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Abstract 

Background:  The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, provid-

ing data structures to represent chemical concepts along with methods to manipulate such structures and perform 

computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical 

structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug dis-

covery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, result-

ing in many complex interdependencies among components and poor performance of many algorithms.

Results:  We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased 

functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing 

and molecular formula handling, and improvement to existing functionality that has led to significantly better perfor-

mance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the 

CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a 

code review mechanism.

Conclusions: This paper highlights our continued efforts to provide a community driven, open source cheminfor-

matics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a 

high-quality and performant library. By taking advantage of community support and contributions, we show that 

an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing 

software.
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Background
�e open source cheminformatics community has made 

significant steps forward recently  [1] as evidenced by the 

growing number of tools and underlying toolkits, along 

with the usage of these software components in a variety 

of applications. �e Chemistry Development Kit (CDK) 

is one of the tools developed under the aegis of the Blue 

Obelisk, a movement promoting Open Data, Open Source, 

and Open Standards in chemistry [1, 2]. �e CDK provid-

ing data structures to represent chemical concepts along 

with methods to manipulate such structures and perform 

computations on them. Previously documented CDK ver-

sions have been widely adopted  [3, 4]. Use of the CDK 

ranges from inclusion of CDK functionality in wrapper 

platforms such as Cinfony  [5], incorporation within the 

R environment (rcdk  [6]), and as plugins for Taverna  [7], 

KNIME [8], Cytoscape (ChemViz2 [9]), and for Microsoft 

Excel (LICSS [10]). In contrast to scenarios that have made 

CDK functionality available in larger systems, a number of 
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projects have employed the CDK as a general cheminfor-

matics toolkit. Examples include jCompoundMapper [11], 

ScaffoldHunter  [12, 13], OMG  [14], PaDEL  [15], Chem-

Des [16], ReactPRED [17], SMSD [18–20], WhichCyp [21], 

MetaPrint2D  [22], MetFrag  [23], and the IUPHAR/BPS 

Guide to Pharmacology  [24], BRENDA  [25] and QSAR 

DataBank [26] databases. A number of such tools were ini-

tially developed using older versions of the CDK and are 

updated to new releases as they are made available. Exam-

ples include Bioclipse  [27, 28] and AMBIT  [29–31]. �e 

CDK has also played a role in a number of chemical stud-

ies, such as finding the maximally bridging rings in chemi-

cal structures  [32], prediction of organic reactions  [33], 

and bioactivities of compounds [34].

While the CDK has purported to be a general purpose 

cheminformatics toolkit, older versions were designed by 

a community with specific applications in mind, primary 

among them being structure elucidation. In addition, an 

implicit goal of previous versions was to have the CDK serve 

as an educational resource to enable students of chemin-

formatics to understand the underlying algorithms. �is 

resulted in certain functionalities, such as molecular finger-

printing [35, 36], receiving more attention than others, such 

as stereochemistry. �e outcome was significant variance in 

performance and features throughout the toolkit.

�e growth of open source software over the last 10 

years is evidence of the ability of communities of devel-

opers to develop systems and processes that lead to high 

quality software systems for long term use. �e CDK is 

no different. �e adoption of automatic build systems 

and quality control methodologies such as unit test-

ing, automated source code validation, and peer review 

by fellow developers have greatly improved the stability 

of the library. While it has slowed development some-

what, it has allowed for cleaning up interdependencies 

between modules of functionality, and importantly, has 

improved the scalability of the development model. �is 

has resulted in significant new functionality in core appli-

cation programming interfaces (APIs) while maintaining 

the quality of code depending on those core APIs.

Examples of new features supported by the improved 

development model include InChI functionality  [37], 

greatly improved ring detection algorithms [38], improve-

ments to the core atom type perception module that 

now covers a much more comprehensive set of elements, 

charge states and radical species than previous versions, 

a more comprehensive fingerprinting API, new depiction 

functionality, and many speed and stability improvements.

Implementation and results
�is section describes the specifics of new APIs and 

improvements to pre-existing methods that are avail-

able in the latest CDK. We then discuss how we have 

improved and formalized the development model for the 

project using unit testing, code review and guidelines for 

handling version control. Finally we report on the availa-

bility of binary distributions of the library, allowing users 

to include specific modules (and their dependencies) of 

the CDK in their own projects (as opposed to developers 

who work on the CDK library itself ).

New APIs and improved implementations

We here outline various new and improved APIs in the 

CDK library since the two previous publications in 2003 

and 2006 [3, 4].

Atom typing

Atom type perception is core cheminformatics function-

ality: the atom types describe chemical features of atoms, 

such as the number of neighbors, possible formal charges, 

(approximate) hybridization, electron distribution over 

orbitals and so on. However, previous versions of the CDK 

implemented atom type perception as part of different 

algorithms, resulting in duplicated and sometimes diver-

gent typing schemes. As a result it was cumbersome to add 

new atom types and implement support for new charged 

and radical species in a consistent manner.

�is CDK version has a new, centralized atom typ-

ing framework, removing the perception of atom types 

from various algorithms. �is allows for a consistent and 

extensive typing scheme, that can be also be tested inde-

pendently of other code. �e new code defines the atom 

types using a list that specifies for each type the element 

symbol, hybridization, formal charge, number of lone 

pairs, and an enumeration of the bond orders (see Fig. 1). 

�is list of properties captures the information needed 

for the various algorithms in the CDK. For example, 

hybridization information can be used in certain aroma-

ticity models (see later), and the lone pair information is 

needed for resonance structure calculation needed, for 

example, for Gasteiger π-charges.

Fig. 1 Atom type information specified for a sp3-hybridized carbon
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A reference implementation, CDKAtomType-

Matcher, has been written in such a way that per-

ceives these atom types, and validates the perception 

automatically against the properties defined by the 

ontology. �is class handles a variety of types of miss-

ing information, as commonly resulting from various 

(file) formats; for example, it can handle undefined 

hydrogen counts and undefined double bond positions 

if hybridization information is provided instead. �at 

makes the perception code flexible but also more com-

plex. Alternative algorithms for atom typing have not 

been explored. �is reference implementation can be 

used on a single atom:

And on a full molecule, in which case the list of types 

is ordered in the same order as the atoms in the molecule 

object:

Stereochemistry

Previous versions of the API represented stereochemistry 

in different ways. �is hindered interconversion between 

and within file formats. CDK v2.0 standardizes upon 

a new core representation and procedures have been 

updated or added to enable duplicate checking, pattern 

matching, and interconversion.

�e preferred representation of stereochemistry is now 

for it to be stored at the molecule level as a StereoE-

lement. In abstract terms a stereo element describes 

local geometry using a type, focus, carriers, and con-

figuration (Fig. 2). Currently the most common types of 

stereochemistry are supported: Tetrahedral, Cis-trans 

isomerism around a double bond, and Extended Tetra-

hedral. Rarer types of stereochemistry, such as: Square 

Planar, Trigonal Bipyramidal, Octahedral, could easily be 

incorporated into the chosen description given sufficient 

demand from the community.

