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Abstract 

The discovery that proteins exported from the cytoplasm are typically synthesized as larger precursors with cleavable 
signal peptides has focused interest on the peptidases that remove the signal peptides. Here, we review the membrane- 
bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes 
and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of 
eukaryotes. These peptidases are termed type I signal (or leader) peptidases. They share the unusual feature of being 
resistant to the general inhibitors of the  four well-characterized peptidase classes. The eukaryotic and prokaryotic signal 
peptidases appear to belong to a single peptidase family. This review emphasizes the evolutionary concepts, current 
knowledge of the catalytic mechanism, and substrate specificity requirements of the signal peptidases. 
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Over  two  decades ago, Milstein and colleagues (1972) reported the 
existence of peptidases that are involved in the maturation of se- 
creted proteins. Their key observation was that polysomes from 
myeloma cells synthesized an immunoglobulin light chain with a 
higher molecular weight than that of the secreted protein and it was 
the microsomes, not the microsomally-derived polysomes, that pro- 
duced a light chain with the mature molecular weight. Soon it was 
found that a large number of secreted and membrane proteins are 
synthesized in a higher molecular weight form with an  extra amino- 
terminal signal (or leader) peptide and that these signal peptides 
are essential for  export  from the cytoplasm (Carlson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Botstein, 
1982;  Michaelis & Beckwith, 1982). These signals share some 
common features (von  Heijne,  1983):  They are basic  at  the 
N-terminus, apolar in the middle, and have small, uncharged amino 
acid residues preceding the site of cleavage by the signal (or leader) 
peptidase. Genetic studies (Emr et al., 1978; Bassford & Beckwith, 
1979; Bedouelle et  al.,  1980;  Emr & Silhavy, 1980) have revealed 
that the integrity of the hydrophobic stretch of signal peptides is 
vital for protein transport across the membrane barrier. 

Progress toward characterization and purification of type I sig- 
nal peptidases was  advanced by the development of in vitro post- 
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translational cleavage assays using precursors of secretory proteins 
synthesized by cell-free protein synthesis as peptidase substrates. 
Detergent-solubilized membrane preparations containing signal pep- 
tidase were found to correctly cleave the signal peptides from 
those full-length precursor proteins (Szczesna & Boime, 1976; 
Jackson & Blobel, 1977; Kaschnitz & Kreil, 1978; Jackson, 1983; 
Lively & Walsh, 1983). The addition of phospholipids was neces- 
sary to maintain the activity of signal peptidase in detergent- 
solubilized membranes (Jackson & White, 1981). The microsomal 
signal peptidase was first purified from canine pancreatic micro- 
somes  (Evans et al., 1986) and subsequently from endoplasmic 
reticulum (ER) microsomes isolated from the magnum region of 
the oviducts of laying hens (Baker & Lively, 1987). 

The first prokaryotic signal (leader) peptidase was isolated from 
Escherichia  coli by Zwizinski and Wickner (1980) using an assay 
that monitored the conversion of the precursor form of the M13 
coat protein, termed procoat, to the mature coat protein. A year 
later, the lepB gene encoding this signal peptidase was cloned 
(Date & Wickner, 198 1) and subsequently sequenced ( Wolfe et al., 
1983). The signal peptidase encoded by lepB was purified from a 
strain which overproduces the protein (Wolfe et al., 1982) thus 
permitting further characterization of its enzymatic properties. 

Initial comparisons of the activities of the bacterial and eukary- 
otic signal peptidases revealed that the substrate specificities of 
each  were very similar. M13 procoat, a prokaryotic precursor pro- 
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tein.  was  correctly  cleaved  by  a  detergent-solubilized  extract of  age or  whether  an  unrecognized  gene  encodes  a  different  signal 
canine  pancreas  microsomes  (Watts et al., 1983). Conversely,  the  peptidase. 
insulin  precursor  protein,  a  eukaryotic  substrate,  was  cleaved in vivo 
at the  correct  processing  site by the  bacterial  signal  peptidase  (Tal- 
madge et al., 1980). Thus,  early  enzymatic data suggested  that  the ofsignal peptidases 

prokaryotic  and  eukaryotic  enzymes are possibly  related  enzymes. 

Subunit composition and  membrane topologies 

Early  attempts  to  define the mechanistic  class of the  signal 
peptidases  were  unsuccessful  because  the  processing  activities of 
the E. coli peptidase  (Zwizinski et al., 1981) and  the  canine  pan- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
creas ER  peptidase  (Jackson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Blobel, 1980) were  insensitive  to 
the  usual  reagents  known to be  general  inhibitors of the four well- 
characterized  peptidase  classes.  The  mechanism of action of signal 
peptidases  remains  undefined  even  today  but  significant  progress 
has been  made  with  the  isolation  and  characterization of the  pro- 
tehs and the genes  that  encode  them.  Recent  studies  suggest  that 
signal  peptidase may  use a  novel  serine  peptidase  mechanism. 
Here we provide an  overview  of the  current  state of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour knowledge 
of signal  peptidase  structure and function.  For  a  recent  review of 
individual  signal  peptidases,  the  reader may consult the book  by 
von Heijne (1994). 

