
Willighagen et al. J Cheminform (2017) 9:33

DOI 10.1186/s13321-017-0220-4

SOFTWARE

The Chemistry Development Kit
(CDK) v2.0: atom typing, depiction, molecular
formulas, and substructure searching
Egon L. Willighagen1* , John W. Mayfield2 , Jonathan Alvarsson3 , Arvid Berg3, Lars Carlsson4 ,

Nina Jeliazkova5 , Stefan Kuhn6 , Tomáš Pluskal7 , Miquel Rojas-Chertó8 , Ola Spjuth3 ,

Gilleain Torrance9 , Chris T. Evelo1 , Rajarshi Guha10 and Christoph Steinbeck11

Abstract

Background: The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, provid-

ing data structures to represent chemical concepts along with methods to manipulate such structures and perform

computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical

structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug dis-

covery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, result-

ing in many complex interdependencies among components and poor performance of many algorithms.

Results: We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased

functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing

and molecular formula handling, and improvement to existing functionality that has led to significantly better perfor-

mance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the

CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a

code review mechanism.

Conclusions: This paper highlights our continued efforts to provide a community driven, open source cheminfor-

matics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a

high-quality and performant library. By taking advantage of community support and contributions, we show that

an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing

software.

Keywords: Java, Cheminformatics, Bioinformatics, Metabolomics, Depiction

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
�e open source cheminformatics community has made

significant steps forward recently [1] as evidenced by the

growing number of tools and underlying toolkits, along

with the usage of these software components in a variety

of applications. �e Chemistry Development Kit (CDK)

is one of the tools developed under the aegis of the Blue

Obelisk, a movement promoting Open Data, Open Source,

and Open Standards in chemistry [1, 2]. �e CDK provid-

ing data structures to represent chemical concepts along

with methods to manipulate such structures and perform

computations on them. Previously documented CDK ver-

sions have been widely adopted [3, 4]. Use of the CDK

ranges from inclusion of CDK functionality in wrapper

platforms such as Cinfony [5], incorporation within the

R environment (rcdk [6]), and as plugins for Taverna [7],

KNIME [8], Cytoscape (ChemViz2 [9]), and for Microsoft

Excel (LICSS [10]). In contrast to scenarios that have made

CDK functionality available in larger systems, a number of

Open Access

*Correspondence: egon.willighagen@maastrichtuniversity.nl
1 Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University,

6200 MD Maastricht, The Netherlands

Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7542-0286
http://orcid.org/0000-0001-7730-2646
http://orcid.org/0000-0002-8682-7206
http://orcid.org/0000-0001-9491-4134
http://orcid.org/0000-0002-4322-6179
http://orcid.org/0000-0002-5990-4157
http://orcid.org/0000-0002-6940-3006
http://orcid.org/0000-0002-4659-1446
http://orcid.org/0000-0002-8083-2864
http://orcid.org/0000-0002-8368-6954
http://orcid.org/0000-0002-5301-3142
http://orcid.org/0000-0001-7403-8819
http://orcid.org/0000-0001-6966-0814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0220-4&domain=pdf

Page 2 of 19Willighagen et al. J Cheminform (2017) 9:33

projects have employed the CDK as a general cheminfor-

matics toolkit. Examples include jCompoundMapper [11],

ScaffoldHunter [12, 13], OMG [14], PaDEL [15], Chem-

Des [16], ReactPRED [17], SMSD [18–20], WhichCyp [21],

MetaPrint2D [22], MetFrag [23], and the IUPHAR/BPS

Guide to Pharmacology [24], BRENDA [25] and QSAR

DataBank [26] databases. A number of such tools were ini-

tially developed using older versions of the CDK and are

updated to new releases as they are made available. Exam-

ples include Bioclipse [27, 28] and AMBIT [29–31]. �e

CDK has also played a role in a number of chemical stud-

ies, such as finding the maximally bridging rings in chemi-

cal structures [32], prediction of organic reactions [33],

and bioactivities of compounds [34].

While the CDK has purported to be a general purpose

cheminformatics toolkit, older versions were designed by

a community with specific applications in mind, primary

among them being structure elucidation. In addition, an

implicit goal of previous versions was to have the CDK serve

as an educational resource to enable students of chemin-

formatics to understand the underlying algorithms. �is

resulted in certain functionalities, such as molecular finger-

printing [35, 36], receiving more attention than others, such

as stereochemistry. �e outcome was significant variance in

performance and features throughout the toolkit.

�e growth of open source software over the last 10

years is evidence of the ability of communities of devel-

opers to develop systems and processes that lead to high

quality software systems for long term use. �e CDK is

no different. �e adoption of automatic build systems

and quality control methodologies such as unit test-

ing, automated source code validation, and peer review

by fellow developers have greatly improved the stability

of the library. While it has slowed development some-

what, it has allowed for cleaning up interdependencies

between modules of functionality, and importantly, has

improved the scalability of the development model. �is

has resulted in significant new functionality in core appli-

cation programming interfaces (APIs) while maintaining

the quality of code depending on those core APIs.

Examples of new features supported by the improved

development model include InChI functionality [37],

greatly improved ring detection algorithms [38], improve-

ments to the core atom type perception module that

now covers a much more comprehensive set of elements,

charge states and radical species than previous versions,

a more comprehensive fingerprinting API, new depiction

functionality, and many speed and stability improvements.

Implementation and results
�is section describes the specifics of new APIs and

improvements to pre-existing methods that are avail-

able in the latest CDK. We then discuss how we have

improved and formalized the development model for the

project using unit testing, code review and guidelines for

handling version control. Finally we report on the availa-

bility of binary distributions of the library, allowing users

to include specific modules (and their dependencies) of

the CDK in their own projects (as opposed to developers

who work on the CDK library itself).

New APIs and improved implementations

We here outline various new and improved APIs in the

CDK library since the two previous publications in 2003

and 2006 [3, 4].

Atom typing

Atom type perception is core cheminformatics function-

ality: the atom types describe chemical features of atoms,

such as the number of neighbors, possible formal charges,

(approximate) hybridization, electron distribution over

orbitals and so on. However, previous versions of the CDK

implemented atom type perception as part of different

algorithms, resulting in duplicated and sometimes diver-

gent typing schemes. As a result it was cumbersome to add

new atom types and implement support for new charged

and radical species in a consistent manner.

�is CDK version has a new, centralized atom typ-

ing framework, removing the perception of atom types

from various algorithms. �is allows for a consistent and

extensive typing scheme, that can be also be tested inde-

pendently of other code. �e new code defines the atom

types using a list that specifies for each type the element

symbol, hybridization, formal charge, number of lone

pairs, and an enumeration of the bond orders (see Fig. 1).

�is list of properties captures the information needed

for the various algorithms in the CDK. For example,

hybridization information can be used in certain aroma-

ticity models (see later), and the lone pair information is

needed for resonance structure calculation needed, for

example, for Gasteiger π-charges.

Fig. 1 Atom type information specified for a sp3-hybridized carbon

Page 3 of 19Willighagen et al. J Cheminform (2017) 9:33

A reference implementation, CDKAtomType-

Matcher, has been written in such a way that per-

ceives these atom types, and validates the perception

automatically against the properties defined by the

ontology. �is class handles a variety of types of miss-

ing information, as commonly resulting from various

(file) formats; for example, it can handle undefined

hydrogen counts and undefined double bond positions

if hybridization information is provided instead. �at

makes the perception code flexible but also more com-

plex. Alternative algorithms for atom typing have not

been explored. �is reference implementation can be

used on a single atom:

And on a full molecule, in which case the list of types

is ordered in the same order as the atoms in the molecule

object:

Stereochemistry

Previous versions of the API represented stereochemistry

in different ways. �is hindered interconversion between

and within file formats. CDK v2.0 standardizes upon

a new core representation and procedures have been

updated or added to enable duplicate checking, pattern

matching, and interconversion.

�e preferred representation of stereochemistry is now

for it to be stored at the molecule level as a StereoE-

lement. In abstract terms a stereo element describes

local geometry using a type, focus, carriers, and con-

figuration (Fig. 2). Currently the most common types of

stereochemistry are supported: Tetrahedral, Cis-trans

isomerism around a double bond, and Extended Tetra-

hedral. Rarer types of stereochemistry, such as: Square

Planar, Trigonal Bipyramidal, Octahedral, could easily be

incorporated into the chosen description given sufficient

demand from the community.

Along with the new stereochemistry representation,

algorithms were required in several areas. Generally, a

user does not need to invoke these procedures explicitly

as they are called as needed within existing APIs:

 • perception from 2D coordinates,

 • perception from 3D coordinates,

 • wedge assignment,

 • graph (sub)isomorphism matching,

 • SMARTS matching, and

 • canonicalization.

�e perception from coordinates and wedge assignment

algorithms are fundamental for conversion between for-

mats that store stereochemistry implicitly based on coor-

dinates (e.g. molfile,1 CML) and explicitly (e.g. SMILES,

CML, InChI). Perception from 2D coordinates can

optionally identify perspective projections, specifically:

Fischer, Haworth, and Chair projections. With the per-

ception of perspective projections enabled, database

entries currently considered distinct can be merged

(Fig. 3).

Pattern matching of stereochemistry with the described

representation is straight forward. Given the atom–atom

mapping from a query structure to a target molecule,

the focus and carriers of the query stereochemistry

are mapped to the target. Using the permutation par-

ity of this mapping the configurations were compared.

SMARTS matching requires some special handling for

complex cases [39]. For canonicalization, a partial canon-

ical ordering is used to assign an absolute label which can

then be integrated into the ordering. �e algorithms used

for stereochemistry are thoroughly detailed in Chapter 6

of [40]. �e perception from projections is based on an

algorithm briefly described by [41].