Along with the new stereochemistry representation, 

algorithms were required in several areas. Generally, a 

user does not need to invoke these procedures explicitly 

as they are called as needed within existing APIs:

  • perception from 2D coordinates,

  • perception from 3D coordinates,

  • wedge assignment,

  • graph (sub)isomorphism matching,

  • SMARTS matching, and

  • canonicalization.

�e perception from coordinates and wedge assignment 

algorithms are fundamental for conversion between for-

mats that store stereochemistry implicitly based on coor-

dinates (e.g. molfile,1 CML) and explicitly (e.g. SMILES, 

CML, InChI). Perception from 2D coordinates can 

optionally identify perspective projections, specifically: 

Fischer, Haworth, and Chair projections. With the per-

ception of perspective projections enabled, database 

entries currently considered distinct can be merged 

(Fig. 3).

Pattern matching of stereochemistry with the described 

representation is straight forward. Given the atom–atom 

mapping from a query structure to a target molecule, 

the focus and carriers of the query stereochemistry 

are mapped to the target. Using the permutation par-

ity of this mapping the configurations were compared. 

SMARTS matching requires some special handling for 

complex cases [39]. For canonicalization, a partial canon-

ical ordering is used to assign an absolute label which can 

then be integrated into the ordering. �e algorithms used 

for stereochemistry are thoroughly detailed in Chapter 6 

of  [40]. �e perception from projections is based on an 

algorithm briefly described by [41].

Atomic and molecular signatures

An implementation has been provided of the Signature 

structure descriptor for molecules  [42]. �ese act as a 

linear notation—like the SMILES format—for the whole 

1 Molfiles can also store tetrahedral stereochemistry as a parity value, this 
is read if no coordinates are specified. In general there is no guarantee the 
parity value is read and the only portable way to store stereochemistry in a 
molfile is with coordinates.

Fig. 2 Relative storage of stereochemistry, the type and focus of 

stereochemistry are fixed for a given stereocenter description but 

the carriers and configuration are relative. The multiple rows for each 

stereochemistry type are different internal representation that would 

be considered equivalent. In the tetrahedral types, hydrogens may be 

suppressed in a molecular graph so the focus is reused in the carriers 

list as a placeholder
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molecule as well as for connected substructures rooted at 

a single atom. �e descriptor can also be canonicalized to 

provide isomorphism-independent representations  [43]. 

Signatures of depth two can be calculated for atoms with:

But they can also can be calculated for full molecules:

Finally, a signature fingerprint can be calculated for 

molecules, to allow similarity calculations. �is can then 

be used in QSAR modeling [34, 44–49].

Rendering API

A new rendering API has been introduced to make the 

rendering code independent from Java widget toolkits. 

�e previous code was tightly linked to the Swing toolkit, 

but other tools use different widget toolkits. For exam-

ple, Bioclipse is based on Eclipse which uses the Standard 

Widget Toolkit (SWT) [27].

A second new design goal was introduced to balance 

between size restrictions of some use cases, such as Java 

applets, and the rendering functionality. In particular, 

some functionality, even after modularization, needed 

considerable parts of the CDK library, making creation of 

a small-sized applet unfeasible. �erefore, the rendering 

API was modularized to allow splitting up rendering func-

tionality into modules, with varying CDK dependencies.

Rendering is split up into several generation steps: 

previous versions split up bond from atom rendering. 

Heteroatom symbols were simply drawn over lines rep-

resenting bonds using a white rectangle to mask. A new 

StandardGenerator has been introduced that does 

bond and atom rendering at the same time. It incorpo-

rates many ideas described by Alex Clark  [50, 51]. �e 

depictions generated are of much higher quality and suit-

able for publication.

Moreover, a simplified high-level API has been intro-

duced that addresses most of the common rendering 

needs, with the DepictionGenerator class. To depict a 

molecule loaded into a variable ‘benzene’ the following 

code can be used:

Many of the rendering options are available as param-

eters in the core API and as methods on the Depiction-

Generator class. �is includes substructure coloring, 

exemplified with an example reaction shown in Fig.  4. 

When missing, 2D coordinates are generated on the fly 

with the new structure diagram layout functionality.

Structure diagram layout

�e structure diagram layout has been improved and the 

new code solves a number of long standing issues. In par-

ticular, collision avoidance has been greatly improved. 

Figure  5 shows a difference in output between the old 

code base, with and without overlap resolving, and with 

the new refinement based implementation [52]. Genera-

tion of 2D coordinates is done as shown below:

While the API itself has not been significantly changed, 

the internals have been revamped. In addition to improved 

overlap resolution noted above, the engine appropriately 

handles large ring systems, maintains input stereochemistry, 

CHEMBL23970 CHEMBL444314

CID 5280 CID 65119

Projection Perception

Fig. 3 The raw input files of CHEMBL23970 and CHEMBL444314 

are displayed (ChEMBL 21). Without perceiving the stereochemistry 

indicated by Haworth projection in CHEMBL23970, the database 

entries are incorrectly considered distinct. Down stream aggregation 

databases mirror this separation (PubChem CID 5280, CID 65119)
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and makes use of a large template library. Templates are use-

ful for laying out substructure. While previous CDK ver-

sions partially supported double bond stereochemistry the 

new engine is more efficient in using this information when 

generating 2D layouts. Furthermore, the engine assigns 

wedge bond information based on tetrahedral stereochem-

istry. �ese features are exemplified by the following code 

and the resulting layout depiction in Fig. 6:

Molecular formula

A chemical formula is the simplest chemical representa-

tion of a compound. It defines the number of isotopes or 

elements that compose a compound without describing 

how atoms are bonded. With the rise of metabolomics it 

has become increasingly relevant to have full support for 

these in cheminformatics libraries [23, 53–56].

�e CDK interfaces can handle several concepts related 

to chemical formulas: the formula itself, sets of formulas, 

chemical formula ranges, adducts, isotope containers and 

patterns, and rules to filter formula sets. �ese new tools 

can be used for a number of tasks, including calculat-

ing the isotopic pattern from a given chemical formula, 

determining the possible elemental compositions for a 

given mass (mass decomposition), and calculating the 

exact mass from a given chemical formula.

�e CDK contains two algorithms for the decomposi-

tion of mass ranges into possible elemental formulas. For 

most inputs, a Round Robin algorithm, originally devel-

oped for the SIRIUS metabolite identification tool  [57], 

is used. �e algorithm discretizes the real-value mass 

decomposition problem into an integer-value knapsack 

problem [58]. It first computes a dynamic programming 

table and then backtracks within it to generate matching 

formulas  [59, 60]. Data for the Round Robin algorithm 

is stored in an extended residue table  [61], resulting in 

a low memory footprint of several kilobytes. For cer-

tain problem instances, such as very large mass values 

(above 400,000 Da) or mass range span larger than 1 Da, 

the Round Robin algorithm is not suitable and CDK falls 

Fig. 4 Integrated example showing the rendering and SMILES parsing functionality. Example from U.S. Patent US 2014 231770 A1 para 287

Fig. 5 The improved structure diagram generation has improved code to solve overlap. The original SDG code used general heuristics (left) and the 

OverlapResolver would fine tune the layout to ensure atoms would not be placed at the same location (middle). The new SDG algorithm is able to 

make more rigorous changes, making the final output must more pleasing (right)

Fig. 6 Structure diagram generation for structures with double bond 

and tetrahedral stereochemistry
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back to an optimized full enumeration search method, 

originally developed as part of the MZmine 2 framework 

for mass spectrometry data processing [54, 55].