The physiological role zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof processing 

Signal  peptidase  is an essential  enzyme in E. coli (Date, 1983), in 
the yeast Saccharomyces  cerevisiue (Biihni  et  al., 1988) and  pre- 
sumably  in  most other  cells.  The  cleavage of the  signal  peptide  is 
not  required for translocation of precursor  proteins  through  the 
membrane as pre-proteins  that  have  defective  cleavage  sites may 
be  found  translocated  completely  across  the  membrane  (Koshland 
et al., 1982; Kuhn & Wickner, 1985; Fikes & Bassford, 1987). 
However,  these  precursors  remain  membrane-bound  because  the 
uncleaved  hydrophobic  signal  peptide  acts as a membrane  anchor. 
Furthermore,  using  a  conditional-lethal  mutant of E. coli in  which 
the  expression of the lep gene  was  under  the  control of the  arab- 
inose  promoter,  it  was  shown  that  uncleaved  precursors  are  also 
translocated  across  the  membrane  in  the  absence of signal  pepti- 
dase  and  remain  anchored to the  periplasmic  side of inner mem- 
brane  (Dalbey & Wickner, 1985). Similarly,  a  mutant  form  of 
human  coagulation  factor X with  a  defective  signal  peptide  that 
blocks  cleavage by signal  peptidase is translocated  into  the ER 
where  it  remains as a membrane-bound  protein  that  does  not  progress 
further  along the secretory  path for export  from  the  cell  (Racchi 
et al., 1993). Finally,  some  purified  precursor  proteins are active 
without  removal  of  the  signal  peptide  (Haugen & Heath, 1979; Ito, 
1982), indicating  that  cleavage  is not always  required for the  cor- 
rect  folding  and  activity of the  exported  protein.  Thus,  the  role of 
signal  peptidase in vivo is to  release  exported  proteins  from the 
membrane so they  can  reach  their  correct  cellular  or  extracellular 
locations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An intriguing  result  was  very  recently  obtained  that  suggests 
that  some  cells  may  function  without  a  signal  peptidase  or  that 
there are other,  currently  unrecognized types of signal  peptidase. 
The  determination of the entire DNA sequence of the  genome of 
the bacterium Mycoplasma  genitaliwn (Fraser et al., 1995), which 
is thought  to  have  the  smallest  genome of all known  self-replicating 
organisms,  revealed  that this organism  lacks  a  gene  sequence  with 
any recognizable  similarity to the  type  I  signal  peptidase  family. 
Despite  this,  the  genome  sequence  contains  eleven  putative  pre- 
cursor  proteins  with type I signal  peptidase  cleavage  sites. It is not 
known  whether  these  proteins  are  secreted  normally  without  cleav- 

Eubacterial  signal (leader) peptidase 

The  best known type I signal  peptidase is that of E. coli. It 
consists of a  single 37 kDa polypeptide  chain  (Wolfe et al., 1982) 
and  is an integral  membrane  protein  in  the  plasma  membrane.  The 
protein  spans  the  membrane  twice  (Fig. 1B) with  a  small N-terminal 
end  and  a  large  carboxyl-terminal  domain  located in the  periplas- 
mic  space  (Wolfe et al., 1983; Moore & Miura, 1987; Whitley 
et al., 1993). The  active site of this enzyme is located  in  the 
periplasm  (Bilgin et al., 1990). 

Genes  encoding  signal  peptidase  have  been  isolated  from  other 
bacteria as well.  The  signal  peptidases  from  the  Gram  negative 
bacteria Salmonella  typhimurium (van  Dijl et al., 1990), Pseudo- 

monas  fluorescens (Black et al., 1992), Haemophilus  influenzae 

(Fleischmann et al., 1995), Rhodobacter  capsulatus ( G e n B a n k  ac- 
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Fig. 1. Membrane  topology of bacterial,  mitochondrial  and  ER  signal  pep- 
tidases.  Predicted  membrane  topologies are shown  for  signal  peptidases of 
(A) B. japonicum, k? laminosum, M. tuberculosis. S. aureus, B. subtilis, B. 
amyloliquefaciens, B. lichenifomis, B. caldolyticus, and  the  inner  mem- 
brane of yeast  mitochondria (Implp); (B) E. coli, S. typhimun’um, and k? 
fluorescens; (C) H. influenzae; (D) R. capsularus, and  the inner membrane 
of yeast  mitochondria (hp2p); and (E) the  canine ER membrane  (SPC12, 
SPC18, SPC21, SPC22/23, and SPC25). “IN” indicates the  cytoplasmic 
side of the membrane  in all models. In models A through D, “OUT” 
indicates  the  extracytoplasmic  face of the  membrane or the  intermembrane 
space in the cases of mitochondrial  inner  membrane  peptidases. In model 
E, “OUT” represents  the  lumen of the  ER. In each  model,  the  letter “A” 
within  the  bilayer  indicates  the  position  of  the  conserved  domain A, the 
letter “ N  represents  the  N-terminus  and  the  letter “C” represents  the 
C-terminus of the  proteins.  The  positions  of other conserved  domains  are 
indicated in color:  black,  predicted  membrane  anchor;  red,  domain B, 
containing  the putative active site serine  residue;  yellow,  domain  C;  green, 
domain D; blue,  domain E. SPC, signal  peptidase  complex. 
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cession #Z68305), and Bradyrhizobium japonicum (Muller  et al., 
1995) appear to consist of 36,32,40,29, and 28 kDa polypeptide 
chains, respectively. Based on the alignment of the primary se- 
quences of these signal peptidases with that of the E. coli enzyme, 
topological models with two membrane-spanning regions have been 
proposed for the signal peptidases of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. typhimurium and P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluo- 
rescens (Fig. 1B). In contrast, the signal peptidase of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. influenzae 

may possess  three amino-terminal membrane-spanning regions 
(Fig. lC), and R. capsulatus signal peptidase may have  one amino 
terminal and one carboxyl terminal membrane spanning region 
(Fig.  ID).  The signal peptidase of B.  japonicum appears to have 
only one membrane-spanning region, which corresponds to the 
second found in the E. coli, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. typhimurium, and P. fluorescens 

signal peptidases (Fig. 1A). The  latter feature is shared by the 
signal peptidase of the cyanobacterium Phonnidium laminosum 