Atomic and molecular signatures

An implementation has been provided of the Signature

structure descriptor for molecules [42]. �ese act as a

linear notation—like the SMILES format—for the whole

1 Molfiles can also store tetrahedral stereochemistry as a parity value, this
is read if no coordinates are specified. In general there is no guarantee the
parity value is read and the only portable way to store stereochemistry in a
molfile is with coordinates.

Fig. 2 Relative storage of stereochemistry, the type and focus of

stereochemistry are fixed for a given stereocenter description but

the carriers and configuration are relative. The multiple rows for each

stereochemistry type are different internal representation that would

be considered equivalent. In the tetrahedral types, hydrogens may be

suppressed in a molecular graph so the focus is reused in the carriers

list as a placeholder

Page 4 of 19Willighagen et al. J Cheminform (2017) 9:33

molecule as well as for connected substructures rooted at

a single atom. �e descriptor can also be canonicalized to

provide isomorphism-independent representations [43].

Signatures of depth two can be calculated for atoms with:

But they can also can be calculated for full molecules:

Finally, a signature fingerprint can be calculated for

molecules, to allow similarity calculations. �is can then

be used in QSAR modeling [34, 44–49].

Rendering API

A new rendering API has been introduced to make the

rendering code independent from Java widget toolkits.

�e previous code was tightly linked to the Swing toolkit,

but other tools use different widget toolkits. For exam-

ple, Bioclipse is based on Eclipse which uses the Standard

Widget Toolkit (SWT) [27].

A second new design goal was introduced to balance

between size restrictions of some use cases, such as Java

applets, and the rendering functionality. In particular,

some functionality, even after modularization, needed

considerable parts of the CDK library, making creation of

a small-sized applet unfeasible. �erefore, the rendering

API was modularized to allow splitting up rendering func-

tionality into modules, with varying CDK dependencies.

Rendering is split up into several generation steps:

previous versions split up bond from atom rendering.

Heteroatom symbols were simply drawn over lines rep-

resenting bonds using a white rectangle to mask. A new

StandardGenerator has been introduced that does

bond and atom rendering at the same time. It incorpo-

rates many ideas described by Alex Clark [50, 51]. �e

depictions generated are of much higher quality and suit-

able for publication.

Moreover, a simplified high-level API has been intro-

duced that addresses most of the common rendering

needs, with the DepictionGenerator class. To depict a

molecule loaded into a variable ‘benzene’ the following

code can be used:

Many of the rendering options are available as param-

eters in the core API and as methods on the Depiction-

Generator class. �is includes substructure coloring,

exemplified with an example reaction shown in Fig. 4.

When missing, 2D coordinates are generated on the fly

with the new structure diagram layout functionality.

Structure diagram layout

�e structure diagram layout has been improved and the

new code solves a number of long standing issues. In par-

ticular, collision avoidance has been greatly improved.

Figure 5 shows a difference in output between the old

code base, with and without overlap resolving, and with

the new refinement based implementation [52]. Genera-

tion of 2D coordinates is done as shown below:

While the API itself has not been significantly changed,

the internals have been revamped. In addition to improved

overlap resolution noted above, the engine appropriately

handles large ring systems, maintains input stereochemistry,

CHEMBL23970 CHEMBL444314

CID 5280 CID 65119

Projection Perception

Fig. 3 The raw input files of CHEMBL23970 and CHEMBL444314

are displayed (ChEMBL 21). Without perceiving the stereochemistry

indicated by Haworth projection in CHEMBL23970, the database

entries are incorrectly considered distinct. Down stream aggregation

databases mirror this separation (PubChem CID 5280, CID 65119)

Page 5 of 19Willighagen et al. J Cheminform (2017) 9:33

and makes use of a large template library. Templates are use-

ful for laying out substructure. While previous CDK ver-

sions partially supported double bond stereochemistry the

new engine is more efficient in using this information when

generating 2D layouts. Furthermore, the engine assigns

wedge bond information based on tetrahedral stereochem-

istry. �ese features are exemplified by the following code

and the resulting layout depiction in Fig. 6:

Molecular formula

A chemical formula is the simplest chemical representa-

tion of a compound. It defines the number of isotopes or

elements that compose a compound without describing

how atoms are bonded. With the rise of metabolomics it

has become increasingly relevant to have full support for

these in cheminformatics libraries [23, 53–56].

�e CDK interfaces can handle several concepts related

to chemical formulas: the formula itself, sets of formulas,

chemical formula ranges, adducts, isotope containers and

patterns, and rules to filter formula sets. �ese new tools

can be used for a number of tasks, including calculat-

ing the isotopic pattern from a given chemical formula,

determining the possible elemental compositions for a

given mass (mass decomposition), and calculating the

exact mass from a given chemical formula.

�e CDK contains two algorithms for the decomposi-

tion of mass ranges into possible elemental formulas. For

most inputs, a Round Robin algorithm, originally devel-

oped for the SIRIUS metabolite identification tool [57],

is used. �e algorithm discretizes the real-value mass

decomposition problem into an integer-value knapsack

problem [58]. It first computes a dynamic programming

table and then backtracks within it to generate matching

formulas [59, 60]. Data for the Round Robin algorithm

is stored in an extended residue table [61], resulting in

a low memory footprint of several kilobytes. For cer-

tain problem instances, such as very large mass values

(above 400,000 Da) or mass range span larger than 1 Da,

the Round Robin algorithm is not suitable and CDK falls

Fig. 4 Integrated example showing the rendering and SMILES parsing functionality. Example from U.S. Patent US 2014 231770 A1 para 287

Fig. 5 The improved structure diagram generation has improved code to solve overlap. The original SDG code used general heuristics (left) and the

OverlapResolver would fine tune the layout to ensure atoms would not be placed at the same location (middle). The new SDG algorithm is able to

make more rigorous changes, making the final output must more pleasing (right)

Fig. 6 Structure diagram generation for structures with double bond

and tetrahedral stereochemistry

Page 6 of 19Willighagen et al. J Cheminform (2017) 9:33

back to an optimized full enumeration search method,

originally developed as part of the MZmine 2 framework

for mass spectrometry data processing [54, 55].

�e following code calculates all possible chemical for-

mulas for a given accurate mass, within allowed counts

for each element:

�is gives the following output:

To evaluate the performance of the CDK molecular

formula generator, we compared its runtimes to those of

the classic, full enumeration-based HR2 formula genera-

tor [62] and those of a recently developed Parallel For-

mula Generator (PFG) [63] (Table 1). As inputs, we used

two sets of 10,000 small (<500 Da) and 20 large (>1500

and <3500 Da) molecular mass values downloaded from

the Global Natural Products Social Molecular Network-

ing database [64]. �e mass tolerance was set to 0.001 or

0.01 Da. �e CDK v2.0’s Round-Robin formula genera-

tor outperformed the other methods in all cases, despite

running in a single thread (PFG utilizes multiple threads).

�e performance gain of the Round Robin algorithm was

particularly apparent when narrow mass ranges were

queried (e.g. ±0.001 Da), thus showing its suitability for

applications in high-resolution mass spectrometry.

SMILES parser and generator

�e SMILES [65] parsing has been replaced by code

from the external Beam project [66]. �is BSD-licensed

SMILES parser is a complete implementation of the

SMILES and OpenSMILES (http://opensmiles.org/)

specifications by one of the authors (including stereo-

chemistry), and is independent of the CDK library. �e

SmilesParser API uses this library underneath, and

the Beam API is hidden by this class. Basic usage is as

follows:

�e most significant functional change here is that the

SMILES parser automatically locates the positions of

double bonds in de-localised aromatic systems (Kekuli-

sation). If this invariant cannot be met the SMILES is

rejected as invalid. It is possible to override this check but

this is strongly discouraged as rejected molecules do not

have a fixed formula or tautomer [40].

Table 1 Evaluation of molecular formula generators

The resulting formula counts and runtimes of the HR2, PFG, and CDK chemical formula generators on two di�erent inputs with two di�erent mass tolerance settings.

For the set of small masses, 10,000 mass values in the range of 0–500 Da were randomly selected from the Global Natural Products Social Molecular Networking

database [64]. For the set of large masses, 20 mass values in the range of 1500–3500 Da were randomly selected from the same database. Formulas were generated

using chemical elements C, H, N, O, P, S without bounds (the allowed atom count was set to 0–10,000 for each element). All heuristic �ltering rules were disabled for

the purpose of the evaluation. The slight di�erences in the number of generated formulas were caused by di�erent isotope masses embedded in each software and/

or by rounding errors during calculation. The runtimes are average values from three independent runs performed on three di�erent 16-core Intel Xeon 2.9 GHz CPU

workstations equipped with 189 GB RAM, running Ubuntu Linux version 12.04.5 LTS and OpenJDK Java runtime version 1.7.0_101

Input Mass tolerance (±Da) # of generated formulas Runtime (s)

HR2 PFG CDK HR2 PFG CDK

10,000 small masses 0.001 616,846 616,846 616,843 669 168 41

10,000 small masses 0.01 6,163,303 6,163,302 6,163,326 689 501 212

20 large masses 0.001 4,912,939 4,912,939 4,912,904 26,370 1292 177

20 large masses 0.01 49,128,811 49,128,810 49,128,815 26,587 3406 1580

http://opensmiles.org/

Page 7 of 19Willighagen et al. J Cheminform (2017) 9:33

�e SMILES generation API has also been simplified

and made more flexible able to produce several differ-

ent flavours. �e SmiFlavor flags are used to control

the type of SMILES generated. Historically the terms:

generic, isomeric, unique, absolute have been used in

other toolkits and are also supported.