�e following code calculates all possible chemical for-

mulas for a given accurate mass, within allowed counts 

for each element:

�is gives the following output:

To evaluate the performance of the CDK molecular 

formula generator, we compared its runtimes to those of 

the classic, full enumeration-based HR2 formula genera-

tor  [62] and those of a recently developed Parallel For-

mula Generator (PFG) [63] (Table 1). As inputs, we used 

two sets of 10,000 small (<500  Da) and 20 large (>1500 

and <3500 Da) molecular mass values downloaded from 

the Global Natural Products Social Molecular Network-

ing database [64]. �e mass tolerance was set to 0.001 or 

0.01 Da. �e CDK v2.0’s Round-Robin formula genera-

tor outperformed the other methods in all cases, despite 

running in a single thread (PFG utilizes multiple threads). 

�e performance gain of the Round Robin algorithm was 

particularly apparent when narrow mass ranges were 

queried (e.g. ±0.001 Da), thus showing its suitability for 

applications in high-resolution mass spectrometry.

SMILES parser and generator

�e SMILES  [65] parsing has been replaced by code 

from the external Beam project  [66]. �is BSD-licensed 

SMILES parser is a complete implementation of the 

SMILES and OpenSMILES (http://opensmiles.org/) 

specifications by one of the authors (including stereo-

chemistry), and is independent of the CDK library. �e 

SmilesParser API uses this library underneath, and 

the Beam API is hidden by this class. Basic usage is as 

follows:

�e most significant functional change here is that the 

SMILES parser automatically locates the positions of 

double bonds in de-localised aromatic systems (Kekuli-

sation). If this invariant cannot be met the SMILES is 

rejected as invalid. It is possible to override this check but 

this is strongly discouraged as rejected molecules do not 

have a fixed formula or tautomer [40].

Table 1 Evaluation of molecular formula generators

The resulting formula counts and runtimes of the HR2, PFG, and CDK chemical formula generators on two di�erent inputs with two di�erent mass tolerance settings. 

For the set of small masses, 10,000 mass values in the range of 0–500 Da were randomly selected from the Global Natural Products Social Molecular Networking 

database [64]. For the set of large masses, 20 mass values in the range of 1500–3500 Da were randomly selected from the same database. Formulas were generated 

using chemical elements C, H, N, O, P, S without bounds (the allowed atom count was set to 0–10,000 for each element). All heuristic �ltering rules were disabled for 

the purpose of the evaluation. The slight di�erences in the number of generated formulas were caused by di�erent isotope masses embedded in each software and/

or by rounding errors during calculation. The runtimes are average values from three independent runs performed on three di�erent 16-core Intel Xeon 2.9 GHz CPU 

workstations equipped with 189 GB RAM, running Ubuntu Linux version 12.04.5 LTS and OpenJDK Java runtime version 1.7.0_101

Input Mass tolerance (±Da) # of generated formulas Runtime (s)

HR2 PFG CDK HR2 PFG CDK

10,000 small masses 0.001 616,846 616,846 616,843 669 168 41

10,000 small masses 0.01 6,163,303 6,163,302 6,163,326 689 501 212

20 large masses 0.001 4,912,939 4,912,939 4,912,904 26,370 1292 177

20 large masses 0.01 49,128,811 49,128,810 49,128,815 26,587 3406 1580

http://opensmiles.org/


Page 7 of 19Willighagen et al. J Cheminform  (2017) 9:33 

�e SMILES generation API has also been simplified 

and made more flexible able to produce several differ-

ent flavours. �e SmiFlavor flags are used to control 

the type of SMILES generated. Historically the terms: 

generic, isomeric, unique, absolute have been used in 

other toolkits and are also supported.

Support for ChemAxon Extended SMILES 

(CXSMILES) [67] layers has been added to CDK v2.0. 

CXSMILES provides a powerful means of including 

auxiliary information in a SMILES string such as 2D/3D 

coordinates, atom values, generic labels, repeat units, 

and positional variation. CXSMILES is achieving by 

placing additional information between pipe characters 

(‘|’) in the SMILES title field. Information is annotated 

based on the order of the atoms in the SMILES string. 

An example CXSMILES for a generic structure is shown 

below.

Substructure and SMARTS matching

Substructure matching is fundamental cheminformatics 

operation and plays a key role in many other functions 

such as fingerprint and descriptor generation, and atom 

typing. Since CDK v1.2, functionality has been added to 

handle the SMARTS query language. �e SMARTS lan-

guage is supported well including features such as ste-

reochemistry, component grouping, and atom maps (to 

match reaction transformations). A new Pattern API has 

been added to CDK v2.0, which simplifies finding, filter-

ing, and transforming search results. �e API is immu-

table allowing a pattern to be initialized once and then 

matched against several molecules or reactions across 

multiple threads. During initialization the pattern is 

inspected so as to determine what invariants will be 

needed (e.g. ring size) and only required invariants are 

calculated. �e internal matching algorithms provide a 

lazy iterator, such that the next match is only computed 

when it is needed. �e API handles reactions in addition 

to molecules, and both can be specified as either queries 

or targets.

CDK v2.0 includes large improvements to algorithm 

efficiency. �is is emphasised in the systematic bench-

mark of MACCS-like 166 key generation (Table  5). �e 

efficiency improvements are a combination of optimis-

ing data structures and key molecule processing algo-

rithms (e.g. kekulisation and aromaticity) needed before 

a SMARTS match can be run [40, 68, 69].

Ring �nding

Ring finding is another key functionality in a chemin-

formatics library, and the CDK knows a long history of 

ring finding [38, 70]. Specifically, non-redundant ring sets 

have seen particular interest, such as the smallest set of 

smallest rings, for which the CDK implements two clas-

sical algorithms  [70, 71]. Recent work has implemented 

a new, faster algorithm, allowing searching for various 

types of (non-redundant) ring sets  [38]. �ese are avail-

able via the new Cycles API:

Aromaticity

Aromaticity has seen many definitions in the past and for 

cheminformatics it frequently is algorithmically defined. 
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�e outcome of an aromaticity calculation depends on a 

number of atom type features and heuristics, which are 

often ambiguously defined in the published literature. 