(22 kDa; Packer et al., 1995), and all known signal peptidases from 
Gram positive bacteria, which include enzymes from Bacillus sub- 

tilis (van Dijl et al., 1992), Bacillus amyloliquefaciens, Bacillus 

culdolyticus, and Bacillus lichenifonnis (for a recent compilation 
of sequences see Meijer et al., 1995), Staphylococcus aureus (SpsB; 
Cregg  et al., 1996), and Mycobacterium tuberculosis (Philipp 
et  al., 1996). All Bacillus signal peptidases and the S. uureus signal 
peptidase consist of 21 kDa polypeptides whereas the M. tubercu- 

losis gene  encodes a 32 kDa polypeptide. 
Interestingly, both in B. subtilis and B. amyloliquefaciens, chro- 

mosomal genes were identified for two homologous, but non- 
identical, type I signal peptidases, denoted Sips and SipT (van Dijl 
et al., 1992;  Meijer et al., 1995; Hoang & Hofemeister 1995; 
GenBank accession #U45883). In addition, a third chromosomal 
gene  for a homologous type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI signal peptidase (SipU) was identi- 
fied in B. subtilis (Akagawa  et  al.,  1995; H. Tjalsma, S. Bron & J. 
M. van Dijl, unpubl. obs.). Of these three B. subtilis enzymes, Sips 
is best-studied. Sips is a non-essential enzyme for survival of B. 

subtilis yet it is important for protein secretion because cells lack- 
ing Sips secrete several proteins at greatly reduced levels  (Bolhuis 
et al., 1996). Whether this is also true for SipT and SipU is not yet 
known. 

In addition to the chromosomal-encoded sip genes, certain strains 
of B. subtilis contain signal peptidase-encoding genes, denoted 
sipP, that are specified by endogenous plasmids (pTAlOl5 and 
pTA1040; Meijer et al., 1995). The amino acid sequences of the 
two known plasmid-encoded signal peptidases of B. subtilis are 
highly similar to the three chromosomal-encoded signal peptidases 
(72.2% identical and similar residues in a consensus length of 194 
residues). At present, it is not known why B. subtilis contains so 
many distinct signal peptidase-encoding genes. This phenomenon 
may relate to the fact that, under certain conditions, bacilli are able 
to secrete large amounts of protein. Since the expression of the 
genes for many secreted proteins is temporally controlled, the 
expression of certain genes encoding signal peptidase could be 
controlled in the same way for efficient protein export. Indeed, this 
was recently shown to be the case  for the expression of the sips 

gene. In addition, Sips, SipT and SipU appear to have a preference 
for different pre-proteins, indicating that they have different, but 
overlapping, substrate specificities (Bolhuis  et al., 1996). 

Unlike Sips of B. subtilis, the signal peptidase SpsB  from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. 
aureus appears to be an essential enzyme. Nevertheless, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. aureus 

contains a gene,  spsA, which specifies a protein that is very similar 
to SpsB (62% identical and similar residues) and the signal pep- 
tidases of B. subtilis. However, it seems that the SpsA protein does 
not possess signal peptidase activity (see the section on the cata- 

lytic mechanism of signal peptidases). SpsA and spsB are adjacent 
genes  on the chromosome of S. aureus (Cregg et al., 1996). 

Microsomal (ER) Signal Peptidase 

In contrast to the bacterial signal peptidases, the eukaryotic 
microsomal signal peptidases of the endoplasmic reticulum (ER) 
are multimeric membrane protein complexes. The  enzyme  from 
canine pancreas ER microsomes, the first eukaryotic signal pepti- 
dase to be purified, is composed of five subunits (Evans  et  al., 
1986). The  canine signal peptidase complex (SPC) subunits are 
named SPC25,  SPC22/23,  SPC21,  SPC18, and SPC12, according 
to their apparent molecular masses observed by SDS PAGE. The 
chicken oviduct signal peptidase can be isolated as a complex of 
two polypeptides, 23 and 19 kDa, that are named gp23 and p19 
(Baker & Lively, 1987; Lively et al., 1994). Like  the  canine com- 
plex, partially purified microsomal signal peptidase from  the yeast 
Saccharomyces cerevisiae is associated with a complex of at least 
four proteins of 13, 18, 20, and 25 kDa (YaDeau & Blobel, 1989; 
YaDeau et al., 1991). The  18  kDa yeast protein was first identified 
genetically as  the Secl l  gene product, Secl l p  (Bohni et  al., 1988). 

The  SPC21, SPCl8, p19, and Secl l p  subunits form a family of 
related proteins that are believed to contain the peptidase active 
site(s). The  SPC18 (Shelness & Blobel, 1990) and SPC21 (Green- 
burg et al., 1989) subunits are homologous isoforms with amino 
acid sequences that are 80% identical to each other and each is 
approximately 47% identical to Secl l p  (Greenburg et al., 1989). 
Secl l p  is required for signal peptide processing and is essential for 
viability in yeast. Chicken p19  is also a closely related member of 
this family of proteins (S. J. Walker & M. 0. Lively, unpubl.). 
These subunits are integral membrane proteins that span the mem- 
brane once such that the bulk of the protein is located in the lumen 
of the ER (Shelness et al., 1993; see Fig. IE). 

PCR amplification of  mRNA sequences and DNA sequence anal- 
ysis of multiple clones has shown that chickens, humans, rats, and 
frogs, like dogs, also encode two isoforms of the Secllp-like 
subunit (M. 0. Lively & S. J. Walker, unpubl. data). It appears that 
most eukaryotic species have at least two isoforms of this signal 
peptidase subunit. In contrast, the S. cerevisiae genome (Goffeau 
et al., 1996) contains only a single gene encoding the Secl lp 
subunit of signal peptidase. Thus  it appears that the multiple forms 
of signal peptidase genes must have arisen later in the evolution of 
higher eukaryotes. 

