not interact with any CS molecules, consistent with earlier observations

and further corroborating the method.309,379 Importantly, the novel interactions identified

using these microarrays were validated in cellular assays and demonstrated to be important

for CS-E-mediated neuronal growth. Blocking midkine, BDNF, or their cognate receptors

using selective antibodies inhibited the neurite outgrowth induced by CS-E tetrasaccharides.

These studies illustrate the power of carbohydrate microarrays to elucidate molecular

interactions and mechanisms involving specific GAG sequences.

Seeberger and co-workers have used oligosaccharide microarrays to study the binding of

heparin di-, tetra-, and hexasaccharides to FGF-1 and FGF-2.371,380 Both heparin tetra- and

hexasaccharides were shown to interact with these growth factors, consistent with the

minimum structural requirements known to bind FGF-1 and FGF-2. In the future, it will be

interesting to examine the interactions of a panel of neuronal growth factors with different

sulfated HS analogues and to compare their binding to both sulfated HS and CS molecules.
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5.5.2. Polysaccharide Microarrays—In addition to oligosaccharide microarrays,

polysaccharide microarrays have been developed and exploited for the study of GAG

function. Although the structures of polysaccharides are less well-defined, polysaccharide

microarrays can be readily assembled from commercially available compounds and can

provide valuable information. For instance, such microarrays have revealed key structural

determinants responsible for protein binding, such as the importance of sulfation at specific

positions.283,304,374 They have also enabled rapid comparisons across different protein

families or functional classes, as well as between different GAG subclasses (e.g., HA, HS,

CS, DS, KS), providing a more comprehensive investigation into protein-binding specific-

ity.304 Using polysaccharide microarrays, Shipp and Hsieh-Wilson found HS to interact in a

sulfation-dependent manner with axon guidance proteins, such as Slit2, netrin1, ephrinA1,

ephrinA5, and semaphorin5B.304 Slit2 interacted preferentially with 6-O-sulfated and N-

sulfated HS sequences. Furthermore, the sulfation preferences of Slit2 and netrin1 were

validated in cellular assays using differentially sulfated HS polysaccharides, which were

shown to inhibit Slit- and netrin-mediated axonal guidance and neuronal migration.

Cumulatively, these studies demonstrate the ability of carbohydrate microarray technologies

to distinguish the influence of fine structural details such as sulfation pattern on GAG–

protein interactions. This methodology also provides a powerful platform to rapidly screen

thousands of carbohydrate–protein interactions, which can help to identify the proteins

mediating the biological functions of GAGs and uncover the diverse biological functions

governed by these extraordinary molecules.

5.6. Glycosaminoglycan-Based Therapeutics

Historically, heparin oligo- and polysaccharides are known for their therapeutic value for the

treatment of blood coagulation and deep vein thrombosis (DVT). Studies on a synthetic

sulfated pentasaccharide of heparin have helped to uncover the mechanism of heparin’s

anticoagulant activity and led to development of the drug Arixtra for the treatment of

pulmonary embolism and DVT.337 The development of additional GAG therapeutic

molecules is underway to create potential treatments for cancer metastasis, Alzheimer’s

disease, and axonal regeneration. Here, we review the current literature on GAGs as

potential therapeutic agents for neurodegenerative disorders.

5.6.1. Prion Diseases—Transmissible spongiform encephalopathies are prion diseases

characterized by vacuolation, amyloid plaques containing amyloid fibrils, and neuronal

degeneration. These diseases include scrapie, bovine spongiform encephalitis (also known

as “mad cow disease”), Kuru (human form of transmissible spongiform encephalitis),

Creutzfeldt–Jakob disease (CJD), and Gerstmann–Straussler–Scheinker disease.381 The

prion protein is the main component of amyloid fibrils, which are similar to the β-amyloid

fibrils characteristic of Alzheimer’s disease.382 These proteins generally induce

conformational changes of the protein from α-helix to β-sheet, which leads to aggregation

and formation of plaques.383,384 Thus, molecules that inhibit prion protein aggregation and

plaque formation have potential therapeutic value.

Murrey and Hsieh-Wilson Page 27

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Avila and co-workers have investigated the effects of sulfated polysaccharides (heparin, KS,

and CS), as well as the unsulfated polysaccharide HA, on prion polymerization in vitro.385

Sulfated GAGs led to significant inhibition of prion polymerization through the direct

interaction of these molecules with prion amyloid fibrils. No polymerization inhibition or

neuroprotection was observed with HA, suggesting that sulfation is critical for the observed

activity.385 Interestingly, differentially sulfated GAGs led to different morphologies of the

resulting fibrils. However, the polysaccharides used were from natural sources and thus

contained some degree of heterogeneity. Systematic studies with GAGs of defined length

and sulfation pattern have not yet been performed and may reveal new molecules with

optimal activity as potential treatments for prion diseases.

5.6.2. Alzheimer’s Disease—Glycosaminoglycans have also been investigated as

potential treatments for the pathogenesis and senile dementia associated with Alzheimer’s

disease. HS proteoglycans are believed to promote aggregation of the β-amyloid peptide and

hence contribute to the disease pathogenesis.386–391 In addition, HS has been shown to

protect β-amyloid aggregates from proteolytic degradation392 and microglia phagocytosis in

rodent brains,393,394 resulting in the persistence of amyloid deposits.395 Heparin also

enhances the synthesis, secretion, and cleavage of the β-amyloid precursor protein (APP) in

vitro, suggesting that heparin may contribute to amyloid fibril formation.396 Together, these

studies suggest roles for GAGs in the etiology of Alzheimer’s disease and new potential

avenues for therapeutic treatment.

Low molecular weight (LMW) heparin fragments and heparin disaccharides have been

examined for their ability to affect amyloidogenesis in Alzheimer’s disease. These heparin

fragments, especially heparin disaccharides, inhibit binding of heparin to the β-amyloid

peptide, as well as heparin-stimulated APP secretion in vitro. All LMW fragments used in

these studies were found to cross the blood–brain barrier in an in vitro cell culture model,

whereas passage of polysaccharides was significantly inhibited.397 Injection of LMW

heparins into rat brains has also been shown to attenuate protein toxicity due to tau,398,399 a

microtubule-associated protein whose aggregation is associated with the pathogenesis of

Alzheimer’s disease.400 In addition, LMW heparins attenuate β-amyloid-mediated

neurotoxicity and inflammation.401 Thus, LMW heparin molecules and their derivatives

might be useful therapeutic agents to prevent or slow the progress of amyloidogenesis

associated with Alzheimer’s disease.397,402

Two sulfated LMW glycosaminoglycans and their derivatives are currently in clinical trials

for the treatment of Alzheimer’s disease and senile dementia, and one drug, Ateroid

marketed by Cornelli Consulting, is currently sold in Europe and Asia. Ateroid is mostly

composed of LMW heparin and is used for the treatment of old-age dementia, ischemic

vascular dementia, and multi-infarct dementia. Alzhemed (tramiprosate; 3-amino-1-

propanesulfonic acid) is a small synthetic GAG-based mimetic currently in phase III clinical

trials that inhibits the formation of β-amyloid fibrils.403 Results have been promising from

phase II clinical trials in patients with mild-to-moderate Alzheimer’s disease, suggesting the

potential of such approaches for the treatment of this disorder.
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5.6.3. Future Challenges—Elucidating the molecular mechanisms governing the modes

of glycosaminoglycan action, such as the presence of a “sulfation code”, will greatly

facilitate the development of new therapeutics specifically targeted to treat disorders such as

Alzheimer’s disease. In addition, recently identified glycosaminoglycan mimetics such as

Alzhemed can improve the pharmacokinetic properties of the molecules and create superior

therapeutic agents. Given the scope of the current chemical methodology to study GAGs and

their interactions, GAG-based therapeutic molecules are becoming highly attainable and

may prove effective avenues for the treatment of diseases. As in the case of Arixtra,

understanding the structure–activity relationships of GAGs and the “sulfation code” may

yield molecules with fewer off-target side effects and enhanced therapeutic properties.

6. Summary and Future Directions

The development of new chemical approaches to investigate the biological functions of

carbohydrates has accelerated our understanding of glycan structures and their contributions

to neurobiology, cell signaling, and disease. These studies have revealed crucial roles for

glycans in mediating neuronal growth, adhesion, migration, and regeneration. In addition,

studies have implicated carbohydrates in modulating cell signaling, gene expression, and

synaptic plasticity. As glycans are involved in a myriad of biological functions,

understanding glycan function should continue to provide key insights into the molecular

mechanisms underlying fundamental neurobiological processes. Moreover, our ability to

understand and manipulate such processes using small molecules and glycan mimetics holds

promise for many neurological disorders for which there are currently little or no therapeutic

remedies.