Support for ChemAxon Extended SMILES

(CXSMILES) [67] layers has been added to CDK v2.0.

CXSMILES provides a powerful means of including

auxiliary information in a SMILES string such as 2D/3D

coordinates, atom values, generic labels, repeat units,

and positional variation. CXSMILES is achieving by

placing additional information between pipe characters

(‘|’) in the SMILES title field. Information is annotated

based on the order of the atoms in the SMILES string.

An example CXSMILES for a generic structure is shown

below.

Substructure and SMARTS matching

Substructure matching is fundamental cheminformatics

operation and plays a key role in many other functions

such as fingerprint and descriptor generation, and atom

typing. Since CDK v1.2, functionality has been added to

handle the SMARTS query language. �e SMARTS lan-

guage is supported well including features such as ste-

reochemistry, component grouping, and atom maps (to

match reaction transformations). A new Pattern API has

been added to CDK v2.0, which simplifies finding, filter-

ing, and transforming search results. �e API is immu-

table allowing a pattern to be initialized once and then

matched against several molecules or reactions across

multiple threads. During initialization the pattern is

inspected so as to determine what invariants will be

needed (e.g. ring size) and only required invariants are

calculated. �e internal matching algorithms provide a

lazy iterator, such that the next match is only computed

when it is needed. �e API handles reactions in addition

to molecules, and both can be specified as either queries

or targets.

CDK v2.0 includes large improvements to algorithm

efficiency. �is is emphasised in the systematic bench-

mark of MACCS-like 166 key generation (Table 5). �e

efficiency improvements are a combination of optimis-

ing data structures and key molecule processing algo-

rithms (e.g. kekulisation and aromaticity) needed before

a SMARTS match can be run [40, 68, 69].

Ring �nding

Ring finding is another key functionality in a chemin-

formatics library, and the CDK knows a long history of

ring finding [38, 70]. Specifically, non-redundant ring sets

have seen particular interest, such as the smallest set of

smallest rings, for which the CDK implements two clas-

sical algorithms [70, 71]. Recent work has implemented

a new, faster algorithm, allowing searching for various

types of (non-redundant) ring sets [38]. �ese are avail-

able via the new Cycles API:

Aromaticity

Aromaticity has seen many definitions in the past and for

cheminformatics it frequently is algorithmically defined.

Page 8 of 19Willighagen et al. J Cheminform (2017) 9:33

�e outcome of an aromaticity calculation depends on a

number of atom type features and heuristics, which are

often ambiguously defined in the published literature.

Based on the information used, several different algorith-

mic definitions of aromaticity can be defined. Older CDK

versions had various aromaticity models implemented

but the code was scattered throughout the library, result-

ing in an inconsistent API to compute aromaticity and a

significant maintenance burden. �e API was unified in

the current version, resulting in three models, of which

two are based on the CDK atom typer. �e difference

between these two models is how contributions from

exocyclic double bonds are handled.

�e current CDK version further generalizes the idea

that aromaticity is a model, and provides an API that

allows the user to select one of several aromaticity mod-

els, leading to greater interoperability with other toolkits.

�e new Aromaticity class allows to build a custom

model by selecting and combining options. For example,

to reproduce the functionality of the previous CDKAro-

maticity class:

Here, the CDK model for counting donated electrons is

used, along with the rings systems that were identified by

the older algorithm in previous versions that was limited

in the number of fused rings systems that were consid-

ered. However, an alternative aromaticity calculator that

considers all possible ring systems can now be easily cre-

ated with:

For SMARTS matching and SMILES generation a

model based on Daylight [72] can be used and offers sig-

nificant speed improvements to the one based on CDK

Atom Types. �is model has recently been documented

as part of the OpenSMILES specification (http://opens-

miles.org/):

�e aromaticity algorithm is straight forward, the

potential electron donation is calculated for each atom as

−1 (not aromatic), 0, 1, 2. �e set of cycles provided in

the constructor is then generated and each is checked for

Hückel’s rule (4n + 2).

CT�le format improvements

The molfile format is still very popular and despite it

being a proprietary format, it has become a de facto

standard. The format forms the core of the larger

CTfile family which was originally developed by MDL

Information Systems [73]. The current format speci-

fication is published by BIOVIA and available on

request [74].

�e CTAB block (connection table) of a molfile comes

in two versions, V2000 and V3000. �e V3000 provides

several enhancements including but not limited to:

removing atom and bond count limits, enhanced stereo-

chemistry, and link nodes. For backwards compatibility

V2000 is often preferred resulting in limited usage of

V3000.

CDK v2.0 adds support for V3000 and has optimized

and extended support for V2000. Currently these are

considered separate formats requiring a user to know

what version is being read beforehand. Future APIs will

aim to simplify this and provide a unified reader. An

overview of currently supported CTfile formats is given

in Table 2.

CTfile Sgroups capture and organise high level infor-

mation about sets of atoms and bonds [75]. �ere are

four types of Sgroup: Display Short-cuts, Polymers, Mix-

tures, and Data. �e most familiar Sgroups from an end

user perspective are structure repeat units (e.g. bracket-

ing) and abbreviations (Fig. 8). CDK v2.0 adds supports

for representation, reading, writing, and depiction of

Sgroups.

New object builders

Originally, the CDK was developed as a shared library

between JChemPaint [76] and Jmol [77, 78]. JChemPaint

used a MVC approach with an event-passing mecha-

nism to update the view when the model was changed.

�is can cause a cascade of change events being passed

around. �is was not always a desirable feature, espe-

cially for non-UI code. To address this, interfaces were

Table 2 CT�le format support

Format V2000 V3000

MOLfile Read and write Read and write

RXNfile Read and write Read

SDfile MOLfile Read and write Read

RGfile Read and write

RDfile

http://opensmiles.org/
http://opensmiles.org/

Page 9 of 19Willighagen et al. J Cheminform (2017) 9:33

introduced allowing multiple implementations of the

core interfaces. With much code of the CDK library

no longer based on the original data model, a builder

is needed to create objects of that data model, such as

an implementation of the IAtom. �e new IChemOb-

jectBuilders allow implementations to be created,

allowing implementations of the interfaces to be instan-

tiated without the need of explicitly referencing those

implementations. �is way, any algorithm implementa-

tion in the CDK can use any of the data model interface

implementations.

�e CDK v1.0 and v1.2 implementations of the

IChemObjectBuilder had, however, one method

for each data object constructor, resulting in a very large

interface. Moreover, this interface API had to be updated

each time a new class was introduced, and when exist-

ing methods changed and constructors were updated. To

simplify the API, the new IChemObjectBuilder col-

lapses all methods into a single method, which takes as a

first parameter the class of the interface that is to be con-

structed. All further parameters are passed as parameters

to the class constructor.

For example, to construct a new atom from its element

symbol, one would write previously:

With the new builder, the code looks like:

�e CDK library is now mostly refactored and no

longer depends on a specific implementation of the

IChemObjectBuilder, allowing the user of the CDK

to select a builder suitable to their software. �ere-

fore, if software depends on event passing, then the

DefaultChemObjectBuilder can be used, in most

cases this isn’t needed and the SilentChemObject-

Builder is preferred resulting in a typical speed up of

10–20%:

�e third builder is the DataDebugChemObject-

Builder which generates debug information for all

changes to the content of the data classes. �is can be

useful for debugging and other forms of code inspection.

Molecular �ngerprints

Molecular fingerprints have also seen significant devel-

opment in this CDK version. Previously, fingerprints

were represented using the BitSet class from the Java

library. While using this class allowed the use of pre-

existing methods to manipulate bit strings, it keeps a

vector of bits in memory. �e solution was excellent for

hashed, relatively small fingerprints, e.g., 1024 bits, i.e.

with a 210 indexing space (128 B). However, implement-

ing a fingerprint designed to avoid collisions with a 232 bit

indexing space using this approach would be memory-

inefficient (512 MiB). To allow for multiple fingerprint

representations, a bit fingerprint interface was intro-

duced: IBitFingerprint.

Also, although fingerprints traditionally are bit vectors

a count fingerprint was also introduced making finger-

prints based on integer vectors supported in CDK as well.

�e counts in the fingerprint then represent how often

this substructure is found in the molecule it represents.

�e fingerprints currently provided by the CDK are

listed in Table 3.

Improved coding standards

As the CDK library grew over the years, so did the com-

plexity of the maintenance. �e main branch frequently

failed to compile and bug fixes became more onerous

due to unexpected side effects. Often fixing a bug in one

part of the code, broke some other code which made the

incorrect assumptions about the fixed code. With the

increased size of the CDK developer community, such

issues were inevitable in the absence of any formal coding

and testing standards.

To address these issues, we have adopted a number

of coding standards. While not a comprehensive imple-

mentation of software engineering best practices, they

attempt to find a balance between increasing code main-

tainability and being flexible enough to allow efficient

code development. We appreciate the subjective nature

of this statement, and some adopted guidelines have been

heavily discussed and debated in the CDK community.

Arguably, perhaps the biggest factor in improved code

quality is a peer review process where any functionality

changing patch is required to be reviewed by one inde-

pendent, senior CDK developer for the development

branch, and by two reviewers for stable branches. �is

patch development system is supported by a number of

automated validations steps as outlined below. �e next

sections describe some approaches the project have

Page 10 of 19Willighagen et al. J Cheminform (2017) 9:33

adopted that allows us to maintain the CDK library as it

is today.