While currently available evidence supports the hypothesis that 
the Secl  lp-like subunits contain the peptidase active site, the func- 
tions of the apparently redundant isoforms of this protein are not 
known. Each peptidase isoform may be specific for cleavage of 
different substrates as shown with the mitochondrial inner mem- 
brane peptidases Implp and Imp2p  (Nunnari  et al., 1993). Alter- 
natively, the isoforms may be differentially expressed forms of 
signal peptidase that are specific for different tissues. The Secl  lp- 
like subunits may also play a role in protein degradation in the ER 
because the Secl 1 strain of S. cerevisiae has been found to have a 
defective protein degradation pathway that requires the Secl lp 
subunit (Mullins  et al., 1995). 

Interestingly, the level of an  mRNA encoding a member of the 
Secl lp family was found to  be increased nearly two-fold in the 
brains of rats that had been treated with repeated, high doses of 
ethanol  (Signs & Jacquet, 1994). The physiological basis for this 
increased transcription is unknown but the observation shows that 
expression of signal peptidase subunits can be induced under some 
circumstances. 
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All known eukaryotic signal peptidase complexes contain a 

glycoprotein subunit. In chickens and dogs, the glycoproteins are 
23 kDa subunits, each with a single Asn-linked, mannose-rich 
carbohydrate chain (Evans et al., 1986 ; Baker & Lively, 1987). 
DNA sequences encoding signal peptidase glycoproteins have been 
characterized from  dogs (Shelness et al., 1988), chickens (New- 
some, et al., 1992), Caenorhabditis elegans (GenBank accession 
#L14331), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. cerevisiae (GenBank accession #X94607), and Schizo- 

saccharomyces pombe (GenBank accession #Z69728). The pre- 
dicted amino acid sequences (180 to 185 residues) of these five 
subunits have 40.1% identical residues and conservative changes 
in a consensus length of 192 positions. The chicken and dog sub- 
units are 90% identical to each other. There are more than twelve 
partial cDNA sequences from human sources in the expressed 
sequence tag section of GenBank that collectively predict a single 
open reading frame with 90% identical amino acids compared to 
the canine  and chicken 23 kDa glycoprotein sequences. 

While the glycoprotein signal peptidase subunit is present in all 
species examined from yeast to man, its role in the cleavage of 
signal peptides is currently unknown. Like the Secl lp subunits, 
this protein is a type I1 membrane protein with a short, N-terminal 
cytoplasmic tail and the bulk of the protein in the lumen of the ER 
(Shelness et al., 1993;  see Fig. 1E). Genetic experiments in S. 
cerevisiae have found that the glycoprotein gene  is essential for 
signal peptide cleavage and for viability of the yeast (H. Fang & 
N. Green, pers. comm.; E. Beasley, pers. comm.). The glycoprotein 
subunit appears to be required for proteolysis in vitro because 
dissociation of the 23 kDa glycoprotein from chicken p19 inacti- 
vates signal peptidase (Newsome  et al., 1992). 

A cDNA encoding  SPC25 (Greenburg & Blobel, 1994) reveals 
a 226-residue protein with a region that is highly similar to a 
123-residue coding region of a human cDNA (GenBank accession 
#D14658) and a 178-residue coding sequence in S. cerevisiae (Gen- 
Bank accession #S498805). Dog SPC25 spans the ER membrane 
twice such that the bulk of the protein is located in the cytoplasm, 
on the opposite side of the membrane from the glycoprotein and 
Secl I-like subunits (Kalies & Hartmann, 1996; see Fig. IE). This 
membrane orientation led Kalies and Hartmann to suggest that 
SPC25  is not likely to play a direct role in signal peptidase catal- 
ysis. Consistent with their speculation, genetic studies in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. cere- 

visiae conducted by two different groups have now shown that the 
yeast homologue of the SPC25 signal peptidase subunit is not 
essential for signal peptidase activity (H. Fang & N. Green, pers. 
comm.; E. Beasley, pers. comm.). Interestingly, disruption of the 
yeast gene encoding the SPC25 homologue in S. cerevisiae cells 
containing the secll mutation is lethal (Mullins  et al., 1996). The 
role of the  SPC25 homologues in signal peptide processing, if  any, 
has not been defined. 

The functional role of the smallest signal peptidase subunit is 
also unknown. Recently, a number of amino acid sequences of 
peptides obtained from purified canine SPC12 were directly de- 
termined and used to clone a cDNA encoding the human homo- 
logue of SPC12 (Kalies & Hartmann, 1996). A gene encoding the 
12 kDa subunit of the yeast signal peptidase has also been isolated 
(Fang et al., 1996). Like  SPC25,  SPC12 spans the ER membrane 
twice and is primarily located in the cytoplasm (Fig.  1E).  Its role 
in peptidase activity is unknown and the 12 kDa subunit is not 
essential for activity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the yeast signal peptidase. Nevertheless, its 
overproduction resulted in increased signal peptidase activity in 
the mutant Secl 1 strain and the protein appears to be important for 
efficient signal peptidase activity (Fang  et al., 1996). Taken to- 

gether, these results are consistent with the observation that the 
gp23  and  p19 subunits are sufficient for proteolysis by chicken 
signal peptidase in vitro and suggest that the  SCP25 and SPC12 
subunits play indirect roles  in the processing of secretory proteins. 

Archaebacterial signal peptidase 

The sequence of the complete genome of the methanogenic 
archaeon Methanococcus jannaschii has revealed a gene encoding 
a 24 kDa protein that is a putative signal peptidase (Bult  et al., 
1996; GenBank locus MJU67481). Interestingly, this protein is 
more similar to the Secl 1-like subunits of the ER signal peptidases 
(40.4% identical residues and conservative changes in a consensus 
length of 213 residues) than to the eubacterial signal peptidases. 
This sequence provides a conceptual link between the eubacterial 
and eukaryotic sequences that strengthens the hypothesis that the 
type I signal peptidases may have evolved from a common ancestor. 