The emergence of chemical technologies for labeling, detection, synthesis, and mimicry are

slowly becoming standard in the field for investigating glycan function, and many of these

tools are now commercially available. The ability to screen high-throughput carbohydrate

microarrays should reveal hundreds of new molecular interactions with growth factors and

other proteins. Such technologies allow the ability to profile oligosaccharide–protein binding

interactions in ways that had only previously been available for protein and DNA

interactions. In addition, these arrays may be useful for diagnostic testing, because many

glycans are dysregulated in various disease states. The ability to chemically tag

oligosaccharides has revolutionized glycoproteomics, and we are just on the cusp of

uncovering a wealth of new information in the coming years in relation to signaling

pathways and disease states. Furthermore, the synthesis of oligosaccharides and glycan

mimetics has revealed detailed information regarding the structure–activity relationships of

glycans and should impact investigations into new drugs or pathways for therapeutic

intervention. Lastly, these versatile chemical tools enable analysis of glycans and

perturbations in glycan function in vivo that until now have been unprecedented. As the

repertoire of chemical tools for investigating glycan functions expands, an increasing

number of oligosaccharide-mediated signaling pathways may be targeted for therapeutic

intervention. The study of glycan structures should also reveal new biomarkers for early

detection of certain diseases, for monitoring disease progression, or for measuring drug

efficacy. We are only at the beginning of what promises to be an exciting new era for the
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field of glycomics, and there are many discoveries and applications still waiting to be

explored.

Acknowledgments

We gratefully acknowledge support from the National Institutes of Health (Grant RO1 GM084724), National

Science Foundation (Grant CHE-0239861), American Cancer Society (Grant RSG-05–106–01-CDD), Tobacco-

Related Disease Research Program (Grant 14RT-0034), and Howard Hughes Medical Institute.

References

1. Becker DJ, Lowe JB. Glycobiology. 2003; 13:41–53.

2. Gama CI, Hsieh-Wilson LC. Curr Opin Chem Biol. 2005; 9:609–619. [PubMed: 16242378]

3. Rampal R, Luther KB, Haltiwanger RS. Curr Mol Med. 2007; 7:427–445. [PubMed: 17584081]

4. Gabius HJ, Andre S, Kaltner H, Siebert HC. Biochim Biophys Acta. 2002; 1572:165–177.

[PubMed: 12223267]

5. Nishihira J. Int J Mol Med. 1998; 2:17–28. [PubMed: 9854138]

6. Apweiler R, Hermjakob H, Sharon N. Biochim Biophys Acta. 1999; 1473:4–8. [PubMed:

10580125]

7. Kleene R, Schachner M. Nat Rev Neurosci. 2004; 5:195–208. [PubMed: 14976519]

8. Rexach JE, Clark PM, Hsieh-Wilson LC. Nat Chem Biol. 2008; 4:97–106. [PubMed: 18202679]

9. Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA. J Biol Chem. 2004; 279:12827–12839.

[PubMed: 14702339]

10. Rudd PM, Merry AH, Wormald MR, Dwek RA. Curr Opin Struct Biol. 2002; 12:578–586.

[PubMed: 12464308]

11. Yamaguchi H. Trends Glycosci Glycotechnol. 2002; 14:139–151.

12. Wells L, Vosseller K, Hart GW. Science. 2001; 291:2376–2378. [PubMed: 11269319]

13. Murrey HE, Gama CI, Kalovidouris SA, Luo WI, Driggers EM, Porton B, Hsieh-Wilson LC. Proc

Natl Acad Sci USA. 2006; 103:21–26. [PubMed: 16373512]

14. Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC. J Am Chem Soc. 2005; 127:1340–1341.

[PubMed: 15686343]

15. Sandi C, Rose SPR, Mileusnic R, Lancashire C. Neuroscience. 1995; 69:1087–1093. [PubMed:

8848097]

16. Salinska E, Bourne RC, Rose SPR. Eur J Neurosci. 2004; 19:3042–3047. [PubMed: 15182312]

17. Welzl H, Stork O. News Physio Sci. 2003; 18:147–150.

18. Murphy KJ, Regan CM. Neuobiol Leran Mem. 1998; 70:73–81.

19. Jaeken J, Matthijs G. Annu Rev Genomics Hum Genet. 2007; 8:261–278. [PubMed: 17506657]

20. Ohtsubo K, Marth JD. Cell. 2006; 126:855–867. [PubMed: 16959566]

21. Best T, Kemps E, Bryan J. Nutr Rev. 2005; 63:409–418. [PubMed: 16466077]

22. Kudo T, Fujii T, Ikegami S, Inokuchi K, Takayama Y, Ikehara Y, Nishihara S, Togayachi A,

Takahashi S, Tachibana K, Yuasa S, Narimatsu H. Glycobiology. 2007; 17:1–9. [PubMed:

16973732]

23. Muramatsu T. J Biochem. 2000; 127:171–176. [PubMed: 10731680]

24. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z. Development. 2005; 132:5055–5068.

[PubMed: 16236767]

25. Di Rocco M, Hennet T, Grubenmann CE, Pagliardini S, Allegri AEM, Frank CG, Aebi M, Vignola

S, Jaeken J. J Inherited Metab Dis. 2005; 28:1162–1164. [PubMed: 16435218]

26. Endo T, Toda T. Biol Pharm Bull. 2003; 26:1641–1647. [PubMed: 14646163]

27. Lowe JB, Marth JD. Annu Rev Biochem. 2003; 72:643–691. [PubMed: 12676797]

28. Marquardt T, Denecke J. Eur J Pediatr. 2003; 162:359–379. [PubMed: 12756558]

29. Schachter H. Cell Mol Life Sci. 2001; 58:1085–1104. [PubMed: 11529501]

Murrey and Hsieh-Wilson Page 30

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



30. Varki NM, Varki A. Lab Invest. 2007; 87:851–857. [PubMed: 17632542]

31. Sato C. Trends Glycosci Glycotechnol. 2004; 16:331–344.

32. Angata T, Varki A. Chem Rev. 2002; 102:439–469. [PubMed: 11841250]

33. Edelman GM. Annu Rev Cell Biol. 1986; 2:81–116. [PubMed: 3548776]

34. Rutishauser U, Landmesser L. Trends Neurosci. 1996; 19:422–427. [PubMed: 8888519]

35. Malykh YN, Schauer R, Shaw L. Biochimie. 2001; 83:623–634. [PubMed: 11522391]

36. Bast RC, Bates S, Bredt AB, Desch CE, Fritsche H, Fues L, Hayes DF, Kemeny NE, Kragen M,

Jessup J, Locker GY, Macdonald JS, Mennel RG, Norton L, Ravdin P, Smith TJ, Taube S, Winn

RJ. J Clin Oncol. 1996; 14:2843–2877. [PubMed: 8874347]

37. Ajioka Y, Allison LJ, Jass JR. J Clin Pathol. 1996; 49:560–564. [PubMed: 8813954]

38. Kalela A, Ponnio M, Koivu TA, Hoyhtya M, Huhtala H, Sillanaukee P, Nikkari ST. Eur J Clin

Invest. 2000; 30:99–104. [PubMed: 10651833]

39. Crocker PR, Hartnell A, Munday J, Nath D. Glycoconjugate J. 1997; 14:601–609.

40. Corfield AP, Williams AJK, Clamp JR, Wagner SA, Mountford RA. Clin Sci. 1988; 74:71–78.

[PubMed: 3338253]

41. Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ. Glycoconjugate J. 2006; 23:19–26.

42. Alexander DA, Dimock K. J Virol. 2002; 76:11265–11272. [PubMed: 12388686]

43. Ciarlet M, Crawford SE, Estes MK. J Virol. 2001; 75:11834–11850. [PubMed: 11689665]

44. Huberman K, Peluso RW, Moscona A. Virology. 1995; 214:294–300. [PubMed: 8525632]

45. Crocker PR, Paulson JC, Varki A. Nat Rev Immunol. 2007; 7:255–266. [PubMed: 17380156]

46. Trapp BD. Ann NY Acad Sci. 1990; 605:29–43. [PubMed: 1702602]

47. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, Debellard ME, Schnaar RL, Mahoney JA, Hartnell

A, Bradfield P, Crocker PR. Curr Biol. 1994; 4:965–972. [PubMed: 7533044]

48. Schachner M, Bartsch U. Glia. 2000; 29:154–165. [PubMed: 10625334]

49. DeBellard ME, Tang S, Mukhopadhyay G, Shen YJ, Filbin MT. Mol Cell Neurosci. 1996; 7:89–

101. [PubMed: 8731478]

50. Filbin MT. Curr Opin Neurobiol. 1995; 5:588–595. [PubMed: 8580710]

51. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT. Neuron. 1994; 13:757–767.

[PubMed: 7522484]

52. Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Bluthmann H, Karthigasan J, Kirschner DA,

Wintergerst ES, Nave KA, Zielasek J, Toyka KV, Lipp HP, Schachner M. Neuron. 1994; 13:229–

246. [PubMed: 7519026]

53. Li CM, Tropak MB, Gerlai R, Clapoff S, Abramownewerly W, Trapp B, Peterson A, Roder J.

Nature. 1994; 369:747–750. [PubMed: 7516497]

54. Crocker PR, Kelm S, Hartnell A, Freeman S, Nath D, Vinson M, Mucklow S. Biochem Soc Trans.

1996; 24:150–156. [PubMed: 8674645]

55. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang JY, Schachner M, Schnaar RL.

