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Abstract

Over the last half century, the most frequently used assay for chlorophylls in higher plants and green algae, the
Arnon assay [Arnon DI (1949) Plant Physiol 24: 1–15], employed simultaneous equations for determining the
concentrations of chlorophylls a and b in aqueous 80% acetone extracts of chlorophyllous plant and algal materials.
These equations, however, were developed using extinction coefficients for chlorophylls a and b derived from early
inaccurate spectrophotometric data. Thus, Arnon’s equations give inaccurate chlorophyll a and b determinations
and, therefore, inaccurate chlorophyll a/b ratios, which are always low. This paper describes how the ratios are
increasingly and alarmingly low as the proportion of chlorophyll a increases. Accurate extinction coefficients
for chlorophylls a and b, and the more reliable simultaneous equations derived from them, have been published
subsequently by many research groups; these new post-Arnon equations, however, have been ignored by many
researchers. This Minireview records the history of the development of accurate simultaneous equations and some
difficulties and anomalies arising from the retention of Arnon’s seriously flawed equations.

Abbreviations: Chl – chlorophyll; DMF – N,N′-dimethylformamide; DMSO – dimethylsulfoxide; LHC – light-
harvesting complex; PS I – Photosystem I; PS II – Photosystem II

Introduction

During the last half century, plant biochemists stud-
ied the effects of different light regimes, nutrients and
other growth conditions on the efficiency of various
photosynthetic reactions including O2 evolution, CO2
fixation, or carbohydrate biosynthesis. Because of the
fundamental role of chlorophylls (Chls) in photosyn-
thesis, the rates of these reactions were often presented
per unit of Chl expressed in mass or molar terms;
thus, reliable assays for Chls were required. It was
fortunate, therefore, that the fast and convenient sim-
ultaneous equation assays for Chls a and b of C.L.

Comar and F.P. Zscheile (1942) and Daniel Arnon
(1949) became available in the 1940s because, as dis-
cussed in the next section, the Chl assays of the first
half of the century (see R. Willstätter and A. Stoll
1913) were slower, more difficult, and not especially
accurate (cf. E. I. Rabinowitch 1945; J.H.C. Smith and
A. Benitez 1955; H.H. Strain and W.A. Svec 1966).

My interest in the extraction and assay of Chls
was triggered by my colleagues W.A. Thompson and
P.E. Kriedemann of the CSIRO-Division of Forestry
and Forestry Products, Canberra, who were study-
ing the effects of various nutrients on the growth
of Queensland Maple (Flindersia brayleyana); they
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Figure 1. Daniel Arnon (1910–1994) at his desk in the University of
California at Berkeley in 1988. His simultaneous equation assay for
chlorophylls was the most frequently used after 1950. Photograph
reproduced with the kind permission of Dr R. Buchanan, University
of California at Berkeley.

used Chl concentrations in leaves as one indicator
of plant health. They found that Chl a and b deter-
minations in the tough leathery leaves when extracted
and determined in N,N′-dimethylformamide (DMF)
(Inskeep and Bloom 1985) or in methanol (Böger,
1964) differed from those obtained with aqueous 80%
acetone (Arnon 1949). Further, the Chl a/b ratios
obtained by Arnon’s method were much lower than
those obtained in aqueous acetone using the more
accurate equations of Ziegler and Egle (1965) and
H. Lichtenthaler (1987). Consequently, I decided
to determine accurate extinction coefficients, both
specific (α = l·g−1·cm−1) and millimolar (εmM =
l·mmol−1·cm−1), in all three solvents to derive reli-
able simultaneous equations giving compatible Chl a
and b concentrations and Chl a/b ratios (Porra et al.
1989); it should be noted here that the above definition
of the specific extinction coefficient (α) used in tet-
rapyrrole chemistry (Smith and Benitez 1955; Porra et
al. 1989) differs from that in more general use (i.e. 100
ml·g−1·cm−1). To achieve the required compatibility
of Chl a and b concentrations and Chl a/b ratios, Chls

a and b were freshly extracted from maize leaves and
used immediately after chromatographic purification
(Porra et al. 1989); some previous studies employed
stored dried solid samples of Chls without further puri-
fication. The unexpected difficulty of extracting Chls
from some algae, an irritating problem for some of my
colleagues, was another challenge that furthered my
interest in Chl extraction and assay procedures.