Mitochondrial signal peptidase 

The mitochondrial inner membrane peptidase I (ImpI) is a com- 
plex of two homologous but non-identical polypeptide chains, Implp 
and Imp2p with molecular masses of  21 and 19 kDa, respectively 
(Behrens  et al., 1991; Schneider et al., 1994; Nunnari et al., 1993). 
These proteins are related to the bacterial and ER type I signal 
peptidases. Both subunits have proteolytic activity but, unlike the 
signal peptidases of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. subtilis, they have distinct, non-overlapping 
specificities (see below). 

Implp and Imp2p are associated with the mitochondrial inner 
membrane and the bulk of each protein is exposed to the inter- 
membrane space as demonstrated by their accessibility to protein- 
ase K in mitoplasts (Schneider et al., 1991; Nunnari et al., 1993). 
Current models predict that Implp and Imp2p have one  amino 
terminal membrane spanning region (Fig. 1A; Dalbey & von Heijne, 
1992; van Dijl et al., 1992), although this has not been shown 
experimentally. In addition, Imp2p may have a carboxyl terminal 
membrane spanning region, as predicted for the signal peptidase of 
R. capsulutus (Fig. 1D). 

Evolutionary concepts 

The bacterial, mitochondrial, and ER signal peptidases appear to 
be members of a new and perhaps previously unrecognized pep- 
tidase family (Dalbey & von Heijne, 1992; van Dijl et al., 1992). 
In a key study, cloning of the gene encoding the S. cerevisiae 

mitochondrial inner membrane peptidase, Implp, established that 
Implp is homologous to E. coli signal peptidase (Behrens et al., 
1991). The aligned amino acid sequences of the signal peptidases 
of E. coli, S. typhimurium, B. subtilis (Sips), and S. cerevisiae 

Implp revealed five regions of similarity denoted A-E. These five 
regions of similarity are also present in the Secl I-like subunits of 
the yeast and canine microsomal signal peptidases (van Dijl et al., 
1992). In fact, the regions A-E are present in all known type I 
signal peptidases (Fig. 2). 

The first conserved domain, domain A (the predicted membrane 
anchors in Fig. 3), consists of hydrophobic residues residing in the 
membrane-spanning regions of all these enzymes, which corre- 
spond to the second membrane-spanning region of the E. coli 

signal peptidase (Figs. 1 & 3). Domain B contains a strictly con- 
served Ser-Met sequence that is probably positioned near the mem- 
brane surface on the extracytoplasmic side (Fig. 1). The Ser residue 
of domain B corresponding to Ser-90 of the E. coli signal pepti- 
dase, is  the only Ser residue which can be aligned in all known 
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S.CI1 
SPCl8 
8PC2l 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
" 

112 KSPTKPVIHRVIDKV-BQ 13s G D M M P l  HDPE 

75 EOKQI@IVRRVLRQWNNH 102 GDNUAG-NDIS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 8  PORBIPIVHRVLKIH-EK 111 GOU--NAVDDR 

spca1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100  BORDIPIVHRVIKVW-BK 127 GDR--NEVDDI 

COI8..lO8 ~ - - S * - D E E  

Fig. 2. Conserved  domains  B-E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof signal  peptidases.  Strictly  conserved 
residues  in  the  consensus  sequence  are  indicated  by  the  upper case letter; 
conservative  substitutions  by  the  lower case letter;  and  hydrophobic  resi- 
dues  by  a  number  sign (#). The  serine and lysine/histidine  residues that 
may  be  involved  in  catalysis are indicated  by  an  asterisk.  Bam, E. amy- 
loliquefaciens; Bca, E. caldolyticus; Bja, E. japonicum; Bli, E. lichenifor- 
mis; Bsu, E. subtilis; Eco, E. coli; Hin, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. influenzae; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAImp, Inner  membrane 
protease; Lep, leader  peptidase;  Mja, Merhanococcus jannaschii; Mtu, M. 
ruberculosis; FYI, I? fluorescens; Pla, I? laminosum; Rca, R. capsularus; 
Sau, S. aureus; Sip, signal  peptidase;  SPC,  signal  peptidase  complex; Sty, 
S. typhimurium. 

signal  peptidases.  Domain  C  contains  a  conserved  Gly  followed  by 
an  Asp. 

Domain  D  contains  a  Lys-Arg  sequence  (Lys-145-Arg-146 in E. 
coli) that  is  strictly  conserved in bacterial  and  mitochondrial  en- 
zymes. In contrast,  there  are no conserved Lys residues in align- 
ments  of the ER Secllp-l ie sequences; the conserved  bacterial 
Lys aligns  with  a  conserved His in domain  D  of the ER subunits as 
well as the  putative  signal  peptidase of the  archaeon M. jannaschii. 

The  functional  sigmficance of this apparent  substitution  is  not  known. 
Finally,  domain E has  a  conserved  tripeptide,  Gly-Asp-Asn,  a 

conserved  Asp,  and  a  conserved  Arg  (Fig.  2).  The  signal  peptidase 
sequences  contain no conserved Cys residues. There are two  con- 
served His residues  in  the  alignment  of  the ER proteins  that are not 
present  in  the  bacterial  proteins. 

The  overall  sequence  similarities  between  the  bacterial  signal 
peptidases  are  rather low. In fact, the  18  known  enzymes  share 
only  17 identical  residues  and 16 conservative  changes (8.0% iden- 
tical  and  similar  residues  in  a  consensus  length of 415 residues). 
When  the Implp and  Imp2p  subunits of the  mitochondrial  signal 
peptidase are included in the  comparison  with  the  bacterial  signal 

peptidases  only 14 identical  residues  and  nine  conservative  changes 
can  be  detected  (5.6%  identical  and  similar  residues in a  consensus 
length of 416  residues). Of the 14 identical  residues, 12 are  located 
in the conserved  regions  B  (four  residues), D (two  residues)  and E 
(five  residues),  and  one is the initiator  Met.  Direct  comparison of 
individual  signal  peptidases  reveals much higher  degrees of amino 
acid  similarity.  The  mitochondrial  enzymes are most  similar  to the 
B. lichenifomis signal  peptidase  with 33% identical  and  similar 
residues  in  a  consensus  length  of  219  residues.  Based  on this 
information, it appears  likely  that  the  mitochondrial  signal  pepti- 
dases, Implp and  Imp2p,  evolved  from  a  common  bacterial  ancestor. 