Based on the information used, several different algorith-

mic definitions of aromaticity can be defined. Older CDK 

versions had various aromaticity models implemented 

but the code was scattered throughout the library, result-

ing in an inconsistent API to compute aromaticity and a 

significant maintenance burden. �e API was unified in 

the current version, resulting in three models, of which 

two are based on the CDK atom typer. �e difference 

between these two models is how contributions from 

exocyclic double bonds are handled.

�e current CDK version further generalizes the idea 

that aromaticity is a model, and provides an API that 

allows the user to select one of several aromaticity mod-

els, leading to greater interoperability with other toolkits. 

�e new Aromaticity class allows to build a custom 

model by selecting and combining options. For example, 

to reproduce the functionality of the previous CDKAro-

maticity class:

Here, the CDK model for counting donated electrons is 

used, along with the rings systems that were identified by 

the older algorithm in previous versions that was limited 

in the number of fused rings systems that were consid-

ered. However, an alternative aromaticity calculator that 

considers all possible ring systems can now be easily cre-

ated with:

For SMARTS matching and SMILES generation a 

model based on Daylight [72] can be used and offers sig-

nificant speed improvements to the one based on CDK 

Atom Types. �is model has recently been documented 

as part of the OpenSMILES specification (http://opens-

miles.org/):

�e aromaticity algorithm is straight forward, the 

potential electron donation is calculated for each atom as 

−1 (not aromatic), 0, 1, 2. �e set of cycles provided in 

the constructor is then generated and each is checked for 

Hückel’s rule (4n + 2).

CT�le format improvements

The molfile format is still very popular and despite it 

being a proprietary format, it has become a de facto 

standard. The format forms the core of the larger 

CTfile family which was originally developed by MDL 

Information Systems  [73]. The current format speci-

fication is published by BIOVIA and available on 

request [74].

�e CTAB block (connection table) of a molfile comes 

in two versions, V2000 and V3000. �e V3000 provides 

several enhancements including but not limited to: 

removing atom and bond count limits, enhanced stereo-

chemistry, and link nodes. For backwards compatibility 

V2000 is often preferred resulting in limited usage of 

V3000.

CDK v2.0 adds support for V3000 and has optimized 

and extended support for V2000. Currently these are 

considered separate formats requiring a user to know 

what version is being read beforehand. Future APIs will 

aim to simplify this and provide a unified reader. An 

overview of currently supported CTfile formats is given 

in Table 2.

CTfile Sgroups capture and organise high level infor-

mation about sets of atoms and bonds  [75]. �ere are 

four types of Sgroup: Display Short-cuts, Polymers, Mix-

tures, and Data. �e most familiar Sgroups from an end 

user perspective are structure repeat units (e.g. bracket-

ing) and abbreviations (Fig. 8). CDK  v2.0 adds supports 

for representation, reading, writing, and depiction of 

Sgroups.

New object builders

Originally, the CDK was developed as a shared library 

between JChemPaint [76] and Jmol [77, 78]. JChemPaint  

used a MVC approach with an event-passing mecha-

nism to update the view when the model was changed. 

�is can cause a cascade of change events being passed 

around. �is was not always a desirable feature, espe-

cially for non-UI code. To address this, interfaces were 

Table 2 CT�le format support

Format V2000 V3000

MOLfile Read and write Read and write

RXNfile Read and write Read

SDfile MOLfile Read and write Read

RGfile Read and write

RDfile

http://opensmiles.org/
http://opensmiles.org/
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introduced allowing multiple implementations of the 

core interfaces. With much code of the CDK library 

no longer based on the original data model, a builder 

is needed to create objects of that data model, such as 

an implementation of the IAtom. �e new IChemOb-

jectBuilders allow implementations to be created, 

allowing implementations of the interfaces to be instan-

tiated without the need of explicitly referencing those 

implementations. �is way, any algorithm implementa-

tion in the CDK can use any of the data model interface 

implementations.

�e CDK v1.0 and v1.2 implementations of the 

IChemObjectBuilder had, however, one method 

for each data object constructor, resulting in a very large 

interface. Moreover, this interface API had to be updated 

each time a new class was introduced, and when exist-

ing methods changed and constructors were updated. To 

simplify the API, the new IChemObjectBuilder col-

lapses all methods into a single method, which takes as a 

first parameter the class of the interface that is to be con-

structed. All further parameters are passed as parameters 

to the class constructor.

For example, to construct a new atom from its element 

symbol, one would write previously:

With the new builder, the code looks like:

�e CDK library is now mostly refactored and no 

longer depends on a specific implementation of the 

IChemObjectBuilder, allowing the user of the CDK 

to select a builder suitable to their software. �ere-

fore, if software depends on event passing, then the 

DefaultChemObjectBuilder can be used, in most 

cases this isn’t needed and the SilentChemObject-

Builder is preferred resulting in a typical speed up of 

10–20%:

�e third builder is the DataDebugChemObject-

Builder which generates debug information for all 

changes to the content of the data classes. �is can be 

useful for debugging and other forms of code inspection.

Molecular �ngerprints

Molecular fingerprints have also seen significant devel-

opment in this CDK version. Previously, fingerprints 

were represented using the BitSet class from the Java 

library. While using this class allowed the use of pre-

existing methods to manipulate bit strings, it keeps a 

vector of bits in memory. �e solution was excellent for 

hashed, relatively small fingerprints, e.g., 1024 bits, i.e. 

with a 210 indexing space (128 B). However, implement-

ing a fingerprint designed to avoid collisions with a 232 bit 

indexing space using this approach would be memory-

inefficient (512 MiB). To allow for multiple fingerprint 

representations, a bit fingerprint interface was intro-

duced: IBitFingerprint.

Also, although fingerprints traditionally are bit vectors 

a count fingerprint was also introduced making finger-

prints based on integer vectors supported in CDK as well. 

�e counts in the fingerprint then represent how often 

this substructure is found in the molecule it represents.

�e fingerprints currently provided by the CDK are 

listed in Table 3.

Improved coding standards

As the CDK library grew over the years, so did the com-

plexity of the maintenance. �e main branch frequently 

failed to compile and bug fixes became more onerous 

due to unexpected side effects. Often fixing a bug in one 

part of the code, broke some other code which made the 

incorrect assumptions about the fixed code. With the 

increased size of the CDK developer community, such 

issues were inevitable in the absence of any formal coding 

and testing standards.

To address these issues, we have adopted a number 

of coding standards. While not a comprehensive imple-

mentation of software engineering best practices, they 

attempt to find a balance between increasing code main-

tainability and being flexible enough to allow efficient 

code development. We appreciate the subjective nature 

of this statement, and some adopted guidelines have been 

heavily discussed and debated in the CDK community.

Arguably, perhaps the biggest factor in improved code 

quality is a peer review process where any functionality 

changing patch is required to be reviewed by one inde-

pendent, senior CDK developer for the development 

branch, and by two reviewers for stable branches. �is 

patch development system is supported by a number of 

automated validations steps as outlined below. �e next 

sections describe some approaches the project have 
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adopted that allows us to maintain the CDK library as it 

is today.