The derivation of simultaneous equations from
molar rather than specific extinction coefficients was a
rather new innovation for Chl assays at the time (Porra
et al. 1989). It was inspired by the elegant work of
electron crystallographers who needed to accurately
determine the numbers of Chl a and Chl b molecules
located on each Chl a/b-polypeptide of LHC II (rather
than the mass of each Chl) to formulate realistic mo-
lecular models (see later section ‘Molecular modeling
of the major Chl a/b protein of LHC II’).

The determination of Chls a and b and of Chl
a/b ratios has also played an important role in in-
vestigations of how higher plants and algae adapt
their photosynthetic apparatus during acclimation to
new light regimes to make optimal use of ambient
light intensities and qualities (see later section ‘Light
acclimation studies’).

The derivation of the simultaneous equation
method for the assay of Chls a and b

The longest and most used assay to determine the con-
centrations of Chls a and b in plant and algal materials
was that of Arnon (1949). In this method, pigments
were extracted in aqueous 80% acetone and determ-
ined in the same solvent. The concentration of each
Chl was determined by measuring the extinction of the
extract at the major red absorption (QY) maxima of
Chl a (∼664 nm) and b (∼647 nm) and inserting these
values into the simultaneous equations [6] and [7] (see
below). Acetone was diluted with 20% (v/v) water so
that further dilution by extracted cell sap would be
insignificant and thus leave the wavelength and intens-
ity of the QY maxima of Chl a and b unaffected (cf.
Porra et al. 1989). Later, buffering the aqueous acet-
one, at pH 7.8, was introduced to minimize pheophytin
formation by loss of the Mg atom in the presence of
extracted metabolic acids.

Daniel Arnon (see Figure 1) used the spectro-
photometric data of G. Mackinney (1941) shown in
Table 1 to develop his assay. Since no other pigment
extracted by these solvents, including carotenoids, in-
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Table 1. Errors in the specific extinction coefficients of Mackinney (1941). The specific extinction coefficients of Chls a and b in aqueous
80% acetone obtained by Mackinney (1941) and Porra et al. (1989) are compared. The percentage errors are calculated assuming that the
coefficients of Porra et al. (1989) are correct

Workers Wavelength Chl a Chl b

(nm)a Spec. ext. Error Spec. ext. Error

(α) (α)

Porra et al. (1989) 663.6 85.95 0 10.78 0

646.6 20.79 0 51.84 0

Mackinney (1941) 663 82.04 –4.55% 9.27 –14.01%

645 16.75 –19.43% 45.60 –12.03%

aThe wavelengths of the QY peaks of Chls a and b are variously reported in the literature but are near 664 and 647 nm, respectively.

terfered with the red absorption of these two Chls,
Arnon reasoned that the extinction (E) of these mixed
Chl extracts at 663 and 645nm could be described as
follows:

E663 = 82.04 · [Chl a] + 9.27 · [Chl b] (1)

E645 = 45.60 · [Chl b] + 16.75 · [Chl a] (2)

[Chl a] and [Chl b] represent Chls a and b concentra-
tions expressed in g·l−1. From Equation (2),

[Chl a] = E645 − 45.60 [Chl b]
16.75

(3)

By inserting Equation (3) for [Chl a] in Equation (1)
and solving for [Chl b], Equation (4) is obtained:

[Chl b] = 0.0229·E645 – 0.00468·E663 (4)

By inserting Equation (4) for [Chl b] into Equation (2)
and solving for [Chl a], Equation (5) is obtained:

[Chl a] = 0.0127·E663 – 0.00269·E645 (5)

Equations (4) and (5) are usually multiplied by 103 as
shown in Equations (6) and (7), respectively, and the
addition of Equations (6) and (7) gives Equation (8)
for total Chl, designated [Chls a + b]. Equations (6),
(7) and (8), which express [Chl a], [Chl b] and [Chls a
+ b] in µg·ml−1, are those published by Arnon (1949).

[Chl b] = 22.90·E645 – 4.68·E663 (6)

[Chl a] = 12.70·E663 – 2.69·E645 (7)

[Chls a + b] = 20.21·E645 + 8.02·E663 (8)

Arnon (1949) was not the first, however, to assay
Chls a and b using simultaneous equations. Previously,
Comar and Zscheile (1942) assayed Chls a and b in
diethylether after extraction from leaves with acetone.

The Chls were displaced into diethylether by dilution
with water and the ethereal phase was then washed
free of acetone with more water before drying over
anhydrous sodium sulphate for spectrophotometric
analysis.