Stability and version identi�er

Prior to CDK v2.0, the parity of the version identifier’s

second digit indicated stability. Even numbers (v1.2.x,

v1.4.x) indicating API stability and odd numbers (v1.3.x,

v1.5.x) indicating potential API instability. Versions v1.4.x

and v1.5.x were developed in parallel, where possible

patches were applied to both. As the APIs diverged the

amount of effort to port patches from the development

but more robust v1.5.x to v1.4.x became unmanageable

for the core development team. �is even-odd version

scheme was adopted from old Linux kernel versioning

that was subsequently abandoned in 2004 for time-based

releases [79].

At the time of writing the development branch is more

than 3000 commits ahead of v1.4.x. As the the v1.5.x API

has become stable it became time to release v1.6.x. Due

to significant API changes in 20112 it was felt a larger

digit increment was needed. �is provided the opportu-

nity to change to a more manageable and intuitive ver-

sion identifier.

From CDK v2.0 a new sequence based version scheme

will be used. �e version identifier indicates change sig-

nificance as follows:

2 https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363
ecbcb188.

Due to limited developer resources we envision that

releases will primarily increment the minor version with

the occasional patch release. As per Maven convention,

development versions are suffixed with -SNAPSHOT.

�ere are no API changes from v1.5.x and v2.0.

Modularization

One of the central approaches we have adopted, is to

make the CDK more modular. �e CDK assigns every

class to a module, and defines dependencies between

modules. For example, core modules are not allowed to

depend on modules with data classes implementing the

CDK interfaces; instead, they may only depend on the

interfaces themselves. �is ensures that dependencies

are minimized. Furthermore, it also allows cherrypicking

CDK functionality, reducing the number of third-party

library dependencies that are needed. An overview of

key modules with description, important changes, and

dependencies on third-party libraries is given in Table 4

and the dependencies between the CDK modules are

depicted in Fig. 7.

Table 3 The molecular �ngerprints in CDK

Listed are the currently available molecular �ngerprint in CDK with information about whether they come as a bit and/or count version, what CDK version they were

introduced in, their default size, and relevant references, where applicable

* For the CircularFingerprinter the bit version is folded to 1024 whereas the count version is unfolded

† The LingoFingerprinter does not have a default size

Bit version Count version CDK version Default Size

CircularFingerprinter [35, 86] � � v2.0 1024/232*

EStateFingerprinter [87] � v1.2.0 79

ExtendedFingerprinter � v1.0 1024

Fingerprinter � v1.0 1024

GraphOnlyFingerprinter � v1.0 1024

HybridizationFingerprinter � v1.4.0 1024

KlekotaRothFingerprinter [88] � v1.4.6 4860

LingoFingerprinter [89] � v2.0 NA†

MACCSFingerprinter � v1.2.0 166

PubchemFingerprinter [90] � v1.4.0 881

ShortestPathFingerprinter � v2.0 1024

SignatureFingerprinter [44] � � v2.0 2
32

SubstructureFingerprinter � v1.0 307

https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188
https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188

Page 11 of 19Willighagen et al. J Cheminform (2017) 9:33

Table 4 A selection of key CDK modules with major changes

An overview of a selection of often used CDK modules with description, dependencies on third-party libraries, and the major changes since version 1.2. Dependencies

between modules are depicted in Fig. 7

Module Description Major changes Dependencies

interfaces Interfaces for the data models Vecmath 1.5.2

core Core functionality Google Guava 17.0

standard Common functionality

render Graphical rendering Redesigned to make it more modular and
support Multiple widget toolkits, like AWT
and SWT

isomorphism Isomorphism and substructure searching

atomtype Various non-core atom type schemes Unified approach where atom typing is sepa-
rated from other algorithms

ioformats Definitions of (chemical) input/output
formats

io Readers and writers for input/output formats The molfile reader has been rewritten and
supports atom types defined in the speci-
fication

XPP3 1.1.4c

iordf Stores data models as in the Resource
Description Framework serialization formats

New Jena 2.7.4

inchi IUPAC International Chemical Identifier sup-
port

JNI-InChI 0.8 [37]

libiocml Writer for the Chemical Markup Language
format

XOM 1.2.5, CMLXOM 3.1 [91]

sdg Structure diagram generation. Much improved overlap resolution

smiles Reading and writing in the SMILES format SMILES support performance and coverage is
greatly improved

Beam 0.9.1 [66]

smarts Substructure searching with the SMARTS
format

Beam 0.9.1 [66]

hash Molecular hash codes [92]

formula Chemical formula support New

fingerprint Calculate fingerprints Many new fingerprint types (see text) Apache Commons Math 3.1.1

qsar and qsarmolecular Molecular descriptors XOM 1.2.5, JAMA 1.0.3 [93]

signatures Calculation of molecular and atomic signa-
tures

Signatures 1.1

Fig. 7 Dependencies between CDK modules. Visualization of the dependencies between CDK modules. For example, the cdk-core depends on the

cdk-interfaces module. A few higher level modules have been left out: cdk-builder3dtools, cdk-legacy, and cdk-depict

Page 12 of 19Willighagen et al. J Cheminform (2017) 9:33

Documentation

�e quality of the JavaDocs was originally tested with

DocCheck, and later replaced by a custom written tool

called OpenJavaDocCheck. With the move to Maven

(explained later), which does not have integration for this

tool, we adopted CheckStyle (http://checkstyle.source-

forge.net/). �is tool reports on missing documentation

and on documentation which is not properly annotated in

the Java source files. �e new website lists a few resources

to help starting CDK users, including a book [80] and the

Chemistry Toolkit Rosetta Wiki (http://ctr.wikia.com/

wiki/Chemistry_Toolkit_Rosetta_Wiki).

Testing

Years of development of the CDK library has resulted in

a large suite of tests of various kinds. �is include unit

tests, which test core APIs, and functional testing, which

test higher level functionality of the CDK. �e latter

include tests if algorithm implementations calculate the

expected values, but also contain integrated tests, which

involve more than one algorithm, such as SMILES pars-

ing. �e suite consists of more than 23 thousand tests.

Code quality

�e project continues to use PMD (http://pmd.sf.net/)

for code quality checking, but deviates from the default

rules. For example, we are more liberal with variable

name length. Moreover, a number of additional PMD

tests have been developed specifically for the CDK, that,

for example, test if a class uses the core interfaces instead

of implementations of those interfaces. �at is, that the

code uses IAtom instead of Atom. However, these tests

do generate a few false positives, as the tests check the

class name only, and not the Java package the class is in.

Continuous integration

�e CDK has had an automated build system for many

years now. Originally, Nightly integrated various tools

(building, testing, JavaDoc, etc) [2]. After the move to

Maven, running various steps could be done with Maven,

and Jenkins was used to execute the steps (one instance

is still running at https://jenkins.bigcat.unimaas.nl/job/

cdk/. �e online Travis-CI service is used to build all

branches, including pull requests, to ensure everything

properly compiles: https://travis-ci.org/cdk/cdk.

Git, branching, and patches

Older versions of the CDK employed Subversion for ver-

sion control. A few years back, the project switched to

the Git version control system. A key advantage of this

shift is the ability to have distributed repositories, easier

branching and provision for patches. GitHub (https://

cdk.github.io/) has replaced SourceForge as the main

source code hosting service where we can use novel

approaches for commenting on code (peer review),

pull requests, etc. �ese new features simplify our code

review process.

Support

Besides the aforementioned sources of documentation,

the project has additional sources of support. First, the

issue tracker welcomes questions and other types of sup-

port requests, available at https://github.com/cdk/cdk/

issues. �e mailing list is another place where support

can be requested, while the archives document many

past user questions. �e list and archives can be accessed

from https://sourceforge.net/p/cdk/mailman/cdk-user/.

Binary distributions

Maven packages

�e build system has been converted from Ant to Maven.

�e shift was motivated by the easier dependency han-

dling, cleaner separation of testing code from the main

library and automated packaging. �e move to modules

necessitated splitting the original monolithic source code

tree in to per-module source folders. While this makes

the on-disk layout of the source code more complex, this

is usually hidden by modern IDEs.

As a result for many modules, the test code is now

more closely linked to the code being tested: both reside

in the same folder, though we adhere to the Maven cus-

tom to have src/main/java and a src/test/java

folders. For a few modules, however, this solution intro-

duces circular dependencies, in which case a separate

Maven module is created for the tests.

�e Maven packages for the CDK are available from

Maven Central, which makes it easy for other projects

to use. �e full library can be included in other software

by depending on the cdk artifact (http://search.maven.

org/#search|ga|1|org.openscience) but dependencies can

also be defined on individual CDK modules.

OSGi bundles

OSGi bundles are available for the CDK too, which are

used by e.g. Bioclipse [27, 28] and KNIME [8]. How-

ever, because CDK Java packages are occasionally split

between CDK modules, the CDK currently needs to be

bundled as a single OSGi jar. �e bundle is available from

http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/. �is

Java package and bundle incompatibilities are currently

being explored and constitutes an area where improve-

ments can be done on modularization.

Systematic benchmark

A systematic benchmark was performed to evaluate and

quantify performance improvements from v1.4.19 to

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://pmd.sf.net/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://travis-ci.org/cdk/cdk
https://cdk.github.io/
https://cdk.github.io/
https://github.com/cdk/cdk/issues
https://github.com/cdk/cdk/issues
https://sourceforge.net/p/cdk/mailman/cdk-user/
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/

Page 13 of 19Willighagen et al. J Cheminform (2017) 9:33

v2.0. �e benchmark is divided into several cheminfor-

matics tasks for common use cases. Each task was evalu-

ated on input from ChEBI 149 [81] and ChEMBL 22.1

[82] as both SMILES and SDF.