Proc Natl Acad Sci USA. 2002; 99:8412–8417. [PubMed: 12060784]

56. Yang LJS, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL. Proc Natl Acad

Sci USA. 1996; 93:814–818. [PubMed: 8570640]

57. Collins BE, Kiso M, Hasegawa A, Tropak MB, Roder JC, Crocker PR, Schnaar RL. J Biol Chem.

1997; 272:16889–16895. [PubMed: 9201997]

58. Sheikh KA, Sun J, Liu YJ, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL. Proc Natl

Acad Sci USA. 1999; 96:7532–7537. [PubMed: 10377449]

59. Chiavegatto S, Sun J, Nelson RJ, Schnaar RL. Exp Neurol. 2000; 166:227–234. [PubMed:

11085888]

60. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer

P, Scheff S, Barthels D, Rajewsky K, Wille W. Nature. 1994; 367:455–459. [PubMed: 8107803]

61. Tomasiewicz H, Ono K, Yee DL, Thompson C, Goridis C, Rutishauser U, Magnuson T. Neuron.

1993; 11:1163–1174. [PubMed: 8274281]

62. Acheson A, Sunshine JL, Rutishauser U. J Cell Biol. 1991; 114:143–153. [PubMed: 2050739]

Murrey and Hsieh-Wilson Page 31

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



63. Bruses JL, Rutishauser U. Biochimie. 2001; 83:635–643. [PubMed: 11522392]

64. Cremer H, Chazal G, Lledo PM, Rougon G, Montaron MF, Mayo W, Le Moal M, Abrous DN. Int

J Dev Neurosci. 2000; 18:213–220. [PubMed: 10715576]

65. Cremer H, Chazal G, Carleton A, Goridis C, Vincent JD, Lledo PM. Proc Natl Acad Sci USA.

1998; 95:13242–13247. [PubMed: 9789073]

66. Seki T, Rutishauser U. J Neurosci. 1998; 18:3757–3766. [PubMed: 9570806]

67. Cremer H, Chazal G, Goridis C, Represa A. Mol Cell Neurosci. 1997; 8:323–335. [PubMed:

9073395]

68. Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ. Neuron. 1996;

17:413–422. [PubMed: 8816705]

69. Becker CG, Artola A, GerardySchahn R, Decker T, Welzl H, Schachner M. J Neurosci Res. 1996;

45:143–152. [PubMed: 8843031]

70. Hu HY, Tomasiewicz H, Magnuson T, Rutishauser U. Neuron. 1996; 16:735–743. [PubMed:

8607992]

71. Uryu K, Butler AK, Chesselet MF. J Comp Neurol. 1999; 405:216–232. [PubMed: 10023811]

72. Butler AK, Uryu K, Chesselet MF. Dev Neurosci. 1998; 20:253–262. [PubMed: 9691199]

73. Wood GK, Liang JJ, Flores G, Sultan A, Quirion R, Srivastava LK. Mol Brain Res. 1997; 51:69–

81. [PubMed: 9427508]

74. Seki T, Arai Y. Neurosci Res. 1993; 17:265–290. [PubMed: 8264989]

75. Kuhn HG, DickinsonAnson H, Gage FH. J Neurosci. 1996; 16:2027–2033. [PubMed: 8604047]

76. Alonso G, Prieto M, Legrand A, Chauvet N. J Comp Neurol. 1997; 384:181–199. [PubMed:

9215717]

77. Theodosis DT, Rougon G, Poulain DA. Proc Natl Acad Sci USA. 1991; 88:5494–5498. [PubMed:

2062831]

78. Yang PF, Yin XH, Rutishauser U. J Cell Biol. 1992; 116:1487–1496. [PubMed: 1541638]

79. Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M. J

Neurosci. 2004; 24:9372–9382. [PubMed: 15496673]

80. Vawter MP, Usen N, Thatcher L, Ladenheim B, Zhang PS, VanderPutten DM, Conant K, Herman

MM, van Kammen DP, Sedvall G, Garver DL, Freed WJ. Exp Neurol. 2001; 172:29–46.

[PubMed: 11681838]

81. Vawter MP. Eur J Pharmacol. 2000; 405:385–395. [PubMed: 11033343]

82. Barbeau D, Liang JJ, Robitaille Y, Quirion R, Srivastava LK. Proc Natl Acad Sci USA. 1995;

92:2785–2789. [PubMed: 7708724]

83. Mikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R. Eur J Neurosci. 1999; 11:1754–

1764. [PubMed: 10215928]

84. Nakanishi S. Neuron. 1994; 13:1031–1037. [PubMed: 7946343]

85. Hammond MSL, Sims C, Parameshwaran K, Suppiramaniam V, Schachner M, Dityatev A. J Biol

Chem. 2006; 281:34859–34869. [PubMed: 16987814]

86. Kelm S, Brossmer R, Isecke R, Gross HJ, Strenge K, Schauer R. Eur J Biochem. 1998; 255:663–

672. [PubMed: 9738906]

87. Strenge K, Schauer R, Bovin N, Hasegawa A, Ishida H, Kiso M, Kelm S. Eur J Biochem. 1998;

258:677–685. [PubMed: 9874234]

88. May AP, Robinson RC, Vinson M, Crocker PR, Jones EY. Mol Cell. 1998; 1:719–728. [PubMed:

9660955]

89. Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. J Biol Chem. 2003;

278:31007–31019. [PubMed: 12773526]

90. Vyas AA, Blixt O, Paulson JC, Schnaar RL. J Biol Chem. 2005; 280:16305–16310. [PubMed:

15701648]

91. Shelke SV, Gao GP, Mesch S, Gathje H, Kelm S, Schwardt O, Ernst B. Bioorg Med Chem. 2007;

15:4951–4965. [PubMed: 17507233]

92. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Adv Drug Delivery Rev. 1997; 23:3–25.

Murrey and Hsieh-Wilson Page 32

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



93. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. J Med Chem. 2002;

45:2615–2623. [PubMed: 12036371]

94. Zhang Y, Zhang XY, Wu DS, Verhaagen J, Richardson PM, Yeh J, Bo XN. Mol Ther. 2007;

15:1796–1804. [PubMed: 17551503]

95. Papastefanaki F, Chen P, Lavdas AA, Thornaidou D, Schachner M, Matsas R. Brain. 2007;

130:2159–2174. [PubMed: 17626035]

96. Brisson JR, Baumann H, Imberty A, Perez S, Jennings HJ. Biochemistry. 1992; 31:4996–5004.

[PubMed: 1376145]

97. Toikka J, Aalto J, Hayrinen J, Pelliniemi LJ, Finne J. J Biol Chem. 1998; 273:28557–28559.

[PubMed: 9786844]

98. Torregrossa P, Buhl L, Bancila M, Durbec P, Schafer C, Schachner M, Rougon G. J Biol Chem.

2004; 279:30707–30714. [PubMed: 15131117]

99. Wieser JR, Heisner A, Stehling P, Oesch F, Reutter W. FEBS Lett. 1996; 395:170–173. [PubMed:

8898088]

100. Kayser H, Ats C, Lehmann J, Reutter W. Experientia. 1993; 49:885–887. [PubMed: 8224106]

101. Kayser H, Geilen CC, Paul C, Zeitler R, Reutter W. FEBS Lett. 1992; 301:137–140. [PubMed:

1568471]

102. Kayser H, Zeitler R, Hoppe B, Reutter W. J Labelled Compd Radiopharm. 1992; 31:711–715.

103. Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W. J Biol Chem. 1992; 267:16934–

16938. [PubMed: 1512235]

104. Fitz W, Wong CH. J Org Chem. 1994; 59:8279–8280.

105. Kosa RE, Gross HJ. Biochem Biophys Res Commun. 1993; 190:914–920. [PubMed: 8439340]

106. Sparks MA, Williams KW, Lukacs C, Schrell A, Priebe G, Spaltenstein A, Whitesides GM.

Tetrahedron. 1993; 49:1–12.

107. Schmidt C, Stehling P, Schnitzer J, Reutter W, Horstkorte R. J Biol Chem. 1998; 273:19146–

19152. [PubMed: 9668100]

108. Câmara J, ffrench-Constant C. J Neurol. 2007; 254(Suppl 1):I15–I22.

109. Cudrici C, Niculescu T, Niculescu F, Shin ML, Rus H. J Rehab Res Dev. 2006; 43:123–131.

110. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Brain. 1999;

122:2279–2295. [PubMed: 10581222]

111. Learish RD, Brustle O, Zhang SC, Duncan ID. Ann Neurol. 1999; 46:716–722. [PubMed:

10553988]

112. delosMonteros AE, Zhao P, Huang C, Pan T, Chang R, Nazarian R, Espejo D, deVellis J. J

Neurosci Res. 1997; 50:872–887. [PubMed: 9418974]

113. Saito M, Kitamura H, Sugiyama K. J Neurochem. 2001; 78:64–74. [PubMed: 11432974]

114. Schmidt C, Ohlemeyer C, Kettenmann H, Reutter W, Horstkorte R. FEBS Lett. 2000; 478:276–

280. [PubMed: 10930582]

115. Sweetnam P, Nestler E, Gallombardo P, Brown S, Duman R, Bracha HS, Tallman J. Mol Brain

Res. 1987; 2:223–233.