The simpler one-step extraction method of Arnon
(1949) quickly replaced the earlier multistep technique
(Comar and Zscheile 1942). Both these methods, how-
ever, rapidly supplanted the earlier and more difficult
assay of Willstätter and Stoll (1913) in which Chls a
and b were acidified to form phaeophytins a and b,
which were treated with KOH-methanol to open the
isocyclic ring and form rhodochlorins a and b (i.e.
chlorin e6 and rhodin g7, respectively, using earlier H.
Fischer nomenclature). The two rhodochlorins were
transferred to diethylether, and the green rhodochlorin
a was extracted exhaustively with 3% HCl and the
red rhodochlorin b with 12% HCl and both were de-
termined colorimetrically against standard solutions of
known concentration. Although this assay gave low
Chl a/b ratios (cf. Rabinowitch 1945), it produced
much useful information (see section ‘Light acclima-
tion studies’). Richard Willstätter (see Figure 2) was
awarded the Nobel Prize for Chemistry in 1915 for
his investigations of plant pigments, especially the
chlorophylls.

Later, Chls a and b, as Chls or as their pheophytins,
were assayed photometrically after chromatographic
separation on sucrose columns (Seybold and Egle
1938). Prior to the 1940s, Chls a+b were often assayed
colorimetrically as Chls, pheophytins, or rhodochlor-
ins against relevant standards, but with little or no
allowance for differences in Chl a/b ratios between
samples and standards. The development of simple,
fast, and accurate simultaneous equation assays was,
therefore, a great and much-needed advance.
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Figure 2. Richard Willstätter (1872–1942), Nobel Laureate in
Chemistry, 1915. In 1913, at the Kaiser Wilhelm Institut für
Chemie, Berlin, Willstätter developed an assay for chlorophylls with
Arthur Stoll which was in general use until 1950. © Nobel Found-
ation, Stockholm. Photograph reproduced with the kind permission
of the Foundation.

Inaccuracy of the chlorophyll extinction
coefficients used by Daniel Arnon

Over several decades, many researchers (Vernon 1960;
Ziegler and Egle 1965; Delaporte and Laval-Martin
1971 a, b; Lichtenthaler 1987; Porra et al. 1989; Well-
burn, 1994) discovered that Mackinney’s (1941) spe-
cific extinction coefficients for Chls a and b in aqueous
80% acetone were grossly inaccurate. Mackinney’s
coefficients were obtained using dried solid samples
of Chls a and b without further purification to re-
move oxidation products formed during storage. These
are compared with accurate coefficients, confirmed
by Mg-atomic absorption spectrometry, obtained by
Porra et al. (1989) with chromatographically pure Chls
(see Table 1): some of the errors are very large.

The use of alternative extractants

Alternatives to aqueous acetone for Chl extractants are
DMF (N,N′-dimethylformamide), DMSO (dimethyl-
sulfoxide) and methanol. In DMF and DMSO, as in
aqueous 80% acetone, Chls a and b exhibit sharp

QY peaks, but DMF and DMSO are more toxic than
aqueous acetone. The QY absorption bands of Chls
in methanol are broad and less sharp than in aqueous
acetone; although an efficient extractant of Chls, meth-
anol enhances degradation of Chls by opening the
isocyclic ring, especially in alkaline conditions (Porra
1990a, 1991).

Because Chl determinations in DMF (Inskeep and
Bloom 1985), methanol (Böger, 1964), and aqueous
80% acetone (Arnon 1949) were incompatible (see
‘Introduction’), Porra et al. (1989) obtained accurate
molar (ε) and specific (α) extinction coefficients for
freshly prepared samples of chromatographically pure
Chls a and b in these three solvents (see Table 2). The
concentrations of the standard Chl a and b solutions
used to determine these coefficients were verified to
within an error of 1% or less, by magnesium determ-
ination using atomic absorption spectrometry (Porra
et al. 1989). The simultaneous equations derived from
the accurate coefficients given in Table 2 are shown in
Table 3. Using the equations in Table 3, good agree-
ment was now obtained for Chl a and b concentrations
and Chl a/b ratios when the pigments were extracted
and assayed in these three solvents (see Porra et al.
1989).

New solvents, other than aqueous acetone, were
usually sought to extract Chls from difficult tissues,
such as tough leathery leaves, by simple immersion for
extended periods; however, finely cutting with scissors
followed by grinding with extractant produced more
exhaustive extraction and more satisfactory results
than prolonged immersion which can cause oxidative
degradation of the photolabile Chls (cf. Porra et al.
1989). Wellburn (1994) has presented accurate extinc-
tion coefficients and relevant simultaneous equations
for use with various solvents including DMSO, which
is sometimes used as an alternative extractant.