�e benchmark was run on Java SE 8, CentOS 7, Intel

Core i7-4790 CPU @ 3.60GHz with 16 GB of RAM. �e

code to run the benchmark is available in Additional file 1

allowing numbers to be recorded on the reader’s system.

�e results of benchmark are summarised in Tables 5

and 6. �e total elapsed times are reported in Table 5,

Table 6 subtracts the first tasks results (Count Heavy

Atoms) to provide a comparable measure without the

overhead of input read time. �e throughput as mol-

ecules per minute is reported but is less accurate for very

fast running tasks.

Count heavy atoms

�is task highlights improvements in raw read perfor-

mance. Each record is read in to a resident memory con-

nection table and the number of heavy (non-hydrogen)

atoms counted by iterating over the atoms sequentially.

�e improvement on this task is most noticeable

for SMILES input, previously it would take more than

8 min to read ChEMBL 22.1 but this is reduced to less

than 11 s. On top of this improvement SMILES input

is now validated and assigned a Kekulé structure. �is

identifies 9 invalid entries in ChEBI and another 9 in

ChEMBL. Most of these rejected SMILES are due to the

wrong encoding of Cis/Trans double bond stereochem-

istry at ring closures. �e ChEBI 149 SMILES input has

2107 empty records that v1.4.19 skip, v2.0 simply reads

these as empty molecules. Input from SDF also improved

from ~3 to ~1 min for ChEMBL. �e SDF input in v2.0

now includes perception of stereochemistry and reading

CTfile Sgroups (Fig. 8). �ere are 9 entries from ChEBI’s

SDF that are rejected because they contain CTfile query

features (e.g. any bond order).

Rings

Ring perception is a fundamental step in many other

algorithms. �e rings task is divided as three subtasks:

mark, sssr, and all.

-mark �e first subtask measures the performance in

marking ring membership and reporting the number of

ring bonds in each record. �is requires a linear algo-

rithm based on a depth first search. �e original code

used a weighted spanning tree to compute the member-

ship in linearithmic time. �e run times are similar for

these datasets (Table 6), larger differences are only seen

for more complex cage molecules such fullerenes [38].

-sssr �e second subtask computes the Smallest Set of

Smallest Rings (SSSR) and reports the size of the SSSR

(circuit rank) for each record. Although circuit rank

can be computed more efficiently with a linear traversal

(counting DFS back-edges) or with Euler’s polyhedron

formula we are testing the time to enumerate the SSSR

set. In general SSSR is considered unfavourable due to

the non-uniqueness of the set and need for Gaussian

matrix elimination (cubic runtime). With some book-

keeping the time spent in the matrix elimination has been

reduced [38]. For ChEMBL we see the time to generate

the SSSR is now ~16 s when it previously took around

~3.5 min (Table 6).

-all �e third subtask counts the number of all rings up

to or equal to size 12. �is includes rings that encompass

other smaller rings, for example, 1H-indole has rings of

size 5, 6, and 9. In general this problem is exponential and

so an adjustable threshold or timeout is used to avoid

problematic molecules. CDK v1.4.19 used a timeout

based threshold (default 5 s) whilst v2.0 uses a counter

based on properties of algorithm [38]. In v2.0 there were

15/173 records skipped from ChEBI that have complex

cage-like ring systems (e.g. CHEBI:33611), no records in

ChEMBL reached the threshold. By comparison in

v1.4.19 there were 14/16 records skipped from ChEBI

and 88/90 in ChEMBL due to reaching the time out.

�e speed-up in v2.0 is slightly better than the SSSR

task. ChEMBL previously spent 4–5 min and now

takes only ~12–14 s (Table 6). In v2.0 finding all rings

(≤12 bonds) runs faster than the non-unique SSSR

computation.

Canonical SMILES

�is task measures the generation of a Unique SMILES

string. �ese can be used to compare dataset intersec-

tion and exact lookup. From SMILES input v2.0 the total

elapsed time is ~20 times faster for both ChEBI and

ChEMBL. For ChEMBL it now takes just under 41 s to

read, reorder, and write the SMILES compared to more

than 14 min previously.

Convert

�is tasks tests the non-canonical conversion between

SDF and SMILES input.

-ofmt smi SMILES is a very compact means of storing

connection tables, v1.4.19 could only write canonical

SMILES, v2.0 allows different SMILES flavours to be gen-

erated including a non-canonical variant. �is task out-

puts CXSMILES that includes additional fields such as

repeat groups (used by some ChEBI entries). As expected

the v1.4.19 execution time is the same as for the Canoni-

cal SMILES task but v2.0 can generate the non-canonical

SMILES faster taking less than 30 s for SMILES from

ChEMBL.

3 2 records from SDF use query bond features and are skipped when read.

Page 14 of 19Willighagen et al. J Cheminform (2017) 9:33

Table 5 Summary of systematic benchmark comparing v1.4.19 to v2.0

The total elapsed real time was measured with the unix time utility. The throughput is reported in molecules per minute (K = thousand, M = million) as a relatable

metric. This throughput was calculated by taking the total elapsed time and dividing it by the number of molecule in the dataset (42704 for ChEBI 149, and 1678393

for ChEMBL 22.1). The ChEBI SMILES input contains 2107 blank (but valid) inputs, this accounts for the majority skipped in v1.4.19. The throughput calculation was

adjust to account for this

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per min Skip Time Per min

countheavy ChEBI 149 smi 2112 22.51s 108.2K 9 0.85s 2.9M 26.48

sdf 0 7.21s 355.4K 25 3s 854.1K 2.4

ChEMBL 22.1 smi 0 8m39.3s 193.9K 9 10.74s 9.4M 48.35

sdf 0 3m17.29s 510.4K 0 53.27s 1.9M 3.7

rings
-mark

ChEBI 149 smi 2112 22.91s 106.3K 9 1.06s 2.3M 21.61

sdf 0 8.71s 294.2K 25 3.11s 823.9K 2.8

ChEMBL 22.1 smi 0 8m45.78s 191.5K 9 17.09s 5.9M 30.77

sdf 0 4m12.01s 399.6K 0 1m6.54s 1.5M 3.79

rings
-sssr

ChEBI 149 smi 2112 27.4s 88.9K 9 1.43s 1.7M 19.16

sdf 0 11.84s 216.4K 25 3.78s 677.8K 3.13

ChEMBL 22.1 smi 0 12m4.62s 139K 9 27.16s 3.7M 26.68

sdf 0 7m9.58s 234.4K 0 1m8.17s 1.5M 6.3

rings
-all

ChEBI 149 smi 2126 45.28s 53.8K 26 1.26s 1.9M 35.94

sdf 16 36.56s 70.1K 40 3.51s 730K 10.42

ChEMBL 22.1 smi 88 12m40.2s 132.5K 9 24.97s 4M 30.44

sdf 90 8m5.64s 207.4K 0 1m5.68s 1.5M 7.39

cansmi ChEBI 149 smi 2112 36.58s 66.6K 9 1.91s 1.3M 19.15

sdf 35 21.15s 121.1K 26 4.37s 586.3K 4.84

ChEMBL 22.1 smi 14 14m33.86s 115.2K 9 40.84s 2.5M 21.4

sdf 0 8m59.82s 186.6K 0 1m29.33s 1.1M 6.04

convert
-ofmt smi

ChEBI 149 smi 2112 35.63s 68.4K 16 1.47s 1.7M 24.24

sdf 35 20.91s 122.5K 25 4.55s 563.1K 4.6

ChEMBL 22.1 smi 14 14m26.02s 116.3K 37 26.2s 3.8M 33.05

sdf 0 8m59.38s 186.7K 1 1m12.49s 1.4M 7.44

convert
-ofmt sdf

ChEBI 149 smi 2112 32.42s 75.1K 9 10.39s 234.4K 3.12

sdf 13 17s 150.7K 25 13.96s 183.5K 1.22

ChEMBL 22.1 smi 0 14m25.82s 116.3K 9 5m26.29s 308.6K 2.65

sdf 1 8m51.33s 189.5K 0 6m34.5s 255.3K 1.35

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 2112 24m28.02s 1.7K 9 35.86s 67.9K 40.94

sdf 13 35m12.03s 1.2K 25 42.43s 60.4K 49.78

ChEMBL 22.1 smi 0 3h27m7s 8.1K 9 17m44.64s 94.6K 11.67

sdf 1 5h58m30s 4.7K 0 19m42.77s 85.1K 18.19

fpgen
-type path

ChEBI 149 smi 2112 1m38s 24.9K 9 10.28s 236.9K 9.53

sdf 0 2m11.03s 19.6K 25 13.03s 196.6K 10.06

ChEMBL 22.1 smi 0 42m56.15s 39.1K 9 6m34.67s 255.2K 6.53

sdf 0 47m5.58s 35.6K 0 7m52.32s 213.2K 5.98

fpgen
-type maccs

ChEBI 149 smi 2150 1h37m35s 416 9 19.51s 124.8K 300.1

sdf 48 1h44m17s 409 25 21.25s 120.6K 294.45

ChEMBL 22.1 smi 214 20h24m57s 1.4K 9 13m31.21s 124.1K 90.6

sdf 225 24h41m46s 1.1K 0 13m26.41s 124.9K 110.25

fpgen
-type circ

ChEBI 149 smi 0 – 9 4.37s 557.4K 0

sdf 0 – 25 6.81s 376.2K 0

ChEMBL 22.1 smi 0 – 9 2m43.45s 616.1K 0

sdf 0 – 0 3m42.01s 453.6K 0

Page 15 of 19Willighagen et al. J Cheminform (2017) 9:33

Assigning double-bond configurations in SMILES is

non-trivial and v2.0 has some safety checks, since the

SMILES output is Keklué but input was aromatic, when

the bond orders are assigned an extra double-bond may

be accidental encoded in the SMILES output, this is

sometimes acceptable but will currently report an error.