116. Sweetnam PM, Tallman JF. Mol Pharmacol. 1986; 29:299–306. [PubMed: 3005837]

117. Buttner B, Kannicht C, Schmidt C, Loster K, Reutter W, Lee HY, Nohring S, Horstkorte R. J

Neurosci. 2002; 22:8869–8875. [PubMed: 12388593]

118. Charter NW, Mahal LK, Koshland DE, Bertozzi CR. J Biol Chem. 2002; 277:9255–9261.

[PubMed: 11786551]

119. Couve A, Kittler JT, Uren JM, Calver AR, Pangalos MN, Walsh FS, Moss SJ. Mol Cell Neurosci.

2001; 17:317–328. [PubMed: 11178869]

120. Gao LY, Gu XB, Yu DS, Yu RK, Zeng GC. Biochem Biophys Res Commun. 1996; 224:103–

107. [PubMed: 8694795]

121. Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE, Bertozzi CR. Science. 2001;

294:380–382. [PubMed: 11598302]

122. Pon RA, Lussier M, Yang QL, Jennings HJ. J Exp Med. 1997; 185:1929–1938. [PubMed:

9166422]

Murrey and Hsieh-Wilson Page 33

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



123. Pon RA, Biggs NJ, Jennings HJ. Glycobiology. 2007; 17:249–260. [PubMed: 17172262]

124. Horstkorte R, Muhlenhoff M, Reutter W, Nohring S, Zimmer-mann-Kordmann M, Gerardy-

Schahn R. Exp Cell Res. 2004; 298:268–274. [PubMed: 15242781]

125. Collins BE, Fralich TJ, Itonori S, Ichikawa Y, Schnaar RL. Glycobiology. 2000; 10:11–20.

[PubMed: 10570219]

126. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL,

Warren ST, Varki A. Proc Natl Acad Sci USA. 1998; 95:11751–11756. [PubMed: 9751737]

127. Collins BE, Yang LJS, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL. J Biol

Chem. 1997; 272:1248–1255. [PubMed: 8995428]

128. Mahal LK, Bertozzi CR. Chem Biol. 1997; 4:415–422. [PubMed: 9224572]

129. Mahal LK, Yarema KJ, Bertozzi CR. Science. 1997; 276:1125–1128. [PubMed: 9173543]

130. Dube DH, Bertozzi CR. Curr Opin Chem Biol. 2003; 7:616–625. [PubMed: 14580567]

131. Jacobs, CL.; Yarema, KJ.; Mahal, LK.; Nauman, DA.; Charters, NW.; Bertozzi, CR. Applications

of Chimeric Genes and Hybrid Proteins Part B, Cell Biology and Physiology. In: Thorner, J.;

Emr, SD.; Abelson, JN., editors. Methods in Enzymology. Academic Press; San Diego, CA:

2000. p. 327

132. Charter NW, Mahal LK, Koshland DE, Bertozzi CR. Glycobiology. 2000; 10:1049–1056.

[PubMed: 11030751]

133. Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, Haltiwanger RS. J Biol Chem. 2000;

275:9604–9611. [PubMed: 10734111]

134. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. J Biol Chem. 1995; 270:4640–4649.

[PubMed: 7876235]

135. Larsen RD, Ernst LK, Nair RP, Lowe JB. Proc Natl Acad Sci USA. 1990; 87:6674–6678.

[PubMed: 2118655]

136. Lowe JB. Baillieres Clin Haematol. 1993; 6:465–492. [PubMed: 8043935]

137. Jork R, Smalla KH, Karsten U, Grecksch G, Ruthrich HL, Matthies H. Neurosci Res Commun.

1991; 8:21–27.

138. Rose SPR, Jork R. Behav Neural Biol. 1987; 48:246–258. [PubMed: 3675519]

139. Kaneko M, Kudo T, Iwasaki H, Ikehara Y, Nishihara S, Nakagawa S, Sasaki K, Shiina T, Inoko

H, Saitou N, Narimatsu H. FEBS Lett. 1999; 452:237–242. [PubMed: 10386598]

140. Natsuka S, Lowe JB. Curr Opin Struct Biol. 1994; 4:683–691.

141. Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang WG, Ko JH, Uozumi N, Li W,

Taniguchi N. Biochim Biophys Acta. 1999; 1473:9–20. [PubMed: 10580126]

142. Nishihara S, Iwasaki H, Kaneko M, Tawada A, Ito M, Narimatsu H. FEBS Lett. 1999; 462:289–

294. [PubMed: 10622713]

143. Luo Y, Koles K, Vorndam W, Haltiwanger RS, Panin VM. J Biol Chem. 2006; 281:9393–9399.

[PubMed: 16464857]

144. Wang Y, Shao L, Shi SL, Harris RJ, Spellman MW, Stanley P, Haltiwanger RS. J Biol Chem.

2001; 276:40338–40345. [PubMed: 11524432]

145. Springer TA. Cell. 1994; 76:301–314. [PubMed: 7507411]

146. Lowe JB. Kidney Int. 1997; 51:1418–1426. [PubMed: 9150453]

147. Hooper LV, Gordon JI. Glycobiology. 2001; 11:1R–10R. [PubMed: 11181556]

148. Guruge JL, Falk PG, Lorenz RG, Dans M, Wirth HP, Blaser MJ, Berg DE, Gordon JI. Proc Natl

Acad Sci USA. 1998; 95:3925–3930. [PubMed: 9520469]

149. Li YX, Li L, Irvine KD, Baker NE. Development. 2003; 130:2829–2840. [PubMed: 12756168]

150. Sasamura T, Sasaki N, Miyashita F, Nakao S, Ishikawa HO, Ito M, Kitagawa M, Harigaya K,

Spana E, Bilder D, Perrimon N, Matsuno K. Development. 2003; 130:4785–4795. [PubMed:

12917292]

151. Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, Tennant BC, London

WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta AS. Proc Natl Acad Sci USA. 2005;

102:779–784. [PubMed: 15642945]

Murrey and Hsieh-Wilson Page 34

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



152. Wang JW, Ambros RA, Weber PB, Rosano TG. Cancer Res. 1995; 55:3654–3658. [PubMed:

7627975]

153. Yazawa S, Nakamura J, Asao T, Nagamachi Y, Sagi M, Matta KL, Tachikawa T, Akamatsu M.

Jpn J Cancer Res. 1993; 84:989–995. [PubMed: 8407568]

154. Thompson S, Dargan E, Turner GA. Cancer Lett. 1992; 66:43–48. [PubMed: 1451094]

155. Lowe JB. Curr Opin Cell Biol. 2003; 15:531–538. [PubMed: 14519387]

156. Vestweber D, Blanks JE. Physiol Rev. 1999; 79:181–213. [PubMed: 9922371]

157. Butcher EC, Picker LJ. Science. 1996; 272:60–66. [PubMed: 8600538]

158. Listinsky JJ, Siegal GP, Listinsky CM. Am J Clin Pathol. 1998; 110:425–440. [PubMed:

9763028]

159. Macartney JC. J Pathol. 1987; 152:23–30. [PubMed: 3625392]

160. Kim YJ, Borsig L, Varki NM, Varki A. Proc Natl Acad Sci USA. 1998; 95:9325–9330. [PubMed:

9689079]

161. Orntoft TF, Vestergaard EM. Electrophoresis. 1999; 20:362–371. [PubMed: 10197444]

162. Kim YJ, Varki A. Glycoconjugate J. 1997; 14:569–576.

163. Miyake M, Taki T, Hitomi S, Hakomori S. N Engl J Med. 1992; 327:14–18. [PubMed: 1317941]

164. Yakubenia S, Wild MK. FEBS J. 2006; 273:4390–4398. [PubMed: 16956371]

165. Artavanis-Tsakonas S, Rand MD, Lake RJ. Science. 1999; 284:770–776. [PubMed: 10221902]

166. Rampal R, Arboleda-Velasquez JF, Nita-Lazar A, Kosik KS, Haltiwanger RS. J Biol Chem.

2005; 280:32133–32140. [PubMed: 15994302]

167. Lei L, Xu AG, Panin VM, Irvine KD. Development. 2003; 130:6411–6421. [PubMed: 14627724]

168. Haines N, Irvine KD. Nat Rev Mol Cell Biol. 2003; 4:786–797. [PubMed: 14570055]

169. Okajima T, Irvine KD. Cell. 2002; 111:893–904. [PubMed: 12526814]

170. Louvi A, Artavanis-Tsakonas S. Nat Rev Neurosci. 2006; 7:93–102. [PubMed: 16429119]

171. Lu, LC.; Stanley, P. Functional Glycomics. In: Fukuda, M., editor. Methods in Enzymology. Vol.

417. Elsevier; Amsterdam: 2006.

172. Shi SL, Stanley P. Proc Natl Acad Sci USA. 2003; 100:5234–5239. [PubMed: 12697902]

173. Sukumar R, Rose SPR, Burgoyne RD. J Neurochem. 1980; 34:1000–1006. [PubMed: 7359125]

174. McCabe NR, Rose SPR. Neurochem Res. 1985; 10:1083–1095. [PubMed: 4058654]

175. Pohle W, Acosta L, Ruthrich H, Krug M, Matthies H. Brain Res. 1987; 410:245–256. [PubMed:

3594237]

176. Bullock S, Rose SPR, Zamani R. J Neurochem. 1992; 58:2145–2154. [PubMed: 1573396]

177. Krug M, Wagner M, Staak S, Smalla KH. Brain Res. 1994; 643:130–135. [PubMed: 7518325]

178. Matthies H, Staak S, Krug M. Brain Res. 1996; 725:276–280. [PubMed: 8836537]

179. Zanetta JP, Reeber A, Vincendon G, Gombos G. Brain Res. 1977; 138:317–328. [PubMed:

589479]