The following three special extractants were de-
signed to remove Chls a and b from some green al-
gae and marine micro-algae which were unexpectedly
difficult to extract. A review of these three special ex-
tractants (Porra 1991) describes their application, the
formation of derivatives and the relevant simultaneous
equations for their use.

1. Aqueous 2.1 M pyridine containing 0.35 M
NaOH extracts Chls a and b from regreening
nitrogen-starved Chlorella fusca cells as their
Mg-hydroxylactones formed by opening the five-
membered isocyclic ring to reclose around an
O atom in a six-membered ring (see Porra and
Grimme 1974; Porra 1991).
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Table 2. Corrected specific (α) and millimolar (εmM) extinction coefficients for Chls a and b in buffered aqueous 80% acetone, DMF
(N,N′-dimethylformamide) and methanol. The spectrophotometer was zeroed at 750 nm so that all coefficients shown are difference coef-
ficients between the QY maximum wavelength specified and 750 nm. Each coefficient is the mean of three determinations: the standard
deviations are presented in Porra et al. (1989)

Solvent Wavelength Difference extinction coefficients

(nm) Chl a Chl b

Millimolar Specific Millimolar Specific

(εmM) (α) (εmM) (α)

Buffered aqueous 663.6 minus 750 76.79 85.95 9.79 10.78

80% acetone (pH 7.8) 646.6 minus 750 18.58 20.79 47.04 51.84

DMF 663.8 minus 750 79.29 88.74 12.03 13.26

646.8 minus 750 18.62 20.84 46.49 51.23

Methanol 665.2 minus 750 71.43 79.95 20.20 22.26

652.0 minus 750 31.65 35.42 38.55 42.48

Table 3. Simultaneous equations for the determination of Chls a and b concentrations in buffered aqueous 80% acetone, DMF and methanol
using the extinction coefficients presented in Table 2

Solvent Equations for Chl concentrations Equations for Chl concentrations

(nmol/ml) (µg/ml)

In buffered [Chl a] = 13.71 E663.6 – 2.85 E646.6 [Chl a] = 12.25 E663.6 – 2.55 E646.6

aqueous [Chl b] = 22.39 E646.6 – 5.42 E663.6 [Chl b] = 20.31 E646.6 – 4.91 E663.6

80% acetone [Chl a +b] = 19.54 E646.6 + 8.29 E663.6 [Chl a + b] = 17.76 E646.6 + 7.34 E663.6

In DMF [Chl a] = 13.43 E663.8 – 3.47 E646.8 [Chl a] = 12.00E663.8 – 3.11E646.8

[Chl b] = 22.90 E646.8 – 5.38 E663.8 [Chl b] = 20.78E646.8 – 4.88E663.8

[Chl a+b] = 19.43 E646.8 + 8.05 E663.8 [Chl a+b] = 17.67E646.8 + 7.12E663.8

In methanol [Chl a] = 18.22 E665.2 – 9.55 E652.0 [Chl a] = 16.29 E665.2 – 8.54 E652.0

[Chl b] = 33.78 E652.0 – 14.96 E665.2 [Chl b] = 30.66 E652.0 – 13.58 E665.2

[Chl a + b] = 24.23 E652.0 + 3.26 E665.2 [Chl a + b] = 22.12 E652.0 + 2.71 E665.2

2. Aqueous 85% methanol containing 2% KOH
and 1.5 mM sodium dithionite extracts, Chls a
and b from Nannochloris atomus cells as Mg-
rhodochlorins a and b (i.e., Mg-chlorin e6 and
Mg-rhodin g7) formed by opening the isocyc-
lic ring (Porra 1990a). Dithionite prevents Mg-
hydroxylactone formation.

3. Aqueous 85% methanol containing 1.5 mM so-
dium dithionite extracts Chls unchanged from
Nannochloris atomus cells (Porra 1990b); presum-
ably, the reductant also cleaves disulfide bridges to
relax cell-wall proteins (cf. Thompson and Preston
1967, 1968) and render the cells permeable to
methanol.