-ofmt sdf For writing SDF output there is minimal

improvement from v1.14.19, when discounting improve-

ments in read performance the SDF generation for

ChEBI actually runs slightly slower than v1.4.19 (Table 6).

�is can be partially explained by the more comprehen-

sive SDF generation that now writes Sgroups as well as

computing values for atom parity and valence columns.

-gen2d -ofmt sdf When writing SDF the only port-

able way to store stereochemistry is with the inclusion

of coordinates, this is specified with the -gen2d option.

�e overhaul in layout generation discussed early pro-

vides better layouts but also included performance

tweaks, in CDK v1.4.19 generating coordinates and writ-

ing an SDF for ChEMBL took almost 3.5 h but now only

takes ~18 min.

Fingerprint generation

�is task tests the generation of fingerprints for similar-

ity and substructure screening. �ree different types of

fingerprints were tested, a Daylight-like Hashed Path Fin-

gerprint, MACCS-like 166 Keys, and Pipeline Pilot-like

Hashed Circular Fingerprint (ECFP4). �e task generates

a hexadecimal FPS file that can be used with chemfp [83].

-type path Path based fingerprints encode paths of

length 0–7. Path based fingerprints can be used for both

substructure and similarity screening. �e algorithm was

tweaked for v2.0 to hash the paths without pre-comput-

ing all paths upfront and without needing to generate

character strings before hashing. �e time to encode

ChEMBL previously took 42–47 min now only takes 6–8

min.

-type maccs �e CDK MACCS fingerprint uses 166

keys to encode features of a structure and can be used for

similarity searching. �is encoding uses different aspects

of the library including ring perception and the new aro-

maticity perception but the speed is primarily dependent

on SMARTS matching performance. Generating the fin-

gerprint previously took ~1 day for ChEMBL and ~1.75

h for ChEBI. �is has been reduced to less than 13.5 min

for ChEMBL and ~20 s for ChEBI.

-type circ Circular fingerprints can only be used for

similarity and could not be generated in v1.4.19. How-

ever, the fingerprints are known to perform well for

retrieval performance [84]. �e times are included here

to show they are faster to calculate than path or MACCS-

like keys and therefore recommended. CDK includes

two implementations based on signatures or extended

connectivity [35].

Benchmark summary

In all tasks, the total elapsed time is better in v2.0 com-

pared to v1.4.19. On many tasks the improvement is

more than ten times faster. Not only is the execution time

improved but improvements in robustness and correct-

ness means v2.0 is often doing much more work than the

equivalent procedures in v1.4.19.

Conclusions
Since the second CDK publication, in 2006, the library

has been improved in many aspects including architec-

ture, new functionality, improved code testing, manage-

ment, peer review, and deployment. �ese changes have

led a more functionally rich cheminformatics library,

with significant performance improvements. Updates

on the common SMILES and molfile formats and the

improved structure diagram generation are very visible

and benefit many of the tools using the CDK. Further-

more, the stability of the development model has signifi-

cantly improved, providing greater stability of the library

over time. With more than 90 contributors, a long list of

tools based on the CDK, and hundreds of article cita-

tions, the CDK is alive and kicking.

a Abbreviations expanded

b Abbreviations contracted c Structure repeat unit

Fig. 8 Examples of Sgroups now captured by the CDK and encoded in molfiles and CXSMILES. a Ethyl esterification fully expanded reaction. b

Using Sgroup abbreviations allows display short cuts and more compact depiction. c An example of a structure repeat unit in DNA 5′-phosphate

(CHEBI:4294)

Page 16 of 19Willighagen et al. J Cheminform (2017) 9:33

Table 6 Summary of systematic benchmark comparing v1.4.19 to v2.0 without read times

The number of records skipped and time to run the countheavy benchmark (Table 5) has been subtracted. The remaining results provides a relative comparison

without accounting for the overhead of reading the input

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per Min Skip Time Per min

countheavy ChEBI 149 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

ChEMBL 22.1 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

rings
-mark

ChEBI 149 smi 0 0.4s 6.1M 0 0.21s 11.6M 1.9

sdf 0 1.5s 1.7M 0 0.11s 23.3M 13.6

ChEMBL 22.1 smi 0 6.48s 15.5M 0 6.35s 15.9M 1

sdf 0 54.72s 1.8M 0 13.27s 7.6M 4.1

rings
-sssr

ChEBI 149 smi 0 4.89s 498.1K 0 0.58s 4.2M 8.4

sdf 0 4.63s 553.4K 0 0.78s 3.3M 5.9

ChEMBL 22.1 smi 0 3m25.32s 490.5K 0 16.42s 6.1M 12.5

sdf 0 3m52.29s 433.5K 0 14.9s 6.8M 15.6

rings
-all

ChEBI 149 smi 14 22.77s 107K 17 0.41s 5.9M 55.5

sdf 16 29.35s 87.3K 15 0.51s 5M 57.5

ChEMBL 22.1 smi 88 4m0.9s 418K 0 14.23s 7.1M 16.9

sdf 90 4m48.35s 349.2K 0 12.41s 8.1M 23.2

cansmi ChEBI 149 smi 0 14.07s 173.1K 0 1.06s 2.3M 13.3

sdf 35 13.94s 183.8K 1 1.37s 1.9M 10.2

ChEMBL 22.1 smi 14 5m54.56s 284K 0 30.1s 3.3M 11.8

sdf 0 5m42.53s 294K 0 36.06s 2.8M 9.5

convert
-ofmt smi

ChEBI 149 smi 0 13.12s 185.7K 7 0.62s 3.9M 21.2

sdf 35 13.7s 187K 0 1.55s 1.7M 8.8

ChEMBL 22.1 smi 14 5m46.72s 290.4K 28 15.46s 6.5M 22.4

sdf 0 5m42.09s 294.4K 1 19.22s 5.2M 17.8

convert
-ofmt sdf

ChEBI 149 smi 0 9.91s 245.8K 0 9.54s 255.3K 1

sdf 13 9.79s 261.7K 0 10.96s 233.8K 0.9

ChEMBL 22.1 smi 0 5m46.52s 290.6K 0 5m15.55s 319.1K 1.1

sdf 1 5m34.04s 301.5K 0 5m41.23s 295.1K 1

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 0 24m5.51s 1.7K 0 35.01s 69.6K 41.3

sdf 13 35m4.82s 1.2K 0 39.43s 65K 53.4

ChEMBL 22.1 smi 0 3h18m28s 8.5K 0 17m33.9s 95.6K 11.3

sdf 1 5h55m13s 4.7K 0 18m49.5s 89.2K 18.9

fpgen
-type path

ChEBI 149 smi 0 1m15.49s 32.3K 0 9.43s 258.3K 8

sdf 0 2m3.82s 20.7K 0 10.03s 255.5K 12.3

ChEMBL 22.1 smi 0 34m16.85s 49K 0 6m23.93s 262.3K 5.4

sdf 0 43m48.29s 38.3K 0 6m59.05s 240.3K 6.3

fpgen
-type maccs

ChEBI 149 smi 38 1h37m12s 418 0 18.66s 130.5K 312.6

sdf 48 1h44m10s 410 0 18.25s 140.4K 342.5

ChEMBL 22.1 smi 214 20h16m18s 1.4K 0 13m20.47s 125.8K 91.2

sdf 225 24h38m29s 1.1K 0 12m33.14s 133.7K 117.8

fpgen
-type circ

ChEBI 149 smi 0 – 0 3.52s 692K

sdf 0 – 0 3.81s 672.5K

ChEMBL 22.1 smi 0 – 0 2m32.71s 659.4K

sdf 0 – 0 2m48.74s 596.8K

Page 17 of 19Willighagen et al. J Cheminform (2017) 9:33

Availability and requirements
 • Project Name �e Chemistry Development Kit.

 • Project home page https://cdk.github.io/.

 • Operating system(s) Windows, GNU/Linux, OS/X.

 • Programming language Java.

 • Other (optional) requirements JNI-InChI, Vecmath,

Beam, Guava, JGraphT, Signatures, CMLXOM,

XOM, JavaCC.

 • License LGPL v2.1 or later.

 • Any restrictions to use by non-academics None addi-

tional.

Authors’ contributions

All authors wrote and contributed source code or documentation to the CDK

library. Some authors have peer-reviewed source code for the library. ELW,

JWM, RG, and CS are project leaders. All authors have contributed to the con-

tent of this paper. All authors read and approved the final manuscript.

Author details
1 Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, 6200

MD Maastricht, The Netherlands. 2 NextMove Software Ltd, Cambridge CB4

0EY, UK. 3 Department of Pharmaceutical Biosciences, Uppsala University, 751

24 Uppsala, Sweden. 4 AstraZeneca, Innovative Medicines & Early Develop-

ment, Quantitative Biology, Möndal, Sweden. 5 Ideaconsult Ltd, A. Kanchev

4, 1000 Sofia, Bulgaria. 6 Department of Informatics, University of Leicester,

Leicester, UK. 7 Whitehead Institute for Biomedical Research, 455 Main Street,

Cambridge, MA 02142, USA. 8 Química Clínica Aplicada, 43870 Amposta, Spain.
9 4 Hanway Place, W1T 1HD London, UK. 10 National Center for Advancing

Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA.
11 Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University,

Lessingstr. 8, 07743 Jena, Germany.