180. Krusius T, Finne J. Eur J Biochem. 1977; 78:369–379. [PubMed: 913404]

181. Taniguchi T, Adler AJ, Mizuochi T, Kochibe N, Kobata A. J Biol Chem. 1986; 261:1730–1736.

[PubMed: 3944106]

182. Matsui Y, Lombard D, Massarelli R, Mandel P, Dreyfus H. J Neurochem. 1986; 46:144–150.

[PubMed: 3940275]

183. Popov N, Schmidt S, Schulzeck S, Jork R, Lossner B, Matthies H. Pharmacol, Biochem Behav.

1983; 19:43–47. [PubMed: 6312462]

184. Gardiol A, Racca C, Triller A. J Neurosci. 1999; 19:168–179. [PubMed: 9870948]

185. Torre ER, Sterward O. J Neurosci. 1996; 16:5967–5978. [PubMed: 8815879]

186. Bullock S, Potter J, Rose SPR. J Neurochem. 1990; 54:135–142. [PubMed: 2403432]

187. Lorenzini CGA, Baldi E, Bucherelli C, Sacchetti B, Tassoni G. Neurobiol Learn Mem. 1997;

68:317–324. [PubMed: 9398591]

188. Matthies H, Staak S, Krug M. Brain Res. 1996; 725:276–280. [PubMed: 8836537]

189. Krug M, Jork R, Reymann K, Wagner M, Matthies H. Brain Res. 1991; 540:237–242. [PubMed:

2054616]

Murrey and Hsieh-Wilson Page 35

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



190. Karsten U, Pilgrim G, Hanisch FG, Uhlenbruck G, Kasper M, Stosiek P, Papsdorf G, Pasternak

G. Br J Cancer. 1988; 58:176–181. [PubMed: 2458750]

191. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P. Philos Trans R Soc.

1999; 354:269–279.

192. Ferreira A, Li L, Chin LS, Greengard P, Kosik KS. Mol Cell Neurosci. 1996; 8:286–299.

[PubMed: 9026316]

193. Rabuka D, Hubbard SC, Laughlin ST, Argade SP, Bertozzi CR. J Am Chem Soc. 2006;

128:12078–12079. [PubMed: 16967952]

194. Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH. Proc Natl Acad Sci U S

A. 2006; 103:12371–12376. [PubMed: 16895981]

195. Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH. Proc Natl Acad Sci U S A.

2007; 104:2614–2619. [PubMed: 17296930]

196. Trachtenberg JT, Chen BE, Knott GW, Feng GP, Sanes JR, Welker E, Svoboda K. Nature. 2002;

420:788–794. [PubMed: 12490942]

197. Luscher C, Nicoll RA, Malenka RC, Muller D. Nat Neurosci. 2000; 3:545–550. [PubMed:

10816309]

198. Hanover JA. FASEB J. 2001; 15:1865–1876. [PubMed: 11532966]

199. Slawson C, Hart GW. Curr Opin Struct Biol. 2003; 13:631–636. [PubMed: 14568619]

200. Hart GW, Housley MP, Slawson C. Nature. 2007; 446:1017–1022. [PubMed: 17460662]

201. Slawson C, Housley MP, Hart GW. J Cell Biochem. 2006; 97:71–83. [PubMed: 16237703]

202. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC. Proc Natl Acad Sci USA. 2004;

101:13132–13137. [PubMed: 15340146]

203. Comer FI, Hart GW. Biochim Biophys Acta. 1999; 1473:161–171. [PubMed: 10580136]

204. Wells L, Hart GW. FEBS Lett. 2003; 546:154–158. [PubMed: 12829252]

205. Wells L, Whalen SA, Hart GW. Biochem Biophys Res Commun. 2003; 302:435–441. [PubMed:

12615051]

206. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. J Biol Chem. 2004;

279:30133–30142. [PubMed: 15138254]

207. Wells L, Vosseller K, Hart GW. Cell Mol Life Sci. 2003; 60:222–228. [PubMed: 12678487]

208. Zachara NE, Hart GW. Biochim Biophys Acta. 2004; 1673:13–28. [PubMed: 15238246]

209. Fulop N, Marchase RB, Chatham JC. Cardiovasc Res. 2007; 73:288–297. [PubMed: 16970929]

210. Parker GJ, Lund KC, Taylor RP, McClain DA. J Biol Chem. 2003; 278:10022–10027. [PubMed:

12510058]

211. Dias WB, Hart GW. Mol BioSyst. 2007; 3:766–772. [PubMed: 17940659]

212. Arnold CS, Hart GW. Trends Glycosci Glycotechnol. 1999; 11:355–370.

213. Yao PJ, Coleman PD. Neurosci Lett. 1998; 252:33–36. [PubMed: 9756352]

214. Yao PJ, Coleman PD. J Neurosci. 1998; 18:2399–2411. [PubMed: 9502801]

215. Griffith LS, Schmitz B. Biochem Biophys Res Commun. 1995; 213:424–431. [PubMed:

7646495]

216. Ballatore C, Lee VMY, Trojanowski JQ. Nat Rev Neurosci. 2007; 8:663–672. [PubMed:

17684513]

217. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. Proc Natl Acad Sci USA. 2004;

101:10804–10809. [PubMed: 15249677]

218. Robertson LA, Moya KL, Breen KC. J Alzheimer’s Dis. 2004; 6:489–495. [PubMed: 15505370]

219. Iyer SPN, Hart GW. Biochemistry. 2003; 42:2493–2499. [PubMed: 12614143]

220. Cole RN, Hart GW. J Neurochem. 2001; 79:1080–1089. [PubMed: 11739622]

221. Shafi R, Lyer SPN, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD. Proc Natl

Acad Sci USA. 2000; 97:5735–5739. [PubMed: 10801981]

222. O’Donnell N, Zachara NE, Hart GW, Marth JD. Mol Cell Biol. 2004; 24:1680–1690. [PubMed:

14749383]

Murrey and Hsieh-Wilson Page 36

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



223. Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters

EC, Hsieh-Wilson LC. Nat Chem Biol. 2007; 3:339–348. [PubMed: 17496889]

224. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan

S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL. Mol Cell Proteomics. 2006;

5:923–34. [PubMed: 16452088]

225. Cole RN, Hart GW. J Neurochem. 1999; 73:418–428. [PubMed: 10386995]

226. Luthi T, Haltiwanger RS, Greengard P, Bahler M. J Neurochem. 1991; 56:1493–1498. [PubMed:

1901592]

227. Arnold CS, Johnson GVW, Cole RN, Dong DLY, Lee M, Hart GW. J Biol Chem. 1996;

271:28741–28744. [PubMed: 8910513]

228. Roquemore EP, Chou TY, Hart GW. Methods Enzymol. 1994; 230:443–460. [PubMed: 8139512]

229. Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW. Anal Biochem. 2001; 293:169–177.

[PubMed: 11399029]

230. Snow CM, Senior A, Gerace L. J Cell Biol. 1987; 104:1143–1156. [PubMed: 2437126]

231. Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B,

Qasba PK, Hsieh-Wilson LC. J Am Chem Soc. 2003; 125:16162–16163. [PubMed: 14692737]

232. Ramakrishnan B, Qasba PK. J Biol Chem. 2002; 277:20833–20839. [PubMed: 11916963]

233. Tai HC, Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC. J Am Chem Soc. 2004;

126:10500–10501. [PubMed: 15327282]

234. Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, Zuniga A, Schwarz K,

Bonhoeffer T, Zeller R, Frotscher M, Mundel P. Proc Natl Acad Sci USA. 2003; 100:10494–

10499. [PubMed: 12928494]

235. Vazquez LE, Chen HJ, Sokolova I, Knuesel I, Kennedy MB. J Neurosci. 2004; 24:8862–8872.

[PubMed: 15470153]

236. Sala C, Piech V, Wilson NR, Passafaro M, Liu GS, Sheng M. Neuron. 2001; 31:115–130.

[PubMed: 11498055]

237. Israely I, Costa RM, Xie CW, Silva AJ, Kosik KS, Liu X. Curr Biol. 2004; 14:1657–1663.

[PubMed: 15380068]

238. Zhang M, Wang W. Acc Chem Res. 2003; 36:530–538. [PubMed: 12859214]

239. Hsieh-Wilson, LC.; Khidekel, N.; Arndt, SE.; Tai, H-C. Method and compositions for the

detection of protein glycosylation. U.S. Patent Application 20050130235. 2005.

240. Clark PM, Dweck JF, Mason DE, Hart C, Peters EC, Agnew BJ, Hsieh-Wilson LC. Unpublished

results.

241. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR. Proc Natl Acad Sci USA. 2003;

100:9116–9121. [PubMed: 12874386]

242. Lubas WA, Smith M, Starr CM, Hanover JA. Biochemistry. 1995; 34:1686–1694. [PubMed:

7849028]

243. Nandi A, Sprung R, Barma DK, Zhao YX, Kim SC, Falck JR, Zhao YM. Anal Chem. 2006;

78:452–458. [PubMed: 16408927]

244. Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, Zhao YM. J Proteome Res. 2005;

4:950–957. [PubMed: 15952742]

245. Dube DH, Prescher JA, Quang CN, Bertozzi CR. Proc Natl Acad Sci USA. 2006; 103:4819–

4824. [PubMed: 16549800]

246. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mol Cell Proteomics.