The  similarity  between  the Secl lp-like subunits of the ER sig- 
nal  peptidases  and the bacterial  and  mitochondrial (ImpI) signal 
peptidases is limited  to  the  conserved  regions A, B,  C, D,  and E, 
and  even  in  these  regions  only  six  residues  are  identical  in  all 
known  enzymes.  Nevertheless, it appears  that  the  bacterial  signal 
peptidases  and the Secllp-like subunits of the ER signal  pepti- 
dases may share  a  common  ancestor.  Alternatively,  because of the 
very  limited  identities  found  in  global  alignments of  the amino 
acid  sequences of these  two  groups of signal  peptidases,  the  se- 
quence  relationships in the  putative  active site regions  could  be  the 
result of convergent  evolution. 

A 

S i P ( r n )  I -1 .m I 1 
SPSB ( sau ) 
Sips ( Bsu ) - 
SipT ( Bsu ) - 
SipU (Bsu ) - 
SipP  (pTAlO15 ) 
SipP ( pTA1040 ) - 
sips(-) 
SipT ( Bam ) - 
Sip ( Bli ) m -1 
Sip ( Bca ) 

Sip ( Mja ) 

Secl 1 
Spcl8 
SF21 

Fig. 3. Chain  diagram of bacterial,  mitochondrial  and  ER  signal  pepti- 
dases.  The  diagram  shows  the  relative  locations of the  conserved  domains 
A-E  (indicated  in  color:  black,  predicted  membrane  anchor  including  do- 
main A ,  red,  domain  B,  containing  the  putative  active  site  serine  residue; 
yellow,  domain  C;  green,  domain D; blue,  domain E). Acronyms for bac- 
terial  names (as in Fig. 2) are  indicated in parentheses. 
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Catalytic mechanism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Since the discovery of signal peptidases, it  was proposed that these 
enzymes  are mechanistically novel peptidases as they are resistant 
to peptidase inhibitors of the classical serine, cysteine, aspartic 
acid, or metallo classes of peptidases. Site-directed mutagenesis 
approaches have been used to define the amino acids directly 
involved in catalysis by the bacterial enzymes. These studies re- 
vealed that the conserved Ser in domain B of the family is essential 
for catalytic activity and may act as the active site nucleophile in 
signal peptide cleavage. Mutation of this residue to Ala in the E. 

coli (Sung zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dalbey, 1992) and B. subtilis (Sips; van Dijl et al., 
1995) signal peptidases, as well as the Imp2p subunit of the mi- 
tochondrial signal peptidase (Nunnari  et al., 1993) yielded inactive 
enzymes. Substitution of Cys  for  Ser-90 in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. coli and the 
corresponding Ser in B. subtilis (Sips) signal peptidases produced 
active peptidases. In the  case of E. coli, the Cys-90 signal pepti- 
dase  can be inactivated  with  N-ethyl  maleimide, a cysteine- 
specific reagent that does not inactivate the wild-type enzyme 
(Tschantz et al., 1993). 

In contrast to classical serine peptidases, the E. coli signal pep- 
tidase does not employ a His as the proton donor and proton 
acceptor. Each of the three His residues in this enzyme can be 
mutated to Ala without any observable effect on enzymatic activity 
(Sung & Dalbey, 1992; Black et al., 1992). No His residues are 
conserved in amino acid sequence alignments of the prokaryotic 
signal peptidase family. Lys-145 in domain D of E. coli is present 
in all bacterial and mitochondrial signal peptidases described to 
date  (Fig. 2) and  is a strong candidate to play the role of general 
base that strips the proton from the nucleophilic Ser during peptide 
bond cleavage. However, as noted above, this Lys is notably absent 
in the ER signal peptidases. Substitution of Lys-145 of the E. coli 

signal peptidase by Met  (Black, 1993) or by Ala, His, or Asn 
(Tschantz et al., 1993) abolishes catalytic activity. Similar results 
were observed with the B. subtilis signal peptidase Sips (van Dijl 
et al., 1995). These  experiments established that the critical Lys 
residue is required for a functional enzyme but do not directly 
show that this amino acid is involved in the proton transfer at the 
active site. 

Interestingly, the SpsA protein of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. aureus, which is very sim- 
ilar to the Sips-like signal peptidases of Gram-positive bacteria, 
seems to lack the putative catalytic Ser and Lys residues (Cregg 
et al., 1996). The role of SpsA  in  the processing of secretory 
precursor proteins in S. aureus has not been investigated yet but it 
is predicted that this protein has no signal peptidase activity. 

At this stage, the signal peptidases of bacteria and mitochondria 
appear to be unconventional serine peptidases that employ a Lys as 
a general base. The hydroxyl group of the serine side chain acts  as 
the nucleophile that attacks the carbonyl carbon of the scissile 
peptide bond of the pre-protein cleavage site. The unprotonated 
form of the Lys €-amino group serves to activate the hydroxyl 
group of the Ser. There  is a precedent for a mechanism involving 
a Ser/Lys  dyad  for a peptidase. The LexA protein, which is in- 
volved in the SOS response in E. coli, undergoes a self-cleavage 
reaction that inactivates the protein. This self-processing event 
employs a Ser  as the nucleophile that attacks the peptide bond 
(Roland & Little, 1990) and a Lys that is deprotonated (Lin & 
Little,  1989; Little, 1993). Moreover, X-ray crystallographic anal- 
ysis has shown that the Ser/Lys dyad is at the active site of the 
UmuD’ protein, a member of the Lex A peptidase family (Peat 
et al., 1996). 