Acknowledgements

The authors acknowledge the great number of people who have contributed

smaller and larger contributions to the CDK library. A full list of contributors

is found in the Maven parent POM [85]. OS acknowledges support from

the Swedish strategic research programs eSSENCE and Swedish e-Science

Research Center (SeRC). TP is a Simons Foundation Fellow of the Helen Hay

Whitney Foundation. We also thank K. Dührkop for his contributions during

the writing of this paper.

Competing interests

JWM and NJ work for companies that sell solutions based on the CDK. ELW

sells a book describing the CDK functionality.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 25 October 2016 Accepted: 16 May 2017

References

 1. O’Boyle N, Guha R, Willighagen E, Adams S, Alvarsson J, Bradley JC et al

(2011) Open Data, Open Source and Open Standards in chemistry: The

Blue Obelisk five years on. J Cheminform 3(1):37

Additional �le

Additional �le 1. Zip file with the source code of the benchmarks.

 2. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C

et al (2006) The Blue Obelisk—interoperability in chemical informatics. J

Chem Inf Model 46(3):991–998

 3. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003)

The Chemistry Development Kit (CDK): an open-source Java library for

Chemo- and Bioinformatics. J Chem Inf Comput Sci 43(2):493–500

 4. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006)

Recent developments of the Chemistry Development Kit (CDK)—an

open-source java library for chemo- and bioinformatics. Curr Pharm Des

12(17):2111–2120

 5. O’Boyle NM, Hutchison GR (2008) Cinfony–combining Open Source

cheminformatics toolkits behind a common interface. Chem Cent J 2:24

 6. Guha R (2007) Chemical informatics functionality in R. J Stat Softw

18(5):1–16

 7. Truszkowski A, Jayaseelan KV, Neumann S, Willighagen EL, Zielesny A,

Steinbeck C (2011) New developments on the cheminformatics open

workflow environment CDK-Taverna. J Cheminform 3(1):1–10

 8. Beisken S, Meinl T, Wiswedel B, de Figueiredo L, Berthold M, Steinbeck C

(2013) KNIME-CDK: workflow-driven cheminformatics. BMC Bioinform

14(1):257

 9. ChemViz2: Cheminformatics App for Cytoscape; 2016. http://www.rbvi.

ucsf.edu/cytoscape/chemViz2/

 10. Lawson KR, Lawson J (2012) LICSS—a chemical spreadsheet in microsoft

excel. J Cheminform 4(1):3

 11. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) jCom-

poundMapper: an open source Java library and command-line tool for

chemical fingerprints. J Cheminform 3(1):3

 12. Wetzel S, Klein K, Renner S, Rauh D, Oprea TI, Mutzel P et al (2009) Interac-

tive exploration of chemical space with Scaffold Hunter. Nat Chem Biol

5(8):581–583

 13. Klein K, Koch O, Kriege N, Mutzel P, Schäfer T (2013) Visual analysis of bio-

logical activity data with Scaffold Hunter. Mol Inform 32(11–12):964–975

 14. Peironcely JE, Rojas-Chertó M, Fichera D, Reijmers T, Coulier L, Faulon JL

et al (2012) OMG: open molecule generator. J Cheminform 4(1):1–13

 15. Yap CW (2011) PaDEL-descriptor: an open source software to calculate

molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

 16. Dong J, Cao DS, Miao HY, Liu S, Deng BC, Yun YH et al (2015) ChemDes: an

integrated web-based platform for molecular descriptor and fingerprint

computation. J Cheminform 7(1):60

 17. Sivakumar TV, Giri V, Park JH, Kim TY, Bhaduri A (2016) ReactPRED: a tool to

predict and analyze biochemical reactions. Bioinformatics 32:3522–3524

 18. Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM (2009)

Small Molecule Subgraph Detector (SMSD) toolkit. J Cheminform 1(1):12

 19. Rahman SA, Cuesta SM, Furnham N, Holliday GL, Thornton JM (2014) EC-

BLAST: a tool to automatically search and compare enzyme reactions. Nat

Methods 11(2):171–174

 20. Rahman SA, Torrance G, Baldacci L, Cuesta SM, Fenninger F, Gopal N et al

(2016) Reaction Decoder Tool (RDT): extracting features from chemical

reactions. Bioinformatics 32(13):2065–2066

 21. Rostkowski M, Spjuth O, Rydberg P (2013) WhichCyp: prediction of

cytochromes P450 inhibition. Bioinformatics 29(16):2051–2052

 22. Carlsson L, Spjuth O, Adams S, Glen RC, Boyer S (2010) Use of historic

metabolic biotransformation data as a means of anticipating metabolic

sites using MetaPrint2D and Bioclipse. BMC Bioinform 11(1):362

 23. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico

fragmentation for computer assisted identification of metabolite mass

spectra. BMC Bioinform 11(1):148

 24. Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander

SPH et al (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016:

towards curated quantitative interactions between 1300 protein targets

and 6000 ligands. Nucleic Acids Res 44(D1):D1054–D1068

 25. Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J et al (2017)

BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic

Acids Res 45(D1):D380–D388

 26. Ruusmann V, Sild S, Maran U (2015) QSAR DataBank repository: open and

linked qualitative and quantitative structure activity relationship models.

J Cheminform 7(1):35

 27. Spjuth O, Helmus T, Willighagen EL, Kuhn S, Eklund M, Wagener J et al

(2007) Bioclipse: an open source workbench for chemo- and bioinformat-

ics. BMC Bioinform 8(1):59

https://cdk.github.io/
http://dx.doi.org/10.1186/s13321-017-0220-4
http://www.rbvi.ucsf.edu/cytoscape/chemViz2/
http://www.rbvi.ucsf.edu/cytoscape/chemViz2/

Page 18 of 19Willighagen et al. J Cheminform (2017) 9:33

 28. Spjuth O, Alvarsson J, Berg A, Eklund M, Kuhn S, Mäsak C et al (2009)

Bioclipse 2: a scriptable integration platform for the life sciences. BMC

Bioinform 10(1):397

 29. Jeliazkova N, Jeliazkov V (2011) AMBIT RESTful web services: an imple-

mentation of the OpenTox application programming interface. J Chemin-

form 3(1):1–18

 30. Jeliazkova N, Kochev N (2011) AMBIT-SMARTS: efficient searching of

chemical structures and fragments. Mol Inform 30(8):707–720

 31. Kochev NT, Paskaleva VH, Jeliazkova N (2013) Ambit-Tautomer: an open

source tool for tautomer generation. Mol Inform 32(5–6):481–504

 32. Marth CJ, Gallego GM, Lee JC, Lebold TP, Kulyk S, Kou KGM et al (2015)

Network-analysis-guided synthesis of weisaconitine D and liljestrandin-

ine. Nature 528(7583):493–498

 33. Segler MHS, Waller MP (2017) Modelling chemical reasoning to predict

and invent reactions. Chem. Eur. J. 23:6118–6128

 34. Alvarsson J, Lampa S, Schaal W, Andersson C, Wikberg JES, Spjuth O

(2016) Large-scale ligand-based predictive modelling using support vec-

tor machines. J Cheminform. 8(1):39

 35. Clark A, Sarker M, Ekins S (2014) New target prediction and visualization

tools incorporating open source molecular fingerprints for TB Mobile 2.0.

J Cheminform 6(1):38

 36. Cannon E, Mitchell JBO (2006) Classifying the World Anti-Doping

Agency’s 2005 prohibited list using the Chemistry Development Kit

fingerprint. In: Berthold MR, Glen R, Fischer I (eds) Computational life sci-

ences II. vol. 4216 of Lecture Notes in Computer Science. Springer, Berlin,

pp 173–182

 37. Spjuth O, Berg A, Adams S, Willighagen EL (2013) Applications of the

InChI in cheminformatics with the CDK and Bioclipse. J Cheminform

5(1):14

 38. May JW, Steinbeck C (2014) Efficient ring perception for the Chemistry

Development Kit. J Cheminform 6(1):3

 39. May JW (2014) Mischievous SMARTS Queries. http://efficientbits.blogs-

pot.co.uk/2014_03_01_archive.html

 40. May JW (2015) Cheminformatics for genome-scale metabolic recon-

structions. University of Cambridge. https://www.repository.cam.ac.uk/

handle/1810/246652

 41. Karapetyan K, Batchelor C, Sharpe D, Tkachenko V, Williams A (2015)

The Chemical Validation and Standardization Platform (CVSP): large-

scale automated validation of chemical structure datasets. J Stat

Softw 7:30

 42. Faulon JL, Visco J, Donald P, Pophale RS (2003) The signature molecular

descriptor. 1. Using extended valence sequences in QSAR and QSPR stud-

ies. J Chem Inf Comput Sci 43(3):707–720

 43. Faulon JL, Collins MJ, Carr RD (2004) The signature molecular descriptor.

4. Canonizing molecules using extended valence sequences. J Chem Inf

Comput Sci 44(2):427–436

 44. Alvarsson J, Eklund M, Engkvist O, Spjuth O, Carlsson L, Wikberg JES et al

(2014) Ligand-Based target prediction with signature fingerprints. J Chem

Inf Model 54(10):2647–2653

 45. Spjuth O, Eklund M, Ahlberg Helgee E, Boyer S, Carlsson L (2011)

Integrated decision support for assessing chemical liabilities. J Chem Inf

Model 51(8):18407

 46. Moghadam BT, Alvarsson J, Holm M, Eklund M, Carlsson L, Spjuth O

(2015) Scaling predictive modeling in drug development with cloud

computing. J Chem Inf Model 55(1):19–25

 47. Alvarsson J, Eklund M, Andersson C, Carlsson L, Spjuth O, Wikberg JES

(2014) Benchmarking study of parameter variation when using signature

fingerprints together with support vector machines. J Chem Inf Model

54(11):32117

 48. Spjuth O, Carlsson L, Alvarsson J, Georgiev V, Willighagen E, Eklund M

(2012) Open source drug discovery with bioclipse. Curr Top Med Chem

12(18):1980–1986

 49. Norinder U, Ek ME (2013) QSAR investigation of NaV1.7 active com-

pounds using the SVM/signature approach and the bioclipse modeling

platform. Bioorg Med Chem Lett 23(1):261–263

 50. Clark AM (2010) Basic primitives for molecular diagram sketching. J

Cheminform 2(1):8

 51. Clark AM (2013) Rendering molecular sketches for publication quality

output. Mol Inform 32(3):291–301

 52. Helson HE (2007) Structure diagram generation. Wiley, Oxford

 53. Rojas-Chertó M, Kasper PT, Willighagen EL, Vreeken RJ, Hankemeier T,

Reijmers TH (2011) Elemental composition determination based on MSn.