Stability and version identi�er

Prior to CDK v2.0, the parity of the version identifier’s 

second digit indicated stability. Even numbers (v1.2.x, 

v1.4.x) indicating API stability and odd numbers (v1.3.x, 

v1.5.x) indicating potential API instability. Versions v1.4.x 

and v1.5.x were developed in parallel, where possible 

patches were applied to both. As the APIs diverged the 

amount of effort to port patches from the development 

but more robust v1.5.x to v1.4.x became unmanageable 

for the core development team. �is even-odd version 

scheme was adopted from old Linux kernel versioning 

that was subsequently abandoned in 2004 for time-based 

releases [79].

At the time of writing the development branch is more 

than 3000 commits ahead of v1.4.x. As the the v1.5.x API 

has become stable it became time to release v1.6.x. Due 

to significant API changes in 20112 it was felt a larger 

digit increment was needed. �is provided the opportu-

nity to change to a more manageable and intuitive ver-

sion identifier.

From CDK v2.0 a new sequence based version scheme 

will be used. �e version identifier indicates change sig-

nificance as follows:

2 https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363
ecbcb188.

Due to limited developer resources we envision that 

releases will primarily increment the minor version with 

the occasional patch release. As per Maven convention, 

development versions are suffixed with -SNAPSHOT. 

�ere are no API changes from v1.5.x and v2.0.

Modularization

One of the central approaches we have adopted, is to 

make the CDK more modular. �e CDK assigns every 

class to a module, and defines dependencies between 

modules. For example, core modules are not allowed to 

depend on modules with data classes implementing the 

CDK interfaces; instead, they may only depend on the 

interfaces themselves. �is ensures that dependencies 

are minimized. Furthermore, it also allows cherrypicking 

CDK functionality, reducing the number of third-party 

library dependencies that are needed. An overview of 

key modules with description, important changes, and 

dependencies on third-party libraries is given in Table 4 

and the dependencies between the CDK modules are 

depicted in Fig. 7.

Table 3 The molecular �ngerprints in CDK

Listed are the currently available molecular �ngerprint in CDK with information about whether they come as a bit and/or count version, what CDK version they were 

introduced in, their default size, and relevant references, where applicable

* For the CircularFingerprinter the bit version is folded to 1024 whereas the count version is unfolded

† The LingoFingerprinter does not have a default size

Bit version Count version CDK version Default Size

CircularFingerprinter [35, 86] � � v2.0 1024/232*

EStateFingerprinter [87] � v1.2.0 79

ExtendedFingerprinter � v1.0 1024

Fingerprinter � v1.0 1024

GraphOnlyFingerprinter � v1.0 1024

HybridizationFingerprinter � v1.4.0 1024

KlekotaRothFingerprinter [88] � v1.4.6 4860

LingoFingerprinter [89] � v2.0 NA†

MACCSFingerprinter � v1.2.0 166

PubchemFingerprinter [90] � v1.4.0 881

ShortestPathFingerprinter � v2.0 1024

SignatureFingerprinter [44] � � v2.0 2
32

SubstructureFingerprinter � v1.0 307

https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188
https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188
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Table 4 A selection of key CDK modules with major changes

An overview of a selection of often used CDK modules with description, dependencies on third-party libraries, and the major changes since version 1.2. Dependencies 

between modules are depicted in Fig. 7

Module Description Major changes Dependencies

interfaces Interfaces for the data models Vecmath 1.5.2

core Core functionality Google Guava 17.0

standard Common functionality

render Graphical rendering Redesigned to make it more modular and 
support Multiple widget toolkits, like AWT 
and SWT

isomorphism Isomorphism and substructure searching

atomtype Various non-core atom type schemes Unified approach where atom typing is sepa-
rated from other algorithms

ioformats Definitions of (chemical) input/output 
formats

io Readers and writers for input/output formats The molfile reader has been rewritten and 
supports atom types defined in the speci-
fication

XPP3 1.1.4c

iordf Stores data models as in the Resource 
Description Framework serialization formats

New Jena 2.7.4

inchi IUPAC International Chemical Identifier sup-
port

JNI-InChI 0.8 [37]

libiocml Writer for the Chemical Markup Language 
format

XOM 1.2.5, CMLXOM 3.1 [91]

sdg Structure diagram generation. Much improved overlap resolution

smiles Reading and writing in the SMILES format SMILES support performance and coverage is 
greatly improved

Beam 0.9.1 [66]

smarts Substructure searching with the SMARTS 
format

Beam 0.9.1 [66]

hash Molecular hash codes [92]

formula Chemical formula support New

fingerprint Calculate fingerprints Many new fingerprint types (see text) Apache Commons Math 3.1.1

qsar and qsarmolecular Molecular descriptors XOM 1.2.5, JAMA 1.0.3 [93]

signatures Calculation of molecular and atomic signa-
tures

Signatures 1.1

Fig. 7 Dependencies between CDK modules. Visualization of the dependencies between CDK modules. For example, the cdk-core depends on the 

cdk-interfaces module. A few higher level modules have been left out: cdk-builder3dtools, cdk-legacy, and cdk-depict
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Documentation

�e quality of the JavaDocs was originally tested with 

DocCheck, and later replaced by a custom written tool 

called OpenJavaDocCheck. With the move to Maven 

(explained later), which does not have integration for this 

tool, we adopted CheckStyle (http://checkstyle.source-

forge.net/). �is tool reports on missing documentation 

and on documentation which is not properly annotated in 

the Java source files. �e new website lists a few resources 

to help starting CDK users, including a book [80] and the 

Chemistry Toolkit Rosetta Wiki (http://ctr.wikia.com/

wiki/Chemistry_Toolkit_Rosetta_Wiki).

Testing

Years of development of the CDK library has resulted in 

a large suite of tests of various kinds. �is include unit 

tests, which test core APIs, and functional testing, which 

test higher level functionality of the CDK. �e latter 

include tests if algorithm implementations calculate the 

expected values, but also contain integrated tests, which 

involve more than one algorithm, such as SMILES pars-

ing. �e suite consists of more than 23 thousand tests.

Code quality

�e project continues to use PMD (http://pmd.sf.net/) 

for code quality checking, but deviates from the default 

rules. For example, we are more liberal with variable 

name length. Moreover, a number of additional PMD 

tests have been developed specifically for the CDK, that, 

for example, test if a class uses the core interfaces instead 

of implementations of those interfaces. �at is, that the 

code uses IAtom instead of Atom. However, these tests 

do generate a few false positives, as the tests check the 

class name only, and not the Java package the class is in.

Continuous integration

�e CDK has had an automated build system for many 

years now. Originally, Nightly integrated various tools 

(building, testing, JavaDoc, etc)  [2]. After the move to 

Maven, running various steps could be done with Maven, 

and Jenkins was used to execute the steps (one instance 

is still running at https://jenkins.bigcat.unimaas.nl/job/

cdk/. �e online Travis-CI service is used to build all 

branches, including pull requests, to ensure everything 

properly compiles: https://travis-ci.org/cdk/cdk.