2002; 1:791–804. [PubMed: 12438562]

247. Downs F, Herp A, Moschera J, Pigman W. Biochim Biophys Acta. 1973; 328:182–192.

[PubMed: 4796927]

248. Bertolini M, Pigman W. J Biol Chem. 1967; 242:3776. [PubMed: 6037543]

249. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Proc Natl Acad Sci USA. 2004;

101:9528–9533. [PubMed: 15210983]

250. Golks A, Tran TTT, Goetschy JF, Guerini D. EMBO J. 2007; 26:4368–4379. [PubMed:

17882263]

Murrey and Hsieh-Wilson Page 37

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



251. Roquemore EP, Chevrier MR, Cotter RJ, Hart GW. Biochemistry. 1996; 35:3578–3586.

[PubMed: 8639509]

252. Liu K, Paterson AJ, Chin E, Kudlow JE. Proc Natl Acad Sci USA. 2000; 97:2820–2825.

[PubMed: 10717000]

253. Rex-Mathes M, Werner S, Strutas D, Griffith LS, Viebahn C, Thelen K, Schmitz B. Biochimie.

2001; 83:583–590. [PubMed: 11522386]

254. Marshall S, Bacote V, Traxinger RR. J Biol Chem. 1991; 266:4706–4712. [PubMed: 2002019]

255. Griffith LS, Schmitz B. Eur J Biochem. 1999; 262:824–831. [PubMed: 10411645]

256. Buse MG. Am J Phys-Endocrinol Metab. 2006; 290:E1–E8.

257. McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC, Hanover JA. Proc Natl

Acad Sci USA. 2002; 99:10695–10699. [PubMed: 12136128]

258. Carrillo LD, Krishnamoorthy L, Mahal LK. J Am Chem Soc. 2006; 128:14768–14769. [PubMed:

17105262]

259. Thiel G, Cibelli G. J Cell Physiol. 2002; 193:287–292. [PubMed: 12384981]

260. Jones MW, Errington ML, French PJ, Fine A, Bliss TVP, Garel S, Charnay P, Bozon B, Laroche

S, Davis S. Nat Neurosci. 2001; 4:289–296. [PubMed: 11224546]

261. Ong SE, Mittler G, Mann M. Nat Methods. 2004; 1:119–126. [PubMed: 15782174]

262. Wang Z, Pandey A, Hart GW. Mol Cell Proteomics. 2007; 6:1365–1379. [PubMed: 17507370]

263. Gould TD, Manji HK. Neuropsychopharmacology. 2005; 30:1223–1237. [PubMed: 15827567]

264. Doble BW, Woodgett JR. J Cell Sci. 2003; 116:1175–1186. [PubMed: 12615961]

265. Lee TN, Alborn WE, Knierman MD, Konrad RJ. Biochem Biophys Res Commun. 2006;

350:1038–1043. [PubMed: 17045574]

266. Meglasson MD, Burch PT, Berner DK, Najafi H, Matschinsky FM. Diabetes. 1986; 35:1163–

1173. [PubMed: 3530846]

267. Szkudelski T. Physiol Res. 2001; 50:537–546. [PubMed: 11829314]

268. Gross BJ, Kraybill BC, Walker S. J Am Chem Soc. 2005; 127:14588–14589. [PubMed:

16231908]

269. Kim EJ, Perreira M, Thomas CJ, Hanover JA. J Am Chem Soc. 2006; 128:4234–4235. [PubMed:

16568991]

270. Stubbs KA, Zhang N, Vocadlo DJ. Org Biomol Chem. 2006; 4:839–845. [PubMed: 16493467]

271. Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DMF. J Am

Chem Soc. 2006; 128:16484–16485. [PubMed: 17177381]

272. Knapp S, Abdo M, Ajayi K, Huhn RA, Emge TJ, Kim EJ, Hanover JA. Org Lett. 2007; 9:2321–

2324. [PubMed: 17508759]

273. Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ. J Biol Chem. 2005;

280:25313–25322. [PubMed: 15795231]

274. Barrow RT, Parker ET, Krishnaswamy S, Lollar P. J Biol Chem. 1994; 269:26796–26800.

[PubMed: 7929416]

275. Bourin MC, Lindahl U. Biochem J. 1993; 289:313–330. [PubMed: 8380990]

276. Iozzo RV. Nat Rev Mol Cell Biol. 2005; 6:646–656. [PubMed: 16064139]

277. Casu B, Guerrini M, Naggi A, Perez M, Torri G, Ribatti D, Carminati P, Giannini G, Penco S,

Pisano C, Belleri M, Rusnati M, Presta M. Biochemistry. 2002; 41:10519–10528. [PubMed:

12173939]

278. Iozzo RV, San Antonio JD. J Clin Invest. 2001; 108:349–355. [PubMed: 11489925]

279. Liu DF, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R. Proc Natl Acad Sci USA.

2002; 99:568–573. [PubMed: 11805315]

280. Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, Nadji M,

Lokeshwar BL. J Biol Chem. 2001; 276:11922–11932. [PubMed: 11278412]

281. Denholm EM, Lin YQ, Silver PJ. Eur J Pharmacol. 2001; 416:213–221. [PubMed: 11290371]

282. Bovolenta P, Fernaud-Espinosa I. Prog Neurobiol. 2000; 61:113–132. [PubMed: 10704995]

283. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, Nishi A, Hsieh-

Wilson LC. Nat Chem Biol. 2006; 2:467–473. [PubMed: 16878128]

Murrey and Hsieh-Wilson Page 38

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



284. Schwartz NB, Domowicz M. Glycoconjugate J. 2004; 21:329–341.

285. Tully SE, Mabon R, Gama CI, Tsai SM, Liu XW, Hsieh-Wilson LC. J Am Chem Soc. 2004;

126:7736–7737. [PubMed: 15212495]

286. Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB, Bradbury EJ. J

Neurosci. 2006; 26:10856–10867. [PubMed: 17050723]

287. Yick LW, Wu WT, So KF, Yip HK, Shum DKY. Neuroreport. 2000; 11:1063–1067. [PubMed:

10790883]

288. Gorio A, Vergani L, Lesma E, Di Giulio AM. J Neurosci Res. 1998; 51:559–562. [PubMed:

9511999]

289. Hacker U, Nybakken K, Perrimon N. Nat Rev Mol Cell Biol. 2005; 6:530–541. [PubMed:

16072037]

290. Lin XH. Development. 2004; 131:6009–6021. [PubMed: 15563523]

291. Perrimon N, Bernfield M. Nature. 2000; 404:725–728. [PubMed: 10783877]

292. Sugahara K, Kitagawa H. IUBMB Life. 2002; 54:163–175. [PubMed: 12512855]

293. Silbert JE, Sugumaran G. IUBMB Life. 2002; 54:177–186. [PubMed: 12512856]

294. Schwartz NB. Front Biosci. 2000; 5:D649–D655. [PubMed: 10877997]

295. Margolis RK, Margolis RU. Experientia. 1993; 49:429–446. [PubMed: 8500598]

296. Sasisekharan R, Raman R, Prabhakar V. Annu Rev Biomed Eng. 2006; 8:181–231. [PubMed:

16834555]

297. Itano N, Kimata K. IUBMB Life. 2002; 54:195–199. [PubMed: 12512858]

298. Capila I, Linhardt RJ. Angew Chem, Int Ed. 2002; 41:391–412.

299. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ,

Mohammadi M. Mol Cell. 2000; 6:743–750. [PubMed: 11030354]

300. Millane RP, Mitra AK, Arnott S. J Mol Biol. 1983; 169:903–920. [PubMed: 6415288]

301. Li FC, Shetty AK, Sugahara K. J Biol Chem. 2007; 282:2956–2966. [PubMed: 17145750]

302. Noti C, de Paz JL, Polito L, Seeberger PH. Chem– Eur J. 2006; 12:8664–8686. [PubMed:

17066397]

303. Bao XF, Muramatsu T, Sugahara K. J Biol Chem. 2005; 280:35318–35328. [PubMed: 16120610]

304. Shipp EL, Hsieh-Wilson LC. Chem Biol. 2007; 14:195–208. [PubMed: 17317573]

305. Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K. J Biol Chem. 2004;

279:12346–12354. [PubMed: 14707131]

306. Faham S, Linhardt RJ, Rees DC. Curr Opin Struct Biol. 1998; 8:578–586. [PubMed: 9818261]

307. Ostrovsky O, Berman B, Gallagher J, Mulloy B, Fernig DG, Delehedde M, Ron D. J Biol Chem.

2002; 277:2444–2453. [PubMed: 11714710]

308. Raman R, Venkataraman G, Ernst S, Sasisekharan V, Sasisekha-ran R. Proc Natl Acad Sci USA.

2003; 100:2357–2362. [PubMed: 12604799]

309. Brickman YG, Ford MD, Gallagher JT, Nurcombe V, Bartlett PF, Turnbull JE. J Biol Chem.

1998; 273:4350–4359. [PubMed: 9468484]

310. Kitagawa H, Tsutsumi K, Tone Y, Sugahara K. J Biol Chem. 1997; 272:31377–31381. [PubMed:

9395468]

311. Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P. J Neuro-biol. 1996; 30:410–424.

312. Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, ten Dam GB,

Furukawa Y, Mikami T, Sugahara K, Toida T, Geller HM, Fawcett JW. Eur J Neurosci. 2005;

21:378–390. [PubMed: 15673437]

313. Liang Y, Annan RS, Carr SK, Popp S, Mevissen M, Margolis RK, Margolis RU. J Biol Chem.

1999; 274:17885–17892. [PubMed: 10364234]

314. Ronca F, Andersen JS, Paech V, Margolis RU. J Biol Chem. 2001; 276:29141–29147. [PubMed:

11375980]

315. Hu HY. Nat Neurosci. 2001; 4:695–701. [PubMed: 11426225]

316. Bulow HE, Hobert O. Neuron. 2004; 41:723–736. [PubMed: 15003172]

317. Yamaguchi Y. Cell Mol Life Sci. 2000; 57:276–289. [PubMed: 10766023]

Murrey and Hsieh-Wilson Page 39

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



318. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Trends Neurosci. 1998; 21:510–514.

[PubMed: 9881847]

319. Snow DM, Mullins N, Hynds DL. Microsc Res Technol. 2001; 54:273–286.

320. Niederost BP, Zimmermann DR, Schwab ME, Bandtlow CE. J Neurosci. 1999; 19:8979–8989.

[PubMed: 10516316]

321. Steinmetz MP, Horn KP, Tom VJ, Miller JH, Busch SA, Nair D, Silver DJ, Silver J. J Neurosci.

2005; 25:8066–8076. [PubMed: 16135764]

322. Sango K, Oohira A, Ajiki K, Tokashiki A, Horie M, Kawano H. Exp Neurol. 2003; 182:1–11.

[PubMed: 12821372]

323. Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB.

Nature. 2002; 416:636–640. [PubMed: 11948352]

324. Moon LDF, Asher RA, Rhodes KE, Fawcett JW. Nat Neurosci. 2001; 4:465–466. [PubMed:

11319553]

325. Thanawiroon C, Rice KG, Toida T, Linhardt RJ. J Biol Chem. 2004; 279:2608–2615. [PubMed:

14610083]

326. Saad OM, Leary JA. Anal Chem. 2003; 75:2985–2995. [PubMed: 12964742]

327. Kinoshita A, Sugahara K. Anal Biochem. 1999; 269:367–378. [PubMed: 10222012]

328. Petitou M, Duchaussoy P, Driguez PA, Jaurand G, Herault JP, Lormeau JC, van Boeckel CAA,

Herbert JM. Angew Chem, Int Ed Engl. 1998; 37:3009–3014.

329. Helmboldt A, Petitou M, Mallet JM, Herault JP, Lormeau JC, Driguez PA, Herbert JM, Sinay P.

Bioorg Med Chem Lett. 1997; 7:1507–1510.

330. Chiba T, Jacquinet JC, Sinay P, Petitou M, Choay J. Carbohydr Res. 1988; 174:253–264.

331. Petitou M, Duchaussoy P, Lederman I, Choay J, Jacquinet JC, Sinay P, Torri G. Carbohydr Res.

1987; 167:67–75. [PubMed: 3690577]

332. Petitou M, Duchaussoy P, Lederman I, Choay J, Sinay P, Jacquinet JC, Torri G. Carbohydr Res.

1986; 147:221–236. [PubMed: 3708627]

333. Jacquinet JC, Petitou M, Duchaussoy P, Lederman I, Choay J, Torri G, Sinay P. Carbohydr Res.

1984; 130:221–241.

334. Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, Gatti G. Biochem Biophys Res Commun.

1983; 116:492–499. [PubMed: 6651824]

335. Poletti L, Fleischer M, Vogel C, Guerrini M, Torri G, Lay L. Eur J Org Chem. 2001:2727–2734.

336. Van Boeckel CAA, Beetz T, Vos JN, Dejong AJM, Van Aelst SF, Van Den Bosch RH, Mertens

JMR, Van Der Vlugt FA. J Carbohydr Chem. 1985; 4:293–321.

337. Petitou M, van Boeckel CAA. Angew Chem, Int Ed. 2004; 43:3118–3133.

338. Haller M, Boons GJ. J Chem Soc, Perkin Trans 1. 2001:814–822.

339. de Paz JL, Ojeda R, Reichardt N, Martin-Lomas M. Eur J Org Chem. 2003:3308–3324.

340. Orgueira HA, Bartolozzi A, Schell P, Litjens R, Palmacci ER, Seeberger PH. Chem– Eur J. 2003;

9:140–169. [PubMed: 12506372]

341. Lohman GJS, Seeberger PH. J Org Chem. 2004; 69:4081–4093. [PubMed: 15176833]

342. Angulo J, Ojeda R, de Paz JL, Lucas R, Nieto PM, Lozano RM, Redondo-Horcajo M, Gimenez-

Gallego G, Martin-Lomas M. ChemBioChem. 2004; 5:55–61. [PubMed: 14695513]

343. Codee JDC, Stubba B, Schiattarella M, Overkleeft HS, van Boeckel CAA, van Boom JH, van der

Marel GA. J Am Chem Soc. 2005; 127:3767–3773. [PubMed: 15771511]

344. Seeberger PH, Werz DB. Nature. 2007; 446:1046–1051. [PubMed: 17460666]

345. Noti C, Seeberger PH. Chem Biol. 2005; 12:731–756. [PubMed: 16039522]

346. Karst NA, Linhardt RJ. Curr Med Chem. 2003; 10:1993–2031. [PubMed: 12871100]

347. Poletti L, Lay L. Eur J Org Chem. 2003:2999–3024.

348. Gavard O, Hersant Y, Alais J, Duverger V, Dilhas A, Bascou A, Bonnaffe D. Eur J Org Chem.

2003:3603–3620.

349. Kobayashi S, Fujikawa S, Ohmae M. J Am Chem Soc. 2003; 125:14357–14369. [PubMed:

14624584]

Murrey and Hsieh-Wilson Page 40

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



350. Kobayashi S, Itoh R, Morii H, Fujikawa SI, Kimura S, Ohmae M. J Polym Sci. 2003; 41:3541–

3548.

351. Kobayashi S, Morii H, Ito R, Ohmae M. Macromol Symp. 2002; 183:127–132.

352. Kobayashi S, Uyama H, Kimura S. Chem Rev. 2001; 101:3793–3818. [PubMed: 11740921]

353. Kobayashi S, Morii H, Itoh R, Kimura S, Ohmae M. J Am Chem Soc. 2001; 123:11825–11826.

[PubMed: 11716751]

354. Tracy BS, Avci FY, Linhardt RJ, DeAngelis PL. J Biol Chem. 2007; 282:337–344. [PubMed:

17099217]

355. Kuberan B, Lech MZ, Beeler DL, Wu ZLL, Rosenberg RD. Nat Biotechnol. 2003; 21:1343–

1346. [PubMed: 14528313]

356. Sinay P, Jacquinet JC, Petitou M, Duchaussoy P, Lederman I, Choay J, Torri G. Carbohydr Res.

1984; 132:C5–C9.

357. Lafont F, Prochiantz A, Valenza C, Petitou M, Pascal M, Rouget M, Rousselet A. Dev Biol.

1994; 165:453–468. [PubMed: 7958413]

358. Lafont F, Rouget M, Triller A, Prochiantz A, Rousselet A. Development. 1992; 114:17. [PubMed:

1576957]

359. Kitagawa H, Tanaka Y, Tsuchida K, Goto F, Ogawa T, Lidholt K, Lindahl U, Sugahara K. J Biol

Chem. 1995; 270:22190–22195. [PubMed: 7673197]

360. Sugahara K, Masuda M, Harada T, Yamashina I, Dewaard P, Vliegenthart JFG. Eur J Biochem.

1991; 202:805–811. [PubMed: 1765094]

361. Nadanaka S, Clement A, Masayama K, Faissner A, Sugahara K. J Biol Chem. 1998; 273:3296–

3307. [PubMed: 9452446]

362. Dou CL, Levine JM. J Neurosci. 1995; 15:8053–8066. [PubMed: 8613742]

363. Brittis PA, Canning DR, Silver J. Science. 1992; 255:733–736. [PubMed: 1738848]

364. Zhi ZL, Powell AK, Turnbull JE. Anal Chem. 2006; 78:4786–4793. [PubMed: 16841896]

365. Carion O, Lefebvre J, Dubreucq G, Dahri-Correia L, Correia J, Melnyk O. ChemBioChem. 2006;

7:817–826. [PubMed: 16550626]

366. Huang CY, Thayer DA, Chang AY, Best MD, Hoffmann J, Head S, Wong CH. Proc Natl Acad

Sci USA. 2006; 103:15–20. [PubMed: 16373501]

367. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D,

Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin

N, Wong CH, Paulson JC. Proc Natl Acad Sci USA. 2004; 101:17033–17038. [PubMed:

15563589]

368. Adams EW, Ratner DM, Bokesch HR, McMahon JB, O’Keefe BR, Seeberger PH. Chem Biol.

2004; 11:875–881. [PubMed: 15217620]

369. Fukui S, Feizi T, Galustian C, Lawson AM, Chai WG. Nat Biotechnol. 2002; 20:1011–1017.

[PubMed: 12219077]

370. Houseman BT, Mrksich M. Chem Biol. 2002; 9:443–454. [PubMed: 11983333]

371. de Paz JL, Noti C, Seeberger PH. J Am Chem Soc. 2006; 128:2766–2767. [PubMed: 16506732]