More recently, it has become apparent that there is sequence 
similarity between the region around the putative catalytic Ser and 
Lys residues of the B. subtilis signal peptidases and the region 
containing the active site Ser and Lys residues of LexA and other 
LexA-like peptidases (van Dijl et al., 1995). Also in the LexA-like 
peptidase family, the putative catalytic Ser and Lys residues are 
strictly conserved, whereas the  other regions differ significantly. 
Moreover, the self-cleavage sites of the LexA-like peptidases are 
similar to signal peptidase cleavage sites (Nielsen et al., 1996a, 
1996b) with a small amino acid residue at  the - 1 position and a 
larger aliphatic amino acid at the -3 position (van Dijl et al., 
1995). Taken together, the data suggest that the bacterial signal 
peptidases and the LexA-like peptidases are mechanistically re- 
lated and cleave similar substrates. 

Substrate specificity 

Statistical studies of the sequences surrounding the cleavage sites 
of signal peptides led to the formulation of the (-3, - 1) rule for 
signal peptidase cleavage of its substrates (von Heijne, 1985). A 
more recent compilation of signal peptide sequences has con- 
firmed this earlier result and has been used to design a computer 
program for prediction of signal peptidase cleavage sites in pre- 
cursor protein sequences (Nielsen  et al., 1996a, 1996b). This spec- 
ificity rule has been confirmed by site-directed mutagenesis on ER 
(Folz et al., 1988) and bacterial (Fikes et al., 1990; Shen et al., 
1991) pre-proteins where a large number of mutations have been 
made  at the -3 and - 1 positions in signal peptides. Pre-proteins 
were cleaved only with Ala, Gly, Ser, Cys, or Pro residues at the 
- 1 position, or with Ala, Gly, Ser, Cys, Thr, Val, Ile, Leu, or Pro 
residues at the -3 position. Almost any residue could be tolerated 
at the -2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4, and -5 positions for cleavage of M13 procoat. 

An uncharacterized type I signal peptidase resides in the thyla- 
koid membrane of chloroplasts. The specificity of the thylakoidal 
signal peptidase, which cleaves the thylakoid transfer sequence 
from proteins that are transported to the lumen of thylakoids, is 
similar to that of the E. coli signal peptidase. The E. coli enzyme 
can cleave several thylakoidal precursor proteins and the thylakoi- 
dal signal peptidase can cleave M 13 procoat and the precursor to 
the yeast alpha factor (Halpin et al., 1989). However, the require- 
ments for processing by the thylakoidal signal peptidase are even 
more restricted than those for processing by the E. coli signal 
peptidase as shown by site-directed mutagenesis studies of the 
thylakoidal pre-33 kDa protein; Ala  is preferred at the - 1 and the 
-3 positions (Shackleton & Robinson, 1991). 

In contrast to the ER and bacterial signal peptidases, the mito- 
chondrial inner membrane peptidase has a more complex speci- 
ficity requirement. It cleaves mitochondrial inter membrane space 
proteins (IMS) that are initially synthesized with a bipartite signal 
sequence that contains a matrix-targeting signal and an IMS sort- 
ing signal. After cleavage of the IMS sorting signal, the protein is 
released into the inter membrane space. Interestingly, the specific- 
ity of the Implp and Imp2p subunits is not identical: the precursors 
of the cytochrome oxidase subunit I1  (pre-COXLI)  and cytochrome 
b2  are processed exclusively by Implp. In contrast, the precursor 
form of cytochrome c l  is exclusively processed by Imp2p (Nun- 
nari et al., 1993). While the substrate specificity of Imp2p  obeys 
the (-3,-  1) rule, Implp only cleaves substrates with Asn at the 
- 1 position. For  example, both the Implp substrates, pre-COX11 
and cytochrome b2 contain an Asn at the - 1 position (Pratje & 
Guiard, 1986; Schneider et al., 1991; Behrens et al., 1991). 
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Substrates and inhibitors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In vitro, the E. coli signal peptidase can cleave the precursors of 
many membrane and secreted proteins to their mature products 
(Wolfe et  al., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1982). These  include most bacterial pre-proteins, 
yeast pre-acid phosphatase, honeybee pre-pro-mellitin, and human 
pre-hormones such as pre-pro-insulin, pre-growth hormone, pre- 
interferon and others. In vivo, type I signal peptidase is the principal 
peptidase responsible for signal peptide cleavage as pre-proteins of 
a number of exported proteins accumulate at  the non-permissive 
temperature in a temperature-sensitive signal peptidase strain of 
E. coli (Inada  et al., 1989),  and in conditional-lethal E. coli strains 
in which the signal peptidase gene  is controlled by the arabinose 
promoter (Dalbey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Wickner, 1985) or by the left promoter of 
phage  lambda (van Dijl  et al., 1988). 

In addition to naturally occurring precursor protein substrates, 
E. coli signal peptidase can process short, synthetic peptide sub- 
strates based on the cleavage site region of pre-maltose binding 
protein (Dev et al., 1990) and M13 procoat (Dierstein & Wickner, 
1986; Kuo et al., 1993). However, the peptides are poor substrates 
for signal peptidase with a k,, of 119 h" and a K,,, of 1 mM for the 
best substrate (Dev et al., 1990). Nevertheless, with these sub- 
strates it was shown that the minimum length for cleavage of 
peptide substrates was five residues (- 3 to + 2 of the pre-maltose 
binding protein), indicating that the recognition sequence for sig- 
nal peptidase lies between the -3 and +2  positions. 