Git, branching, and patches

Older versions of the CDK employed Subversion for ver-

sion control. A few years back, the project switched to 

the Git version control system. A key advantage of this 

shift is the ability to have distributed repositories, easier 

branching and provision for patches. GitHub (https://

cdk.github.io/) has replaced SourceForge as the main 

source code hosting service where we can use novel 

approaches for commenting on code (peer review), 

pull requests, etc. �ese new features simplify our code 

review process.

Support

Besides the aforementioned sources of documentation, 

the project has additional sources of support. First, the 

issue tracker welcomes questions and other types of sup-

port requests, available at https://github.com/cdk/cdk/

issues. �e mailing list is another place where support 

can be requested, while the archives document many 

past user questions. �e list and archives can be accessed 

from https://sourceforge.net/p/cdk/mailman/cdk-user/.

Binary distributions

Maven packages

�e build system has been converted from Ant to Maven. 

�e shift was motivated by the easier dependency han-

dling, cleaner separation of testing code from the main 

library and automated packaging. �e move to modules 

necessitated splitting the original monolithic source code 

tree in to per-module source folders. While this makes 

the on-disk layout of the source code more complex, this 

is usually hidden by modern IDEs.

As a result for many modules, the test code is now 

more closely linked to the code being tested: both reside 

in the same folder, though we adhere to the Maven cus-

tom to have src/main/java and a src/test/java 

folders. For a few modules, however, this solution intro-

duces circular dependencies, in which case a separate 

Maven module is created for the tests.

�e Maven packages for the CDK are available from 

Maven Central, which makes it easy for other projects 

to use. �e full library can be included in other software 

by depending on the cdk artifact (http://search.maven.

org/#search|ga|1|org.openscience) but dependencies can 

also be defined on individual CDK modules.

OSGi bundles

OSGi bundles are available for the CDK too, which are 

used by e.g. Bioclipse  [27, 28] and KNIME  [8]. How-

ever, because CDK Java packages are occasionally split 

between CDK modules, the CDK currently needs to be 

bundled as a single OSGi jar. �e bundle is available from 

http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/. �is 

Java package and bundle incompatibilities are currently 

being explored and constitutes an area where improve-

ments can be done on modularization.

Systematic benchmark

A systematic benchmark was performed to evaluate and 

quantify performance improvements from v1.4.19 to 

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://pmd.sf.net/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://travis-ci.org/cdk/cdk
https://cdk.github.io/
https://cdk.github.io/
https://github.com/cdk/cdk/issues
https://github.com/cdk/cdk/issues
https://sourceforge.net/p/cdk/mailman/cdk-user/
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/
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v2.0. �e benchmark is divided into several cheminfor-

matics tasks for common use cases. Each task was evalu-

ated on input from ChEBI 149 [81] and ChEMBL 22.1 

[82] as both SMILES and SDF.

�e benchmark was run on Java SE 8, CentOS 7, Intel 

Core i7-4790 CPU @ 3.60GHz with 16 GB of RAM. �e 

code to run the benchmark is available in Additional file 1 

allowing numbers to be recorded on the reader’s system.

�e results of benchmark are summarised in Tables 5 

and 6. �e total elapsed times are reported in Table  5, 

Table  6 subtracts the first tasks results (Count Heavy 

Atoms) to provide a comparable measure without the 

overhead of input read time. �e throughput as mol-

ecules per minute is reported but is less accurate for very 

fast running tasks. 

Count heavy atoms

�is task highlights improvements in raw read perfor-

mance. Each record is read in to a resident memory con-

nection table and the number of heavy (non-hydrogen) 

atoms counted by iterating over the atoms sequentially.

�e improvement on this task is most noticeable 

for SMILES input, previously it would take more than 

8 min to read ChEMBL 22.1 but this is reduced to less 

than 11 s. On top of this improvement SMILES input 

is now validated and assigned a Kekulé structure. �is 

identifies 9 invalid entries in ChEBI and another 9 in 

ChEMBL. Most of these rejected SMILES are due to the 

wrong encoding of Cis/Trans double bond stereochem-

istry at ring closures. �e ChEBI 149 SMILES input has 

2107 empty records that v1.4.19 skip, v2.0 simply reads 

these as empty molecules. Input from SDF also improved 

from ~3 to ~1 min for ChEMBL. �e SDF input in v2.0 

now includes perception of stereochemistry and reading 

CTfile Sgroups (Fig. 8). �ere are 9 entries from ChEBI’s 

SDF that are rejected because they contain CTfile query 

features (e.g. any bond order).

Rings

Ring perception is a fundamental step in many other 

algorithms. �e rings task is divided as three subtasks: 

mark, sssr, and all.

-mark �e first subtask measures the performance in 

marking ring membership and reporting the number of 

ring bonds in each record. �is requires a linear algo-

rithm based on a depth first search. �e original code 

used a weighted spanning tree to compute the member-

ship in linearithmic time. �e run times are similar for 

these datasets (Table 6), larger differences are only seen 

for more complex cage molecules such fullerenes [38].

-sssr �e second subtask computes the Smallest Set of 

Smallest Rings (SSSR) and reports the size of the SSSR 

(circuit rank) for each record. Although circuit rank 

can be computed more efficiently with a linear traversal 

(counting DFS back-edges) or with Euler’s polyhedron 

formula we are testing the time to enumerate the SSSR 

set. In general SSSR is considered unfavourable due to 

the non-uniqueness of the set and need for Gaussian 

matrix elimination (cubic runtime). With some book-

keeping the time spent in the matrix elimination has been 

reduced  [38]. For ChEMBL we see the time to generate 

the SSSR is now ~16 s when it previously took around 

~3.5 min (Table 6).

-all �e third subtask counts the number of all rings up 

to or equal to size 12. �is includes rings that encompass 

other smaller rings, for example, 1H-indole has rings of 

size 5, 6, and 9. In general this problem is exponential and 

so an adjustable threshold or timeout is used to avoid 

problematic molecules. CDK v1.4.19 used a timeout 

based threshold (default 5 s) whilst v2.0 uses a counter 

based on properties of algorithm [38]. In v2.0 there were 

15/173 records skipped from ChEBI that have complex 

cage-like ring systems (e.g. CHEBI:33611), no records in 

ChEMBL reached the threshold. By comparison in 

v1.4.19 there were 14/16 records skipped from ChEBI 

and 88/90 in ChEMBL due to reaching the time out.

�e speed-up in v2.0 is slightly better than the SSSR 

task. ChEMBL previously spent 4–5 min and now 

takes only ~12–14 s (Table  6). In v2.0 finding all rings 

(≤12 bonds) runs faster than the non-unique SSSR 

computation.

Canonical SMILES

�is task measures the generation of a Unique SMILES 

string. �ese can be used to compare dataset intersec-

tion and exact lookup. From SMILES input v2.0 the total 

elapsed time is ~20 times faster for both ChEBI and 

ChEMBL. For ChEMBL it now takes just under 41 s to 

read, reorder, and write the SMILES compared to more 

than 14 min previously.