Bioinformatics 27(17):2376–2383

 54. Pluskal T, Uehara T, Yanagida M (2012) Highly accurate chemical formula

prediction tool utilizing high-resolution mass spectra, MS/MS frag-

mentation, heuristic rules, and isotope pattern matching. Anal Chem

84(10):4396–4403

 55. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular

framework for processing, visualizing, and analyzing mass spectrometry-

based molecular profile data. BMC Bioinform 11(1):1–11

 56. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molec-

ular structure databases with tandem mass spectra using CSI:FingerID.

Proc Natl Acad Sci 112(41):12580–12585

 57. Böcker S, Letzel MC, Lipták Z, Pervukhin A (2009) SIRIUS: decompos-

ing isotope patterns for metabolite identification. Bioinformatics

25(2):218–224

 58. Martello S, Toth P (1990) Knapsack problems: algorithms and computer

implementations. Wiley, New York

 59. Dührkop K, Ludwig M, Meusel M, Böcker S (2013) Faster mass decomposi-

tion. In: Proceedings of workshop on algorithms in bioinformatics (WABI

2013). Springer, pp 45–58. http://arxiv.org/abs/1307.7805

 60. Böcker S, Lipták Z, Martin M, Pervukhin A, Sudek H (2008) DECOMP from

interpreting mass spectrometry peaks to solving the money changing

problem. Bioinformatics 24(4):591–593

 61. Böcker S, Lipták Z (2005) Efficient mass decomposition. In: Proceedings of

the 2005 ACM symposium on applied computing. ACM, pp 151–157

 62. Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecu-

lar formulas obtained by accurate mass spectrometry. BMC Bioinform

8(1):1–20

 63. Zhang M, Zhang Z, Chen C, Lu H, Liang Y (2016) Parallel formula genera-

tor based on branch-and-bound algorithm for elucidating high resolu-

tion mass spectra. Chemometr Intell Lab Syst 153:106–109

 64. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y et al (2016)

Sharing and community curation of mass spectrometry data with

Global Natural Products Social Molecular Networking. Nat Biotechnol

34(8):828–837

 65. Weininger D (1988) SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. J Chem Inf Comput

Sci 28(1):31–36

 66. May JW (2013) Beam. GitHub . https://github.com/johnmay/beam

 67. ChemAxon Extended SMILES. http://onlinelibrarystatic.wiley.com/mar-

vin/help/formats/cxsmiles-doc.html

 68. May JW (2013) All the small things. http://efficientbits.blogspot.

co.uk/2013/10/all-small-things.html

 69. May JW (2013) Improved substructure matching. http://efficientbits.

blogspot.co.uk/2013/11/improved-substructure-matching.html

 70. Berger F, Flamm C, Gleiss PM, Leydold J, Stadler PF (2004) Counterexam-

ples in chemical ring perception. J Chem Inf Comput Sci 44(2):323–331

 71. Figueras J (1996) Ring perception using breadth-first search. J Chem Inf

Comput Sci 36(5):986–991

 72. Daylight Chemical Information Systems Inc. http://www.daylight.com

 73. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA

et al (1992) Description of several chemical structure file formats used by

computer programs developed at Molecular Design Limited. J Chem Inf

Comput Sci 32(3):244–255

 74. CTfile Formats. http://accelrys.com/products/collaborative-science/

biovia-draw/ctfile-no-fee.html

 75. Gushurst AJ, Nourse JG, Hounshell WD, Leland BA, Raich DG (1991) The

substance module: the representation, storage, and searching of com-

plex structures. J Chem Inf Comput Sci 31(4):447–454

 76. Krause S, Willighagen E, Steinbeck C (2000) JChemPaint—using the col-

laborative forces of the internet to develop a free editor for 2D chemical

structures. Molecules 5(1):93–98

 77. Willighagen E, Howard M (2007) Fast and scriptable molecular graph-

ics in web browsers without Java3D. Nature Precedings. doi:10.1038/

npre.2007.50.1

 78. Hanson RM (2010) Jmol—a paradigm shift in crystallographic visualiza-

tion. J Appl Crystallogr 43:1250–1260

 79. Linux kernel, Version numbering. https://en.wikipedia.org/wiki/

Linux_kernel#Version_numbering

http://efficientbits.blogspot.co.uk/2014%5f03%5f01%5farchive.html
http://efficientbits.blogspot.co.uk/2014%5f03%5f01%5farchive.html
https://www.repository.cam.ac.uk/handle/1810/246652
https://www.repository.cam.ac.uk/handle/1810/246652
http://arxiv.org/abs/1307.7805
https://github.com/johnmay/beam
http://onlinelibrarystatic.wiley.com/marvin/help/formats/cxsmiles-doc.html
http://onlinelibrarystatic.wiley.com/marvin/help/formats/cxsmiles-doc.html
http://efficientbits.blogspot.co.uk/2013/10/all-small-things.html
http://efficientbits.blogspot.co.uk/2013/10/all-small-things.html
http://efficientbits.blogspot.co.uk/2013/11/improved-substructure-matching.html
http://efficientbits.blogspot.co.uk/2013/11/improved-substructure-matching.html
http://www.daylight.com
http://accelrys.com/products/collaborative-science/biovia-draw/ctfile-no-fee.html
http://accelrys.com/products/collaborative-science/biovia-draw/ctfile-no-fee.html
http://dx.doi.org/10.1038/npre.2007.50.1
http://dx.doi.org/10.1038/npre.2007.50.1
https://en.wikipedia.org/wiki/Linux%5fkernel%23Version%5fnumbering
https://en.wikipedia.org/wiki/Linux%5fkernel%23Version%5fnumbering

Page 19 of 19Willighagen et al. J Cheminform (2017) 9:33

 80. Willighagen EL (2011) Groovy Cheminformatics with the Chemis-

try Development Kit. 1.4.1-0 ed. Figshare. https://doi.org/10.6084/

m9.figshare.2057790.v1

 81. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N et al (2013) The

ChEBI reference database and ontology for biologically relevant chemis-

try: enhancements for 2013. Nucleic Acids Res 41(D1):D456.

 82. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M et al

(2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res

42(D1):D1083.

 83. Dalke A (2013) The FPS fingerprint format and chemfp toolkit. J Chemin-

form 5(1):P36.

 84. O’Boyle NM, Sayle RA (2016) Comparing structural fingerprints using a

literature-based similarity benchmark. J Cheminform 8(1):36.

 85. Authors (2015) https://github.com/cdk/cdk/blob/master/pom.xml

 86. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf

Model 50(5):742–754

 87. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a

novel combination of electronic, topological, and valence state informa-

tion. J Chem Inf Model 35:1039–1045

 88. Klekota J, Roth FP (2008) Chemical substructures that enrich for biological

activity. Bioinformatics 24(21):251825

 89. Vidal D, Thormann M, Pons M (2005) LINGO, an efficient holographic text

based method to calculate biophysical properties and intermolecular

similarities. J Chem Inf Model 45(2):386–393

 90. PubChem Substructure Fingerprint v1.3. ftp://ftp.ncbi.nlm.nih.gov/

pubchem/specifications/pubchem_fingerprints.txt [cited Friday 4 July

2014]

 91. Murray-Rust P, Rzepa HS (2011) CML: Evolution and design. J Cheminform

3(1):44

 92. Ihlenfeldt WD, Gasteiger J (1994) Hash codes for the identification

and classification of molecular structure elements. J Comput Chem

15(8):793–813

 93. Hicklin J, Moler C, Webb P, Boisvert RF, Miller B, Pozo R et al (2012) JAMA: a

Java Matrix Package. http://math.nist.gov/javanumerics/jama/

https://doi.org/10.6084/m9.figshare.2057790.v1
https://doi.org/10.6084/m9.figshare.2057790.v1
https://github.com/cdk/cdk/blob/master/pom.xml
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem%5ffingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem%5ffingerprints.txt
http://math.nist.gov/javanumerics/jama/

	The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation and results
	New APIs and improved implementations
	Atom typing
	Stereochemistry
	Atomic and molecular signatures
	Rendering API
	Structure diagram layout
	Molecular formula
	SMILES parser and generator
	Substructure and SMARTS matching
	Ring finding
	Aromaticity
	CTfile format improvements
	New object builders
	Molecular fingerprints

	Improved coding standards
	Stability and version identifier
	Modularization
	Documentation
	Testing
	Code quality
	Continuous integration
	Git, branching, and patches
	Support

	Binary distributions
	Maven packages
	OSGi bundles

	Systematic benchmark
	Count heavy atoms
	Rings

	Canonical SMILES
	Convert
	Fingerprint generation
	Benchmark summary

	Conclusions
	Availability and requirements
	Authors’ contributions
	References