Correction of data obtained by use of the Arnon
simultaneous equations

Despite the frequent publication over many decades
of more accurate extinction coefficients and simultan-
eous equations for Chls a and b (Vernon 1960; Ziegler
and Egle 1965; Delaporte and Laval-Martin 1971 a, b;
Lichtenthaler 1987; Porra et al. 1989; Wellburn 1994),
these more reliable post-Arnon equations were largely
ignored and the Arnon equations retained. Perhaps the
magnitude of the errors involved in the Arnon method
was not fully appreciated. Perhaps some researchers
were more interested in trends than in absolute val-
ues for either Chl concentrations or Chl a/b ratios
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Figure 3. Using the Mackinney’s extinction coefficients (see
Table 1), the extinction values at the red QY absorption peaks of
Chls a and b were calculated for hypothetical solutions of Chl a and
b in buffered aqueous 80% acetone with Arnon ratios, Chl a/bA,
from 1.0 to 7.0. These values were inserted into the appropriate
equations of Table 3 to obtain true Chl a and b concentrations and
hence true ratios, Chl a/bT. The quadratic equation which best fits
the curve is shown: it was determined using the Microcal Origin
Program (Version 4.0).

and, therefore, retained the Arnon method to permit
comparison between current and previous results. To
remove this relativity obstacle, a quick and precise al-
gebraic method was developed to correct Chl a and
Chl b determinations obtained by Arnon’s equations
without reference to the original spectrophotometric
data (Porra et al. 1989; Porra 1991).

The correction method was developed by plotting
Arnon Chl a/b ratios, Chl a/bA, against true ratios,
Chl a/bT (see Figure 3). The quadratic equation which
best fits the curve is shown in Figure 3 and again as
Equation (9):

Chla/bT = 0.593 + 0.459· (Chla/bA)+ (9)

0.229·(Chla/bA)2

Calculations for conversion of Chl a/bA to Chl a/bT

(see legend to Figure 3) showed that the true total Chl,
designated [Chl a + b]T, was always 89.5% of the total
Chl, Chl[a + b]A, calculated by Arnon’s method [see
Equation (10)]:

[Chls a + b]T = 0.895[Chls a + b]A (10)

Thus, having obtained Chl a/bT from Figure 3 or
Equation (9) and by calculating [Chl a + b]T from
Equation (10), the true Chl a and b concentrations,
designated [Chl a]T and [Chl b]T, can be calculated
using Equations (11) and (12):

[Chl a]T = [Chl a + b]T · Chl a/bT

(Chl a/b + 1)
(11)

[Chl b]T = [Chls a + b]T/(Chl a/bT + 1) (12)

Figure 3 shows that the quotient of Chl a/bT÷
Chl a/bA increases from 1.17 to 1.52 to 2.17 for Chl
a/bA values of 1.0, 4.0 and 7.0, respectively; thus, the
higher the Arnon ratio the greater the error. This has
important consequences (see later section on ‘Light
acclimation studies’).

Some consequences of the continued use of the
Arnon equations

Molecular modeling of the major Chl a/b protein of
LHC II

Accurate Chl a and b determinations were required for
the electron crystallography studies of light-harvesting
complex (LHC) II by Werner Kühlbrandt and his
group. Their goal to build a realistic molecular model
of this Chl a/b-protein complex required that they
know the precise number of Chl a and b molecules
present in each pigment–protein molecule. Using
Arnon’s assay, Butler and Kühlbrandt (1988) and
Kühlbrandt and Wang (1991) found 15 Chl molecules
per LHC II protein molecule with a Chl a/bA ratio of
1.15, which suggested 8 Chl a and 7 Chl b molecules
per pigment protein. The atomic model derived from
their electron-crystallography results (Kühlbrandt and
Wang 1991) indicated only 12 Chl molecules present
and, with a Chl a/bA ratio of 1.15, they deemed them
to be 7 Chl a and 5 Chl b.

Later, using more accurate equations (Porra et al.
1989), Kühlbrandt et al. (1994) found 14 Chls per
pigment–protein molecule and a Chl a/bT of about 1.3,
suggesting 8 Chl a and 6 Chl b per protein. Disap-
pointingly, the more accurate equations of Porra et al.
(1989) only reduced the Chl to protein ratio from 15 to
14. Considering the enormity of the errors in Mackin-
ney’s coefficients (see Table 1), it is unlikely that
sufficient error remains in those of Porra et al. (1989)
to permit elimination of a further 2 Chl molecules to
lower the Chl/protein ratio to 12. As suggested by
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Kühlbrandt et al. (1994), the discrepancy between the
experimentally determined Chl content and the num-
ber of Chl molecules observed in the atomic model is
probably caused by 2 Chl molecules remaining non-
specifically bound to the LHC II protein throughout
purification and crystallization: this discrepancy of 2
Chl molecules still remains in their more recent work
(Rogl and Kühlbrandt 1999).