Convert

�is tasks tests the non-canonical conversion between 

SDF and SMILES input.

-ofmt smi SMILES is a very compact means of storing 

connection tables, v1.4.19 could only write canonical 

SMILES, v2.0 allows different SMILES flavours to be gen-

erated including a non-canonical variant. �is task out-

puts CXSMILES that includes additional fields such as 

repeat groups (used by some ChEBI entries). As expected 

the v1.4.19 execution time is the same as for the Canoni-

cal SMILES task but v2.0 can generate the non-canonical 

SMILES faster taking less than 30 s for SMILES from 

ChEMBL.

3 2 records from SDF use query bond features and are skipped when read.
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Table 5 Summary of systematic benchmark comparing v1.4.19 to v2.0

The total elapsed real time was measured with the unix time utility. The throughput is reported in molecules per minute (K = thousand, M = million) as a relatable 

metric. This throughput was calculated by taking the total elapsed time and dividing it by the number of molecule in the dataset (42704 for ChEBI 149, and 1678393 

for ChEMBL 22.1). The ChEBI SMILES input contains 2107 blank (but valid) inputs, this accounts for the majority skipped in v1.4.19. The throughput calculation was 

adjust to account for this

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per min Skip Time Per min

countheavy ChEBI 149 smi 2112 22.51s 108.2K 9 0.85s 2.9M 26.48

sdf 0 7.21s 355.4K 25 3s 854.1K 2.4

ChEMBL 22.1 smi 0 8m39.3s 193.9K 9 10.74s 9.4M 48.35

sdf 0 3m17.29s 510.4K 0 53.27s 1.9M 3.7

rings
-mark

ChEBI 149 smi 2112 22.91s 106.3K 9 1.06s 2.3M 21.61

sdf 0 8.71s 294.2K 25 3.11s 823.9K 2.8

ChEMBL 22.1 smi 0 8m45.78s 191.5K 9 17.09s 5.9M 30.77

sdf 0 4m12.01s 399.6K 0 1m6.54s 1.5M 3.79

rings
-sssr

ChEBI 149 smi 2112 27.4s 88.9K 9 1.43s 1.7M 19.16

sdf 0 11.84s 216.4K 25 3.78s 677.8K 3.13

ChEMBL 22.1 smi 0 12m4.62s 139K 9 27.16s 3.7M 26.68

sdf 0 7m9.58s 234.4K 0 1m8.17s 1.5M 6.3

rings
-all

ChEBI 149 smi 2126 45.28s 53.8K 26 1.26s 1.9M 35.94

sdf 16 36.56s 70.1K 40 3.51s 730K 10.42

ChEMBL 22.1 smi 88 12m40.2s 132.5K 9 24.97s 4M 30.44

sdf 90 8m5.64s 207.4K 0 1m5.68s 1.5M 7.39

cansmi ChEBI 149 smi 2112 36.58s 66.6K 9 1.91s 1.3M 19.15

sdf 35 21.15s 121.1K 26 4.37s 586.3K 4.84

ChEMBL 22.1 smi 14 14m33.86s 115.2K 9 40.84s 2.5M 21.4

sdf 0 8m59.82s 186.6K 0 1m29.33s 1.1M 6.04

convert
-ofmt smi

ChEBI 149 smi 2112 35.63s 68.4K 16 1.47s 1.7M 24.24

sdf 35 20.91s 122.5K 25 4.55s 563.1K 4.6

ChEMBL 22.1 smi 14 14m26.02s 116.3K 37 26.2s 3.8M 33.05

sdf 0 8m59.38s 186.7K 1 1m12.49s 1.4M 7.44

convert
-ofmt sdf

ChEBI 149 smi 2112 32.42s 75.1K 9 10.39s 234.4K 3.12

sdf 13 17s 150.7K 25 13.96s 183.5K 1.22

ChEMBL 22.1 smi 0 14m25.82s 116.3K 9 5m26.29s 308.6K 2.65

sdf 1 8m51.33s 189.5K 0 6m34.5s 255.3K 1.35

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 2112 24m28.02s 1.7K 9 35.86s 67.9K 40.94

sdf 13 35m12.03s 1.2K 25 42.43s 60.4K 49.78

ChEMBL 22.1 smi 0 3h27m7s 8.1K 9 17m44.64s 94.6K 11.67

sdf 1 5h58m30s 4.7K 0 19m42.77s 85.1K 18.19

fpgen
-type path

ChEBI 149 smi 2112 1m38s 24.9K 9 10.28s 236.9K 9.53

sdf 0 2m11.03s 19.6K 25 13.03s 196.6K 10.06

ChEMBL 22.1 smi 0 42m56.15s 39.1K 9 6m34.67s 255.2K 6.53

sdf 0 47m5.58s 35.6K 0 7m52.32s 213.2K 5.98

fpgen
-type maccs

ChEBI 149 smi 2150 1h37m35s 416 9 19.51s 124.8K 300.1

sdf 48 1h44m17s 409 25 21.25s 120.6K 294.45

ChEMBL 22.1 smi 214 20h24m57s 1.4K 9 13m31.21s 124.1K 90.6

sdf 225 24h41m46s 1.1K 0 13m26.41s 124.9K 110.25

fpgen
-type circ

ChEBI 149 smi 0 – 9 4.37s 557.4K 0

sdf 0 – 25 6.81s 376.2K 0

ChEMBL 22.1 smi 0 – 9 2m43.45s 616.1K 0

sdf 0 – 0 3m42.01s 453.6K 0
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Assigning double-bond configurations in SMILES is 

non-trivial and v2.0 has some safety checks, since the 

SMILES output is Keklué but input was aromatic, when 

the bond orders are assigned an extra double-bond may 

be accidental encoded in the SMILES output, this is 

sometimes acceptable but will currently report an error.

-ofmt sdf For writing SDF output there is minimal 

improvement from v1.14.19, when discounting improve-

ments in read performance the SDF generation for 

ChEBI actually runs slightly slower than v1.4.19 (Table 6). 

�is can be partially explained by the more comprehen-

sive SDF generation that now writes Sgroups as well as 

computing values for atom parity and valence columns.

-gen2d -ofmt sdf When writing SDF the only port-

able way to store stereochemistry is with the inclusion 

of coordinates, this is specified with the -gen2d option. 

�e overhaul in layout generation discussed early pro-

vides better layouts but also included performance 

tweaks, in CDK v1.4.19 generating coordinates and writ-

ing an SDF for ChEMBL took almost 3.5 h but now only 

takes ~18 min.

Fingerprint generation

�is task tests the generation of fingerprints for similar-

ity and substructure screening. �ree different types of 

fingerprints were tested, a Daylight-like Hashed Path Fin-

gerprint, MACCS-like 166 Keys, and Pipeline Pilot-like 

Hashed Circular Fingerprint (ECFP4). �e task generates 

a hexadecimal FPS file that can be used with chemfp [83].