372. Feizi T, Fazio F, Chai W, Wong CH. Curr Opin Struct Biol. 2003; 13:637–645. [PubMed:

14568620]

373. Park S, Lee MR, Pyo SJ, Shin I. J Am Chem Soc. 2004; 126:4812–4819. [PubMed: 15080685]

374. Tully SE, Rawat M, Hsieh-Wilson LC. J Am Chem Soc. 2006; 128:7740–7741. [PubMed:

16771479]

375. Disney MD, Seeberger PH. Chem Biol. 2004; 11:1701–1707. [PubMed: 15610854]

376. Wang DN, Liu SY, Trummer BJ, Deng C, Wang AL. Nat Biotechnol. 2002; 20:275–281.

[PubMed: 11875429]

377. Muramatsu T. J Biochem. 2002; 132:359–371. [PubMed: 12204104]

378. Huang EJ, Reichardt LF. Annu Rev Neurosci. 2001; 24:677–736. [PubMed: 11520916]

379. Nandini CD, Mikami T, Ohta M, Itoh N, Akiyama-Nambu F, Sugahara K. J Biol Chem. 2004;

279:50799–50809. [PubMed: 15385557]

Murrey and Hsieh-Wilson Page 41

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



380. de Paz JL, Angulo J, Lassaletta JM, Nieto PM, Redondo-Horcajo M, Lozano RM, Gimenez-

Gallego G, Martin-Lomas M. ChemBioChem. 2001; 2:673–685. [PubMed: 11828504]

381. Prusiner SB. Science. 1991; 252:1515–1522. [PubMed: 1675487]

382. Selkoe DJ. Neuron. 1991; 6:487–498. [PubMed: 1673054]

383. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang ZW,

Fletterick RJ, Cohen FE, Prusiner SB. Proc Natl Acad Sci USA. 1993; 90:10962–10966.

[PubMed: 7902575]

384. Safar J, Roller PP, Gajdusek DC, Gibbs CJ. J Biol Chem. 1993; 268:20276–20284. [PubMed:

8104185]

385. Perez M, Wandosell F, Colaco C, Avila J. Biochem J. 1998; 335:369–374. [PubMed: 9761736]

386. Buee L, Ding WH, Anderson JP, Narindrasorasak S, Kisilevsky R, Boyle NJ, Robakis NK,

Delacourte A, Greenberg B, Fillit HM. Brain Res. 1993; 627:199–204. [PubMed: 8298962]

387. Buee L, Ding W, Delacourte A, Fillit H. Brain Res. 1993; 601:154–163. [PubMed: 8431762]

388. Fraser PE, Nguyen JT, Chin DT, Kirschner DA. J Neurochem. 1992; 59:1531–1540. [PubMed:

1402902]

389. Snow AD, Wight TN. Neurobiol Aging. 1989; 10:510–512.

390. Snow AD, Lara S, Nochlin D, Wight TN. Acta Neuropathol. 1989; 78:113–123. [PubMed:

2473592]

391. Snow AD, Kinsella MG, Prather PB, Nochlin D, Podlisny MB, Selkoe DJ, Kisilevsky R, Wight

TN. J Neuropathol Exp Neurol. 1989; 48:352–352.

392. Guptabansal R, Frederickson RCA, Brunden KR. J Biol Chem. 1995; 270:18666–18671.

[PubMed: 7629198]

393. Shaffer LM, Dority MD, Guptabansal R, Frederickson RCA, Younkin SG, Brunden KR.

Neurobiol Aging. 1995; 16:737–745. [PubMed: 8532106]

394. Shaffer LM, Dority MD, Younkin SG, Brunden KR. Neurobiol Aging. 1994; 15:S152–S152.

395. Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier WA,

Morgan DG. Neuron. 1994; 12:219–234. [PubMed: 8292358]

396. Leveugle B, Ding W, Durkin JT, Mistretta S, Eisle J, Matic M, Siman R, Greenberg BD, Fillit

HM. Neurochem Int. 1997; 30:543–548. [PubMed: 9152995]

397. Leveugle B, Ding WH, Laurence F, Dehouck MP, Scanameo A, Cecchelli R, Fillit H. J

Neurochem. 1998; 70:736–744. [PubMed: 9453569]

398. Walzer M, Lorens S, Hejna M, Fareed J, Hanin I, Cornelli U, Lee JM. Eur J Pharmacol. 2002;

445:211–220. [PubMed: 12079686]

399. Dudas B, Cornelli U, Lee JM, Hejna MJ, Walzer M, Lorens SA, Mervis RF, Fareed J, Hanin I.

Neurobiol Aging. 2002; 23:97–104. [PubMed: 11755024]

400. Avila J. FEBS Lett. 2006; 580:2922–2927. [PubMed: 16529745]

401. Bergamaschini L, Donarini C, Rossi E, De Luigi A, Vergani C, De Simoni MG. Neurobiol Aging.

2002; 23:531–536. [PubMed: 12009502]

402. Leveugle B, Scanameo A, Ding W, Fillit H. Neuroreport. 1994; 5:1389–1392. [PubMed:

7522615]

403. Aisen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D. Neurology. 2006;

67:1757–1763. [PubMed: 17082468]

Murrey and Hsieh-Wilson Page 42

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Biographies

Heather E. Murrey received a B.A./M.S. degree in biochemistry from Brandeis University in

2000. She then conducted research at the Whitehead Institute for Biomedical Research in the

laboratories of Peter S. Kim and Harvey F. Lodish. She is currently pursuing a Ph.D. at

Caltech under the direction of Linda C. Hsieh-Wilson. Her graduate studies have focused on

the role of fucosyl oligosaccharides in neuronal communication and development.

Linda C. Hsieh-Wilson received her B.S. degree in chemistry from Yale University in 1990.

She then earned her Ph.D. degree in 1996 from the University of California at Berkeley,

where she worked with Peter G. Schultz. After completing postdoctoral studies in

neurobiology at The Rockefeller University with Nobel Laureate Paul Greengard in 2000,

she joined the faculty at the California Institute of Technology, where she is currently

Associate Professor of Chemistry. In 2005, she was appointed a Howard Hughes Medical

Institute Investigator. Her research group works at the interface of organic chemistry and

neurobiology to study the roles of carbohydrates and their associated proteins in

transcription, neuronal signaling, and brain development.

Murrey and Hsieh-Wilson Page 43

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Common structures of sialic acid derivatives: neuraminic acid (Neu), N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic

acid (Neu5Gc), and deaminoneuraminic acid (KDN).
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Figure 2.
Structures of gangliosides that bind to MAG. Neu5Ac = N-acetylneuramic acid; Gal = galactose; GalNAc = N-

acetylgalactosamine; Glc = glucose; Cer = ceramide.

Murrey and Hsieh-Wilson Page 45

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Synthetic sialic acid analogues tested for binding to MAG. Positions important for MAG interactions are shown in red.
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Figure 4.
Structure of (A) a potent disialyl MAG inhibitor and (B) a simplified mimic of the ganglioside GQ1bα with enhanced binding

affinity to MAG relative to Neu5Acα(2–3)Galβ(1–3)-GalNAc.
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Figure 5.
(A) Mannosamine derivatives used for metabolic labeling (R = H or Ac) and (B) chemoselective labeling reaction after

treatment of cells with ManLev (R = biotin).
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Figure 6.
Structures of various fucose derivatives and 2-dGal.
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Figure 7.
Inhibition of Fucα(1–2)Gal linkages with 2-dGal leads to stunted neurite outgrowth in hippocampal neurons cultured for 4 days

in vitro (DIV). D-Gal is able to rescue the effects of 2-dGal. 3-dGal has no effect. White bar indicates 45 µm. Images courtesy of

C. Gama.
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Figure 8.
Chemical probe for imaging lectin receptors (top) and staining of hippocampal neurons in culture (bottom panels) with the probe

demonstrating the presence of Fucα(1–2)Gal lectins along the cell body and neurites. Cells were treated with 3 mM of the

imaging probe (A) or biotin (B), labeled with a streptavidin–dye conjugate, and imaged by fluorescence microscopy. Images

courtesy of C. Gama.
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Figure 9.
O-GlcNAc glycosylation.
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Figure 10.
(A) Chemoenzymatic approach for tagging O-GlcNAc glycosylated proteins, (B) UDP–azidogalactose probe for [3 + 2]

cycloaddition chemistry using the chemoenzymatic approach, and (C) GlcNAz and biotin phosphine probe for metabolic

labeling of O-GlcNAc-modified protein using the Staudinger ligation.
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Figure 11.
BEMAD approach for mapping O-GlcNAc glycosylation sites.

Murrey and Hsieh-Wilson Page 54

Chem Rev. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 12.
A fluorescence resonance energy transfer (FRET)-based sensor to detect O-GlcNAc glycosylation levels.
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Figure 13.
QUIC-Tag approach for quantifying dynamic changes in glycosylation.
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Figure 14.
Small-molecule OGA inhibitors.
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Figure 15.
Structures of GAG subclasses. Potential sulfation sites are indicated in red. R = SO3

− or H; R1 = SO3
−, H, or Ac; n = ~10–200.
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Figure 16.
CS-E, -A, -C, and -R tetrasaccharides. Only the CS-E tetrasaccharide promotes neurite outgrowth.
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