The best substrate currently available for processing by the E. 

coli signal peptidase in vitro is a fusion protein consisting of the 
signal peptide of the E. coli outer membrane protein A (OmpA) 
attached to the Staphylococcus  aureus nuclease A protein (Chat- 
tejee et al., 1995). The kc,, for signal peptide cleavage at pH 8.0 
is 8.73 s", two to four  orders of magnitude higher than that ob- 
served with the best synthetic peptide substrates thus far described. 
The K ,  (16.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp M )  is 50 to 100 times lower, showing that the 
k,,lK, is increased by six orders of magnitude. The fact that 
pre-proteins are better substrates than peptides suggests that there 
are conformational preferences for a protein substrate which are 
not fulfilled by synthetic model peptides. The pro-OmpA-nuclease 
A fusion protein is  also an excellent substrate for the chicken mi- 
crosomal signal peptidase (M. Nusier & M. Lively, unpubl. data). 

The E. coli and B. subtilis signal peptidases are  not inhibited by 
any of the commercially available peptidase inhibitors tested to 
date. These include o-phenanthroline, ethylenediamine tetraacetic 
acid, phosphoramidon, 2,6-pyridine dicarboxylic acid, bestatin, tosyl- 
amido-2-phenylethyl chloromethyl ketone, 1-chloro-3-tosylamido- 
7-amino-Zheptanone hydrochloride, phenylmethylsulfonyl fluoride, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4-(amidinophenyl)methanesulfonyl fluoride, N-carbobenzyloxy-L- 
phenylalanyl chloromethyl ketone, dichloroisocoumarin, elasta- 
tinal, aprotinin, chymostatin, leupeptin, antipain dihydrochioride, 
iodoacetamide, N-ethyl maleimide,  L-trans-epoxysuccinyl- 
leucylamido (4-guanidino) butane, 1 ,2-epoxy-3-(p nitrophenoxy) 
propane, pepstatin, and diaxoacetyl-DL-norleucine methyl ester 
(Zwizinski  et al., 1981; Black et al., 1992; Kuo  et al., 1993; Veh- 
maanpera et al., 1993). Similarly, standard peptidase inhibitors are 
ineffective against the ER signal peptidase (Jackson & Blobel, 
1980) as well as the partially purified thylakoidal processing pep- 
tidase with one exception: EDTA stimulates processing by the 
thylakoidal enzyme  (Kirwin  et a]., 1987). In contrast, the mito- 
chondrial Implp activity is inhibited by  EDTA (Schneider et al., 
1991). Most likely, the stimulating and inhibiting effects observed 
with EDTA do not reflect a direct involvement of a metal ion in 

catalysis since these enzymes  seem to belong to the same family as 
the bacterial and ER signal peptidases. 

While insensitive to classical peptidase inhibitors, the E. coli 

signal peptidase is inhibited by a 23 residue synthetic signal pep- 
tide of the MI3 coat protein (Wickner  et al., 1987)  and several 
pre-proteins that include a proline at the +1 position (Barkocy- 
Gallagher & Bassford, 1992; Nilsson & von Heijne, 1992). The 
latter pre-proteins are not cleaved in E. coli and act as competitive 
inhibitors of signal peptidase. Recently, after a long search, two 
pharmaceutical companies have discovered that certain p-lactam 
compounds inhibit the E. coli signal peptidase (Kuo et al., 1994; 
Allsop  et al., 1995). The best inhibitor reported is a 5s penem 
derivative, which has an I.C. 50 of 3 p M  (Allsop et al., 1995). 
Although not reported, it is very likely that the 5s-penem com- 
pounds react with the active  site serine as p-lactams often inhibit 
serine peptidases (Chabin et al., 1993). Because signal peptidase is 
required for growth of E. coli (Dalbey & Wickner, 1985), such 
compounds have the potential to be safe antibacterial agents. How- 
ever, it remains to be seen whether 5s penem derivatives inhibit 
signal peptidases from pathogenic organisms as well. 

Soluble  domain, crystals, and future prospects 

A water soluble form of the E. coli signal peptidase lacking the two 
transmembrane segments has been produced (Kuo et al., 1993) 
that is facilitating solution of the first X-ray structure of a bacterial 
signal peptidase. This mutant (A2-75) retains significant activity 
(kc,, down  15-fold) with a pre-protein substrate and accurately 
cleaves the pro-OmpA-nuclease A substrate in vitro (Tschantz 
et al., 1995). It is noteworthy that full activity was achieved only 
in  the presence of detergent or phospholipid, suggesting that de- 
tergent may be necessary to provide an environment suitable for 
catalysis even in a form of the protein that lacks its membrane 
spanning domains. The  studies with the truncated fragment of the 
E. coli signal peptidase show conclusively that the active site of the 
peptidase is located within the periplasmic domain. The truncated 
signal peptidase forms X-ray diffraction quality crystals in the 
presence of detergent (Paetzel et  al., 1995). The crystals belong to 
the tetragonal space  group (P42212) and the best crystals have 
strong reflections down to 2.3 A resolution. 

Many questions remain unanswered regarding the specificity 
and the catalytic mechanism of type I signal peptidases. What 
accounts for the remarkable accuracy of these enzymes in cleaving 
exported proteins? What aspects of the signal peptidase structure 
define the signal peptidase cleavage site?  What  is the catalytic 
mechanism of signal peptidase and is Lys the general base required 
for catalysis by the bacterial and mitochondrial enzymes? If so, 

which amino acid performs this function in the ER signal pepti- 
dases lacking this Lys? The availability of a signal peptidase struc- 
ture will help to answer these questions and to pinpoint the active 
site and substrate binding sites of signal peptidase. Ultimately, a 
signal peptidase structure will be useful in the design of new and 
improved inhibitors which may be of pharmaceutical importance. 
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