-type path Path based fingerprints encode paths of 

length 0–7. Path based fingerprints can be used for both 

substructure and similarity screening. �e algorithm was 

tweaked for v2.0 to hash the paths without pre-comput-

ing all paths upfront and without needing to generate 

character strings before hashing. �e time to encode 

ChEMBL previously took 42–47 min now only takes 6–8 

min.

-type maccs �e CDK MACCS fingerprint uses 166 

keys to encode features of a structure and can be used for 

similarity searching. �is encoding uses different aspects 

of the library including ring perception and the new aro-

maticity perception but the speed is primarily dependent 

on SMARTS matching performance. Generating the fin-

gerprint previously took ~1 day for ChEMBL and ~1.75 

h for ChEBI. �is has been reduced to less than 13.5 min 

for ChEMBL and ~20 s for ChEBI.

-type circ Circular fingerprints can only be used for 

similarity and could not be generated in v1.4.19. How-

ever, the fingerprints are known to perform well for 

retrieval performance  [84]. �e times are included here 

to show they are faster to calculate than path or MACCS-

like keys and therefore recommended. CDK includes 

two implementations based on signatures or extended 

connectivity [35].

Benchmark summary

In all tasks, the total elapsed time is better in v2.0 com-

pared to v1.4.19. On many tasks the improvement is 

more than ten times faster. Not only is the execution time 

improved but improvements in robustness and correct-

ness means v2.0 is often doing much more work than the 

equivalent procedures in v1.4.19.

Conclusions
Since the second CDK publication, in 2006, the library 

has been improved in many aspects including architec-

ture, new functionality, improved code testing, manage-

ment, peer review, and deployment. �ese changes have 

led a more functionally rich cheminformatics library, 

with significant performance improvements. Updates 

on the common SMILES and molfile formats and the 

improved structure diagram generation are very visible 

and benefit many of the tools using the CDK. Further-

more, the stability of the development model has signifi-

cantly improved, providing greater stability of the library 

over time. With more than 90 contributors, a long list of 

tools based on the CDK, and hundreds of article cita-

tions, the CDK is alive and kicking.

a Abbreviations expanded

b Abbreviations contracted c Structure repeat unit

Fig. 8 Examples of Sgroups now captured by the CDK and encoded in molfiles and CXSMILES. a Ethyl esterification fully expanded reaction. b 

Using Sgroup abbreviations allows display short cuts and more compact depiction. c An example of a structure repeat unit in DNA 5′-phosphate 

(CHEBI:4294)
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Table 6 Summary of systematic benchmark comparing v1.4.19 to v2.0 without read times

The number of records skipped and time to run the countheavy benchmark (Table 5) has been subtracted. The remaining results provides a relative comparison 

without accounting for the overhead of reading the input

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per Min Skip Time Per min

countheavy ChEBI 149 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

ChEMBL 22.1 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

rings
-mark

ChEBI 149 smi 0 0.4s 6.1M 0 0.21s 11.6M 1.9

sdf 0 1.5s 1.7M 0 0.11s 23.3M 13.6

ChEMBL 22.1 smi 0 6.48s 15.5M 0 6.35s 15.9M 1

sdf 0 54.72s 1.8M 0 13.27s 7.6M 4.1

rings
-sssr

ChEBI 149 smi 0 4.89s 498.1K 0 0.58s 4.2M 8.4

sdf 0 4.63s 553.4K 0 0.78s 3.3M 5.9

ChEMBL 22.1 smi 0 3m25.32s 490.5K 0 16.42s 6.1M 12.5

sdf 0 3m52.29s 433.5K 0 14.9s 6.8M 15.6

rings
-all

ChEBI 149 smi 14 22.77s 107K 17 0.41s 5.9M 55.5

sdf 16 29.35s 87.3K 15 0.51s 5M 57.5

ChEMBL 22.1 smi 88 4m0.9s 418K 0 14.23s 7.1M 16.9

sdf 90 4m48.35s 349.2K 0 12.41s 8.1M 23.2

cansmi ChEBI 149 smi 0 14.07s 173.1K 0 1.06s 2.3M 13.3

sdf 35 13.94s 183.8K 1 1.37s 1.9M 10.2

ChEMBL 22.1 smi 14 5m54.56s 284K 0 30.1s 3.3M 11.8

sdf 0 5m42.53s 294K 0 36.06s 2.8M 9.5

convert
-ofmt smi

ChEBI 149 smi 0 13.12s 185.7K 7 0.62s 3.9M 21.2

sdf 35 13.7s 187K 0 1.55s 1.7M 8.8

ChEMBL 22.1 smi 14 5m46.72s 290.4K 28 15.46s 6.5M 22.4

sdf 0 5m42.09s 294.4K 1 19.22s 5.2M 17.8

convert
-ofmt sdf

ChEBI 149 smi 0 9.91s 245.8K 0 9.54s 255.3K 1

sdf 13 9.79s 261.7K 0 10.96s 233.8K 0.9

ChEMBL 22.1 smi 0 5m46.52s 290.6K 0 5m15.55s 319.1K 1.1

sdf 1 5m34.04s 301.5K 0 5m41.23s 295.1K 1

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 0 24m5.51s 1.7K 0 35.01s 69.6K 41.3

sdf 13 35m4.82s 1.2K 0 39.43s 65K 53.4

ChEMBL 22.1 smi 0 3h18m28s 8.5K 0 17m33.9s 95.6K 11.3

sdf 1 5h55m13s 4.7K 0 18m49.5s 89.2K 18.9

fpgen
-type path

ChEBI 149 smi 0 1m15.49s 32.3K 0 9.43s 258.3K 8

sdf 0 2m3.82s 20.7K 0 10.03s 255.5K 12.3

ChEMBL 22.1 smi 0 34m16.85s 49K 0 6m23.93s 262.3K 5.4

sdf 0 43m48.29s 38.3K 0 6m59.05s 240.3K 6.3

fpgen
-type maccs

ChEBI 149 smi 38 1h37m12s 418 0 18.66s 130.5K 312.6

sdf 48 1h44m10s 410 0 18.25s 140.4K 342.5

ChEMBL 22.1 smi 214 20h16m18s 1.4K 0 13m20.47s 125.8K 91.2

sdf 225 24h38m29s 1.1K 0 12m33.14s 133.7K 117.8

fpgen
-type circ

ChEBI 149 smi 0 – 0 3.52s 692K

sdf 0 – 0 3.81s 672.5K

ChEMBL 22.1 smi 0 – 0 2m32.71s 659.4K

sdf 0 – 0 2m48.74s 596.8K
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Availability and requirements
  • Project Name �e Chemistry Development Kit.

  • Project home page https://cdk.github.io/.

  • Operating system(s) Windows, GNU/Linux, OS/X.

  • Programming language Java.

  • Other (optional) requirements JNI-InChI, Vecmath, 
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  • License LGPL v2.1 or later.
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tional.
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