Light acclimation studies

A more dramatic anomaly arising from retention of
Arnon’s equations was encountered in investigations
of chloroplast acclimation to ambient light intensities.
Low-light (shade) plants contain more chlorophyll per
chloroplast and have lower Chl a/b ratios than high-
light (sun) plants (Anderson 1986); incidentally, this
had also been established in 1913 by Willstätter and
Stoll (cf. Rabinowitch 1945). In both shade and sun
plants, Arnon’s Chl a/bA ranges and those of Willstät-
ter and Stoll (1913) were low. The typical Chl a/bA

range for shade plants is about 1.6–2.2 which, using
Figure 3, becomes a true Chl a/bT range of 2.0–2.8: for
sun plants the typical Chl a/bA range is approximately
2.6–3.4 which becomes a Chl a/bT range of 3.5–4.9
using Figure 3.

These changes in Chl a/b ratios in shade and sun
plants reflect the adaptation of the chloroplast to pre-
vailing light intensity through regulation of the amount
of Photosystem I (PS I) relative to Photosystem II
(PS II) and the size and composition of the light-
harvesting complexes (LHCs) of each photosystem.
Shade plants, relative to sun plants, contain more Chl
in larger grana (Anderson 1986). Relative to PS I,
shade plants have fewer PS II but with very large light-
harvesting antennae compared to those of sun plants.
The most abundant Chl a/b protein, LHC II, in shade-
plant chloroplasts has a very low Chl a/bA of 1.15 (i.e.
Chl a/bT of 1.3); thus, shade plants have lower Chl
a/b ratios than sun plants which contain less Chl and
possess only small antennae located in more numerous
but smaller grana (Anderson 1986).

Sane et al. (1970) and Andersson et al. (1976)
separated PS I- and PS II-enriched fractions from frag-
mented chloroplasts. With Arnon’s method, the Chl
a/bA range for the PS I-enriched fraction was approx-
imately 6.0–6.5 which, using Figure 3, became a true
Chl a/bT range of 11.4–13.4. The PS II-enriched frac-
tions have a Chl a/bA< 3.0 (Andersson et al. 1976)
which, using Figure 3, becomes Chl a/bT < 4.2. Inter-
estingly, the much less abundant light-harvesting Chl

a/b protein of PS I has a Chl a/bA of 3.6 (Thornber
1986). which corresponds to a Chl a/bT of 5.25.

All these corrected Chl a/b values, especially for
the PS I-enriched fraction, clearly indicate the need to
specify whether assays were performed by the Arnon
method or a more accurate post-Arnon assay (cf. Ver-
non 1960; Ziegler and Egle 1965; Delaporte and
Laval-Martin 1971a, b; Lichtenthaler 1987; Porra et
al. 1989; Wellburn 1994).

Defining the limitations of the simultaneous equation
assay for Chls a and b

The contribution of Chl b at 647 nm is difficult to
measure on a steeply sloping Chl a spectrum when the
Chl a/b ratio is high; thus the Chl content of PS I is
probably better assayed using the Chl b-oxime method
of Ogawa and Shibata (1965). In this assay, the extinc-
tion at 666 nm is read before and after the addition of
40% aqueous hydroxylamine (pH 4.0) to the Chls ex-
tracted in methanol; this converts the 7-formyl group
of Chl b to form Chl b-oxime which, like Chl a, has
a QY peak at 666 nm. The derivation of the relevant
simultaneous equations to determine both Chl a and
b are described by Ogawa and Shibata (1965). When
the Chl a/bA ratio exceeds 7.0, which is equivalent to
a Chl a/bT value of about 15 (see Figure 3), the Chl
b-oxime assay or, alternatively, a spectrofluorimetric
method (see Talbot and Sauer 1997) should be used.

Concluding remarks

It appears contrary to reason that so many researchers
continue to use Arnon’s equations (1949) after more
accurate post-Arnon equations have become avail-
able; continuing with Arnon’s assay to retain relativity
between their earlier and current results was no longer
sufficient reason after the simple algebraic method to
correct the earlier results of Arnon’s assays became
available (Porra et al. 1989).

As noted above, the error in Arnon’s ratios (Chl
a/bA) increases as the ratios become higher. The true
Chl a/b ratio range of 11.4–13.4 for PS I-enriched
fractions is about double the 6.0–6.5 range calculated
by the Arnon method (see earlier section on ‘Light
acclimation studies’). This starkly emphasizes the ab-
surdity of retaining an old inaccurate assay and clearly
indicates the potential for even more confusion that its
further retention could generate.
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